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A piecewise-polynomial approach to the stability analysis of non-linear switching controllers in presence of sliding modes with application to pneumatic systems

This paper concerns the stability analysis of nonlinear, switching control laws for pneumatic actuators. A first approach to the problem has been proposed by the authors in [1], under the hypothesis of a simplified model of friction. The approach is based on casting the closed-loop system into a piecewise-affine form. However, if a more realistic friction model is introduced, the method in [1] proves to be too conservative, and unfit to deal with the sliding modes that can occur with this new model. This paper proposes a new method for proving the stability on the system by introducing a less conservative class of Lyapunov function, namely piecewisepolynomial ones. At the end of the paper, we show how such a method can be successfully applied to our experimental setup.

I. INTRODUCTION

Friction is a complex phenomenon which plays a key role in the dynamic behavior of several industrial systems. For example, in pneumatic cylinders, the presence of the friction may lead to what is called "stick-slip" [START_REF] Karnopp | Computer simulation of stick-slip friction in mechanical dynamic systems[END_REF], [START_REF] Brun | Study of "sticking and restarting phenomenon" in electropneumatic positioning systems[END_REF], a phenomenon consisting in jerky mouvements of the rod after it has come to a rest; such a behaviour is highly undesirable in the industrial applications and it can even lead to limit cycles.

A control law which avoids the occurrence of stick-slip has been proposed recently in [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF]. This solution consists in a classic feedback linearization, which accounts for the nonlinearities in the pneumatic model, together with an appropriate switching law. The controller switches from a position tracking control to a pressure control after the rod has come to a rest, in order to reduce the pressure difference between the two chambers, avoiding an uncontrolled evolution that eventually could make the rod restart. A major problem with this solution, which had been otherwise verified as very effective in the practice, was to find a formal proof of its stability. So a first approach to the problem has been given in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], where the stability analysis of this system with the switched controller has been takled by casting the closed-loop system into a piecewise-affine (PWA) form [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF], [START_REF] Moarref | Asymptotic stability of piecewise affine systems with sampled-data piecewise linear controllers[END_REF], [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF], [START_REF] Krishnamurthy | A computational stability analysis of discrete-time piecewise linear systems[END_REF]. For this class of systems, new sufficient conditions for stability have been proposed based on piecewise-quadratic Lyapunov functions and given in terms of linear matrix inequalities (LMIs).
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In [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], the authors have applied the piecewise-affine approach to prove the stability of the switching non-linear control laws for pneumatic actuators; nevertheless, this proof is valid under a simplifying hypothesis for the model of the friction. In fact, the friction has been described as a continuous function of the velocity of the rod (a so-called "saturation" shape); however, as indicated by many works [START_REF] Armstrong-Hélouvry | A survey of analysis tools and compensation methods for the control of machines with friction[END_REF], [START_REF] Dahl | Measurement of solid friction parameters of ball bearings[END_REF], [START_REF] Tustin | The effect of backlash and speed-dependent friction on the stability of closed-cycle control systems[END_REF], [START_REF] De Wit | A new model for control of systems with friction[END_REF], more accurate models of friction feature discontinuities, which can lead to the appearance of sliding modes [START_REF] Fridman | Sliding Modes After the First Decade of the 21st Century: State of the Art[END_REF], [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF] in the system dynamics. The approach proposed in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF] is not able to deal with discontinuities and sliding modes, so no conclusion on the stability can be drawn with this approach if the realistic model of friction is taken into account. So, the research work presented in this paper aims at giving an answer to this problem, i.e. find a theoretical tool able to prove the stability of the switching law applied to the cylinder even in the presence of sliding modes.

The literature already contains several approaches for dealing with sliding modes in piecewise-affine systems [START_REF] Johansson | Piecewise linear control systems[END_REF], [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF], [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Hedlund | A toolbox for computational analysis of piecewise linear systems[END_REF], [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF]. In particular [START_REF] Johansson | Piecewise linear control systems[END_REF] presents an extension of the well-known methods presented in [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF]. In [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF], these former works has been extended in order to cope with the presence of sliding mode even in the case of an equilibrium point belonging to the boundary between two cells. The conditions in [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF] combine the work of [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF] and the work of [START_REF] Oliveira | Stability tests for constrained linear systems[END_REF] on the stabilization of piecewise affine systems in the presence of sliding modes. However, these method are still too conservative for our specific problem, as they rely on combinations of piecewise-quadratic Lyapunov functions. In [START_REF] Branicky | Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[END_REF] the sliding modes have been considered as a system dynamics; the drawback in this case is the need for more information on the sliding modes. This drawback has been avoided in the work of [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF] but conservatively using common Lyapunov functions. Alas, as we will see, all of these approaches are not enough to deal with the stability of our pneumatic actuator systems. First of all, we have verified that searching for a piecewise-quadratic Lyapunov functions is too conservative and does not yield any valid solution. Secondly, these former methods are not able to cope with the presence of a whole equilibrium set (not only a point) in a sliding mode. This paper shows how we extend the previous works, introducing piecewise-polynomial Lyapunov functions.

The paper is organized as follows. Section II contains the description of the pneumatic actuator model with the proposed switching control law. Section III introduces the PWA class of systems and the tools that can be used for the stability analysis in the presence of sliding modes. Section IV contains the main theoretical result, i.e. a method for proving stability, whereas Section V shows its application to our test bench model. The conclusions are given in Section VI. moving load (carriage and rod mass) (kg) q mP , q mN mass flow rate provided by the servovalves to the cylinder chambers (kg s -1 ) r perfect gas constant (J kg

II. PNEUMATIC ACTUATOR SYSTEMS

-1 K -1 ) S area of cylinder bore (m 2 ) T temperature (K) V volume (m 3 ) V D dead volume of cylinder chamber (m 3 ) bv viscous friction coefficient (N m -1 s -1 ) TABLE I NOTATION.
The pneumatic system that we consider is shown in Fig. 1. It comprises an actuator in the form of a pneumatic cylinder (double acting) with a rod connected to a carriage on rails. The actuator is powered by compressed air, with two servovalves for controlling the flow supplied to both the chambers of the cylinder. Two sensors measure the pressures in the chambers. Based on [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF], the physical model of the system in open loop is given by the following equations:

             ẏ = v v = 1 M (S(p P -p N ) -b v v -F f (v)) ṗN = krT VN (y) ( S rT p N v + q mN ) ṗP = krT VP (y) ( -S rT p P v + q mP ) (1) 
where (see Table I for the notation) the inputs are the two mass flow rates q mP and q mN , and

V P (y) = V 0 + Sy, V N (y) = V 0 -Sy with V 0 = V D + S l 2 .
The friction force F f (v) is described by the following discontinuous, "relay" model:

F f (v)        = +F s for v > 0 ∈ [-F s , +F s ] for v = 0 = -F s for v < 0. (2) 
Notice the difference with respect to the continuous ("saturation") model chosen in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF]. The switching control law proposed in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], [START_REF] Turki | A solution to the "stick-slip" problem for an electropneumatic drive[END_REF] is based on a feedback linearization of the model in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], which cancels out all the nonlinearities of the system but the ones caused by friction (as we assume uncertainties in this model, so exact cancellation is impossible). Then, the controller switches between the two following laws.

• Position tracking law (#1)

       q mP = VP (y) krT [ kS VP (y) vp P + ṗP d -k P e P ] q mN = M VN (y) SkrT [ SkrT M VP (y) q mP + S 2 kv M (-pP VP (y) -pN VN (y) ) -bv M a -j d + k a e a + k v e v + k y e y ]
which allows the tracking of a given time-varying position reference. It results in the following closedloop dynamics:

             ėy = e v ėv = e af -1 M F f (v) ėaf = -k a e af -k v e v -k y e y + ka M F f (v) ėP = -k P e P (3) • Pressure control law (#2)    q mP = VP (y) krT [ kS VP (y) vp P + ṗP d -k P e P ] q mN = VN (y) krT [-kS VN (y) vp N + ṗNd -k N e N ]
which regulated the pressures in the two chambers in order to avoid stick-slip; this law is active when the carriage has arrived at the desired position. The resulting closed-loop dynamics is

             ėy = e v ėv = e af -1 M F f (v) ėaf = S M (k N -k P )e P -k N e af ėP = -k P e P (4) 
In all of these equations above, e af = e a + 1 M F f (v). e y , e v , e a , e P , e N are the errors between states and their desired values; the constants k y , k v , k a , k P and k N are the state feedback gains chosen by a pole-placement on the feedback-linearized model. The switching criterion is #1→ #2:

v d = 0 ∧ |e y | ≤ ε 1 ∧ |e v | ≤ ε 2 #2→ #1: v d = 0 ∨ |e y | > ε 1 ∨ |e v | > ε 2
where ε 1 and ε 2 are small arbitrary constants. The above switching controller has shown no instability both in simulation and on the test bench and has never caused the occurrence of stick-slip (as shown in Fig. 2). The topic of the rest of this paper is the formal proof of stability.

III. PROPOSED APPROACH

Let us introduce a partition of R n into N polyhedral cells X i with disjoint interior, with i ∈ I, a set of N valid indices. We partition if i ∈ I 0 , otherwise 0 / ∈ X i if i ∈ I 1 (the cells with index in I 0 contain the origin).

I = I 0 ∪ I 1 (with I 0 ∩ I 1 = ∅) such as 0 ∈ X i t [s] position [m] 0 0.5 1 1.5 2 
Definition 1: we call a dynamical system "piecewise affine" (PWA) if it has the following dynamics [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF], [START_REF] Hassibi | Quadratic stabilization and control of piecewise-linear systems[END_REF]:

ẋ(t) = A i x(t) + a i for x(t) ∈ X i , i ∈ I (5) 
where x(t) ∈ R n denotes the state-space vector. Equivalently, for x(t

) T = [x(t) T , 1] ẋ(t) = A i a i 0 0 Ai x(t) for x(t) ∈ X i , i ∈ I (6) 
The domain of each cell X i is described by matrices E i ∈ R li×(n+1) such as:

x ∈ X i ⇒ E i x ≥ 0, , (7) 
and the boundaries between two cells X i and X j by matrices F ij ∈ R rij ×(n+1) such as:

Γ = {(i, j) | X i ∩ X j = ∅} ∀(i, j) ∈ Γ, X i ∩ X j ⊆ x | F ij x = 0 . (8) 
We then focus on PWA systems satisfying a set of given assumptions.

Assumption 1: on any boundary in Γ between two neighboring cells X i and X j , a sliding mode may occur (see figure 3), i.e. for x ∈ X i ∩ X j , (i, j) ∈ Γ we have the following dynamics (according to Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF]):

ẋ(t) = θA i + (1 -θ)A j x(t), 0 ≤ θ ≤ 1. (9 
) Assumption 2: the set E eq ⊇ {0} of the equibrium points for ( 6) is a subset of i∈I0 X i (notice that the equilibrium set might also be on a sliding mode).

Assumption 3: we distinguish two cases:

• if the origin is in the interior of a cell X i (for which we have then that I 0 = {i}): A i does not have any constant terms (a i = 0); we define A 0 = A i ; • if the origin is in the boundary between cells X i and X y : there exists a θ, 0 ≤ θ ≤ 1, for which

θa i + (1-θ)a j = 0; we define A 0 = θ A i + (1 -θ) A j .
Moreover, A 0 may have h eigenvectors (shared with A i and A j in the second case) that have 0 as associated eigenvalue. We call Z ∈ R (n+1)×h the full-rank matrix of these eigenvectors (A 0 Z = A j Z = A i Z = 0) (this implies that the equilibrium set can be larger than the origin alone, i.e. E eq ⊇ {0}). We then define Π ∈ R (n+1)×(n+1-h) as the orthogonal complement of Z, normalized such as Π T Π = I. The objective now is to find a set of conditions ensuring the asymptotic convergence of the system state x(t) to the set of equilibrium points E eq , notwithstanding the presence of sliding modes on the boundaries. First of all, we have to upgrade the methods in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF] in order to cope with sliding modes. Secondarily, in order to reduce conservatism to the minimum, we need to go beyond the piecewisequadratic Lyapunov functions. For this reason, we will make use of Lyapunov function of higher degree, i.e. piecewisepolynomial Lyapunov functions, and given by the expression

V (x) = V i (x) for x ∈ X i , i ∈ I (10) 
such that V i (x) is a polynomial in n variables with degree 2m given by:

V i (x) = χ(x) T P i χ(x) (11) 
where P i = P T i ∈ R ρ×ρ , and χ(x) ∈ R ρ×1 is the vector of all the monomials of degree less than or equal to m that can be made from the elements of x; ρ = m + n m . For example,

χ(x) = [x 1 , x 2 , . . . , x n , x 1 x 2 , x 1 x 3 , . . . , x 1 x n , x 2 x 3 , . . . . . . , x 2 x n , . . . , x n-1 x n , . . . , x m 1 , x m 2 , . . . , x m n , 1] T . ( 12 
)
As seen in [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF], the choice of P i is not unique for a given polynomial V i (x); there exist a number ι of linear independent matrices Q ν = Q T ν ∈ R ρ×ρ (defined up to a scalar factor), for which

χ(x) T Q ν χ(x) = 0 for ν = 1, . . . , ι (13) 
with

ι = 1 2 m + n m 2 + m + n m - n + 2m 2m . (14) 
This implies that

V i (x) = χ(x) T P i χ(x) = χ(x) T (P i + ι ν=1 Q ν τ (ν))χ(x)
for any real scalars τ (ν). This is due to the fact that some monomials in V i can be obtained as products of different elements in χ, e.g.

x 2 1 = x 1 • x 1 = 1 • x 2 1 = x 2 1 • 1.
Following the procedure of the "power transformation" [START_REF] Zelentsovsky | Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems[END_REF], [START_REF] Xu | Homogeneous polynomial Lyapunov functions for piecewise affine systems[END_REF], we can obtain the dynamics of χ(x(t)) = χ(t), with which we will be able to compute the time derivative of the Lyapunov function. Namely, the dynamics will still be PWA, i.e. we will have

χ(t) = Ãi χ(t) for χ ∈ Xi , i ∈ I ( 15 
)
with a new description of the cells Xi , thanks to matrices Ẽi ∈ R li×ρ such as

x ∈ X i ⇒ χ ∈ Xi χ ∈ Xi ⇒ Ẽi χ ≥ 0, (16) 
and a new definition for the matrices defining the boundaries, with matrices Fij ∈ R rij ×ρ such as

∀(i, j) ∈ Γ, Xi ∩ Xj ⊆ χ| Fij χ = 0 (17) 
For the new system in (15), Assumptions 1, 2, 3 still hold: 1) sliding modes may occur, with dynamics:

χ(t) = θ Ãi + (1 -θ) Ãj χ(t), 0 ≤ θ ≤ 1 (18)
2) there exists an equilibrium set Ẽeq |χ ∈ Ẽeq ⇔ χ = 0; χ ∈ Ẽeq ⇔ x ∈ E eq ; Ẽeq ⊂ i∈I0 Xi

3) again we distinguish two cases:

• if the origin is in the interior of a cell Xi ; Ãi does not have any constant terms; Ã0 = Ãi ; • if the origin is in the boundary between cells Xi and Xj : there exist a θ, 0 ≤ θ ≤ 1, for which the constant terms disappear; we define Ã0 = θ Ãi + (1 -θ) Ãj . Moreover, Ã0 has h eigenvectors (shared with Ãi and Ãj in the second case) that have 0 as associated eigenvalue. We call Z ∈ R ρ× h the full-rank matrix of these eigenvectors ( Ã0 Z = Ãj Z = Ãi Z = 0); Π ∈ R ρ×(ρ-h) is the orthogonal complement of Z, with ΠT Π = I. V (χ) in (10) a candidate Lyapunov function for the system in [START_REF] De Wit | A new model for control of systems with friction[END_REF]. In order to ensure its continuity on the boundary between two cells Xi and Xj , (i, j) ∈ Γ, the following condition has to be satisfied:

V i (χ) = V j (χ) ∀χ(x) ∈ Xi ∩ Xj . ( 19 
)
As a direct consequence of LaSalle's theorem ( [START_REF] Khalil | Non Linear Systems, Third Edition[END_REF] page 128), the conditions that the candidate Lyapunov function must satisfy in order to prove the convergence to the equilibrium are in the following lemma.

Lemma 2: for the system in ( 6), the convergence of x to E eq (which coincides with the convergence of χ in [START_REF] Johansson | Piecewise linear control systems[END_REF] to Ẽeq ) for t > 0, t → +∞ is assured under the following conditions:

1) the Lyapunov function is continuous, i.e. it satisfies (19); 2) the Lyapunov function is positive outside Ẽeq , i.e.

V i (χ(x)) > 0 for χ(x) ∈ Xi / Ẽeq , i ∈ I; (20) 
3) the derivative of the Lyapunov function is negative outside Ẽeq , i.e.

Vi (χ(x)) < 0 for χ(x) ∈ Xi / Ẽeq , i ∈ I

even in the case of sliding-mode dynamics; 4) the derivative of the Lyapunov function is null in Ẽeq , i.e.

Vi (χ(x)) = 0 for χ(x) ∈ Ẽeq ∩ Xi , i ∈ I 0 . ( 22 
)
With this we are ready to introduce our main theoretical result.

IV. MAIN RESULT

Given the previous considerations and using the Sprocedure [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], we can arrive at the following theorem, which reveals that the Lyapunov function can be computed through an LMI optimization.

Theorem 3: Let us assume that the system in (6) satisfies Assumptions 1, 2 and 3. Let Ãi be the matrices describing the dynamics of the vector χ of degree m deriving from x, as in [START_REF] Johansson | Piecewise linear control systems[END_REF], with Xi , Ẽi , Fij , Z, Π, Ã0 as previously defined.

If there exist

• P i = P T i ∈ R ρ×ρ for i ∈ I; • U i = U T i , W i = W T i ∈ R li× li and T i , T ′ i , ∈ R li ; all with non-negative entries for i ∈ I; • U ij = U T ij , U ′ ij = U ′T ij ∈ R li× li , T ij , T ′ ij ∈ R li ,
all with non-negative entries for i, j|(i, j) ∈ Γ;

• L ij ∈ R ρ×rij for i, j|(i, j) ∈ Γ; • τ i (ν), τ ′ i (ν), τ ′′ i (ν), τ ij (ν), τ ′ ij (ν) ∈ R, for i, j ∈ I, ν = 1, . . . , ι such that P j = P i + F T ij L T ij + L ij Fij + H(τ ij ) for (i, j) ∈ Γ (23) ΠT ÃT i P i Z = 0 Ẽi Z = 0 for i ∈ I 0 ( 24 
)
and the following LMIs hold

ΠT (P i + H(τ ′ i ) -N i (T ′ i ) -ẼT i W i Ẽi ) Π ≻ 0 ΠT ( ÃT i P i + P i Ãi + H(τ ′′ i ) + N i (T i ) + ẼT i U i Ẽi ) Π ≺ 0 for i ∈ I 0 ( 25 
) P i + H(τ ′ i ) -N i (T ′ i ) -ẼT i W i Ẽi ≻ 0 ÃT i P i + P i Ãi + H(τ ′′ i ) + N i (T i ) + ẼT i U i Ẽi ≺ 0 for i ∈ I 1 (26)          ΠT ( ÃT i P j + P j Ãi + H(τ ′ ij ) + N i (T ij ) + N j (T ′ ij ) + ẼT i U ij Ẽi + ẼT j U ′ ij Ẽj ) Π ≺ 0 ΠT ( ÃT j P i + P i Ãj + H(τ ′ ji ) + N i (T ji ) + N j (T ′ ji ) + ẼT j U ji Ẽj + ẼT i U ′ ji Ẽi ) Π ≺ 0 for (i ∈ I 0 , j ∈ I 0 ) ∈ Γ (27)          ÃT i P j + P j Ãi + H(τ ′ ij ) + N i (T ij ) + N j (T ′ ij ) + ẼT i U ij Ẽi + ẼT j U ′ ij Ẽj ≺ 0 ÃT j P i + P i Ãj + H(τ ′ ji ) + N i (T ji ) + N j (T ′ ji ) + ẼT j U ji Ẽj + ẼT i U ′ ji Ẽi ≺ 0 for (i / ∈ I 0 j / ∈ I 0 ) ∈ Γ (28) 
with

N i (T ) = 0 T T Ẽi + 0 ẼT i T and 
H(τ ) = ι ν=1 τ (ν)Q ν
then the trajectories x(t) of the system (6) converge asymptotically to the equilibrium set E eq , with Lyapunov function [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF].

Proof: consider the Lyapunov function candidate V (χ(x)) defined by [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF].

To prove ( 23) and ( 24), we use the same approach as in [START_REF] Hassibi | Quadratic stabilization and control of piecewise-linear systems[END_REF], [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF]. So, for χ(x) ∈ Xi ∩ Xj , we have Fij χ(x) = 0; replacing this into [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF], multiplying on the right by χ(x) and on the left by χ(x) T , and remembering that χ(x) T H(τ )χ(x) = 0 for any τ , we get χ(x) T P j χ(x) = χ(x) T P i χ(x), that is [START_REF] Krishnamurthy | A computational stability analysis of discrete-time piecewise linear systems[END_REF], i.e. [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF] implies continuity of the Lyapunov function on the boundaries.

Let us now consider [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF] and [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF]. Based on Assumption 3, we can always write a decomposition for χ(x), of the kind χ(x) = Zξ + Πζ, with χ(x) ∈ Xi , i ∈ I 0 . As Ã0 Z = 0 for χ(x) ∈ Ẽeq (i.e. χ(x) = Zξ), then the first in [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF] implies [START_REF] Oliveira | Stability tests for constrained linear systems[END_REF]. For χ(x) / ∈ Ẽeq instead, when the active dynamics is Ãi (i ∈ I 0 ), we have V (χ(x)) = ( Zξ + Πζ) T ( ÃT [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF]. Notice also that the second in [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF] implies that Ẽi χ ≥ 0 ⇒ Ẽi Πζ ≥ 0. Then, thanks to the S-procedure, the second in (25) implies V (χ(x)) < 0 for χ(x) / ∈ Ẽeq , which is the first in ( 21), as we have ζ T ΠT ẼT i U i Ẽi Πζ ≥ 0 (true thanks to ( 16) and ( 24)), ζ T ΠT N i (T ′ i ) Πζ ≥ 0 (true thanks to ( 16) and ( 24)) and χ(x) T H(τ ′ i )χ(x) = 0 (true thanks to (13)). In a similar way, the first expression in [START_REF] Samadi | A unified dissipativity approach for stability analysis of piecewise smooth systems[END_REF] naturally implies the first expression in [START_REF] Löfberg | Yalmip: a toolbox for modeling and optimization in MATLAB[END_REF] for the cells with i ∈ I 0 .

i P i + P i Ãi )( Zξ + Πζ) = ζ T ΠT ( ÃT i P i + P i ÃT i ) Πζ thanks to
Subsequently, again thanks to the S-procedure, the first expression in [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] implies that χ(x)

T P i χ(x) > 0 when χ(x) T ẼT i W i Ẽi χ(x) ≥ 0 (true thanks to (16) if χ(x) ∈ Xi ), χ(x) T N i (T ′ i )χ(x) ≥ 0 (true thanks to (16)) χ(x) T H(τ ′ i )χ(x)
= 0 (true thanks to ( 13)), which in turn implies that V i (χ(x)) > 0 for χ(x) ∈ Xi i.e. the second expression in [START_REF] Löfberg | Yalmip: a toolbox for modeling and optimization in MATLAB[END_REF] for the cells with i ∈ I 1 . Similarly, the second expression in [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] ensures the second expression in [START_REF] Moarref | Asymptotic stability of piecewise affine systems with sampled-data piecewise linear controllers[END_REF].

The conditions ( 27) and ( 28) concern possible sliding modes on the boundary between two cells. Indeed, multiplying the second expression in (28) by θ and the second in ( 26) by 1θ and summing, we get (thanks to the S-procedure, as seen above)

χ(x) T ((θ ÃT j +(1-θ) ÃT i )P i +P i (θ Ãj +(1-θ) Ãi ))χ(x) < 0
for any χ ∈ Xi ∩ Xj , which ensures that the derivative of V i is negative for any possible sliding mode dynamics. Similarly, one can get the complementary expression

χ(x) T ((θ ÃT i +(1-θ) ÃT j )P j +P j (θ Ãi +(1-θ) Ãj ))χ(x) < 0
from the first in [START_REF] Tustin | The effect of backlash and speed-dependent friction on the stability of closed-cycle control systems[END_REF]. Condition ( 27) concerns a sliding mode containing the equilibrium set, the inequalities can be proven with the same reasoning as for ( 28) and ( 25). So we have shown that the conditions required by the theorem imply ( 19), ( 20), ( 21) and ( 22), satisfying the hypotheses of Lemma 2, which proves the theorem statement.

Remark 4: besides the linear matrix inequalities (LMIs) in ( 25), ( 26) and ( 28), Theorem 3 features some linear matrix equalities (LMEs) as well, ( 24) and [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. Such LMEs can be resolved by an appropriate parameterization of the involved matrices (for example, the most recent versions of Yalmip [START_REF] Löfberg | Yalmip: a toolbox for modeling and optimization in MATLAB[END_REF] can execute this function atomatically when introducing equality constraints).

Corollary 5: Theorem 1 in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF] is a special case of our Theorem 3, for the order of polynomial Lyapunov function 2 (m = 1) and without sliding modes on the boundaries between cells.

Remark 6: The condition (23) which ensures the continuity of the polynomial Lyapunov function, is adapted from the one developed in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF] which is equivalent to the one in [START_REF] Hassibi | Quadratic stabilization and control of piecewise-linear systems[END_REF]. So by this relation, all possible piecewise polynomial continuous functions are parameterized.

Remark 7: can remark that conditions (28) which ensure the convergence of the sliding modes are less conservative than the ones imposed in [START_REF] Dezuo | Stability analysis of piecewise affine systems with sliding modes[END_REF] which requires the convex combination of the Lyapunov matrices.

Remark 8: The first conditions in ( 25) and ( 26) can be interpreted as a "sum of squares" property (SOS) [START_REF] Jarvis-Wloszek | Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization[END_REF], [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF], [START_REF] Choi | Sums of squares of real polynomials[END_REF], in fact we look for a positive definite polynomial V i (χ) as a square product of a positive definite matrix times a vector of monomials χ. The terms in H(τ ) reduce the conservatism of the expressions.

V. APPLICATION TO THE PNEUMATIC ACTUATOR

shown in [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF], and according to (3) and (4), the dynamical behavior of the pneumatic system described in Section II can then be cast into the form of a PWA system as in [START_REF] De Wit | A new model for control of systems with friction[END_REF]. Concerning the parameters of the test bench, we have M = 17 kg, F s = 40 N, S = 7.27 • 10 -4 m 2 , ε = 0.1 m/s, ε 1 = 0.005 m and ε 2 = 0.01 m/s. Through a pole placement, according to the system specifications, we have set k y = 50 s -3 , k v = 71 s -2 , k a = 51.4 s -1 , k P = 10 s -1 and k N = 10 s -1 .

The switchings of the system (due to the friction model and to the control law) divide the state-space into a set of eight cells (see Fig. 4): two cells X 01 and X 02 including the origin (0 is on the boundary between these two cells), and six external cells X 1 , X 1s , X 2 , X 2s , X 3 and X 3s , two by two symmetrical with respect to the origin.

The discontinuity of the friction model on e v = 0 can generate a sliding phenomenon on the corresponding boundary. So, to prove convergence of these sliding modes, we have to consider all cells associated to this boundary. For the stability analysis, whereas in the above properties, we consider only the following cells: X 01 , X 02 , X 1 , X 2 and X 3 . The conditions imposed on these cells will necessary be verified by symmetry for the other ones.

The piecewise polynomial function chosen in our case is of degree 2m = 4. So, the power of monomials is m = 2. We can construct the vector χ(x) according to [START_REF] Hassibi | Quadratic stabilization and control of piecewise-linear systems[END_REF], where x in this case has the following form:

x = [x 1 , x 2 , x 3 , x 4 ] T . So, χ(x) = [x 1 , x 2 , x 3 , x 4 , x 1 x 2 , x 1 x 3 , x 1 x 4 , x 2 x 3 , x 2 x 4 , x 3 x 4 , x 2 1 , x 2 2 , x 2 3 , x 2 4
, 1] T . We can then construct the dynamics Ãi and the cells Xi . As we study the convergence of the state to E eq , we consider a static setpoint, i.e. y d constant and v d = 0, a d = 0 (which implies e v = v, e a = a).

sliding surface

X 3 X 3s X 1s X 2s X 01 X 02 e y e v X 1 X 2
Fig. 4. The sections of the cells X i with respect to the ey and ey axes.

We analyse each cell in detail.

• The central cell X 01

In this cell the control law is #2, and the friction is

F f (v) = +F s . The cell is active for |e y | ≤ ε 1 0 ≤ v ≤ ε 2
as x ∈ X 01 ⇒ χ(x) ∈ X01 , we define Ẽ01 = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 ε 2

Notice that this matrix Ẽ01 describes only two of the four half-spaces defining the cell; the other two halfspace constraints (corresponding to two rows of the matrix) have been discarded in order to accommodate the condition in [START_REF] Pettit | Analyzing piecewise linear dynamical systems[END_REF], i.e. Ẽ01 Z = 0. Discarding lines in this way (which corresponds to having a bigger set for which the inequality Ẽ01 χ ≥ 0 holds than X01 ) is allowed thanks to the definition of the matrices Ẽi , for which χ ∈ Xi ⇒ Ẽi χ ≥ 0 but not viceversa, see [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF].

The matrix Ã01 as well as those concerning the other cells are not shown due to space constraints. • The central cell X 02

In this cell the control law is #2, the friction is

F f (v) = -F s . The cell is active for |e y | ≤ ε 1 -ε 2 ≤ v ≤ 0
for which we define Ẽ02 = 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ε 2

• The cell X 1 In this cell the control law is #1, the friction is F f (v) = +F s . The cell is active for

e y > ε 1 0 ≤ v ≤ ε 2
for which we define Ẽ1 =   1 0 0 0 0 0 0 0 0 0 0 0 0 0 -ε 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 ε 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

  • The cell X 2
In this cell the control law is #1, the friction is F f (v) = -F s . The cell is active for

e y > ε 1 -ε 2 ≤ v ≤ 0
for which we define Ẽ2 =   1 0 0 0 0 0 0 0 0 0 0 0 0 0 -ε 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ε 2 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0  

• The cell X 3 In this cell the control law is #1, the friction is F f (v) = +F s . The cell is active for v > ε 2

for which we define Ẽ3 = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -ε 2

• The cells X 1s , X 2s and X 3s The conditions described above are also valid for the other cells X 1s , X 2s and X 3s , which are symmetrical with respect to the origin to the cells X 1 , X 2 and X 3 respectively; just replace χ by -χ. Using Yalpim [START_REF] Löfberg | Yalmip: a toolbox for modeling and optimization in MATLAB[END_REF] and SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] under Matlab, Theorem 3 has been successfully applied by considering that sliding modes may occur on the boundary corresponding to e v = 0. The equilibrium is on the boundary between X 01 and X 02 , for which we have Ã0 = 1 2 Ã01 + 1 2 Ã02 . The level curves of the piecewise-polynomial Lyapunov function found have been plotted in Fig. 5. We can see that the level curves do not have a simple ellipsoidal shape; this implies that a simple common quadratic Lyapunov function (i.e., the same matrix P for all the cells) is not sufficient to obtain such shapes. Moreover, we have verified that our test fails for the case of m = 1, which justifies the need of a piecewise-polynomial function instead of a piecewise-quadratic one. 

VI. CONCLUSIONS

In this paper, we present some sufficient conditions for finding piecewise-polynomial Lyapunov functions for PWA systems with sliding modes and equilibrium sets greater than the mere origin, and potentially on a sliding mode. We have applied this analysis to an electropneumatic system in closed-loop with a switching control law modeled as a PWA system with sliding modes due to presence of friction, for which our former work [START_REF] Ameur | A piecewise-affine approach to the analysis of non-linear control laws for pneumatic systems[END_REF] was not applicable. The new extended conditions successfully found a 4-th degree piecewise-polynomial Lyapunov function through a convex optimization problem in terms of linear matrix inequalities.

The ideas in this paper can be extended to include the study of performance or to robust analysis, as a topic of future research.
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 1 Fig. 1. Electro-pneumatic actuator.
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 2 Fig. 2. Evolution of position with respect to the desired position. The background colors are related to the active control mode (#1 or #2).
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 3 Fig. 3. Sliding modes.
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 5 Fig. 5. Lyapunov function level curves on the (ev, ey) plane.