Quantitative product branching for multichannel reactions using chirped pulse spectroscopy in pulsed uniform flow
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CPUF Spectrometer Product branching in the low temperature reaction of CN with Propyne
A new experimental apparatus is presented that combines two powerful technologies: chirped-pulse Fourier-transform microwave Motivati ay I - I
spectroscopy (CP-FTMW) and pulsed uniform supersonic flows to address the need of a detection technique that can give isomer-specific S VAON ol CH,CCH +CN :
identification and structural characterization of reaction products and intermediates and their branching ratios in the field of reaction dynamics. « The reaction between CN radical and methylacetylene (CH,CCH) is important in the growth of f HC N(J=9-8) _
CP-FTMW spectroscopy is a revolutionary new technique capable of producing broadband rotational spectrum in a single data acquisition. nitrile species in Titan's atmosphere and a prototypical system in the which to probe 2 %0F ]
However, a high density (10'® cm-3) of cold products (20-30 K) is needed for this approach to be effective. Uniform supersonic flows are an multichannel branching and the competition between direct and complex-mediated reactions. ?20 . CRENEO9) -
ideal environment for providing these conditions, as well as aIIOWing for stabilization of reaction intermediates and determination of reaction e Previous crossed-molecular beam experimentsﬁ Supported by ab initio Ca|cu|ation3, repOrted E i \ ]
kinetics with product detection. Presented here is a description of the new apparatus, chirped pulse in pulsed uniform supersonic flow (CPUF) the CN addition/H elimination channel and identified two product isomers. 10 - ]
spectrometer and its capabilities. - Even though CH, elimination product HCCCN through C2 is more energetically stable, no clear o fivd W IIIIIII ibelial MM MMMWMMWM%
a) 0.25-3.75 GHz evidence of this channel was indicated in previous work, nor has the direct abstraction channel o150 o . o225 o0
AWG ES:E D ' been seen previously ne Javel.22¢ e
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2640 Gz ‘ - Both the direct abstraction and the indirect addition/elimination products have rotational N 1
c) b) _ Laval nozzle fow chamber transitions accessible within the detection frequency band of CPUF, thus a detailed study of the 2 JHfNO _
tz . ; Laser uartz . . . . s age . . S i |
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Schematic of the CPUF spectrometer. A chirped pulse is A piezoelectric stack! valve is mounted on a small reservoir outside of the
generated in an arbitrary waveform generator (AWG), polycarbonate vacuum chamber. The Laval nozzle provides a uniform flow R
upconverted, and amplified. The molecular sample is polarized with the pressure monitored by a pair of transducers. The entire chamber
by the radiation and the resulting emission, in the form of a free is mounted on a translational stage, so different regions of the flow can be ok
induction decay (FID), is collected by the oscilloscope. The FID  Probed by the microwave radiation introduced via one of the feedhorns.
Is Fourier transformed to produce a spectrum. The spectrometer S s
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