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Searching for optimal polygon | application to thepentagon caseDavid DUREISSEIXSeptember 19971 IntroductionBesides classical beginning square, several models are built from various di�erentforms of paper. Among them, regular polygons are often used for geometric modelsor modules. A usual feature related to this kind of constructions is to get the largestregular polygon within a given square. A large number of folding procedures, exactor approximated, simple or complex, using more or less of the paper area, exists.The goal is herein to �nd the optimal polygon (i.e. the regular polygon which sizeis the largest one, within a given square). Several folding procedures are comparedfor the pentagon case; moreover, a new exact and optimal construction is proposed,while trigonometry is the main tool needed as well as the integer part.2 Construction principleOne can easily show that at least one vertex of optimal polygon intersect (in alarge sense) an edge of the square. An auxiliary question is the following: �nd thesmallest rectangle circumscribed to the given polygon. Thought this question ismore general, the answer is paradoxically easier to �nd than these related to thecircumscribed square. This last case is a particular one; the previous answer willthenH and B will denote the height and width of circumscribed rectangles, n, thenumber of edges for the regular polygon and R, the radius of the circumscribed cir-cle. The �-angle positions the polygon from the considered circumscribed rectangle,as described by the �gure 1.This problem posses similarities with the problem of ow irregularities of axialpiston hydrostatic components for power uid transmissions [Fayet 91], [Cognard 93].Cases where n is odd or even have to be separated, as we do herein.
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2.1 Case of an odd number of edgesFigure 2 indicates notations used. It is then obvious that minimum height for thecircumscribed rectangle to the �-inclined polygon is:For � 2 [�n; 2�n]; H(�) = l cos(� � 3 �2n)Moreover, this function is �n-periodic as shown in the �gure 3. It is then easy toshow that the number of the vertex Ms for the rectangle height is s = n+ 12 .
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H(θ+π/2n)Figure 3: Characteristic function for odd caseThe corresponding width is get as well:B(�) = H(� � �2)In order to get a phase shift within [0; �n], one has to use the integer part functionE: q = E(n2 + 1)such as n2 < q � n2 + 1, and 0 < � = �nq � �2 � �n, and then B(�) = H(� + �).Herein, n is odd, so: q = n2 + 12; � = �2n.2



For a given position �, H(�) and B(�) are the minima height and width re-spectively. Using a circumscribed rectangle leads to two uncoupled minimisationproblems. For the special case of the square, itself has to be circumscribed to therectangle; its edge is then A(�) = max(H(�); B(�)). The smallest square is get forthe position �opt: Aopt = min� A(�) = A(�opt)Here, the �gure 3 illustrates the result:�opt = �4n or 3 �4n; and Aopt = l cos �4n2.2 Case of an even number of edgesThis time, n = 2p, where p is an integer. The con�guration is given on the �gure 4.For � 2 [0; 2�n]; H(�) = l0 cos(� � �n)the function is moreover 2�n-periodic, �gure 5. This time, the number of vertex Msused for the rectangle height is s = n2; it is opposed to vertex M0.
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the result is this time �0 = 2�nq0 � �2 2 ]0; 2�n] and q0 = E(n4 + 1).2 sub-cases have to be treated:� if p is even: p = 2k, n = 4k andq0 = E(k + 1) = k + 1 = n4; �0 = 2�4k � �2 = �2k = 2�n; B(�) = H(�)Then (�gure 5)�opt = 0 or 2�n; and Aopt = H(�opt) = l0 cos �n� if p is odd : p = 2k + 1, n = 4k + 2 etq0 = E(k + 32) = k + 1 = n+ 24 ; �0 = �2(2k + 1) = �n; B(�) = H(� + �n)Then (�gure 5)�opt = �n or 3�n; and Aopt = H(�opt) = l0 cos �2nRemark: as for each case, the minimum is obtained for H(�) = B(�), each edgeof the circumscribed square touches a vertex of the optimal polygon.3 ResultsIn order to quantify the fact that the polygon is or is not the largest one, anindicator, �, is built as the ratio between areas:� = SpSc � 1where Sc is the square area and Sp, the area of the polygon.Sc = A2opt; Sp = nR2 sin �n cos �nTable 1 summarises the previous results. It is easy to show that each polygon hasone diagonal as symmetry axis.4 Example of the pentagonThe pentagon is a classical example, it has been several times treated. Remarkablequantities are:sin �5 = p10� 2p54 cos �5 = p5 + 14 = 1p5� 1tan �5 =q5� 2p5 sin 2�5 = p10 + 2p584



n Aopt=2R �opt �optodd cos �2n cos �4n �4n or 3�4n n4 sin �n cos �ncos2 �2n cos2 �4neven, multiple of 4 cos �n 0 or 2�n n4 tan �neven, non multiple of 4 cos �2n �2n or 3�2n n4 sin �n cos �ncos2 �2n3 0.83652 �12 or �4 0.464104 p22 � 0:70711 0 or �2 15 0.93935 �20 or 3�20 0.673656 0.96593 �12 or �4 0.696157 0.96880 �28 or 3�28 0.728888 0.92388 0 or �4 0.828431 1 0 �4 � 0:78539Table 1: Results
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as well as the golden ratio h=l = p5� 12used for exact construction techniques.Following references are obviously not exhaustive; they refer to one existing pre-sentation of the quoted technique. Some of these techniques are presented hereinfor the pentagon. They have been designed also in more general cases, for instance in[Hilton and Pederson 83], [Gibbs 83], [Scimemi 89], [Huzita 94], [Geretschl�ager 97a],[Geretschl�ager 97b].4.1 Exact constructions� Quoted from [Kasahara 89], page 253, �gure 6.
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4.2 Approximated constructions� \American" technique, [Kasahara 88], page 77, [Kasahara 89], page 252, �gure8. A = 2, R = 5p512 � 0:93169, � = 5(4 + 5p10)192 � 0:51592.
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R RFigure 8:� T. Kawai method, [Kawai 70] page 124, [Morassi 89], �gure 9. A = 2, R = 1,� = 3(4 + 5p10)100 � 0:594342.
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⑤ Figure 17:4.3 Exact constructions for optimal pentagonHistorically, the �rst exact construction for the pentagon has to be credited to[Morassi 89], �gure 18. The technique proposed herein has been developed inde-
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⑨ ⑩Figure 18:pendently from the previous one. She leads to a little simpler construction, �gure19, while using the property: l cos �20 = A.Steps 1 and 2: folding the golden ratio.Step 3: building the angles �=5, �=10, �=20.10
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Figure 19:Step 4: building l = A=(cos(�=20)).Step 5: one edge of the stellated pentagon : : :Steps 6 to 8: : : : and the others.These folding constructions are e�ectively optimal, as the indicator is � = �opt �0:67365.References[Cognard 93] Cognard Jean-Yves, Transmission et transformation de puissance,ENS de Cachan, D�epartement de G�enie M�ecanique, 1993.[Fayet 91] Fayet Georges, Hydraulique - machines et composants, Paris, Eyrolles,1991.[Geretschl�ager 97a] Geretschl�ager Robert, Folding the regular heptagon, CruxMathematicorum, vol. 23, number 2, march 1997, pp. 81{88.[Geretschl�ager 97b] Geretschl�ager Robert, Folding the regular nonagon, CruxMathematicorum, vol. 23, number 4, mai 1997, pp. 210{217.[Gibbs 83] Gibbs W., Paper polygons, Mathematics Teaching, vol. 103, juin 1983,pp. 16{17.[Hilton and Pederson 83] Hilton Peter and Pederson Jean, Approximating any reg-ular polygon by folding paper, Mathematics Magazine, vol. 56, number 3, mai1983, pp. 141{155.[Huzita 89] Huzita H. (edited by), Proceedings of the First International Meetingof Origami Science and Technology, Ferrara, 1989.11
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