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1 Introduction

Besides classical beginning square, several models are built from various di erent forms of paper. Among them, regular polygons are often used for geometric models or modules. A usual feature related to this kind of constructions is to get the largest regular polygon within a given square. A large number of folding procedures, exact or approximated, simple or complex, using more or less of the paper area, exists.

The goal is herein to nd the optimal polygon (i.e. the regular polygon which size is the largest one, within a given square). Several folding procedures are compared for the pentagon case; moreover, a new exact and optimal construction is proposed, while trigonometry is the main tool needed as well as the integer part.

Construction principle

One can easily show that at least one vertex of optimal polygon intersect (in a large sense) an edge of the square. An auxiliary question is the following: nd the smallest rectangle circumscribed to the given polygon. Thought this question is more general, the answer is paradoxically easier to nd than these related to the circumscribed square. This last case is a particular one; the previous answer will then H and B will denote the height and width of circumscribed rectangles, n, the number of edges for the regular polygon and R, the radius of the circumscribed circle. The -angle positions the polygon from the considered circumscribed rectangle, as described by the gure 1.

This problem posses similarities with the problem of ow irregularities of axial piston hydrostatic components for power uid transmissions Fayet 91], Cognard 93]. Cases where n is odd or even have to be separated, as we do herein. For 2 n ; 2 n ]; H( ) = l cos( ? 3 2n ) Moreover, this function is n -periodic as shown in the gure 3. It is then easy to show that the number of the vertex M s for the rectangle height is s = n + 1 2 . The corresponding width is get as well:

H(θ) θ M s M 0
θ 2π n π n h = 2R sin π n R - π 2 2π n 2π n l = 2R cos π 2n π 2n M s M 0
B( ) = H( ? 2 )
In order to get a phase shift within 0; n ], one has to use the integer part function E:

q = E( n 2 + 1)
such as n 2 < q n 2 + 1, and 0 < = n q ? 2 n , and then B( ) = H( + ). Herein, n is odd, so: q = n 2 + 1 2 ; = 2n .

For a given position , H( ) and B( ) are the minima height and width respectively. Using a circumscribed rectangle leads to two uncoupled minimisation problems. For the special case of the square, itself has to be circumscribed to the rectangle; its edge is then A( ) = max(H( ); B( )). The smallest square is get for the position opt :

A opt = min A( ) = A( opt )

Here, the gure 3 illustrates the result: opt = 4n or 3 4n ; and A opt = l cos 4n

Case of an even number of edges

This time, n = 2p, where p is an integer. The con guration is given on the gure 4.

For 2 0; 2 n ]; H( ) = l 0 cos( ? n ) the function is moreover 2 n -periodic, gure 5. This time, the number of vertex M s used for the rectangle height is s = n 2 ; it is opposed to vertex M 0 . 3 the result is this time 0 = 2 n q 0 ? 2 2 ]0; 2 n ] and q 0 = E( n 4 + 1). 2 sub-cases have to be treated: if p is even: p = 2k, n = 4k and

l' = 2R R θ - π 2 2π n 2π n 2π n π n M s M 0 Figure 4: Even case notations 0 θ 2π/n H(θ) H(θ+π/n) 4π/n
q 0 = E(k + 1) = k + 1 = n 4 ; 0 = 2 4k ? 2 = 2k = 2 n ; B( ) = H( )
Then ( gure 5) opt = 0 or 2 n ; and A opt = H( opt ) = l 0 cos n if p is odd : p = 2k + 1, n = 4k + 2 et

q 0 = E(k + 3 2 ) = k + 1 = n + 2 4 ; 0 = 2(2k + 1) = n ; B( ) = H( + n )
Then ( gure 5) opt = n or 3 n ; and A opt = H( opt ) = l 0 cos 2n

Remark: as for each case, the minimum is obtained for H( ) = B( ), each edge of the circumscribed square touches a vertex of the optimal polygon.

Results

In order to quantify the fact that the polygon is or is not the largest one, an indicator, , is built as the ratio between areas:

= S p S c 1

where S c is the square area and S p , the area of the polygon. S c = A 2 opt ; S p = nR 2 sin n cos n Table 1 summarises the previous results. It is easy to show that each polygon has one diagonal as symmetry axis.

Example of the pentagon

The pentagon is a classical example, it has been several times treated. Remarkable quantities are: Following references are obviously not exhaustive; they refer to one existing presentation of the quoted technique. Some of these techniques are presented herein for the pentagon. They have been designed also in more general cases, for instance in Hilton and Pederson 83], Gibbs 83], Scimemi 89], Huzita 94], Geretschl ager 97a], Geretschl ager 97b].

Exact constructions

Quoted from Kasahara 89], page 253, gure 6.

x y For which an other construction can be found in Kasahara 88], page 73, gure 11. Step 4: building l = A=(cos( =20)).
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Step 5: one edge of the stellated pentagon : : :

Steps 6 to 8: : : : and the others. These folding constructions are e ectively optimal, as the indicator is = opt 0:67365.
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Exact constructions for optimal pentagon

Historically, the rst exact construction for the pentagon has to be credited to Morassi 89], gure 18. The technique proposed herein has been developed inde- pendently from the previous one. She leads to a little simpler construction, gure 19, while using the property: l cos 20 = A.

Steps 1 and 2: folding the golden ratio.

Step 3: building the angles =5, =10, =20.