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Searching for optimal polygon | remarks about ageneral construction and application to heptagonand nonagonDavid DUREISSEIXOctober 19971 IntroductionResults obtained in a �rst paper, [Dureisseix 97], deal with positioning optimalpolygons | i.e. largest regular polygons within a square. Such polygons have twoparticularities: symmetry with respect to at least one diagonal of the square andthe fact that each edge of the square touches one vertex of the polygon.The technique used for pentagon (building the stellated pentagon) can be gen-eralised for any number of edges. Complete construction in this case still remainsopen. Nevertheless, it seems necessary to begin with the construction of an angle�n, which is then enough to build the optimal polygon with the technique proposedherein.With procedures for folding �7 and �9 that are described herein, examples ofheptagon and nonagon are performed.2 General case of an n-edged polygonIn order to get a construction for regular polygon with n edges, the techniqueused for the pentagon in [Dureisseix 97] can be generalised. Reaching a fraction ofthe angle �n as well as a length are necessary to position the polygon. The ideaproposed herein is to take for this length a particular edge of one stellated versionof the polygon.We consider polygons | either stellated or not | for which one edge touchestwo sides of the square. thanks to previously demonstrated symmetry with respectto one diagonal, at least one edge is parallel to the other diagonal: this is theinteresting edge, li or lj , �gure 1. One can notice that the largest edge of anystellated versions, l, as been used in [Dureisseix 97] for �nding the optimal positionof the polygon.Mi, Ms and Mj denote the vertices of the polygon that touch the sides of thecircumscribed square; �i denotes the angle between ����!M0M1 and ���!M0Mi, �gure 2. Itis easy to show that �i = �n(i � 1). The searched edge of the stellated polygon hasthen to satisfy �i + �opt = �4 or 3�4 . �opt positions the optimal polygon withinthe square, for which previous results are in table 1.1
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αkFigure 2: Angles with respect to �rst edge2.1 Case of an odd number of edges: n = 2p + 12.1.1 Particular verticesLet's �nd �rst the vertex Mi, �gure 1, that touches the right side of the circum-scribed square. i is such that�2 � �opt + 2(i� 1)�n < �2 + 2�nand then i = E(n4 � �opt n2�) + 1.Once more, we have to separate sub-cases:� if p is even: with �opt = �4n, i = E(p2 + 18) + 1 and as p = 2k,i = k + 1 = p2 + 1 = n+ 34 ; �i = �4 � �4n� if p is odd, with �opt = 3 �4n, i = E(p2 � 18) + 1 and as p = 2k + 1,i = k + 1 = p+ 12 = n+ 14 ; �i = �4 � 3 �4nEach time, we have �opt + �i = �4: this is the searched edge.It will happen to be interesting to consider also the vertex Mj , �gure 1, thattouches the left side of the circumscribed square. j is such that3�2 � �opt + 2(j � 1)�n < 3�2 + 2�n2



and then j = E(3n4 � �opt n2�) + 1.� if p is even: with �opt = 3�4n, j = E(3p2 + 38) + 1 and as p = 2k,j = 3k + 1 = 3p2 + 1 = 3n+ 14 ; �j = 3�4 � 3�4n� if p is odd: with �opt = �4n, j = E(3p2 + 58) + 1 and as p = 2k + 1,j = 3k + 3 = 3(p+ 1)2 = 3(n+ 1)4 ; �j = 3�4 � �4nWe have again �opt + �j = �4: this is an admissible solution again.Table 1 summarises the situation.n p s i �i j �j �optn = 2p p pair n2 n4 + 1 �4 3n4 + 1 3�4 0 or 2�np impair n2 n+ 24 �4 � �2n 3n+ 24 3�4 � �2n �2n or 3 �2nn = 2p+ 1 p pair n+ 12 n+ 34 �4 � �4n 3n+ 14 3�4 � 3 �4n �4n or 3 �4np impair n+ 12 n+ 14 �4 � 3 �4n 3(n+ 1)4 3�4 � �4n �4n or 3 �4n3 1 2 1 3 �12 or �44 2 2 2 4 0 or �25 2 3 1 4 �20 or 3�206 3 3 2 5 �12 or �47 3 4 2 6 �28 or 3�288 4 4 3 7 0 or �49 4 5 2 7 �36 or �12Table 1: Position of particular vertices2.1.2 Particular edgesBuilding the interesting edge is easier when the expression of its length is simple.This is the case when one of the vertices Mi or Mj is exactly between vertices M0and Mq. 3
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βiCase where p is oddFigure 3: Remarkable edge when n is odd� if p is even: the best vertex is Mj , �gure 3.j � s = n� 14 = n� j and then �j = �j � �s = �n(j � s) = �4 � �4nand lj = l2 cos �j = A=2cos �4n cos(�4 � �4n)� if p is odd: the best vertex is Mi, �gure 3.i � 0 = n + 14 = s � i and then �i = �s � �i = �n(s � i) = �4 + �4nand li = l2 cos �i = A=2cos �4n cos(�4 + �4n)For each case, folding the interesting length depends now of the initial constructionof angle �4n, �gure 4. If p is even, the construction follows the pattern of the �gure5, else, it follows the pattern of the �gure 6.
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liFigure 6: Construction when n and p are oddThis construction can be realised more or less easily for several particular cases.2.2 Case of an even number of edges: n = 2pCase for which n is even has similar framework of folding. Now, i = E(p2) + 1,j = E(3p2 ) + 1.2.2.1 Particular vertices� If p is even: with �opt = 0 and p = 2k,i = k + 1 = p2 + 1 = n4 + 1; �i = �4j = 3k+ 1 = 3p2 + 1 = 3n4 + 1; �j = 3�4� If p is odd: with �opt = �2n and p = 2k+ 1,i = k + 1 = p + 12 = n+ 24 ; �i = �4 � �2nj = 3k + 2 = 3p+ 12 = 3n+ 24 ; �j = 3�4 � �2nThese results are also collected in table 1.2.2.2 Particular edgesNow, interesting lengths correspond to vertex Mi. They are more complex thanthose used when n was odd. 5
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2nFigure 8: Construction when n is even and p is odd� If p is even, i� 0 = n4 + 1 and s � i = n4 � 1. With �gure 9, we can �nd�i = �s � �i = �n(s � i) = �4 � �nand li = A=2cos �2n cos(�4 � �n)(1 + sin 2�n)Figure 7 shows the construction of this edge.� If p is odd, i � 0 = n4 + 12 and s � i = n4 � 12. With �gure 9, we can �nd�i = �s � �i = �n(s � i) = �4 � �2nand li = A=2cos �2n cos(�4 � �2n)(1 + sin 2�n)Figure 8 shows the construction of this edge.3 Example of the heptagonWith the previous notations, n = 7 = 2p + 1 with p = 3 = 2k + 1 and k = 1.Interesting vertex is Mi with i = 2; it is built from the length li.6



M0

Mi
Ms

li

l

βi
α2 = π/n
Mi-1

Mi-2Case where p is even M0

Mi
Ms

li

l

βi
Mi-1Case where p is oddFigure 9: Remarkable edge when n is evenHere, the angle �4n = �28 is folded with the technique used in [Geretschl�ager 97].One can notice that this construction is non euclidean: it is impossible to perform itwith the only tools that are compass and straight edge. Figure 10 shows the wholeconstruction.
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Figure 10: Finding the optimal heptagonStages 1 and 2: building a fold with slope 2 cos 2�7 .Stages 3 to 5: building the angle �28.Stages 6 to 8: construction the heptagon.4 Example of the nonagonThis time, n = 9 = 2p+ 1 with p = 4 = 2k and k = 2. Interesting vertex is againMi with i = 2.The angle �4n = �36 is folded with the trisection classical technique (see forinstance [Fusimi 80], [Hull 96]); it is again a non euclidean technique. Figure 11shows the whole construction. 7
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Figure 11: Finding the optimal nonagonStage 1: building the angle �3.Stages 2 to 3: trisection of the angle, to obtain �36.Stages 4 to 6: building the nonagon.4.1 Example of the hexagonCases where n is even are simpler to perform, at least for small values of n. Theprevious technique is still applicable, and the construction can often be simpli�edby use of special properties of corresponding angles.The hexagon case is presented as an example in the �gure 12.
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12 Figure 12: Finding the optimal hexagon5 ConclusionsOptimal polygon constructions are precise and simple when using stellated partic-ular versions.General case of a polygon with n edges is performed as soon as the angle �n havebeen built. With small values of n, it is easy to obtain; this allowed the folding ofpolygons till the nonagon. 8
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