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Searching for optimal polygon | remarks about a general construction and application to heptagon and nonagon

Introduction

Results obtained in a rst paper, Dureisseix 97], deal with positioning optimal polygons | i.e. largest regular polygons within a square. Such polygons have two particularities: symmetry with respect to at least one diagonal of the square and the fact that each edge of the square touches one vertex of the polygon.

The technique used for pentagon (building the stellated pentagon) can be generalised for any number of edges. Complete construction in this case still remains open. Nevertheless, it seems necessary to begin with the construction of an angle n , which is then enough to build the optimal polygon with the technique proposed herein.

With procedures for folding 7 and 9 that are described herein, examples of heptagon and nonagon are performed.

General case of an n-edged polygon

In order to get a construction for regular polygon with n edges, the technique used for the pentagon in Dureisseix 97] can be generalised. Reaching a fraction of the angle n as well as a length are necessary to position the polygon. The idea proposed herein is to take for this length a particular edge of one stellated version of the polygon.

We consider polygons | either stellated or not | for which one edge touches two sides of the square. thanks to previously demonstrated symmetry with respect to one diagonal, at least one edge is parallel to the other diagonal: this is the interesting edge, l i or l j , gure 1. One can notice that the largest edge of any stellated versions, l, as been used in Dureisseix 97] for nding the optimal position of the polygon.

M i , M s and M j denote the vertices of the polygon that touch the sides of the circumscribed square; i denotes the angle between ????! M 0 M 1 and ???! M 0 M i , gure 2. It is easy to show that i = n (i ? 1). The searched edge of the stellated polygon has then to satisfy i + opt = 4 or

M 0 M i M s M j l i l j l θ opt α i π 2
Figure 1: Remarkable edges of stellated polygon Let's nd rst the vertex M i , gure 1, that touches the right side of the circumscribed square. i is such that 2 opt + 2(i ? 1) n < 2 + 2 n and then i = E( n 4 ? opt n 2 ) + 1. Once more, we have to separate sub-cases: if p is even: with opt = 4n , i = E( p 2 + 1 8 ) + 1 and as p = 2k,

M 0 M 1 M 2 M k 2π n α k
i = k + 1 = p 2 + 1 = n + 3 4 ; i = 4 ? 4n if p is odd, with opt = 3 4n , i = E( p 2 ? 1 8 ) + 1 and as p = 2k + 1, i = k + 1 = p + 1 2 = n + 1 4 ; i = 4 ? 3 4n
Each time, we have opt + i = 4 : this is the searched edge.

It will happen to be interesting to consider also the vertex M j , gure 1, that touches the left side of the circumscribed square. j is such that 3 2 opt + 2(j ? 1) n < 3 2 + 2 n 2 and then j = E( 3n 4 ? opt n 2 ) + 1.

if p is even: with opt = 3 4n , j = E( 3p 2 + 3 8 ) + 1 and as p = 2k,

j = 3k + 1 = 3p 2 + 1 = 3n + 1 4 ; j = 3 4 ? 3 4n
if p is odd: with opt = 4n , j = E( 3p 2 + 5 8 ) + 1 and as p = 2k + 1, j = 3k + 3 = 3(p + 1) 2 = 3(n + 1) 4 ; j = 3

? 4n

We have again opt + j = 4 : this is an admissible solution again. Building the interesting edge is easier when the expression of its length is simple. This is the case when one of the vertices M i or M j is exactly between vertices M 0 and M q .

M 0 M i M s M j l i l j l β j
Case where p is even

M 0 M i M s M j l i l j l β i
Case where p is odd Figure 3: Remarkable edge when n is odd if p is even: the best vertex is M j , gure 3. j ? s = n ? 1 4 = n ? j and then j = j ? s = n (j ? s) = 4 ? 4n and l j = l 2 cos j = A=2 cos 4n cos( 4 ? 4n )

if p is odd: the best vertex is M i , gure 3.

i ? 0 = n + 1 4 = s ? i and then i = s ? i = n (s ? i) = 4 + 4n and l i = l 2 cos i = A=2 cos 4n cos( 4 + 4n )

For each case, folding the interesting length depends now of the initial construction of angle 4n , gure 4. If p is even, the construction follows the pattern of the gure 5, else, it follows the pattern of the gure 6. This construction can be realised more or less easily for several particular cases.

Case of an even number of edges: n = 2p

Case for which n is even has similar framework of folding. Now, i = E( p 2 ) + 1, j = E( 3p 2 ) + 1.

Particular vertices

If p is even: with opt = 0 and p = 2k,

i = k + 1 = p 2 + 1 = n 4 + 1; i = 4 j = 3k + 1 = 3p 2 + 1 = 3n 4 + 1; j = 3 4
If p is odd: with opt = 2n and p = 2k + 1,

i = k + 1 = p + 1 2 = n + 2 4 ; i = 4 ? 2n j = 3k + 2 = 3p + 1 2 = 3n + 2 4 ; j = 3 4 ? 2n
These results are also collected in table 1.

Particular edges

Now, interesting lengths correspond to vertex M i . They are more complex than those used when n was odd.

x y z 

l i A/2 A/2 π 2n π n = = { = = 2π n
l i A/2 A/2 π 2n π 2n
Figure 8: Construction when n is even and p is odd If p is even, i ? 0 = n 4 + 1 and s ? i = n 4 ? 1. With gure 9, we can nd i = s ? i = n (s ? i) = 4 ? n and l i = A=2 cos 2n cos( 4 ? n ) (1 + sin 2 n )

Figure 7 shows the construction of this edge.

If p is odd, i ? 0 = n 4 + 1 2 and s ? i = n 4 ? 1 2 . With gure 9, we can nd i = s ? i = n (s ? i) = 4 ? 2n and l i = A=2 cos 2n cos( 4 ? 2n ) (1 + sin 2 n )

Figure 8 shows the construction of this edge.

Example of the heptagon

With the previous notations, n = 7 = 2p + 1 with p = 3 = 2k + 1 and k = 1.

Interesting vertex is M i with i = 2; it is built from the length l i .

M 0 M i M s l i l β i α 2 = π/n M i-1 M i-2
Case where p is even

M 0 M i M s l i l β i M i-1
Case where p is odd Figure 9: Remarkable edge when n is even Here, the angle 4n = 28 is folded with the technique used in Geretschl ager 97]. One can notice that this construction is non euclidean: it is impossible to perform it with the only tools that are compass and straight edge. Figure 10 shows the whole construction. The angle 4n = 36 is folded with the trisection classical technique (see for instance Fusimi 80], Hull 96]); it is again a non euclidean technique. Figure 11 shows the whole construction. 

Example of the hexagon

Cases where n is even are simpler to perform, at least for small values of n. The previous technique is still applicable, and the construction can often be simpli ed by use of special properties of corresponding angles.

The hexagon case is presented as an example in the gure 12. Optimal polygon constructions are precise and simple when using stellated particular versions. General case of a polygon with n edges is performed as soon as the angle n have been built. With small values of n, it is easy to obtain; this allowed the folding of polygons till the nonagon.
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 2 Figure 2: Angles with respect to rst edge 2.1 Case of an odd number of edges: n = 2p + 1 2.1.1 Particular vertices
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 56 Figure 4: Initial angle 4n
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 7 Figure 7: Construction when n and p are even
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 10 Figure 10: Finding the optimal heptagon Stages 1 and 2: building a fold with slope 2 cos 2 7 . Stages 3 to 5: building the angle 28 . Stages 6 to 8: construction the heptagon. 4 Example of the nonagon This time, n = 9 = 2p + 1 with p = 4 = 2k and k = 2. Interesting vertex is again M i with i = 2.The angle 4n = 36 is folded with the trisection classical technique (see for instance Fusimi 80], Hull 96]); it is again a non euclidean technique. Figure11shows the whole construction.
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 11 Figure 11: Finding the optimal nonagon

x y z π 12 Figure 12 :

 1212 Figure 12: Finding the optimal hexagon 5 Conclusions

Table 1

 1 

		summarises the situation.				
	n	p	s	i	i	j	j	opt
	n = 2p n = 2p + 1 p pair n + 1 p pair n 2 p impair n 2 2 p impair n + 1 2	n 4 + 1 n + 2 4 n + 3 4 n + 1 4	4 4 ? 2n 4 ? 4n 4 ? 3 4n	3n 4 + 1 3n + 2 4 3n + 1 4 3(n + 1) 4	3 4 4 ? 2n 2n or 3 2n 0 or n 3 3 4 ? 3 4n 4n or 3 4n 3 4 ? 4n 4n or 3 4n
	3	1	2	1		3		12 or 4
	4	2	2	2		4		0 or
	5	2	3	1		4		20 or
	6	3	3	2		5		12 or 4
	7	3	4	2		6		28 or
	8	4	4	3		7		0 or
	9	4	5	2		7		36 or
		Table 1: Position of particular vertices		
	2.1.2	Particular edges						

. opt positions the optimal polygon within the square, for which previous results are in table 1.