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Searching for optimal polygon — remarks about a
general construction and application to heptagon
and nonagon

David DUREISSEIX
October 1997

1 Introduction

Results obtained in a first paper, [Dureisseix 97], deal with positioning optimal
polygons — i.e. largest regular polygons within a square. Such polygons have two
particularities: symmetry with respect to at least one diagonal of the square and
the fact that each edge of the square touches one vertex of the polygon.

The technique used for pentagon (building the stellated pentagon) can be gen-
eralised for any number of edges. Complete construction in this case still remains
open. Nevertheless, 1t seems necessary to begin with the construction of an angle

T
—, which is then enough to build the optimal polygon with the technique proposed
n
herein.
T T
With procedures for folding - and ) that are described herein, examples of

heptagon and nonagon are performed.

2 General case of an n-edged polygon

In order to get a construction for regular polygon with n edges, the technique
used for the pentagon in [Dureisseix 97] can be generalised. Reaching a fraction of

T
the angle — as well as a length are necessary to position the polygon. The idea

proposed h%rein is to take for this length a particular edge of one stellated version
of the polygon.

We consider polygons — either stellated or not — for which one edge touches
two sides of the square. thanks to previously demonstrated symmetry with respect
to one diagonal, at least one edge is parallel to the other diagonal: this is the
interesting edge, [; or I;, figure 1. One can notice that the largest edge of any
stellated versions, I, as been used in [Dureisseix 97] for finding the optimal position
of the polygon.

M;, M, and M; denote the vertices of the polygon that touch the sides of the
circumscribed square; «; denotes the angle between MyM; and MyM;, figure 2. 1t

is easy to show that a; = z(z — 1). The searched edge of the stellated polygon has
n

m 3T
then to satisfy a; + fopr = — or —. Oy positions the optimal polygon within

the square, for which previous results are in table 1.
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Figure 1: Remarkable edges of stellated polygon
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Figure 2: Angles with respect to first edge

2.1 Case of an odd number of edges: n =2p +1

2.1.1 Particular vertices

Let’s find first the vertex M;, figure 1, that touches the right side of the circum-
scribed square. 7 1s such that

D o+ 20— o< D0
9 = opt+ (l_ )n<2+ n
n n
andtheni:E(Z—Hoth—)—l—l.
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Once more, we have to separate sub-cases:
if p is even: with o = — i = B2+ 5 + 1 and as p = 2k
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Each time, we have @op; + a; = —: this is the searched edge.
It will happen to be interesting to consider also the vertex M;, figure 1, that
touches the left side of the circumscribed square. j is such that
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if p 1s odd: with 0,1 = —
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We have again Oop; + o = T this is an admissible solution again.

Table 1 summarises the situation.
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Table 1: Position of particular vertices

2.1.2 Particular edges

Building the interesting edge is easier when the expression of its length is simple.
This is the case when one of the vertices M; or M; is exactly between vertices My

and M,.




Case where p is even Case where p is odd

Figure 3: Remarkable edge when n is odd

if p is even: the best vertex is M, figure 3.

. n—1 . T T o7
jms=—p—=n—] and then ﬁj:aj—as:g(j—s)zz—g
and
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if p i1s odd: the best vertex is M;, figure 3.
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and
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For each case, folding the interesting length depends now of the initial construction

T
of angle — figure 4. If p is even, the construction follows the pattern of the figure

n
5, else, it follows the pattern of the figure 6.

T
Figure 4: Initial angle —
4n
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Figure 5: Construction when n is odd and p is even
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Figure 6: Construction when n and p are odd

This construction can be realised more or less easily for several particular cases.

2.2 Case of an even number of edges: n = 2p

Case for which n i1s even has similar framework of folding. Now, ¢ = E(g) + 1,

. 3p
j=B(5)+1.

2.2.1 Particular vertices

o If pis even: with fp; = 0 and p = 2k,

mk+l=l4l=211 =z
1=K+ —5-1- —Z-i-, Oéz—z
g 1_310 1_371 ] 37
J=or+ 1= 2—1— = 4—1— e
T
o If pis odd: with O, = o and p =2k + 1,
n
1 2
lIk+1I]i:n+’ O[ZIi—L
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3p+1 3n+42 =T
j=3k+2= = = ——
J=okd T

These results are also collected 1n table 1.

2.2.2 Particular edges

Now, interesting lengths correspond to vertex M;. They are more complex than
those used when n was odd.
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Figure 7: Construction when n and p are even
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Figure 8: Construction when n is even and p is odd

e Ifpiseven,i—0= %—i—lands—i: %—1. With figure 9, we can find

] ™
Bi=as—a; = —(s—1i) = i s
and
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l; = / (1+sin2z)
T T n
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2n 4 n

Figure 7 shows the construction of this edge.

1 1
. prisodd,i—O:%—l—iands—i:%—5. With figure 9, we can find

5 - N
=, — oy = (s—z)_4—2n
and
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™ T om n
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Figure 8 shows the construction of this edge.

3 Example of the heptagon

With the previous notations, n = 7 = 2p+ 1 with p = 3 = 2k + 1 and £ = 1.
Interesting vertex is M; with ¢ = 2; it is built from the length ;.



Case where p is even Case where p is odd

Figure 9: Remarkable edge when n is even

Here, the angle 41 = % is folded with the technique used in [Geretschlager 97].
n

One can notice that this construction is non euclidean: it 1s impossible to perform it
with the only tools that are compass and straight edge. Figure 10 shows the whole
construction.
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Figure 10: Finding the optimal heptagon

2
Stages 1 and 2: building a fold with slope 2 cos 771'

Stages 3 to b: building the angle %
Stages 6 to 8: construction the heptagon.

4 Example of the nonagon
This time, n = 9 = 2p 4+ 1 with p = 4 = 2k and k& = 2. Interesting vertex is again
M; with ¢ = 2.

The angle r_z is folded with the trisection classical technique (see for

n
instance [Fusimi 80], [Hull 96]); it is again a non euclidean technique. Figure 11
shows the whole construction.
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Figure 11: Finding the optimal nonagon

Stage 1: building the angle g

T
Stages 2 to 3: trisection of the angle, to obtain 36
Stages 4 to 6: building the nonagon.

4.1 Example of the hexagon

Cases where n is even are simpler to perform, at least for small values of n. The
previous technique is still applicable, and the construction can often be simplified
by use of special properties of corresponding angles.

The hexagon case is presented as an example in the figure 12.

0 0 0

Figure 12: Finding the optimal hexagon

5 Conclusions

Optimal polygon constructions are precise and simple when using stellated partic-
ular versions.
T
General case of a polygon with n edges is performed as soon as the angle — have

n
been built. With small values of n, it is easy to obtain; this allowed the folding of
polygons till the nonagon.
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