Quantifying the impact of scheduling and mobility on IR-UWB localization in body area networks
Résumé
—In the context of radiolocation in Wireless Body Area Networks (WBANs), nodes positions can be estimated through time-based ranging algorithms. For instance, the distance separating a couple of nodes can be estimated accurately by measuring the Round Trip Time of Flight of an Impulse Radio Ultra Wideband (IR-UWB) link. This measure usually relies on two or three messages transactions. Such exchanges take time and a rapid mobility of the nodes can reduce the ranging accuracy and consequently impact nodes localization process. In this paper, we quantify this localization error by confronting two broadcast-based optimized implementations of the three-way ranging algorithm with real mobility traces, acquired through a motion capture system. We then evaluate, in the same scenarios, the impact of the MAC-level scheduling of the packets within a TDMA frame localization accuracy. The results, obtained with the WSNet simulator, show that MAC scheduling can be utilized to mitigate the effect of nodes mobility.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...