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Tensor CP Decomposition with Structured Factor

Matrices: Algorithms and Performance
José Henrique de M. Goulart, Maxime Boizard, Rémy Boyer, Gérard Favier and Pierre Comon

Abstract—The canonical polyadic decomposition (CPD) of
high-order tensors, also known as Candecomp/Parafac, is very
useful for representing and analyzing multidimensional data. This
paper considers a CPD model having structured matrix factors,
as e.g. Toeplitz, Hankel or circulant matrices, and studies its asso-
ciated estimation problem. This model arises in signal processing
applications such as Wiener-Hammerstein system identification
and cumulant-based wireless communication channel estimation.
After introducing a general formulation of the considered struc-
tured CPD (SCPD), we derive closed-form expressions for the
Cramér-Rao bound (CRB) of its parameters under the presence
of additive white Gaussian noise. Formulas for special cases of
interest, as when the CPD contains identical factors, are also
provided. Aiming at a more relevant statistical evaluation from
a practical standpoint, we discuss the application of our formulas
in a Bayesian context, where prior distributions are assigned to
the model parameters. Three existing algorithms for computing
SCPDs are then described: a constrained alternating least squares
(CALS) algorithm, a subspace-based solution and an algebraic
solution for SCPDs with circulant factors. Subsequently, we
present three numerical simulation scenarios, in which several
specialized estimators based on these algorithms are proposed
for concrete examples of SCPD involving circulant factors. In
particular, the third scenario concerns the identification of a
Wiener-Hammerstein system via the SCPD of an associated
Volterra kernel. The statistical performance of the proposed
estimators is assessed via Monte Carlo simulations, by comparing
their Bayesian mean-square error with the expected CRB.

Index Terms—Tensor, CP decomposition, Structured matrices,
Bayesian Cramér-Rao bound

I. INTRODUCTION

Nowadays, high-order tensor models, also called multiway

decompositions, are very useful in numerous applications

for representing and analyzing multidimensional data as en-

countered in signal/image processing, computer vision, data

mining, chemometrics, among many other application areas.

For a review of tensor decompositions and applications, see

the tutorial papers [3]–[5] and the books [6,7]. The most
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common tensor model is the canonical polyadic decomposition

(CPD), independently introduced under the names of canonical

decomposition (CANDECOMP) in [8] and parallel factor

model (PARAFAC) in [9].

The CPD consists in decomposing a tensor of order N , with

dimensions I1 × · · · × IN and rank R, into a sum of R rank-

one tensors, i.e., outer products of N vectors a
(n)
r . Each a

(n)
r

is the rth column of a factor matrix A(n) ∈ RIn×R, n =
1, . . . , N . A well-known fundamental property of the CPD is

its essential uniqueness under mild conditions, meaning that

its factor matrices are unique up to permutation and scaling

ambiguities on their columns.

The CPD can be viewed as one extension of the matrix

singular value decomposition (SVD) to higher orders, with

the difference that the factor matrices A(n) are generally

not orthogonal. In some signal processing applications, these

factors have special form. For instance, Toeplitz, Hankel,

and Vandermonde factors occur in problems like cumulant-

based channel estimation [10], nonlinear system identification

using Wiener-Hammerstein models [11], and multidimensional

harmonic retrieval [12]. As a consequence, several specialized

algorithms have been developed for estimating the parameters

of CPD factors having those forms [13]–[16].

Given the practical relevance of estimating CPD factors with

special structure, a systematic way of statistically evaluating

estimators is desirable, as it allows choosing an appropriate ap-

proach in applied settings and provides important information

also for the study and development of estimation algorithms.

Although a wide variety of algorithms have been developed

for estimating CPDs, very few theoretical results exist for

assessing their statistical performance. The first contribution

on this subject is the work in [17], which has derived the

Cramér-Rao bound (CRB) for unstructured third- and fourth-

order tensors, and has applied it to evaluate the performance

of the standard alternating least squares (ALS) algorithm.

The CRB, which is a classical subject in estimation theory

[18], allows studying the statistical efficiency of unbiased

estimators, since it is a lower bound for their mean squared

errors (MSE). Apart from [17], both [19] and [20] have derived

CRBs for the estimation of CPDs having Vandermonde factors,

motivated, respectively, by the estimation of the directions of

arrival of multiple source signals and by the estimation of the

multidimensional harmonic model.

In the present paper, we first formulate the considered

structured CPD (SCPD) with factor matrices belonging to

proper subspaces spanned by given basis matrices. A non-

linear model constituted by a SCPD corrupted by white

Gaussian noise is then presented, having reduced parametric
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complexity in comparison with an unstructured CPD. Closed-

form expressions for the deterministic CRB are subsequently

derived, including formulas for special cases of interest, as

when the SCPD contains identical factors. Aiming at a sta-

tistical evaluation of greater practical relevance, we discuss

the application of our formulas in a Bayesian context, where

statistical priors are assigned to the model parameters and

the Bayesian MSE (BMSE) of estimators is measured. It is

shown that, in our setting, the expected CRB (ECRB) [21] is

tighter than Van Trees’ Bayesian CRB [22]. Three specialized

algorithms for computing SCPDs are then described. The

first one, called constrained ALS (CALS), is iterative and

consists in adapting the popular ALS algorithm so as to

take the structure constraint into account. The two others are

non-iterative. They correspond to a subspace-based solution

on one hand and to an algebraic solution for SCPDs with

circulant factors on the other hand. Subsequently, we present

three numerical simulation scenarios, in which specialized

estimators are proposed for concrete examples of SCPDs

involving circulant factors. The third scenario, in particular,

concerns the identification of a Wiener-Hammerstein system

[23] via the SCPD of an associated Volterra kernel [11]. The

statistical performance of the proposed estimators is assessed

via Monte Carlo simulations, by comparing their BMSE with

the ECRB.

The rest of the paper is organized as follows. In Section

II, we present a general formulation of the considered SCPD

model and briefly discuss identifiability issues. Then, Section

III is devoted to the derivation of closed-form expressions for

the deterministic CRB and the study of their application in a

Bayesian context. Three specialized algorithms for computing

SCPDs are then described in Section IV, as well as the com-

bination of algorithms for performance improvement. Monte

Carlo simulation results are presented in Section V, where

we assess the statistical performance of proposed estimators

by comparing their BMSE with the ECRB, both in the

case of SCPDs with circulant factors and in the context of

Wiener-Hammerstein system identification via the SCPD of an

associated Volterra kernel. The paper is concluded in Section

VI, where some perspectives are drawn for future research.

Notation: We denote scalars, vectors, matrices and tensors

by, respectively, lowercase letters (as θi), lowercase boldface

letters (as θ), boldface capitals (e.g., Θ), and calligraphic

letters (as X). The superscript T stands for transposition, H

for Hermitian transposition and † for both left- and right-sided

inverses. The symbols ⊠, ⊙, ×n and ⊗ denote the Kronecker,

Khatri-Rao, mode-n and outer (tensor) products, respectively.

For our purposes, a N th-order tensor X is assimilated to its

array of coordinates, indexed by N indices. Elements of a

vector, matrix or tensor are denoted either as in [v]i, [A]i1,i2
and [X]i1,...,iN or as in vi, ai1,i2 and xi1,...,iN , respectively.

E denotes mathematical expectation, and 〈A〉 denotes the

column space of A. The ith canonical basis vector (whose

dimension should be clear from the context) is denoted by

ei. The operator Diag(·) yields a diagonal matrix containing

the coefficients of the vector argument in its diagonal, while

vec(·) stacks the columns of a matrix in a long vector. Along

the text, we resort to the following properties: vec(ABC) =
(
CT ⊠A

)
vec(B) and vec(ADiag(b)C) =

(
CT ⊙A

)
b.

II. CPD MODEL WITH STRUCTURED FACTORS

In this section, we introduce the model which underlies the

estimation problem considered in this paper. To keep its pre-

sentation simple, we shall restrict it to the case of third-order

tensors, but the extension to higher orders is straightforward.

A. Tensors and the CP decomposition

Let X be a real I1×I2×I3 tensor. A polyadic decomposition

of X consists of a sum of rank-one terms which yields X, i.e.,

X =

R∑

r=1

λr

(

a(1)r ⊗ a(2)r ⊗ a(3)r

)

, (1)

where λr is a scaling factor and a
(n)
r is the rth column of the

nth matrix factor A(n) ∈ RIn×R. It should be noted that the

columns a
(n)
r are usually normalized to eliminate the scaling

indeterminacy of each term of (1). When R is the minimal

integer such that (1) holds, then it is called the rank of X and

(1) is called a canonical polyadic decomposition (CPD) of X.

Decomposition (1) can be written in many useful alternative

forms. First, we can write it in scalar form as

xi1,i2,i3 =

R∑

r=1

λra
(1)
i1,r

a
(2)
i2,r

a
(3)
i3,r

. (2)

With respect to the mode-n unfolding of X, we have

Xn = A(n) Diag(λ)
(

A(n1) ⊙A(n2)
)T

∈ R
In×In1In2 , (3)

where λ = [λ1 . . . λR]
T

and nq = (n− q− 1 mod 3)+ 1
for n ∈ {1, 2, 3} and q ∈ {1, 2}. In terms of mode-n products,

the CPD can be expressed as

X = I×1 A
(1) ×2 A

(2) ×3

(

A(3) Diag(λ)
)

, (4)

where I ∈ RR×R×R is the third-order diagonal tensor such

that [I]r1,r2,r3 = δr1,r2,r3 , with δq,r,s denoting the Kronecker

delta symbol. It should be noted that the scaling matrix

Diag(λ) can be absorbed by any of the three factors. Of even

more utility in our development is the vectorized form

x = vec(X) =

R∑

r=1

λr

(

a(3)r ⊠ a(2)r ⊠ a(1)r

)

, (5)

where we adopt the convention vec(X) = vec(X1). Using (3),

we can also write

x = vec(X1) =
(

A(3) ⊙A(2) ⊙A(1)
)

λ. (6)
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B. Structured CPD model

We now formulate the structured CPD model with zero-

mean white Gaussian noise, for which we shall derive an-

alytical CRB formulae. To this end, let us introduce some

definitions.

Definition 1 A matrix A(n) ∈ RIn×R is said to be structured

if it can be written as [14]

A(n) =

Un∑

u=1

θ(n)u E(n)
u , (7)

where Un < InR and the matrices E
(n)
u ∈ RIn×R are

linearly independent. In other words, A(n) belongs to a

proper subspace of dimension Un spanned by the basis

Bn =
{

E
(n)
1 , . . . ,E

(n)
Un

}

. In vector form, we have

vec
(

A(n)
)

= E(n)θ(n), (8)

where

E(n) =
[

vec
(

E
(n)
1

)

, . . . , vec
(

E
(n)
Un

)]

∈ R
RIn×Un (9)

and θ(n) =
[

θ
(n)
1 , . . . , θ

(n)
Un

]T

∈ R
Un .

As particular cases of Definition 1, we can mention banded,

(block-)Hankel, (block-)Toeplitz and (block-)circulant ma-

trices. It is therefore of broad applicability, characterizing

structured matrices which are very important in many signal

processing applications.

Because a structured matrix A(n) belongs to a linear sub-

space, its columns can be written as

a(n)r = S(n)
r θ(n), (10)

where S
(n)
r ∈ RIn×Un is defined such that its uth column

equals the rth column of E
(n)
u . Furthermore, since any (struc-

tured or non-structured) matrix can evidently be put in the

form (7) with Un = InR, by simply choosing Bn as the

canonical basis, the columns of any matrix can be written as

in (10). For convenience, we provide in Table I expressions of

Un, S
(n)
r and E

(n)
u for some classes of matrices. It should be

noted that the expressions of S
(n)
r and E

(n)
u are not unique,

since they depend on the particular ordering adopted for the

vector of parameters, θ(n).

Definition 2 A rank-R tensor X ∈ RI1×I2×I3 is said to admit

a structured CPD (SCPD) when it can be written as in (4),

with at least one structured matrix factor A(n) ∈ R
In×R,

n ∈ {1, 2, 3}.

We are now ready to introduce the structured CPD model,

Y = X+N ∈ R
I1×I2×I3 , (11)

where X admits a SCPD and N is an additive noise tensor with

i.i.d. zero-mean Gaussian entries of variance σ2. By exploiting

(10) together with (5), we can conveniently express the SCPD

of X under its vectorized form as

x =

R∑

r=1

λr

[(

S(3)
r θ(3)

)

⊠

(

S(2)
r θ(2)

)

⊠

(

S(1)
r θ(1)

)]

.

Defining Φr , S
(3)
r ⊠ S

(2)
r ⊠ S

(1)
r , we can rewrite x as a

function of the parameter vector ν = [θT , λT ]T ∈ RK , where

θ =
[

θ(1)T , θ(2)T , θ(3)T
]T

, having the form

x(ν) =

(
R∑

r=1

λrΦr

)

︸ ︷︷ ︸

,Φ(λ)

(

θ(3) ⊠ θ(2) ⊠ θ(1)
)

︸ ︷︷ ︸

,f(θ)

. (12)

Observe that K = U1 + U2 + U3 + R. Finally, defining also

n , vec(N), we have the vectorized model

y(ν) , vec(Y) = Φ(λ)f(θ) + n.

Note that the above development allows us to separate the

contributions of θ and λ, which will considerably simplify

the derivation of the CRB. In addition, (12) can be readily

specialized for particular instances of interest, as when:

• The scaling factors are such that λ1 = · · · = λR = λ,

which implies x = λΦf(θ) with Φ =
∑

r Φr.

• Two or three factors are identical. For instance, if A(1) =
A(2) = A(3), then θ = θ(1) = θ(2) = θ(3) and so

f(θ) = θ ⊠ θ ⊠ θ.

C. Identifiability

We say that the parameter vector ν is locally identifiable

when any point ν0 has a neighborhood in which the mapping

ν 7→ x(ν) is injective. This property is necessary for existence

of a finite CRB, since otherwise the Fisher information matrix

(FIM) is singular. In this respect, the CRB indicates how far

we are from the local identifiability limit. Global identifiability,

in its turn, means that ν 7→ x(ν) is injective over the entire

RK , and is not required for existence of the CRB.

As is well-known, the CPD is inherently subject to permu-

tation and scaling ambiguities. The former arises because the

order in which the terms in (1) are summed does not matter. It

is easy to see that this fact has no influence1 over the injectivity

of x(ν). On the other hand, the scaling ambiguity stems from

the possibility of jointly rescaling some parameters in such

a way that x remains unaffected. This clearly implies the

existence of infinitely many vectors ν yielding the same x(ν),
which thus precludes (12) from being (locally or globally)

injective.

For suppressing the scaling ambiguity, degrees of freedom

“in excess” must be eliminated. In particular, in a SCPD this

aspect depends on the structure of the factors. If, e.g., a factor

A(n) is circulant, imposing θ
(n)
u = 1 for some u is sufficient

to fix its scaling, due to its structure (this excludes, though,

the possibility of having θ
(n)
u = 0). Another option would be

to impose unit norm for each column, which also eliminates

one degree of freedom (as one θ
(n)
u is then fixed as a function

of the others). Note that alike measures must be taken for the

other factors, so that their scaling is absorbed by λ.

Henceforth, we shall consider that for each θ(n), a reduced

version θ̄(n) has been appropriately defined so as to include

only the minimal necessary number of degrees of freedom. For

1Yet, it must be taken into account when assessing performances through
computer simulations, for correctly measuring estimation errors.
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TABLE I
CHARACTERISTICS OF A

(n) FOR SOME CLASSES OF MATRICES.

Un S
(n)
r , r ∈ {1, . . . , R} E

(n)
u , u ∈ {1, . . . , Un}

Unstructured RIn
[

0In×In(r−1) IIn 0In×In(R−r)

]

[

E
(n)
u

]

i,j
=

{

1, u = (j − 1)In + i,

0, otherwise

Hankel In + R− 1
[

0In×(r−1) IIn 0In×(R−r)

]

[

E
(n)
u

]

i,j
=

{

1, u = i+ j − 1,

0, otherwise

Toeplitz In + R− 1
[

0In×(r−1) eIn . . . e1 0In×(R−r)

]

[

E
(n)
u

]

i,j
=

{

1, u = In + j − i,

0, otherwise

(Toeplitz) Circulant In Π
r−1
n =

[

0 1
IIn−1 0

]r−1 [

E
(n)
u

]

i,j
=

{

1, u = ((i − j) mod In) + 1,

0, otherwise

Banded circulant In − R+ 1





0(r−1)×Un

IUn

0(R−r)×Un





[

E
(n)
u

]

i,j
=

{

1, u = i− j + 1,

0, otherwise

notational simplicity, we assume without loss of generality

that the Vn first elements of θ(n) are fixed, and we denote

Ūn = Un − Vn. Note that θ̄(n) = Bnθ
(n), where Bn ∈

RŪn×Un is a selection matrix containing as rows the last Ūn

canonical vectors of RUn . A vector θ̄ is defined analogously to

θ, so that we can introduce the reduced vector of parameters

η = [θ̄T , λT ]T ∈ RM , with M = Ū1 + Ū2 + Ū3 + R. Its

corresponding model will thus be denoted by

y(η) = x(η) + n ∈ R
I1I2I3 . (13)

III. DETERMINISTIC AND BAYESIAN CRB FOR

STRUCTURED CP DECOMPOSITIONS

In this section, the material for the derivation of the de-

terministic and Bayesian CRB is provided. We first propose,

as a preliminary result, several closed-form expressions of

the deterministic CRB for structured CP decompositions, i.e.,

when the parameters of interest are fixed in a deterministic

way. In the second part of this section, the deterministic CRB

is extended to the Bayesian context i.e., when the parameters

of interest are random with known statistical priors.

A. Deterministic CRB

For the derivation of the deterministic CRB, it is important

to satisfy the following regularity conditions:

1) The conditional probability distribution function (pdf)

of the observation, p(y|η), has to be a C2 function,

where C2 is the space of continuously twice differentiable

functions with respect to η.

2) The Fisher Information Matrix (FIM) defined by

[F(η)]ij = Ey|η

{

−∂2 log p(y|η)
∂[η]i∂[η]j

}

(14)

has to be positive definite.

Due to the structured CPD model given in (13), the first

condition is satisfied by remarking

y|η ∼ N (x(η), σ2I) (15)

where the Normal distribution is a C2 function. According

to the discussion in Section II-C, a convenient choice of η

allows guaranteeing F(η) is nonsingular, which in turn implies

condition 2), as F(η) is positive semidefinite by definition.

1) Three different factors: This section is dedicated to the

derivation of the CRB for the vectorized model y(η) in the

case when the factors A(1), A(2) and A(3) of X are distinct.

a) Arbitrary λ: First, we do not make further assump-

tions concerning λ. We follow the ideas introduced in [24].

Let C(η) ∈ RM×M be the CRB matrix, i.e., the inverse of

the FIM, F(η) [18].

Then, the mean square error (MSE) of any (locally) unbi-

ased estimator, η̂(y), admits the following lower bound [18]:

MSE(η̂) = Ey{‖η − η̂(y)‖2} ≥ Tr(C(η)) (16)

=

3∑

n=1

Ūn∑

u=1

CRB
(

θ̄(n)u

)

+

R∑

r=1

CRB(λr), (17)

where CRB
(

θ̄
(n)
u

)

= [C(η)]v,v , with v =
∑n−1

n′=1 Ūn′ + u

and CRB(λr) = [C(η)]s,s, with s = Ū1 + Ū2 + Ū3 + r. Due

to the form of (15), C(η) can be derived by applying the

Slepian-Bangs formula (see [25, Eq. B.3.3]), which yields

C(η) = σ2
(
J(η)TJ(η)

)−1
, (18)

where J(η) ∈ R
I1I2I3×M is the Jacobian of x(η) with respect

to η. This Jacobian matrix is thus given by

J(η) =




Jθ̄(1)(η) Jθ̄(2)(η) Jθ̄(3)(η)
︸ ︷︷ ︸

J
θ̄

Jλ(η)




 , (19)

where Jθ̄(n)(η) contains the derivatives of x(η) with respect

to θ̄(n), and Jλ(η) is likewise. From (12),

Jθ̄(1)(η) = Φ (λ)
(

θ(3) ⊠ θ(2) ⊠BT
1

)

,

Jθ̄(2)(η) = Φ (λ)
(

θ(3) ⊠BT
2 ⊠ θ(1)

)

,

Jθ̄(3)(η) = Φ (λ)
(

BT
3 ⊠ θ(2) ⊠ θ(1)

)

,

Jλ(η) = [Φ1f(θ), . . . ,ΦRf(θ)] .

For simplicity of notation, we shall omit the argument of J(η)
whenever convenient.

In order to identify the contributions of θ̄ and λ in

CRB
(

θ̄
(n)
u

)

and CRB(λr), we propose to extend the results

presented in [1] by using oblique projection. This is the
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purpose of the following proposition. The oblique projection

whose range is 〈A〉 and whose null space contains 〈B〉 is

denoted by EAB (see [26] for details).

Proposition 3 The closed-form expression of the lower bound

on the MSE is given by (17), where the CRB for the uth

element of θ̄(n) is given by

CRB
(

θ̄(n)u

)

=
σ2

∥
∥
(
I−EGu,nJλ

−EJλGu,n

)
gu,n

∥
∥
2 (20)

where gu,n is the column of Jθ̄ containing the derivatives

w.r.t. θ̄
(n)
u and Gu,n contains all the other columns of Jθ̄ (in

any order). Similarly, the CRB for the rth element of λ is

CRB(λr) =
σ2

∥
∥
(
I−EDrJθ̄

−EJ
θ̄
Dr

)
dr

∥
∥
2 , (21)

where dr is the column of Jλ associated with λr, while Dr

holds all other columns (in any order).

Proof: We focus on the derivation of (20), since that of

(21) is similar. First, define any permutation matrix Π
(n)
u ∈

RM×M such that J(η)Π
(n)
u =

[
gu,n Gu,n Jλ(η)

]
, where

gu,n and Gu,n are as described above. Then, it is easily

verified that the matrix C(η) =
(

Π
(n)
u

)T

C(η)Π
(n)
u is such

that [C(η)]u,u = [C(η)]1,1. In addition,

(

Π(n)
u

)T

C(η)Π(n)
u = σ2

((

JΠ(n)
u

)T (

JΠ(n)
u

))−1

(22)

= σ2
(
JT
u,nJu,n

)−1
, (23)

where we denote Ju,n = JΠ
(n)
u . Now, defining Hu,n ,

[
Gu,n Jλ(η)

]
we can write

JT
u,nJu,n =

[
‖gu,n‖2 gT

u,nHu,n

HT
u,ngu,n HT

u,nHu,n

]

. (24)

Hence, [C(η)]1,1 = [C(η)]u,u can be calculated with the

block matrix inversion formula [27, Sec. 9.1.3], which yields

[C(η)]u,u = [C(η)]1,1 =
σ2

‖P⊥
Hu,n

gu,n‖2
, (25)

where P⊥
Hu,n

= II1I2I3−PHu,n
in which PHu,n

= Hu,nH
†
u,n

is the orthogonal projector onto 〈Hu,n〉. The result (20) is thus

obtained by noting that PHu,n
can be rewritten as PHu,n

=
EGu,nJλ

+EJλGu,n
[26].

b) λ with identical elements: We suppose now that

λ1 = · · · = λR = λ. Actually, in this case λ does not need

to be estimated, since we can assume λ = 1 without loss of

generality,2 due to the scaling ambiguity. The vector which

contains the parameters of interest is then η = θ̄. Thanks

to expression (15), the Slepian-Bangs formula then yields

C(η) = σ2
(
JT
θ̄
Jθ̄

)−1
. This leads to the following result.

2In this case, to preserve the generality of the model, only two factors
should have the scaling of their columns fixed.

Proposition 4 The closed-form expression of the lower bound

on the MSE is given by

MSE(η̂) ≥ Tr(C(η)) =
3∑

n=1

Ūn∑

u=1

CRB
(

θ̄(n)u

)

(26)

where the CRB for the uth element of θ̄(n) is given by

CRB(θ̄(n)u ) =
σ2

‖P⊥
Gu,n

gu,n‖2
, (27)

where gu,n is the column of Jθ̄ associated with θ̄
(n)
u , Gu,n

contains the other columns of Jθ̄ (in any order), and P⊥
Gu,n

=

II1I2I3 −Gu,nG
†
u,n.

Proof: The proof is similar to that of Proposition 3, but

now taking into account the absence of the block Jλ in J.

2) Identical factors: We consider now the case of partial

or full symmetry, i.e., where two or three factors are identical.

It turns out that the previous formulas are still valid. Only the

Jacobian matrix needs to be derived accordingly, as follows.

First, consider the case of two identical factors. Without loss

of generality, we assume θ(2) = θ(3). The parameter vector

is thus written as η = [θ̄(1), θ̄(2),λ]T . The Jacobian is then

given by J(η) =
[
Jθ̄(1)(η) Jθ̄(2)(η) Jλ(η)

]
, with

Jθ̄(1)(η) = Φ (λ)
(

θ(2) ⊠ θ(2) ⊠BT
1

)

, (28)

Jθ̄(2)(η) = Φ(λ) [wV2+1, . . . ,wU2 ] , (29)

Jλ(η) = [Φ1f(θ), . . . ,ΦRf(θ)] , (30)

where wu =
(
eu ⊠ θ(2) ⊠ θ(1)

)
+
(
θ(2) ⊠ eu ⊠ θ(1)

)
, f(θ) =

(
θ(2) ⊠ θ(2) ⊠ θ(1)

)
and V2 is as defined in Sec. II-C.

When θ(1) = θ(2) = θ(3) = θ (and thus Ūn = Ū , Vn =
V and Un = U for all n), the Jacobian satisfies J(η) =
[Jθ̄(η) Jλ(η)] , with blocks given by

Jθ̄(η) = Φ(λ) [wV +1, . . . ,wU ] , (31)

Jλ(η) = [Φ1 (θ ⊠ θ ⊠ θ) , . . . ,ΦR (θ ⊠ θ ⊠ θ)] , (32)

now with wu = (eu ⊠ θ ⊠ θ)+(θ ⊠ eu ⊠ θ)+(θ ⊠ θ ⊠ eu).
3) Symmetric model: When the three factors A(n) are

identical, X is a symmetric third-order tensor. In practice, it

may happen that the noisy observed tensor, Y, is also sym-

metric, because elements which are identical due to symmetry

are not repeatedly estimated or observed. This may apply

when X represents a symmetric quantity as, e.g., a symmetric

Volterra kernel. As a consequence, the noise tensor N is also

symmetric, and the preceding results are no longer valid.

Nevertheless, it is easy to adapt our model to such a

situation. Indeed, it suffices to introduce a selection matrix

Ψ ∈ RL×I3

(I1 = I2 = I3 = I) containing as rows every

Kronecker product of canonical basis vectors eTi3 ⊠ eTi2 ⊠ eTi1
such that (i1, i2, i3) ∈ D = {(i1, i2, i3) : 1 ≤ i1 ≤ i2 ≤
i3 ≤ I}, in such a way that the product Ψ vec(Y) no longer

contains redundant components due to symmetry. Note that

L = |D| =
(
I3+3−1

3

)
. Then, we redefine the vector model as

y , Ψ vec(Y) = ΨΦ(λ)f(θ) + n, (33)

where now n = Ψ vec(N). As n is still zero-mean Gaussian

i.i.d., the Slepian-Bangs formula remains valid. The Jacobian,
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however, must now be pre-multiplied by a factor Ψ. It should

be noted that the particular ordering of the rows of Ψ is

irrelevant in the above reasoning.

B. Extension to Bayesian framework

There exist two ways to extend the deterministic CRB

to the Bayesian framework, i.e., for random parameters η

with known prior p(η), in the low noise variance regime.

The first one is well-known under the name of Van Trees’

Bayesian CRB (BCRB) and is derived in [22]. The second

one is called the Expected CRB (ECRB) and is based on

the Bayesian-deterministic connection [21,22]. Even if both

approaches share the same mathematical principle, i.e., exploit

the Cauchy-Schwarz inequality, several important differences

have to be listed. Below, after having recalled the expressions

of these two bounds, we discuss their regularity conditions and

tightness for SCPD estimation.

1) Definition of the two bounds:

a) Van Trees’ Bayesian CRB: The BCRB is given by

BCRB = Tr
[
B−1(η)

]
(34)

where the Bayesian Information Matrix (BIM) is given by

B(η) = Eη {F(η)}+Bprior, (35)

in which the FIM is given in (14) and the prior matrix is

[Bprior]ij = Eη

{

−∂2 log p(η)

∂[η]i∂[η]j

}

. (36)

b) Expected CRB (ECRB): Recall that the BMSE is

defined according to

BMSE = Eη {MSE(η̂;η)} , (37)

where the MSE conditioned on η is defined as

MSE(η̂;η) = Ey|η
{
||η̂(y) − η||2

}
. (38)

So, a (deterministic) lower bound verifies the inequality

MSE(η̂;η) ≥ Tr
[
F−1(η)

]
, (39)

where F(η) is given by expression (14). Finally, the ECRB

takes the expression

ECRB = Tr
[
Eη

{
F−1(η)

}]
(40)

and bounds (37) as BMSE ≥ ECRB.

2) Regularity conditions: The regularity condition for the

BCRB (resp., ECRB) is that log-joint pdf log p(y,η) ∈ C2

(resp., log-conditional pdf log p(y|η) ∈ C2). As log p(y,η) =
log p(y|η)+ log p(η), the regularity conditions for the BCRB

are log p(y|η) ∈ C2 and log p(η) ∈ C2 (see expression (36)).

This is clearly stricter than the regularity condition for the

ECRB. Indeed, unlike the BCRB, the regularity condition for

the ECRB does not involve the prior p(η). As a consequence,

the ECRB allows a wider degree of freedom in the choice of

the prior p(η) than the BCRB. For instance, a uniform prior is

not admissible for the BCRB but can be used with the ECRB.

3) Tightness of bounds and final expressions: In the follow-

ing result, the above discussed lower bounds are compared.

Result 5 For any statistical priors p(η), the ECRB, defined in

(40), is a tighter bound of the BMSE than the BCRB, defined

in (34).

Proof: From (35) and Woodbury’s identity [27], we have

B−1(η) = [Eη {F(η)}]−1

− [Eη {F(η)}]−1D−1[Eη {F(η)}]−1,

where D = [Eη {F(η)}]−1 +B−1
prior. As both Eη {F(η)} and

Bprior are positive definite (by hypothesis and by definition,

respectively), [Eη {F(η)}]−1D−1[Eη {F(η)}]−1 is also pos-

itive definite. It thus follows that the BCRB verifies

BCRB < Tr
(

[Eη {F(η)}]−1
)

. (41)

Using Jensen’s inequality, it is straightforward to show that

Tr
(

[Eη {F(η)}]−1
)

< Tr
(
Eη

{
F−1(η)

})
= ECRB. (42)

Note that the above inequality is strict. This can be shown

in the following manner. Recall that the equality holds if the

FIM, F(η), is no longer a function of η. But due to the non-

linear structure (with respect to parameters η) of the SCPD,

this never holds for the considered model. In conclusion, using

inequalities (41) and (42), we have BCRB < ECRB. Recall

that the BCRB and the ECRB are two lower bounds of the

BMSE in the low noise regime. Then there cannot exist an

estimator that reaches the BCRB because its variance would

be lower than the ECRB. This argument tells us that the latter

bound is tighter than the former for any parameter priors.

So, based on the above result, we adopt the ECRB for evalu-

ating the performance of the estimation algorithms introduced

next. Specifically, the ECRB for independent parameters of

interest are given below.

1) For arbitrary λ, the ECRB for parameters θ̄
(n)
u and λr

are

ECRB(θ̄(n)u ) = Eθ̄Eλ

{

CRB(θ̄(n)u )
}

, (43)

ECRB(λr) = Eθ̄Eλ {CRB(λr)} (44)

where CRB(θ̄
(n)
u ) and CRB(λr) are given by (20) and

(21), respectively.

2) For λ with identical elements, the ECRB for parameters

θ̄
(n)
u is given by

ECRB(θ̄(n)u ) = Eθ̄

{

CRB(θ̄(n)u )
}

(45)

where CRB(θ̄
(n)
u ) is given by (27).

IV. SPECIALIZED ESTIMATION ALGORITHMS

CPD computation algorithms are often subject to facing

issues as very slow convergence, which increases computa-

tional cost, and early termination, which degrades estimation

precision [17,28]. Therefore, in the case of a SCPD, it is

desirable to resort to specialized algorithms that exploit the

structure of the factors, with the goal of overcoming these

difficulties. In the following, we briefly review some existing
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TABLE II
THE CALS ALGORITHM.

Inputs: Y ∈ RI1×I2×I3 , and initial parameter vectors λ̂0, θ̂
(1)
0 , θ̂

(2)
0 , θ̂

(3)
0 .

Outputs: Estimated parameter vectors λ̂, θ̂(1) , θ̂(2), θ̂(3) .
repeat for i = 1, 2, . . .






































































θ̂
(1)
i =

{[((

Â
(3)
i−1 ⊙ Â

(2)
i−1

)

Λ̂i−1

)

⊠ II1

]

E(1)
}†

vec (Y1) .

Â
(1)
i = Unvec

(

E(1)θ̂
(1)
i

)

θ̂
(2)
i =

{[((

Â
(1)
i ⊙ Â

(3)
i−1

)

Λ̂i−1

)

⊠ II2

]

E
(2)

}†
vec (Y2) .

Â
(2)
i = Unvec

(

E(2)θ̂
(2)
i

)

θ̂
(3)
i =

{[((

Â
(2)
i ⊙ Â

(1)
i

)

Λ̂i−1

)

⊠ II3

]

E
(3)

}†
vec (Y3) .

Â
(3)
i = Unvec

(

E(3)θ̂
(3)
i

)

λ̂i =
(

Â
(3)
i ⊙ Â

(2)
i ⊙ Â

(1)
i

)†
vec (Y) , Λ̂i = Diag(λ̂i)

until convergence

SCPD algorithms, keeping their presentation as general as

possible with respect to the structure of X. Along their

description, we will denote the data tensor which we wish

to decompose by Y, and its mode-n unfolding by Yn.

A. Constrained ALS

Recall that the alternating least squares (ALS) algorithm

[9,28] tackles the least-squares problem

min
A(1),A(2),A(3)

∥
∥
∥Y− I×1 A

(1) ×2 A
(2) ×3 A

(3)
∥
∥
∥

2

F
(46)

by applying alternating updates to each factor A(n) separately,

given current estimates of the other factors. Denoting such

estimates by Â(n), the alternating updates have the form

Â(n) = Yn

(

W(n)
)†

, (47)

where W(n) =
(

Â(n1) ⊙ Â(n2)
)T

, with nq = (n − q − 1

mod 3) + 1, n ∈ {1, 2, 3} and q ∈ {1, 2}, is assumed to

have full row rank. Therefore, a straightforward computational

procedure for computing a SCPD is to take (7) into account

when estimating the nth factor with ALS, via estimation of

θ(n) in the least-squares sense using (3) and (8), i.e.,

θ̂(n) =

{[(

Diag(λ)W(n)
)T

⊠ IIn

]

E(n)

}†
vec (Yn) .

Similarly, the vector λ can also be estimated in the least-

squares sense using (6), which yields

λ̂ =
(

Â(3) ⊙ Â(2) ⊙ Â(1)
)†

vec (Y) , (48)

provided Â(3) ⊙ Â(2) ⊙ Â(1) has full column rank.

This general scheme—which preserves the property of

guaranteed non-increasing cost function values of ALS [28]—

can be specialized for any conceivable structure in the sense

of Definition 1. For concreteness, a pseudocode of such a

constrained ALS (CALS) algorithm3 is given in Table II. To

3In [2,16], the same acronym is used for “circulant-constrained ALS”. Here,
we employ it in a more general sense.

TABLE III
THE CALS ALGORITHM IN THE SYMMETRIC CASE.

Inputs: Y ∈ RI×I×I , and initial parameter vectors λ̂0, θ̂0.

Outputs: Estimated parameter vectors λ̂, θ̂.
repeat for i = 1, 2, . . .


















θ̂i =
{[((

Âi−1 ⊙ Âi−1

)

Λ̂i−1

)

⊠ II

]

E

}†
vec (Y1) .

Âi = Unvec
(

Enormalize(θ̂i)
)

λ̂i =
(

Âi ⊙ Âi ⊙ Âi

)†
vec (Y) , Λ̂i = Diag(λ̂i)

until convergence

suppress the scaling ambiguity, a normalization step can be

performed after convergence. This can be done in several

ways, as discussed in Sec. II-C. When λ1 = · · · = λR, the

scaling can be e.g. absorbed by the third factor θ̂(3), as λ is

no longer estimated (cf. Sec. III-A1b).

It should be noted that it is also easy to take the assump-

tion of (partial) symmetry (cf. Sec. III-A2) into account, by

estimating all identical factors only once per iteration. This

is illustrated by the algorithm given in Table III, where the

three factors are assumed to be identical. However, the cost

function is no longer guaranteed to decrease or stay the same

along the iterations. Consequently, the symmetric CALS is

more sensitive to its initialization and prone to suffering from

convergence problems than non-symmetric CALS. Also, nor-

malization at each iteration is advised for numerical stability.

When estimating a CPD with the ALS scheme, an of-

ten used convergence criterion is based on the variation

of the (normalized) cost function between two consecutive

iterates [17,28]. More precisely, given values of NMSEi =
∥
∥
∥Y− I×1 Â

(1)
i ×2 Â

(2)
i ×3 Â

(3)
i Diag(λ̂i)

∥
∥
∥

2

F
‖Y‖−2

F for two

consecutive iterations, one verifies whether the condition

|NMSEi −NMSEi−1| < ǫ holds for a given tolerance level ǫ.

B. Subspace-based closed form solutions

We briefly describe in this section a low-complexity algo-

rithm, which allows to find a good approximate solution. It

follows the same lines as in [14]. The approximation is based

on the following: it is assumed that there is no noise (we apply

properties of X to Y) and that model (4) is exact, where one

or two matrices are structured. These assumptions permit to

obtain a solution within a finite number of operations, as now

explained. Our description holds valid in the complex case.

1) One structured matrix: Suppose that matrix A(3) is

structured. Because of scaling indeterminacy, we may decide

to impose θ
(3)
1 = 1 in (7) so that

A(3) = E
(3)
1 +

U3∑

u=2

θ(3)u E(3)
u .

From (3), the third matrix unfolding of tensor X satisfies X3 =
A(3) Diag(λ)(A(2) ⊙A(1))T . Let X3 = UΣVH denote the

SVD of X3. Then there exists an R×R invertible matrix M

such that UM = A(3), and M−1ΣVH = Diag(λ)(A(2) ⊙
A(1))T . The idea is to solve the former for M and θ(3), which

is possible if the number of unknowns, U3−1+R2, is smaller
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than the number of equations, I3R. This can be done by just

solving the linear system:

[

−IR ⊠U, vec
(

E
(3)
2

)

, . . . , vec
(

E
(3)
U3

)]

·
(

vec(M)
θ̄(3)

)

= − vec
(

E
(3)
1

)

.

Once M is obtained, the product M−1ΣVH yields

Diag(λ)(A(2) ⊙A(1))T . Hence we have matrix Ω = A(2) ⊙
A(1) up to scaling. If ωr denotes the rth column of matrix

Ω, the rth column of matrices A(1) and A(2) can eventually

be obtained by computing the best rank-one approximation of

the I1 × I2 matrix Unvec(ωr). The appropriate normalization

of columns of A(1) and A(2) finally gives λ.

2) Two structured matrices: Now let’s turn to the case

where two factor matrices are structured. Assume that A(1)

and A(2) are structured and independently follow model (7)

with parameter vectors θ(1) and θ(2), respectively. We do

not assume any structure for matrix A(3). As above, we

still have X3 = A(3) Diag(λ)
(
A(2) ⊙A(1)

)T
= UΣVH .

Then there exists a R × R invertible matrix N such that

NVH = (A(2) ⊙A(1))T and UΣN−1 = A(3) Diag(λ). We

then end up with the following linear system to solve:
[

−IR ⊠V∗, vec
(

E
(2)
1 ⊙E

(1)
1

)

, . . . , vec
(

E
(2)
U2
⊙E

(1)
U1

)]

·
(

vec(NT )
ζ

)

= 0 (49)

where ζ = θ(2) ⊠ θ(1). Ignoring the structure of unknown ζ,

the system can be solved in the total LS sense by computing

the right singular vector associated with the smallest singular

value of the matrix between brackets. This yields vec(NT )
and ζ up to scaling.

Once N and ζ are available, θ(1) and θ(2) can be obtained

(up to scaling) by computing the best rank-1 approximate

of Unvec(ζ) since Unvec(ζ) ≈ θ(1)θ(2)T in the absence

of noise. This will yield matrices A(1) and A(2). Finally,

matrix A(3) may be computed as UΣN−1, with λ being

subsequently estimated using (6) after proper normalization

of A(1), A(2) and A(3).

C. Algebraic solution for the estimation of circulant factors

In [16], it was shown that if a hypercubical N th-order

tensor admits a SCPD containing only circulant factors (called

circulant-constrained CPD (CCPD)), then they can be com-

puted by solving a system of N th-order homogeneous mono-

mial equations. Central to this derivation is the fact that

all square circulant matrices are diagonalized by the Fourier

matrix. Below, we briefly recall this approach for N = 3.

Let X = I ×1 C(1) ×2 C(2) ×3 C(3) be such that all

C(n) ∈ RI×R are circulant and I ≥ R. Recall that any square

circulant matrix C ∈ RI×I can be written as C = FΛFH ,

where Λ is a diagonal matrix containing the eigenvalues of

C and F ∈ CI×I is the Fourier matrix defined by [F]i1,i2 =
1√
I
exp((i1 − 1)(i2 − 1) j2π

I
), with j =

√
−1. Thus, we can

write C(n) = FΛ(n)FH
R , where FR ∈ C

R×I contains only

the first R rows of F and Λ(n) contains the eigenvalues of

C̆(n) = FΛ(n)FH ∈ RI×I . Hence, the multidimensional

discrete Fourier transform (MDFT) of X yields

W = X×1 F
H ×2 F

H ×3 F
H (50)

= I×1 Λ
(1)FH

R ×2 Λ
(2)FH

R ×3 Λ
(3)FH

R . (51)

Denoting [Λ(n)]i,i = λ
(n)
i , we have in scalar form

wi1,i2,i3 =
1

I
3
2

λ
(1)
i1

λ
(2)
i2

λ
(3)
i3

R∑

r=1

e
−j2π

I
(r−1)(i1+i2+i3−3). (52)

Hence, assuming R is known, one can compute the MDFT of

X and then solve the resulting system of equations (52) for the

eigenvalues λ
(n)
i , from which each C(n) is then reconstructed.

Necessary and sufficient conditions for the non-nullity of the

sum of exponentials in (52) were given in [16]. The remaining

equations admit, in general, infinitely many solutions, each one

associated with a CCPD of X. This phenomenon is of course

related with the permutation and scaling indeterminacies. For

the interested reader, a characterization of this relation is also

developed in [16].

The computation of accurate solutions for (52) is chal-

lenging in general, especially in the presence of noise. Nev-

ertheless, a solution obtained with a straightforward ad-hoc

procedure can be useful in practice for initializing more

sophisticated iterative algorithms. Furthermore, it is computa-

tionally cheap, as W can be computed with a multidimensional

FFT algorithm [29]. This approach is called ad-hoc algebraic

solution (AAS) [16]. Consider for example the case with I = 4
and R = 3, in which all 43 = 64 equations are generally

exploitable. Suppose λ
(1)
1 6= 0 and, to suppress the scaling

ambiguity, assume λ
(2)
1 = λ

(3)
1 = 1. Then, one can compute

an estimate from

(i) λ
(1)
1 = 8

3w1,1,1 (vi) λ
(2)
3 = 8

w1,3,1

λ
(1)
1

(ii) λ
(1)
2 = 8jw2,1,1 (vii) λ

(3)
3 = 8

w1,1,3

λ
(1)
1

(iii) λ
(2)
2 = 8j

w1,2,1

λ
(1)
1

(viii) λ
(1)
4 = −8jw4,1,1

(iv) λ
(3)
2 = 8j

w1,1,2

λ
(1)
1

(ix) λ
(2)
4 = −8j

w1,4,1

λ
(1)
1

(v) λ
(1)
3 = 8w3,1,1 (x) λ

(3)
4 = −8j

w1,1,4

λ
(1)
1

.

(53)

Clearly, this scheme is neither numerically reliable nor robust

to noise. This can be alleviated by noting that other alike

procedures exploiting disjoint subsets of equations can be

derived, which enables one to compute multiple candidate

solutions and keep that which yields the lowest quadratic

error w.r.t. Y. Yet, for other combinations of R and I , this

is not possible due to the pattern of vanishing equations—in

particular, W is sparse when I = R.

The equations are simplified when the factors C(n) are

identical, since we can simply drop the superscripts of the

eigenvalues in (52). For instance, if all factors are identical

with I = 4 and R = 3 and λ1 6= 0, then one possible straight-

forward procedure for computing a solution is to calculate

(i) λ1 = 2 3

√
1
3w1,1,1 (iii) λ3 = 8

w3,1,1

λ2
1

(ii) λ2 = 8j
w2,1,1

λ2
1

(vi) λ4 = −8j
w4,1,1

λ2
1

.
(54)
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Note that, due to symmetry, a number of equations become

redundant (unless W is noisy and the noise portion is not

symmetric).

D. Combined algorithms

Although the non-iterative approaches described in Sections

IV-B and IV-C bear a small computational cost in comparison

with iterative methods, they often fall short of precision,

especially in the presence of noise. Consequently, it is natural

to consider a “hybrid” approach in a practical setting, by

refining a solution produced by a non-iterative algorithm with

the use of an iterative scheme.

Apart from the CALS algorithm presented in Sec. IV-A,

one can employ a gradient, Newton or quasi-Newton descent

to improve some initial approximation. As our model involves

white zero-mean Gaussian noise, the maximum likelihood

estimator is the solution to the least-squares problem

min
η

‖y − x (η)‖2F = min
η

‖y −Φ(λ)f(θ)‖2F .

The gradient of such a cost function can then be written as

∇(η) = −JT (η) (y −Φ(λ)f(θ)) (recall that J denotes the

Jacobian of (12)). When both X and N are symmetric, as

discussed in Sec. III-A3, we have the problem

min
η

‖Ψ (y −Φ(λ)f(θ))‖2F , (55)

and thus the gradient reads

∇(η) = −JT (η)ΨTΨ (y −Φ(λ)f(θ)) . (56)

In the next section, we shall employ the above expressions

to refine estimates produced by non-iterative schemes with

the use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [30], which is a quasi-Newton optimization method.

V. SIMULATION RESULTS

We have conducted Monte Carlo simulations with the

purposes of (i) illustrating the utility of the derived CRB

expressions and (ii) comparing the statistical performance of

estimators based on the algorithms of Sec. IV using the ECRB.

As the structured factors we deal with in the experiments are

Toeplitz (circulant), the algorithm of Sec. IV-B will be called

CPTOEP (for “CP Toeplitz”), as in [14].

We note that all reported computing times were measured in

Matlab R2013a running on a Intel Xeon ES-2630v2 2.60 GHz.

Also, all ensemble averages are calculated by taking the 2%

trimmed mean of the data, in order to attenuate the degrading

effect of some realizations whose results are outstandingly

poor. The tolerance used for BFGS is ǫBFGS = 10−8. The

convergence criterion used for CALS is as described at the

end of Sec. IV-A, and its tolerance was set as ǫCALS = 10−10,

because ǫBFGS was seen to be to loose for this algorithm.

Finally, we note that both these iterative algorithms were

allowed to run only for a maximum number of 2000 iterations.

Three scenarios were considered, as described next. In each

of them, the reported estimates of BMSE and ECRB were

obtained via sample averaging (w.r.t. η) of, respectively, the

MSE and the deterministic CRB given by the corresponding

formula (according to the model structure) derived in Sec. III.

A. Three distinct circulant factors (CCPD)

In the first scenario, the SCPD model is constructed with

X = I ×1 C
(1) ×2 C

(2) ×3 C
(3), where each C(n) ∈ RI×R

is circulant with I = 4 and R = 3. Hence, λ is not present

in η. We fix θ
(1)
1 = θ

(2)
1 = 1 to avoid identifiability issues, as

discussed in Sec. II-C. Several joint realizations of θ̄(1), θ̄(2),

θ̄(3) = θ(3) and N̄ are generated by drawing their elements

from the standard Gaussian distribution. The noise tensor is

then obtained as N = σN̄, with σ varying to simulate different

signal-to-noise ratio (SNR) conditions.

Given one realization Y, we apply the following estimators:

1) AAS: Factors are computed by solving (52), from which

we obtain the estimate η̂. To reduce degradation due to

noise, we employ three different ad-hoc procedures as

that shown in (53) and keep the solution which yields the

lowest quadratic error w.r.t. Y. As some complex residual

is generally present in η̂, we take its real part.

2) Ni-CALS: The algorithm given in Table II is employed.

We use a multi-initialization scheme to improve perfor-

mance, running the algorithm Ni times with different

random initializations and keeping the solution yielding

the lowest quadratic error w.r.t. Y.

3) CPTOEP: The approach of Sec. IV-B is applied to jointly

compute circulant factors C(1) and C(2), as well as

an unstructured first estimate of A(3). Then, θ(3) is

estimated from A(3) in the LS sense, by using (8).

4) AAS-CALS: The estimates given by AAS are used (after

normalization) as initial points for CALS.

5) CPTOEP-CALS: After obtaining (normalized) initial es-

timates with CPTOEP, the CALS algorithm is used for

refining them.

6) CPTOEP-BFGS: Instead of using CALS to refine the

estimates given by CPTOEP, the quasi-Newton algorithm

BFGS [30] is used.

Note that, as no normalization is imposed in AAS, CALS

and CPTOEP, the parameter vectors need to be normalized

a posteriori, by dividing θ(n) by θ
(n)
1 for n ∈ {1, 2} and

absorbing these scaling factors in θ(3).

In Figure 1-(A), we show the BMSE of each estimator for

Nr = 500 realizations of Y, as well as the estimated ECRB,

for multiple SNR levels (in dB) computed via

SNR = 10 log10

1
Nr

∑Nr

n=1 ‖Xn‖2F
σ2I3

, (57)

where Xn stands for the nth realization of X. It can be

seen that CALS performs quite poorly with a single random

initialization, due to frequent early termination or inability to

converge, while all other iterative estimators approximately

reach the ECRB for SNR ≥ 15 dB. With regard to the non-

iterative ones, CPTOEP performs better than AAS, thanks to

its better numerical properties. By inspecting also the average

computing times reported in Table IV, we conclude that

AAS-CALS and CPTOEP-CALS provide the best compromise

between precision and computational cost.
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Fig. 1. Simulation results of scenarios A and B: BMSE of several estimators
when applied to compute a SCPD having three distinct (A) and three identical
(B) circulant factors, with I1 = I2 = I3 = 4 and R = 3.

TABLE IV
AVERAGE COMPUTING TIME (IN SECONDS) MEASURED IN SCENARIO (A).

Ni-CALS AAS (*) CPTOEP (‡)

SNR Ni = 1 Ni = 10 AAS *-CALS CPTOEP ‡-CALS ‡-BFGS

10 1.59e1 1.65e2 1.33e−3 1.73e−2 3.97e−3 2.13e−2 1.01e−1
20 1.36e1 1.43e2 1.16e−3 1.32e−2 3.56e−3 1.66e−2 6.77e−2
30 1.34e1 1.40e2 1.16e−3 1.17e−2 3.56e−3 1.48e−2 6.04e−2
40 1.35e1 1.42e2 1.15e−3 1.03e−2 3.57e−3 1.33e−2 5.48e−2

B. Three identical circulant factors (symmetric CCPD)

We consider now the setting where X admits a SCPD of the

form X = I×1 C×2 C×3 C, with C ∈ RI×R circulant and

I = U = 4, R = 3. The generation of model realizations is

similar to that of Sec. V-A, but now there is a single θ̄ = θ =
η. Also, the noise tensor is symmetric (cf. the discussion of

Sec. III-A3), with the elements ni1,i2,i3 such that i1 ≤ i2 ≤ i3
being generated as in the previous scenario and the other ones

determined by symmetry.

We describe below how each algorithm was applied to

estimate C from each realization of Y.

1) AAS: Factors are computed by solving three disjoint

subset of equations like (54) and keeping the best solu-

tion, in order to improve robustness against noise. As the

TABLE V
AVERAGE COMPUTING TIME (IN SECONDS) MEASURED IN SCENARIO (B).

Ni-CALS AAS (*) CPTOEP (‡)

SNR Ni = 1 Ni = 10 AAS *-CALS CPTOEP ‡-CALS ‡-BFGS

20 1.50e2 1.20e3 1.09e−3 2.98e−2 4.04e−3 4.11e−2 2.95e−2
30 6.44e1 8.45e2 1.09e−3 1.19e−2 4.03e−3 1.50e−2 2.53e−2
40 7.06e1 7.89e2 1.09e−3 9.94e−3 4.02e−3 1.29e−2 2.24e−2
50 6.26e1 7.14e2 1.09e−3 8.55e−3 4.02e−3 1.13e−2 2.05e−2
60 6.01e1 6.95e2 1.09e−3 7.23e−3 4.02e−3 9.80e−3 1.91e−2

parameter vector can only be estimated up to a complex

scaling factor of the form ej
2π
3 s, with s ∈ {0, 1, 2}, it is

thus necessary to compensate it by taking into account

the fact that θ is real. This is done by computing

ŝ = argmin
s∈{0,1,2}

U∑

u=1

min

{
[

Arg(θu)− Arg
(

ej
2π
3 s
)]2

,

[

Arg(θu)− Arg
(

ej(
2π
3 s−π)

)]2
}

, (58)

where Arg : C 7→ [−π, π[ outputs the phase of its

argument, and then estimating the generating vector as

θ̂ = Re

{

e−j 2π
3 ŝθ̃

}

, with θ̃ denoting the output of AAS.

2) Ni-CALS: The CALS algorithm is applied this time

taking symmetry into account, as shown in Table III. A

multi-initialization scheme is again used with Ni random

initial points.

3) CPTOEP: As this method does not take symmetry into

account, this is done a posteriori, by averaging the three

obtained factors, which are estimated as in Sec. V-A.

We also evaluate the combined approaches 4) AAS-CALS, 5)

CPTOEP-CALS and 6) CPTOEP-BFGS.

The obtained results are shown in Fig. 1-(B). In comparison

with the previous scenario, we can see that the algorithms

perform in general worse. In the case of CALS, this is due to

the imposition of symmetry. For both AAS and CPTOEP, an

additional stage is employed (in AAS, for fixing the scaling

factor; in CPTOEP, for computing a single factor estimate),

which degrades performance. Nonetheless, all iterative algo-

rithms (except for 1-CALS) get quite close to the ECRB

for SNR ≥ 35 dB. Inspecting the average computing times

reported in Table V, one can conclude that, once more,

AAS-CALS and CPTOEP-CALS lead to the best compromise

between statistical efficiency and computing cost.

C. Wiener-Hammerstein system identification

We now consider the Wiener-Hammerstein model identifi-

cation problem, whose link with the computation of a SCPD

was originally shown in [11]. In this context, an evaluation of

several estimators in a deterministic setting has been recently

conducted by the authors in [2]. Here, we extend it to a

Bayesian context, considering the ECRB as the relevant bound.

In the following, we first recall the problem formulation and

then present the simulation procedure and its results.

1) Problem formulation: The Wiener-Hammerstein (WH)

model is a well-known mathematical representation often used

for modeling nonlinear dynamical systems [23]. Its time-

invariant discrete-time version is illustrated in Fig. 2, where
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✲

x(k)
W (z) ✲ g(·) ✲ H(z)

y(k)
✲

Fig. 2. Block-diagram of the Wiener-Hammerstein model.

g(x) is a memoryless nonlinearity and W (z), H(z) are linear

time-invariant systems. Because of its “modular” structure

consisting of simple blocks, the WH model is said to belong

to the class of block-oriented models [23].

Assume that the components of a given WH model have

the form g(x) =
∑N

n=1 gnx
n, W (z) =

∑U−1
u=0 wuz

−u and

H(z) =
∑R−1

r=0 hrz
−r. Then, the resulting input/output rela-

tion is

y(k) =

N∑

n=1

gn

R−1∑

r=0

hr

[
U+r−1∑

m=r

wm−rx(k −m)

]n

, (59)

where x(k) is the input signal and y(k) its corresponding

output. It can be shown that this model admits an equivalent

Volterra representation [31]

y(k) =
N∑

n=1

I−1∑

i1=0

· · ·
I−1∑

in=0

v(n)(i1, . . . , in)
n∏

q=1

x(k − iq),

having symmetric discrete-time finite-memory Volterra kernels

v(n)(i1, . . . , in) = gn

R̃∑

r=r0

hr

n∏

q=1

wiq−r (60)

for i1, . . . , in ∈ {0, . . . , I − 1}, with I = U + R − 1, r0 =
max{0, i1 − U + 1, . . . , in − U + 1} and R̃ = min{R −
1, i1, . . . , in}.

Now, observe that (60) is of the same form as (2), provided

we define λr = hr−1 and A(n) = A such that

[A]iq,r =

{

θiq−r, r ≤ iq ≤ U + r,

0, otherwise,
(61)

with θu = wu−1. In other words, A is banded circulant

(as described by the last row of Table I). Hence, associating

v(n)(i1, . . . , in) with a symmetric nth-order tensor V
(n) ∈

RI×···×I such that [V(n)]i1,...,in = v(n)(i1 − 1, . . . , in − 1),
one can estimate the parameters of the linear subsystems (up

to a factor gn) by computing the SCPD of V
(n)

.

Due to the scaling ambiguity of (60), one can assume,

without loss of generality (as long as the kernel is not null),

that gn = 1. Also, assuming that θ1 6= 0 (in other words, W (z)
does not comprise a pure delay), we can fix θ1 = 1, leaving

the scaling in the vector λ. So, the parameters of W (z) and

H(z) can be estimated by computing the SCPD

V
(n) = I×1 A×2 · · · ×n−1 A×n (ADiag(λ)) . (62)

This reasoning underlies the approach described in [11],

where the parameters of H(z) and W (z) are obtained from

the SCPD of a Volterra kernel estimated from input-output

samples (by using any available method, such as, e.g., [32]).

TABLE VI
AVERAGE COMPUTING TIME (IN SECONDS) MEASURED IN SCENARIO (C).

Ni-CALS CPTOEP (‡)

SNR Ni = 1 Ni = 10 CPTOEP ‡-CALS ‡-BFGS

-3.6 1.22e2 1.13e3 1.05e−2 3.30e−2 1.84e−1
6.4 1.97e1 2.98e2 7.61e−3 1.71e−2 7.16e−2

16.4 1.09e1 1.53e2 7.15e−3 1.42e−2 5.79e−2
26.4 1.06e1 1.46e2 7.34e−3 1.34e−2 5.36e−2

2) Evaluating estimators with the use of the ECRB: We turn

now to the evaluation of different estimators when applied to

compute (62), choosing U = 5 and R = 3; thus, I = 7.

To perform this experiment, Nr = 500 realizations of the

parameters θ̄ and λ are generated by drawing each component

θ̄u and λr uniformly over [−1, 1]. Note that we fix θ1 = 1 to

ensure local identifiability.

We perform the described procedure for a third-order tensor

Y ∈ R
7×7×7, with X = V

(3)
built from the exact Volterra

kernel v(3) generated as (60). The kernel estimation error

is modeled by the (symmetric) noise tensor N, which is

generated exactly as in the previous scenario. The variance σ2

of N is again varied for simulating different SNR conditions.

The employed estimators are:

1) Ni-CALS: CALS is specialized to the particular structure

of the Voltera kernel (62). This is done by estimating

a single factor A per iteration. A multi-initialization

scheme with Ni initializations is also used, for improving

performance.

2) CPTOEP: The procedure is similar to that of scenario B,

with the estimate of A being obtained by averaging the

two structured factors estimated by the algorithm. After

that, it is suitably normalized, and then λ is estimated by

employing (48).

Again, we apply CALS and BFGS to refine the CPTOEP

solution.

The BMSE estimated at several SNR levels is shown in

Figure 3, with the corresponding time measurements reported

in Table VI. It is seen that 1-CALS produces very poor

results, due to the typical convergence problems encountered

in practice. With 10 random initializations, this problem is

overcome (for sufficiently high SNR), as it becomes more

likely that at least one run will produce good estimates;

however, the total computing cost is very high. In contrast,

CPTOEP’s BMSE lies only within moderate distance from

the lower bound, but its computing cost is quite low. Taking

advantage of this initial approximate solution, both CPTOEP-

CALS and CPTOEP-BFGS are able to reach quite close to the

ECRB for SNR values greater than approximately 11 dB, with

a slight advantage for the latter. On the other hand, CPTOEP-

CALS outperforms CPTOEP-BFGS from a computing cost

perspective, thus offering the best compromise in this scenario.

VI. CONCLUSION

We have studied the structured CPD (SCPD) estimation

problem, considering a tensor model in which the structured

factor matrices belong to subspaces spanned by given basis

matrices, and under the presence of additive white Gaussian
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Fig. 3. WH model identification: BMSE of several estimators when applied
to compute a symmetric SCPD with three identical circulant banded factors,
one of them postmultiplied by a diagonal matrix.

noise. Closed-form expressions for the (deterministic) Cramér-

Rao bound were derived for this model, taking into account

the particularities of special cases, as that of a (possibly

partially) symmetric SCPD. It was shown that the expected

CRB (ECRB) provides a tighter lower bound than Van Trees’

Bayesian CRB for the evaluation of estimators in a Bayesian

context, where prior distributions are assigned for the parame-

ters of interest. This idea was followed in three simulation

scenarios, where several estimators based upon specialized

SCPD computation algorithms were formulated and evaluated

by comparing their Bayesian MSE with the ECRB. In partic-

ular, in one of these scenarios we considered the estimation

of the linear subsystems of a Wiener-Hammerstein model as

an example where the studied estimation problem arises.

Some of the formulated estimators were able to reach quite

close to the bound for a wide range of SNR values. These

statistically efficient estimators consist of two stages: first,

a non-iterative method provides an initial solution, which is

then refined by employing an iterative algorithm. It was also

shown that this strategy can yield estimators which are also

very efficient from a computational standpoint.

As perspectives for future work, we can mention the ex-

tension of the present study to other structured tensor model

estimation problems, as the constrained CPD models described

in [33], which find applications in psychometry, chemometrics,

wireless communications and array signal processing.
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