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Unsteady 3D-Navier-Stokes System with
Tresca’s Friction Law

Mahdi Boukrouche* Imane Boussetouan and Laetitia Paoli |

Abstract

Motivated by extrusion problems, we consider a non-stationary incompress-
ible 3D fluid flow with a non-constant (temperature dependent) viscosity, sub-
jected to mixed boundary conditions with a given time dependent velocity on
a part of the boundary and Tresca’s friction law on the other part. We con-
struct a sequence of approximate solutions by using a regularization of the free
boundary condition due to friction combined with a particular penalty method,
reminiscent of the “incompressibility limit” of compressible fluids, allowing to
get better insights into the links between the fluid velocity and pressure fields.
Then we pass to the limit with compactness arguments to obtain a solution to
our original problem.

Keywords: Navier-Stokes system , Tresca’s friction law, variational inequality,
penalty method.

1 Introduction

Fluid flow problems are involved in several physical phenomena and play an impor-
tant role in many industrial applications. The fundamental model in fluid mechan-
ics is the well-known Navier-Stokes system for incompressible viscous fluids which
has been intensively studied during the last 78 years. Since the pioneering work of
J. Leray [14] in 1934, the mathematical analysis of this problem has performed signifi-
cant progresses: we can mention here only few selected references [16, 11, 22, 6, 9, 10].
Nevertheless it is still a very active research field, from both the theoretical point
of view and the numerical point of view (see for instance the very recent research
articles [1, 17, 18, 23]).

Motivated by extrusion problems we consider in this paper a non-stationary
incompressible 3D fluid flow with a temperature dependent viscosity. As usual for
this kind of problems the extrusion device is composed of an upper fixed part and
a lower moving part. Several experiments have shown that the classical adhesion
condition between the fluid and the lower moving part of the boundary of its domain
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is not satisfied and the real behavior seems to be governed by some friction condition
of Tresca’s type [12] [24].

More precisely, let w be a non empty open bounded subset with a Lipschitz
continuous boundary, of R4~ for d = 2,3. We denote by Q C R? the domain of the
flow given by

Q:{(x/,xd)eRd: ¢ ew, 0<zg<h(z)},

where ' = (21,...,24_1) € R 2 = (2/,24) € R%. The boundary of Q is 9Q =
ToUTL Uy, where I'g = {(2/,24) € Q: 24 =0}, Ty = {(2/,24) € Q: 24 = h(z')}
and 'y, is the lateral boundary. We assume that h is a Lipschitz continuous function
and there exist two real numbers hy,;, and hy,q. such that 0 < hyn < h(2') < hpas
for all 2/ € R4 1.

Let us emphasize that we do not introduce any restrictive assumption on the
thickness of the domain. On the contrary to previous papers where only thin films
where studied [19, 2, 4], we can consider here general 3D geometries.

The fluid flow is described by the conservation of momentum

v

o T (Vv =div(o) +f in Qx(0,7),

and the incompressibility condition
div(v) =0 in Qx(0,7),

where v is the velocity field of the fluid flow, f represents the density of body forces
and o is the stress tensor. We assume that the fluid is Newtonian, so

o = —pl +2u(T)D(v),

where T' depending on (z,t) € Q x (0,7), is the temperature field. Note that T'
stands for temperature but it will not appear as a variable of the problem, the time
interval on which the equations are considered is : [0,7]. We do this for the main
reason that we have generalised our work to a coupled problem (velocity-pressure-
temperature) which is in final version, so here we give the regularity of 7" suitable for
our coupled problem [5]. u(T") is the temperature dependent viscosity of the fluid, p
is the pressure and D(v) is the strain rate tensor given by

1 avi ov; .o
D(v) = (dz‘j(v))gmgm dij(v) = B <8zcj + agi) 1<, <d.

Hence v and p satisfy the Navier-Stokes system

% + (v.V)v = 2div(u(T)D(v)) + Vp = f in Qx(0,7), (1)
div(v) =0 in Qx (0,7), (2)

with the initial condition
v(0,) =wvg in €. (3)



Let us now describe the boundary conditions. We denote by s : Ty — R%"! the
shear velocity of the lower surface of the extrusion device at ¢ = 0 and by s((t), with
¢ : [0,7] — R such that ¢(0) = 1, its velocity at any instant ¢ € [0, 7]. We introduce
a function ¢ : 99 — R? such that

/g.ndU:O, g=0only, g,=g-n=0and g =9g— g,n=son Iy,
ry

where n = (ny,...,ng) is the unit outward normal vector to 9S2. We denote here by
u - w the Euclidean inner product of two vectors u and w and by |.| the Euclidian
norm. We define respectively the normal and the tangential velocities on I'g by

Up =V -N=10N;, VT = (vﬂ)KKd with vy =v; —vn; 1 <i<d
and the normal and the tangential components of the stress tensor on I'g by
Op = (O’ . n) ‘N = 05NN, O = (UTi)lgigd with o7 = OijNj — OpNy 1< <d.

Note that we will use the Einstein’s summation convention throughout this paper.
We assume that the upper surface of the extrusion device is fixed i.e.

v=0 on I'ix(0,7), (4)

the given velocity on the lateral boundary is the product g(x)((¢) i.e.
v=g( on I'px(0,7), (5)
and the normal component of the velocity on the lower part of boundary is given by
vp,=v-n=0 on Iyx(0,7). (6)

The tangential velocity on I'g % (0,7) is unknown and satisfies Tresca’s friction law
8]
lo7| < €= vr = (s(,0) -
lor| =¢=3X\>0 such that vy = (s(,0) — Ao

where ¢ : [0,7] x I'g — R is the upper limit for the shear stress (i.e. ¢ is the Tresca’s
friction threshold).

The paper is organized as follows. In Section 2 we introduce the functional
framework and the formulation of the problem as a variational inequality for the
fluid velocity and pressure fields. In Section 3 we use a regularization of Tresca’s
functional to obtain a sequence of approximate problems (P-) of Navier-Stokes type.

A classical technique to study such problems is to choose divergence free test-
functions in order to “kill” the pressure terms then to solve the derived variational
problem for the fluid velocity and to get finally the pressure by applying abstract
results of functional analysis (see [22, 21, 10] for instance). The major drawback of
this technique is that the pressure appears as a by product. In order to get better
insights into the links between the velocity and pressure fields, we adopt in this paper
another approach, reminiscent of the “incompressiblity limit” of compressible fluids.



More precisely, following an idea of J.L. Lions [15], we relax the divergence free

condition and we propose a sequence of penalized problems (Pa‘S ). In Section 4

we establish the existence of solutions to this family of problems (Pf )e>0,6>0 and we
obtain some a priori estimates. Next in Section 5 we define a sequence of approximate
pressures (p‘g)€>0,5>0 and we study its properties. By using functional spaces that
are weaker in time than in space, we succeed in obtaining good enough uniform
estimates with respect to the the parameters d and . Then in Section 6 we use
compactness arguments to pass to the incompressible limit as ¢ tends to zero and we
show that the limit velocity and pressure fields are solutions to the problems (Px).
Finally we pass to the limit as € tends to zero and we get a solution to our original
variational inequality.

2 Variational formulation of the problem

We denote by
H'(Q) = (H'(2))?, L2(Q) = (L3(Q))?, H2(9Q) = (H2(092))%, HX(Q) = (H*(Q))*.
We assume that

fe LQ(O,T; L2 ) cL ( T; L2 (To )ﬂLw(O,ﬂLf(PO))’ (8)
¢ec>([o,7]) Wlth ¢(0) =1,

with L2 (Tg) = L%(To; RT) (respectively L (Ty) = L*°(Tp;RT) and 7 > 0. The
viscosity p(7) is a function of L*> (O,T; LOO(Q)) depending on the temperature T,
and there exist two real numbers u*, us such that

0<p" <2u(X) <pe VX ER, (9)
and also there exists an extension of g to €2, denoted by Gy, such that

Go € H2(Q), div(Gy) =0in Q, Gg=gon Ty, Go=0onT},

Gon = 0 and Go, = s on I'y. (10)

We introduce now the following functional framework
Vo:{apeHl(Q): ¢=0onT,UTl, v, =0o0nTo},
endowed with the norm of H'(Q) and
Vodiv = {go €Vo: div(p) =0in Q}

Moreover let
Li(Q) = {q € L*(0): /qux = 0} .
We define the following applications
a(T;-,-) : L*(0,73V) x L*(0, V)  — R
(u,v) —  a(T;u,v) / /QM D(v) dxdt

0 JQ

/0 ' | 20Ty o) ot



and

U: L*0,7;L%(Ty) — R
u \If(u):/ / O|u| da’ dt.
0 JI'g

We may observe that ¥ is convex continuous but not differentiable.
Let b be the usual trilinear form given by

b: V()XV()XVO — R
Ov;
31‘2‘

(u,v,w) = blu,v,w) = [ w—w,;d.
Q

By definition of Vy we have the identity
b(u,v,w) = —b(u,w,v) — / div(u)v - wdz  Y(u,v,w) € Vo x Vo X V. (11)
Q

Moreover, using Korn’s inequality [13] and assumption (9), there exists a > 0 such
that, for almost every t € (0,7), we have

el oy < [ 20T)Dw) D) de < el ) Vo e Vo, (12)

In order to deal with homogeneous boundary conditions on I'r, U I';, we set
v = v — Go(. The variational formulation of the problem (1)-(7) is given by (see for
example [8] and [2, 4])
Problem (P) Find
~ ov
v € L*(0,7; Voain) N L (0,73 L*(2)), a—z € L5(0,7; Voaw)'), p € H (0,73 L3())

such that, for all ¢ € Vy and for all x € D(0,7), we have

d
N (55 SD)aX> + b(gaga SD)aX 0.7 e b, deU(SD) » X (0.7 T
<dt D/(0,7),D(0.7) < Jo0mp0m) ~ ) X)11(0,7),00,7)

+a(T;7,0x) + V(@ + ox) = (@) = ((£,9): ) (0.1 .p(0.7) — UTL3 G0l 0x)

o ~
- <<G05_§7 ‘P> ’X> = (b(Go¢, T + Gog, ), X>D'(07T)7D(0,r)
D,(OvT)7D(07T)

—<b('6, GoC, ), X>’D’(O,T),D(077)

with the initial condition
v(0,:) = vy € H, (14)

where H is the well known closure in L?(£2) of the space

{peC>®(): divp =0in Q},
(-,-) denotes the inner product in L*(€2) and (-,-)p/(0.)p(0,r) the duality product
between D'(0,7) and D(0, 7). Let us emphasize that we identify v + ¢y and v with
their trace on I'g in the definition of ¥ (v + ¢px) and ¥ (v).



3 Approximate problems

The variational formulation of the problem (1)-(7) leads to an inequality involving
Tresca’s functional ¥, which is convex continuous but not differentiable. To overcome
this difficulty we use a regularization of W. More precisley, for any € > 0, we introduce

W, defined by
Ve (u) = / / (/€2 + [ul2da’dt  Vu e L*(0,7;L2(T))
0 JIg

which is Gateaux-differentiable in L2 (0, 73 L?(Ig)), with ¥/ (u) € (L*(0,7; L?(Iy)) )’ —
L? (0,7’; LQ(FO)) for all v € L? (0,7’; LQ(FO)) given by

(V! (u), w) = / — Y gildt Ywe L2(O,T;L2(F0))
0o Jro e?+ |ul?

where (-,-) denotes the inner product in L?(0,7;L?*(T)). Then we consider a se-
quence of initial data (ve)->0 such that

Us0 —e—0 Vg strongly in H (15)

and we approximate problem (P) by the following problems (FP.), € > 0:
Problem (P.) Find

= € L*(0,7; Voain) VL™ (0, 7 L* (), % cLi (0,73 Voain)'), p- € H (0,7 LE(Q))

such that, for all ¢ € Vy and for all x € D(0,7), we have

d _ o .
<d_ (@, ¢) ’X>D,(o D (b0, e 00 X) 110,1),D(0,7) ~ (P di0(2)): X) 0,0y (0,7

+G(T7 567 ()OX) + <m;(6€)7 ()OX> = <(f7 @)7 X>'D’(O7’T),'D(O,T) - a(T7 GOC? ()OX)
0 ~
- < <G06_§7 90) ’ X> - <b(G0C7 Ve + GOC7 @)7 X>'D’(O,T),D(O,T)
D’(0,7),D(0,7)

_<b(6€7 GOC7 @)7 X>D/(O7T)7D(O,T)
(16)
with the initial condition

3.(0,-) = B0 € H. (17)

As it has been explained in Section 1, a classical technique to solve such problems
consists in choosing divergence free test-functions. Indeed if ¢ € Vg, the term
<(p5,div(<p)),x>p,(0 ,D(0,7) vanishes and we simply get a variational problem for

the fluid velocity ©.. Then the existence of p. € H *I(O,T;Lg(Q)) is derived via
abstract results of functional analysis (see [22, 21, 10] for instance).

With this technique the pressure appears as a by product of the study. In order
to get better insights into the links between the velocity and pressure fields, we will
follow an idea proposed by J.L. Lions in [15] and recently used in [3], which consists



in relaxing the divergence free condition. More precisely, we consider the following
penalized problems (P?), § >0, ¢ > 0:

Problem (P?) Find

o
ot
such that, for all ¢ € Vy and for all x € D(0,7), we have

W e L2(0,7;V0) N L(0,7; L3(2)), e L3 (0,7; (Vo))

d (-5 > 5~
V¥ )X + b(vav,SD),X 0.7 r
<dt (%) (0 D0 (b(T2 2, ) X) 10,1010,

L [ Sain(@ L, s -
+§</Q ’UgdZ’U(/Ug)SD dﬂf, X>D/(0,T),'D(O,T) + g<(dZ’U(’Ug), dZ’U(SD)) s X>'D/(0,T),'D(O77—) + CL(T, Ug, SDX)
+<\I/5(Ug)7 (PX> = <(f7 90)7 X>D’(0,T),D(O;r) - a(T; GOCa (PX) - < <GOE’ Lp) 7X>

5 5 D’(0,7),D(0,7)
_<b(GOC7 Ve + GOCa SO)’ X>'D’(O,T),D(O,T) - <b(’0€, G0<7 @)7 X>'D’(O,T),D(O,T)

(18)
with the initial condition
02(0,-) = 0 € L*() (19)
and we assume that the sequence of initial data (29,)s~0 satisfies
%) —5-0 U0 strongly in L2(Q). (20)

Let us emphasize that the last term of the first line of (18) is added for tech-
nical reasons (see (28)) while the first term of the second line is the penalty term:

—Sdiv(ﬁg) will play the role of an approximate pressure (see Section 5). Further-

more, the approximate initial velocities (5?0)5>075>0 and (Vg0)e>0 are not assumed to
be more regular that .

4 Existence result for the penalized problems (P?)

We prove the existence of solutions for the system (18)-(19), for any € > 0 and ¢ > 0,
by using the Galerkin method. Since Vy is a closed subspace of H!(Q2), it admits
an Hilbertian basis (w;);>1, which is orthogonal for the inner product of H!(2) and
orthonormal for the inner product of L%(Q2). Then, for all m > 1, we look for a
function v2,, given by

0 (tx) = Zggj(t)wj(x), vVt e (0,7), Vx € Q, (21)
j=1



such that, for all k € {1,...,m}, we have

~5

<825t ) + (02, 00 wy) + %/955~jiv(’6gm)wk dx + % (dw( ) dw(wk))
- W ,

+/92M(T)D(U§m) : D(wg) do + . KW dz’ = (f, w)

- [ 2(T)D(Ga) s Dlwn) o - (Goa—i,wk) — B(GoC, Ty + GoCy )

—b(ﬂgm,GOC,wk) a.e. in (0,7)
(22)
with the initial condition

afm(o’ ) Ugmo (23)

where ﬂgmo is defined as the orthogonal projection of 5?0 in L2(2) on Span{w1 e wm}.
For all 7,7,k € {1,...,m} we denote

Fr. = (f,wg) — /QQM(T)D(GOC) : D(wy) dx — <G0%awk> — b(Go¢, Go¢,wk) € L*(0,7)
and
Aj7k(T) = /QQ,U,(T)D(UJJ‘) : D(wk) dx € LOO(O,T), Bi,j,k = b(wi,wj,wk) c R.

By replacing 72, by its expression (21) in equation (22) and using the orthonormality
of (w;);>1 in L? (Q), we obtain

m

gek "+ Z gejgeZ Jk—i- Z gezgsj/ widiv(w;)wy, de + Z dw (wy) div(wk))
7.] 1 7.7 1 :

+ Z @ AR(T) + | € (2]21 go1103) - Wk = da’ = Fy
- oy | o)
m

— Z ggjb(G()C, wy, wk) — Zggjb(wj, G()C, wk) Vk € {1, . ,m}.
j=1 j=1
(24)
We can rewrite this differential system as

1) 1) 1) 1)
(ge)/ = g(t’ge)’ 9e = (gej)lgjgm

where G satisfies the assumptions of the Caratheodory theorem (see [7]). Moreover,
the function G is locally Lipschitz continuous with respect its the second argument. It
follows that, for any given initial data, the differential system (24) admits an unique
maximal solution ggj in H(0, Tm) 1 <75 <m, with 0 < 7,, < 7, which implies the
existence of a maximal solution ©%,, € H'(0,7,,; Vo) to (22)-(23). In the following
lemma, some a priori estimates 1ndependent of m, ¢ and € will be established, which
allow us to extend this solution to the whole interval [0, 7].



Lemma 4.1. Assume that (8), (9) and (10) hold and that (7%))>0, 5>0 is a bounded
sequence of L2(2). The problem (22)-(23) admits a unique solution 02, € H(0,7;,)
which satisfies the following estimates

5l oo (0.7:12(0)) < C (25)
158 | 220,111 () < C (26)
[ div(@2) | 12 (0,712 () < CV (27)

where C' is a constant independent of m, § and .
Proof. By multiplying equation (22) by ¢’ (t) and adding from k = 1 to m, we
obtain
0%, s 5 ~6 L[ .

< 5 €m> + (2,00, 02,,) + g/gvemdw(ve )2, dx + = 5 <d2v( ), div (T ))
+/92u(T)D(’17§m):D(’ﬁgm)d:c+/rof\/;i—m‘% da' = (f,7,,)

- [ 2u(1)D(Go0) s D) - (%%ﬁ%) — b(GoC, T, + Gol Th)
—b(02,,,GoC,00,,) ae. in (0,7).
With (11) we get

1
~ ~5 6 ~ . ~5 N\~
b(vemv Vems vem) + 5 A Usmdzv(vem)vem dr =0 (28)

and since div(Go) = 0 in Q, we have also b(Go,12,,,%,,) = 0. Furthermore since

em)
¢ € L*(0,7; L2 (I'y)), we obtain

(8g;m,%§m) 5 (din(@,).ai02,0) + [ ()DL s D) do
< (138 — [ 2DID(Ge) s DO s — (6o )
—b(GoC, GoC,0°,,) — b2, GoC,T0,,)  ae. in (0, 7).

Let us estimate now the terms in the right-hand side of the previous inequality.
We denote hereinafter by K the constant of the continuous injection of H!(Q) into
L4(2). By using Cauchy-Schwarz’s and Young’s inequalities, we obtain

(7,7,

IN

£ 2@ 00 29

1 1,
< §\|f\|i2(g) + §||U§m||i2(9)

A

IN

\ /Q 2(T)D(Go) : D) da| < pualClIT et (|Gl

IN

b ey + P CRIGol
7 10emllEn @) + 7 HI(Q)



o o )
[CE I H||Go||Lz<Q>uv§m||L2(m
<[5

[6(Go¢, Goc, 7)< [¢PIGolluae VGl [ P

~
5””61%”%2(9)

IN

1
§|| mliza +—|C| 1Go |3 0y IV Gollfr 0y
and
b2, GoC,000)| < [T Iy IV Goll 72,5
Vem> G065 Ve > Vem ILA(Q) 01lL4(Q) IVem [IL2(Q)
o K* ~
< ZvamH%—Il(Q) + EKPHVGOH%—P(Q)vamni?(ﬂ)

With (12) and an integration from 0 to s, with 0 < s < 7,,,, we get

1, 1
152 (3) ey + / Idiv @) 3y it + / 198l @y < 3198020
13
+3 | Iy e+ 22 G0l [P de+ giGulE [ (5]
/ Pl e+ 9 Gl ay [ 1P

ol @ IV Colln o JAGRE

Reminding that 5gm0 is defined as the orthogonal projection of 5?0 in L2(Q) on
Span{w1 .. wm} and that the sequence ('6?0)5>0,5>0 is bounded in L2(f2), we infer
that there exists a constant Cj, independent of § and € such that

102 (0}l 2 (@) = 102moll 2 () < [10%ll12() < Co ¥m 2 1, ¥6 >0, Ve > 0.

It follows that

1 s
S8 ey + 5 [ Wio @) aiay e+ 5 [ 152yt < C

(29)
e / 198, 12 e
where C7 and C5 are two constants independent of m,  and &, namely
s 2 T 1 2 o¢)?
Cr=5C8+5 [ IR e+ ZE ol oy [ 1CP dt+ F1Galey [ |52
0+ L2(Q H'(Q) | 2 L2@) o | ot

ol IV Golf [ Ietat
and
3 K*
Ca=5+ ;HVGOH%Il(Q)||<||%°°(0,7‘)'

10



With Gronwall’s lemma, we obtain
020, (9) 1.2y < 2C1 exp (25C5) < 2Cy exp (2rCa) Vs € [0,7n). (30)

With (21) and (24) we infer that the functions ggj, 1 <j <m, admit a limit at 7,
and, by definition of the maximal solution, we may conclude that 7,, = 7. Now, (25)
follows from (30). By inserting (30) in (29) with s = 7, we obtain (26) and (27).
O O

In the following lemma, we establish an estimate of the time derivative for the
approximate velocity.

Lemma 4.2. Under the same assumptions as in Lemma 4.1, we have

where Cs is a constant independent of m and €.

o,
ot

. < Cs (31)
L3(0,m3V))

Proof. Let ¢ € Vy. For all m > 1, we define ¢,, as the othogonal projection with
respect to the inner product of H'(Q) of ¢ on Span{wl, e ,wm}. With (22) we get

~0
av€m790m = _b(ﬂgmvigm7 ‘Pm) - l/ T)gmdw(agm)@m dx — l(dw(agm%dw(@m))
ot 2 g 5
0. ©

- / Q(T)D(,,) : D) dr — | —2m P gt 4 (£ )

Q o g2+ |02, )2

0 -

= [ 20DID(Go6) D) i — (GGt ) = UGG, 32+ Gk )
—b(0?,,,GoC, om) ae. in (0,7).

We estimate all the terms in the right hand side of the previous equality, we obtain

(B )| < (1o 995l + 5o li0@Eadl ) mlosi
+g||div(5gm)||Lz(Q)HdiU(SDm)HLz(Q) + 1| |l () P 12 (0

+ellL2oyllemllLe o) + 1 f 2@ lemllLz) + wlC|Gollar @) lom e @)

5 1Gollrz2(@)lemlirz@) + 1€1GollLa@) IVE, + VGollrz@ llomllLag)

HICT 2@ IV Gollrz@ lemllua@y — a-e. in (0,7).
By using the classical inequality

1 1
HUHL?’(Q) < HUHIQ,Q(Q)HU’HLQ,G(Q) Vu € LG(Q) N LQ(Q)

and the injection of H!(Q) in L5(€2), we infer that there exists a constant ¢, inde-
pendent of m, § and ¢, such that

1 3
~5 ~5 ~5 03 s e
[OemllLa@ IV Uemllrz@) llemllus@) < cllvemllgz o) 10emllin @) llemlla @)-

11



As (wj)j>1 is an orthogonal family of L?(Q) and ¢,, is the orthogonal projection
with respect to the inner product of H'(2) of ¢ on Span{wl, . ,wm}, we have
lomlle @) < llella o) and

~0 ~0
UEm avem
= >m.

Since (wj);>1 is an Hilbertian basis of Vg, the sequence (¢y)r>1 converges strongly
to ¢ in H'(2) and we get

Then, we obtain

ol V3 1 5 .3
(Zem0)| < <—+1> A A PN
R ~
—=||div (w2 w) | 22y el o) + 11 [0 e o) 2l ) + €€zl llEn ()
Il + i€l Gollsy + |5 1Golluaco) ) Bl o

+ <K2’<’HG0HH1(Q)H65m + GOCHHI(Q) + KQ’CHngHHl(Q)HGOHHl(Q)> el @) a-e. in (0,7),

where ¢ is the norm of the trace operator o : H'(€2) — L2(I'g). Hence

o, V3 s 1 .3
‘ 5 . < <7+1> T | £ 102 1 0y + Hdw o)l 2y + 110l )
0
0
+elllllearo) + [1fllL2(e) + pxlCllIGollar @ '—C' 1Gollr2 (o)
+ K¢ Golle (o) 192 + GoClla o +K2!C!H mllE @) |Gollai (o) ae. in (0,7).

Observing that

4
u PO, 3
[ [Tty "t = [ 1520 1920l oy

~ ~0 2
< ||UamHzoo(0,T;L2(Q))HvemHL?(o,T;Hl(Q))a

we infer from the estimates of Lemma 4.1 that there exists a constant Cy5 > 0,
independent of m and ¢, such that

r

which concludes the proof. [ ]

~0
ove,,

Zem <
ot dt < Cs

Vo

In order to pass to the limit as m tends to +oo, we will use also the following
Lemma.

12



Lemma 4.3. Let ¢ > 0 and ¢ € L*(0,7;L%(Ig)) N L>(0,7;LL(Ty)). Then the
mapping V. is Lipschitz continuous from L? (0, T; LQ(I’O)) to L? (0, T; LQ(I’O)).

Proof. Let us recall that, for all u € L?(0,7;L*(Ig)), ¥.(u) € (L*(0,7; LQ(I‘O)))/ =
L? (0,7’; L2 (FO)) is defined by

(U’ (u), w) :/ / L V’U)EL2(O,T;L2(F0))
0o Jro 2+ |ul?

where (-,-) denotes the inner product in L? (O, ' (FO)), ie.

u

Ve2+ Jul?

U (u) =4 vu € L*(0,7;L*(Tp)).

But the mapping

R? — RY
he:q o u

CVERe

is Fréchet differentiable on R? and

8h5i 6i,j U Uyg

ac(he)(u) = U = - 3
Jac(h)(u) <6wj”>1§,~,j§d T oy )

1<i,j<d

where 6; j = 1if ¢ = j and d; ; = 0 if ¢ # j. It follows that

Ohe; .
‘ = Vi,je{l,...,d}, YueR?

2
Ox;j €

(u)‘ <

and h. is Lipschitz continuous on R¢. Since ¢ € L™ (0, T; Lﬁ_o(I’o)), we infer that W,
is Lipschitz continuous from L2 (O,T; L% (PO)) into L? (O,T; Li(I‘O)). O O

Now, by using the estimates obtained in Lemma 4.1 and Lemma 4.2 combined
with compactness arguments, we can prove the following existence result for the
penalized problems (P?).

Theorem 4.4. Let ¢ > 0 and § > 0. Assume that (8), (9) and (10) hold and that
(5§0)5>0,5>0 is a bounded sequence of L2()). Then, there exists a subsequence of
(00, )m>1, still denoted (V0,,)m>1, such that

Em
W~ weakly star in L>® (0,7;L2(Q)) (32)
0 =0 weakly in L(0,7; V) (33)

0
and 00 is solution of (P?). Furthermore % belongs to L%(O,T; Vb)-

13



Proof. The convergences (32)-(33) follow immediately from the a priori estimates
(25)-(26) obtained in Lemma 4.1. From the estimate (31) obtained in Lemma 4.2, we

infer that, possibly extracting another subsequence still denoted denoted (%2, )m>1,
we have
O, OO
Yem _ 9l weakly in L%(O,T;V(,))- (34)

ot ot

By using Aubin’s lemma [22] and the convergences (33) and (34), with Xy = )V,
X =L4Q) and X; = V), we obtain

0, = strongly in L2(0, 7; L*(2)).

We may use again Aubin’s lemma with Xy = Vy, X = H*(Q) and X; =V with
% < s < 1: the embedding of X into X is compact, so we obtain

0, = strongly in L2(0,7; H*(Q)).

Then, with trace theorem [16], we infer that

2 = strongly in L2(0,7; L3(Tg))
where we identify here the functions ©?,, and ©° with their trace on T'y.

Now, using (32)-(34) and Simon’s lemma [20] and possibly extracting another
subsequence, still denoted (32,,,)m>1, we obtain

~6
Vem,

— 5? strongly in C°(0,7; H), (35)

for any Banach space H such that L%(Q) C H C V}, with continuous injections and
compact embedding of L?(f2) into H.

Let x € D(0,7) and ¢ € Vy. For all m > 1 we define again ¢,, as the othogonal
projection with respect to the inner product of H(2) of ¢ on Span{wl, . ,wm}.
With (22) we have

T[99, 5 ~5 L . =
ot ' Pm | + b(vsmv Vems (Pm) + 5 UsdeU(Usm)QOm dx X dt
0 Q i
+5 /0 (div(@,), div(om)x) dt+ (T, o) + (VL) omx ) = /0 (f, om)xdt

)
T 0 - —
—(Z(T, GOCa SDmX) - / [(Goa__ia Som> + b(GOCa vgm + GOC’ QDWL) + b(vgm? GOC’ me):| X dt.
0

With an integration by parts of the first term we get

" (5 o " 1 [y
(vgm, SDm) 9X 3 + b(vgm, vgm, ©m) + = vgmdw(vgm)gom dx| x dt
0 at 0 2 9]
1T, N R ;
+S/O <dw(vgm),dw(90m)x> dt + a(T; vgm,gpmx) + <‘1’;(vgm),g0mx> - /0 (f, om)x dt

T 8 _ _
—a(T; GoC, mX) — /O [(Goa_g’ cpm> + b(GoC, By, + GoC, o) + bW, GoC, wm)] X dt.

14



Reminding that (¢m)m>1 converges strongly to ¢ in H!(2) and using Lemma 4.3,
we can pass to the limit in all the terms and we obtain

T T 1 1

/ (ﬁg, Lp) 3_)( dt +/ b('ﬁg,'ﬁg, )+ —/ T)gdz'v('ﬁg)w dr + = (dz’v('ﬁg), div(cp)) x dt
0 ot 0 2 Jo )

+a(T; 02, 0x) + <\I’é(17§)7<px> = /0 (fs@)xdt — a(T;GoC, ox)

T 0 - -
~ [ {6055 ) +G0c. 32+ Giug, ) + (3. Gt )| .

which gives (18). It remains to chek that the initial condition (19) is satisfied.
Indeed, with (35), we have

2 (0) = 22(0)  strongly in H

em

with L?(2) € H C V), and we have also

T)gm(()) = ~§m0 — T)fjo strongly in L2(Q).
Hence 2(0) = 0,. O O

5 Properties of the approximate pressure

For any € > 0 and § > 0 we define and approximate pressure pg € L? (0,’7’; LQ(Q))
by

.
Pt = —div(T?) (36)
where i7g is the solution of the penalized problem (P&fS ) obtained in the previous

Section. From (18) we get

d ~5 > ~0 ~6

5 \Ver P X + b(UaU#P)aX (0.7 r
<ft < € > D/(O,T),D(O7T) < € € >D (07 )7D(07 )
+5¢ /Q 02 div(02) 0 d, X) 0.y pio.r) — (P2 di0(9)) s X) pr (0.0 D0y + A(T3 T, 0X)
H(UL(@), x) = ((f+0): ) prio.my piom) — 4T3 GoCs o)

¢ -
- < (G(]Ea @) ; X> - <b(G0<a ’Ug + GOC’ QD), X>'D/(O,T),D(O,T)
D’(0,7),D(0,7)

_<b(77ga GOCa @)7 X>D’(07T),'D(O,T)’ VQO € VO, VX c D(O, T).
(37)
Furthermore, with Green’s formula, we obtain

1
/p‘gdx:—g/ 2 -ndzr=0 ae. in (0,7) (38)
Q o0N
and, with (27) and (33), we have

HngLQ(O,T;LQ(Q)) <

Sla
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where C' is a constant independent of § and €. Unfortunately this last estimate does

not allow us to pass to the limit in the term <(pg, div(gp)) , X>D'(0 D0, & 6 tends

to zero. So we will establish an estimate independent of € and § by using the same
kind of technique as in [3]).

Lemma 5.1. Under the same assumptions as in Lemma 4.1, there exists a constant
C, independent of 6 and €, such that

|’ngH*1(O,T;L2(Q)) <C (39)
Proof. Let x € D(0,7) and w € LZ(2). Then there exists ¢ € H}(Q) such that
div(p) =w in Q

and ¢ = P(w) where P is a linear continuous operator from LZ(2) into H(Q) (see
[15]). With an integration by parts of the first term of (37), we get

T ) T _ 8 T _ _ 1 _ ) _
[ hdivionai=— [7(32.0) Sars [t ato +§ [ Randpdd] var
T 0 ~ ~
# [ (G0G0) + MGG+ Guc. ) + 032 Gt )|

Let us denote ¢y = 1 and recall that K is the constant of the continuous injection

of HY(Q) into L4(2). We get
T 1
[ b+ 5 [ e var| <
0 Q
V3 |~ -
< <1 +5 19211 220,513 (2) 192 | 22 0,781 (20 1 £ 0,510 (2))

YEAy
< K? (1 T ||USH%2(O,T;H1(Q))H’OHLOO(O,T;Hl(Q))‘

Then we obtain

T _ an
'/0 (Piw)xdt‘ < HUSHL2(O,7—;L2(Q))HEHL%O,T;LQ(Q))
V3 |~
+E? 1+ > 192117 20,k () 171l] o (0,ms181 ()

+,U*ﬁ||5§\|L2(0,T;H1(Q))H77||L°°(0,T;H1(Q)) + \/7_'HfHL2(0,T;L2(Q))||77HL<>°(0,T;L2(Q))

1| Gollar @) Il 21 0,7) 11| oo (0,75111 (@) + |GollL2 () 71l oo (0,751.2())

, s Ot L1(0,)
+K2HGOHH1(Q)HCHLQ(O,T)HU% + GoCll L2 (0,751 (@) 17| oo (0,711 (2))
+ K7 Gollar (o) lI< 1 220, 192 | 22 0,711 (2)) 171 oo (0,788 () -

By using the continuity of the operator P and the continuous injection of H(0,7)
into L*>(0, 1), we have

171l oo (0,711 (2)) = ||X||L°°(O,T)HP(w)HHI(Q) < Clixllar o) llwllve@) < Cllnlla o129
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where C' is a constant independent of § and £. With the estimates (25) and (26), we
infer that 20 is bounded in L?(0,7; H'(Q)) N L>°(0, 7; L?(Q2)) independently of § and
€, and we obtain

/0 (P2, w)x dt‘ < Cllwxllmorr2@) Yw € Lg(R), Vx € D(0,7) (40)

where we denote again by C' a constant independent of § and e.
Let now w € L?(£2). We can apply (40) with

_ 1 / ~
w=w— wdzx.
mes) Jq

Indeed, w € L3(9). Furthermore, with (38), we have

T _ 1 _
pg,w— /wdm th‘:

0 mesS) Jq
T 1 T
6 o~ k) ~
dt — d d dt| =
/o e 0l mesQ/o (/gpe x) (/Qw gc)X '

Observing that [|wl[z2(q) < [[w]|12(q), we obtain

/0 (pﬁ,@)xdt‘-

1 /0 (piwxdt‘:' /0 (pgafﬁ)xdt‘SCH@XHHl(o,T;m(m), vis € LA(Q), ¥x € D(0,7).(41)

Then the density of D(0,7)® L?(2) into H(0, 7; L2(Q2)) allows us to conclude. 0 O

6 Existence results for the problems (P.) and (P)

Now we can pass to the limit in the penalized problems (P?) when § tends to zero.

Theorem 6.1. Let € > 0 and assume that (17?0)€>075>0 is a bounded sequence of

L2(2). Assume moreover that (8), (9), (10) and (20) hold. Then, there exists a
subsequence of (V2,p?)s=0, still denoted (V2,p2)s=0, such that

5? — V. weakly star in L™ (0, T LQ(Q)) (42)
W — 0. weakly in L*(0,7; V) (43)
. —p.  weakly in H=Y(0,7; L3()) (44)

and (U, pe) is solution of (P.). Furthermore % belongs to Ls (0,7’; (VOdiU)/)-

Proof. Observing that the estimates obtained in Lemma 4.1 are independent of
m, & and e, we infer that the sequence (29,p?)s>o is bounded in L2(0,7;Vp) N
L (0,7’; LQ(Q)). Moreover, with Proposition 5.1, the sequence (p®)so is bounded
in H1(0,7;L*()) and the convergences (43)-(42)-(44) follow immediately.
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From (27) we infer that

[div@2)|] 120 1120y < CVO

with a constant C independent of § and €. Thus
div (7] ) — 0 strongly in L? (O,T; LQ(Q)).

a~6
Finally we can obtain an estimate of % in L3 (0,7; (Vodiv)') by using the same kind

of computations as in Lemma 4.2. Indeed, let ¢ € Vygi, and x € D(0, 7). With (37)
we get

d (=
@ (7%:6) x >m07 o) -/ / i UL R
_§</Q 5gdzv ve)go dm’X>D’(O,T),D(0,T) — a(T; v Us’ ox) <\I" SDX>
0
+<(fa SD)aX>D/(O 7),D(0,7) _a(T; GOCaSDX) - Go C,Qp
s o S ot D'(0,7),D(0,7)
_<b(GOC7 Ve + GOCa Qp)a X>'D’(O,T),D(O,T) - <b(’0€, GOC7 @)7 X>D/(O,T),D(O7T).

We can estimate all the terms in the right hand side of the previous equality and we
obtain

V3 B N
@dedt' <_+1 e [ 18 721 el

/ 172 s ] 2 | e el ol
[ @mm T malclliCollin e T 1||Go||Lz )| tan ol
+/0 [K2|C|||G0||Hl(ﬂ)\|5§S + GoClla (o) +K2|C|\|5g||H1(Q)HG0||H1(Q)] el (o)lx| dt.
Observing that

~5 ~5
H HLz oy llV2 HH1 a HcﬂHHI(g x| dt <
) )

~5 ~5
< I3 0,mL2(Q)) i I (@ HSDHHI yIxllzaco,m)
( (@)
1

6
< HU HLoo(oTL2(Q )HU HL2(O’TH1 Q) H‘pXHL‘*(OTHl(Q))

N[N

and reminding that (32)s~o is bounded in L%(0,7; H!(Q)) N L>(0,7;L2(2)) inde-
pendently of § and e, we infer that

|

with a constant C independent of ¢ and e.

0%
ot

. <C (45)
L3(0,7;(Vodiv))
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It follows that, possibly extracting another subsequence still denoted (53)5>0, we
have

~5 ~
ov;  0Ov.

!
5 5 weakly in L3 (0,7; Voaiv)')- (46)

By using Aubin’s lemma, with Xo = Vo, X = L*(Q) and X1 = (Vogiv)’, we obtain

0 — 7. strongly in L? (0,7;L4(Q))
1
and, with Xy =V, X = H*(Q), 3 < s<1,and X1 = Voaiv)',

5? — 0. strongly in L? (O, T; HS(Q))
Hence
53 — 7, strongly in L? (0, T; LQ(FO)).

Finally, using (42)-(46) and Simon’s lemma, and possibly extracting another subse-
quence still denoted (29)50, we obtain

7o stronly in €0, 7 )

for any Banach space H such that L2(Q2) C H C (Vyas,)" With continuous injections
and compact embedding of L?(€2) into H.

With all these convergences and with the assumption (20), we can pass to the
limit in (18) and (19) by the same techniques as in Theorem 4.4 and we get (16) and
(17). O O

Now, observing that W, is convex, we obtain that
W (Ve + ox) — e(v:) > (L), px) Ve € Vo, Vx € D(0,7)

and in (16) we get

d SO .
<d_ (0=, ) ’X> + (b(, U, ), X>D/(077)7D(0,T) —((pe, dZ/U(SD))’X>'D/(Oﬂ')7D(O,T)
~ ID/(077’:-)/7D(07T) ~
+a(T3 72, X) + Ve (e + 9x) = Ye(T2) 2 ((£,9): X) pr(0,1).p(0,1) — UT5 Gl 9X)
0 ~
- < (Goa_c, Q0> ,X> - <b(G0<a Ve + GOC’ gp), X>D’(O 7),D(0,7)
¢ D’(0,7),D(0,7) o ’

_<b(6€7 GOC7 @)7 X>D/(O7T)7D(O,T)
(47)
for all ¢ € Vy and for all x € D(0,7), with the initial condition
0:(0, ) = vgp. (48)

In order to pass to the limit as ¢ tends to zero in the previous inequality, we use the
following lemma.
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Lemma 6.2. Let (w.).>0 be a sequence of L? (0,7’; LQ(FO)) andw € L? (0,7’; LQ(FO))
such that (w:)eso converges strongly to w in L*(0,7;L*(Ig)). Then lin(l) U (we) =
E—>

U(w).

Proof. Let € > 0. By definition of ¥, and ¥, we have

U (we) — ¥(w) = /OT/F ((Jwe| — |w|) da'dt + /OT/F (Ve + |we|? — |wel) da'dt.

It follows that
/ / C||we| — |wl| da'dt —|—/ / e da'dt
0 Fo 0 F0
< llz2 0,712 (ro)) (lwe = wll 20,712 (1g)) + €/ Tmeas(To))

which allows us to conclude. [ O

IN

|‘I]€(w€) - \I’(w)‘

Now we can prove that problem (P) admits a solution.

Theorem 6.3. Assume that (0%)).0.60 is a bounded sequence of L2(Q). Assume
moreover that (8), (9), (10) and (15) hold. Then, there exists a subsequence of
(Uey De)e0, still denoted (Vg,pe)eso such that

0. =70 weakly star in L*°(0,7; L*()) (49)

V. =0 weakly in L*(0,7;V) (50)

pe =D weakly in H1(0,7; L(Q2)) (51)
@

and (v, p) is solution of (P). Furthermore belongs to L3 (0,7; Vodiv)') -

ot

Proof. Recalling that the estimates (25)-(26) are independent of m, ¢ and e, we
deduce that (0:)eso is bounded in L*(0,7; H'(2)) N L>(0,7;L?(22)). Morcover,
since the estimate (39) is independent of ¢ and ¢, the sequence (p:)e>¢ is bounded in
H~1(0,7; L*(2)) and we may infer the convergences (49)-(50)-(51). Furthermore the

0
estimate (45) implies that that <%> is bounded in L3 (O,T; Voaiv)' ) Hence,

possibly extracting another subsequence still denoted (v )c~0, we have
dv. v
ot ot

weakly in L3 (0,7; Vodi)")

and with the same arguments as in the previous Theorem, we get
V. — U strongly in L? (0,7’; L4(Q)),
V. — 0 strongly in L? (O, T LQ(I’O)),

20



and
20 — . strongly in C°(0,7; H),

for any Banach space H such that L2(Q2) C H C (Voasi»)" With continuous injections
and compact embedding of L?(€2) into H.

With all these convergences and the assumption (15), we can pass to the limit
in (47) and (48) by the same techniques as in Theorem 4.4 and Theorem 6.1 and we
get (13) and (14). O O
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