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Motivated by extrusion problems, we consider a non-stationary incompressible 3D fluid flow with a non-constant (temperature dependent) viscosity, subjected to mixed boundary conditions with a given time dependent velocity on a part of the boundary and Tresca's friction law on the other part. We construct a sequence of approximate solutions by using a regularization of the free boundary condition due to friction combined with a particular penalty method, reminiscent of the "incompressibility limit" of compressible fluids, allowing to get better insights into the links between the fluid velocity and pressure fields. Then we pass to the limit with compactness arguments to obtain a solution to our original problem.

Introduction

Fluid flow problems are involved in several physical phenomena and play an important role in many industrial applications. The fundamental model in fluid mechanics is the well-known Navier-Stokes system for incompressible viscous fluids which has been intensively studied during the last 78 years. Since the pioneering work of J. Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] in 1934, the mathematical analysis of this problem has performed significant progresses: we can mention here only few selected references [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF][START_REF] Girault | Finite element approximation of the Navier-Stokes equations[END_REF][START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF][START_REF] Boyer | Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles[END_REF][START_REF] Foias | Navier-Stokes equations and turbulence[END_REF][START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems[END_REF]. Nevertheless it is still a very active research field, from both the theoretical point of view and the numerical point of view (see for instance the very recent research articles [START_REF] Bemelmans | Fluid flows around floating bodies, I: the hydrostatic case[END_REF][START_REF] Biryuk | Bounds on Kolmogorov spectra for Navier-Stokes equations[END_REF][START_REF] Goulart | Global stability analysis of fluid flows using sum-of-squares[END_REF][START_REF] Zhang | An augmented Lagrangian approach to simulating yield stress fluid flows around a spherical gas bubble[END_REF]).

Motivated by extrusion problems we consider in this paper a non-stationary incompressible 3D fluid flow with a temperature dependent viscosity. As usual for this kind of problems the extrusion device is composed of an upper fixed part and a lower moving part. Several experiments have shown that the classical adhesion condition between the fluid and the lower moving part of the boundary of its domain is not satisfied and the real behavior seems to be governed by some friction condition of Tresca's type [START_REF] Hervet | Flow with slip at the wall: from simple to complex fluids[END_REF] [START_REF] Baffico | Existence result for a fluid structure interaction problem with friction type slip boundary condition[END_REF].

More precisely, let ω be a non empty open bounded subset with a Lipschitz continuous boundary, of R d-1 for d = 2, 3. We denote by Ω ⊂ R d the domain of the flow given by

Ω = (x ′ , x d ) ∈ R d : x ′ ∈ ω, 0 < x d < h(x ′ ) , where x ′ = (x 1 , . . . , x d-1 ) ∈ R d-1 , x = (x ′ , x d ) ∈ R d . The boundary of Ω is ∂Ω = Γ 0 ∪ Γ L ∪ Γ 1 , where Γ 0 = {(x ′ , x d ) ∈ Ω : x d = 0}, Γ 1 = {(x ′ , x d ) ∈ Ω : x d = h(x ′ )}
and Γ L is the lateral boundary. We assume that h is a Lipschitz continuous function and there exist two real numbers h min and h max such that 0 < h min < h(x ′ ) < h max for all x ′ ∈ R d- 1 .

Let us emphasize that we do not introduce any restrictive assumption on the thickness of the domain. On the contrary to previous papers where only thin films where studied [START_REF] Rao | The effect of the slip boundary condition on the flow of fluids in a channel[END_REF][START_REF] Boukrouche | On the Navier-Stokes system in a thin film flow with Tresca free boundary condition and its asymptotic behavior[END_REF][START_REF] Boukrouche | Non isothermal lubrication problem with Tresca fluid-solid interface law, part I[END_REF], we can consider here general 3D geometries.

The fluid flow is described by the conservation of momentum

∂v ∂t + (v.∇)v = div(σ) + f in Ω × (0, τ ),
and the incompressibility condition

div(v) = 0 in Ω × (0, τ ),
where v is the velocity field of the fluid flow, f represents the density of body forces and σ is the stress tensor. We assume that the fluid is Newtonian, so

σ = -pI + 2µ(T )D(v),
where T depending on (x, t) ∈ Ω × (0, τ ), is the temperature field. Note that T stands for temperature but it will not appear as a variable of the problem, the time interval on which the equations are considered is : [0, τ ]. We do this for the main reason that we have generalised our work to a coupled problem (velocity-pressuretemperature) which is in final version, so here we give the regularity of T suitable for our coupled problem [START_REF] Boukrouche | Existence for non-isothermal fluid flows with Tresca's friction and Cattano's heat law[END_REF]. µ(T ) is the temperature dependent viscosity of the fluid, p is the pressure and D(v) is the strain rate tensor given by

D(v) = d ij (v) 1≤i,j≤d , d ij (v) = 1 2 
∂v i ∂x j + ∂v j ∂x i 1 ≤ i, j ≤ d.
Hence v and p satisfy the Navier-Stokes system

∂v ∂t + (v.∇)v -2div µ(T )D(v) + ∇p = f in Ω × (0, τ ), (1) 
div(v) = 0 in Ω × (0, τ ), (2) 
with the initial condition

v(0, •) = v 0 in Ω. (3) 
Let us now describe the boundary conditions. We denote by s : Γ 0 → R d-1 the shear velocity of the lower surface of the extrusion device at t = 0 and by sζ(t), with ζ : [0, τ ] → R such that ζ(0) = 1, its velocity at any instant t ∈ [0, τ ]. We introduce a function g : ∂Ω → R d such that

Γ L g.n dσ = 0, g = 0 on Γ 1 , g n = g • n = 0 and g τ = g -g n n = s on Γ 0 ,
where n = (n 1 , . . . , n d ) is the unit outward normal vector to ∂Ω. We denote here by u • w the Euclidean inner product of two vectors u and w and by |.| the Euclidian norm. We define respectively the normal and the tangential velocities on Γ 0 by

v n = v • n = v i n i , v T = v T i 1≤i≤d with v T i = v i -v n n i 1 ≤ i ≤ d
and the normal and the tangential components of the stress tensor on Γ 0 by

σ n = (σ • n) • n = σ ij n i n j , σ T = σ T i 1≤i≤d with σ T i = σ ij n j -σ n n i 1 ≤ i ≤ d.
Note that we will use the Einstein's summation convention throughout this paper. We assume that the upper surface of the extrusion device is fixed i.e.

v = 0 on Γ 1 × (0, τ ), (4) 
the given velocity on the lateral boundary is the product

g(x)ζ(t) i.e. v = gζ on Γ L × (0, τ ), (5) 
and the normal component of the velocity on the lower part of boundary is given by

v n = v • n = 0 on Γ 0 × (0, τ ). ( 6 
)
The tangential velocity on Γ 0 × (0, τ ) is unknown and satisfies Tresca's friction law [START_REF] Duvaut | Les inéquations en mécanique et physique[END_REF] |σ

T | < ℓ ⇒ v T = (sζ, 0) |σ T | = ℓ ⇒ ∃λ ≥ 0 such that v T = (sζ, 0) -λσ T (7) 
where ℓ : [0, τ ] × Γ 0 → R is the upper limit for the shear stress (i.e. ℓ is the Tresca's friction threshold).

The paper is organized as follows. In Section 2 we introduce the functional framework and the formulation of the problem as a variational inequality for the fluid velocity and pressure fields. In Section 3 we use a regularization of Tresca's functional to obtain a sequence of approximate problems (P ε ) of Navier-Stokes type.

A classical technique to study such problems is to choose divergence free testfunctions in order to "kill" the pressure terms then to solve the derived variational problem for the fluid velocity and to get finally the pressure by applying abstract results of functional analysis (see [START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF][START_REF] Simon | On the existence of the pressure for solutions of the variational Navier-Stokes equations[END_REF][START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems[END_REF] for instance). The major drawback of this technique is that the pressure appears as a by product. In order to get better insights into the links between the velocity and pressure fields, we adopt in this paper another approach, reminiscent of the "incompressiblity limit" of compressible fluids.

More precisely, following an idea of J.L. Lions [START_REF] Lions | Some problems connected with Navier-Stokes equations[END_REF], we relax the divergence free condition and we propose a sequence of penalized problems (P δ ε ). In Section 4 we establish the existence of solutions to this family of problems (P δ ε ) ε>0,δ>0 and we obtain some a priori estimates. Next in Section 5 we define a sequence of approximate pressures (p δ ε ) ε>0,δ>0 and we study its properties. By using functional spaces that are weaker in time than in space, we succeed in obtaining good enough uniform estimates with respect to the the parameters δ and ε. Then in Section 6 we use compactness arguments to pass to the incompressible limit as δ tends to zero and we show that the limit velocity and pressure fields are solutions to the problems (P ε ). Finally we pass to the limit as ε tends to zero and we get a solution to our original variational inequality.

Variational formulation of the problem

We denote by

H 1 (Ω) = H 1 (Ω) d , L 2 (Ω) = (L 2 (Ω)) d , H 1 2 (∂Ω) = (H 1 2 (∂Ω)) d , H 2 (Ω) = H 2 (Ω) d .
We assume that

f ∈ L 2 0, τ ; L 2 (Ω) , ℓ ∈ L 2 0, τ ; L 2 + (Γ 0 ) ∩ L ∞ 0, τ ; L ∞ + (Γ 0 ) , ζ ∈ C ∞ [0, τ ] with ζ(0) = 1, (8) 
with

L 2 + (Γ 0 ) = L 2 (Γ 0 ; R + ) (respectively L ∞ + (Γ 0 ) = L ∞ (Γ 0 ; R + ) and τ > 0. The viscosity µ(T ) is a function of L ∞ 0, τ ; L ∞ (Ω)
depending on the temperature T , and there exist two real numbers µ * , µ * such that

0 < µ * ≤ 2µ(X) ≤ µ * ∀X ∈ R, (9) 
and also there exists an extension of g to Ω, denoted by G 0 , such that

G 0 ∈ H 2 (Ω), div(G 0 ) = 0 in Ω, G 0 = g on Γ L , G 0 = 0 on Γ 1 , G 0n = 0 and G 0τ = s on Γ 0 . (10) 
We introduce now the following functional framework

V 0 = ϕ ∈ H 1 (Ω) : ϕ = 0 on Γ L ∪ Γ 1 , ϕ n = 0 on Γ 0 ,
endowed with the norm of H 1 (Ω) and

V 0div = ϕ ∈ V 0 : div(ϕ) = 0 in Ω .
Moreover let

L 2 0 (Ω) = q ∈ L 2 (Ω) : Ω q dx = 0 .
We define the following applications

a(T ; •, •) : L 2 (0, τ ; V 0 ) × L 2 (0, τ ; V 0 ) → R (u, v) → a(T ; u, v) = τ 0 Ω 2µ(T )D(u) : D(v) dxdt = τ 0 Ω 2µ(T )d ij (u)d ij (v) dxdt, and 
Ψ : L 2 0, τ ; L 2 (Γ 0 ) → R u → Ψ(u) = τ 0 Γ 0 ℓ|u| dx ′ dt.
We may observe that Ψ is convex continuous but not differentiable. Let b be the usual trilinear form given by b :

V 0 × V 0 × V 0 → R (u, v, w) → b(u, v, w) = Ω u i ∂v j ∂x i w j dx.
By definition of V 0 we have the identity

b(u, v, w) = -b(u, w, v) - Ω div(u)v • w dx ∀(u, v, w) ∈ V 0 × V 0 × V 0 . (11) 
Moreover, using Korn's inequality [START_REF] Kondrat'ev | Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequailities[END_REF] and assumption [START_REF] Foias | Navier-Stokes equations and turbulence[END_REF], there exists α > 0 such that, for almost every t ∈ (0, τ ), we have

α u 2 H 1 (Ω) ≤ Ω 2µ(T )D(u) : D(u) dx ≤ µ * u 2 H 1 (Ω) ∀u ∈ V 0 . (12) 
In order to deal with homogeneous boundary conditions on Γ L ∪ Γ 1 , we set v = v -G 0 ζ. The variational formulation of the problem (1)-( 7) is given by (see for example [START_REF] Duvaut | Les inéquations en mécanique et physique[END_REF] and [START_REF] Boukrouche | On the Navier-Stokes system in a thin film flow with Tresca free boundary condition and its asymptotic behavior[END_REF][START_REF] Boukrouche | Non isothermal lubrication problem with Tresca fluid-solid interface law, part I[END_REF])

Problem (P ) Find v ∈ L 2 0, τ ; V 0div ∩ L ∞ 0, τ ; L 2 (Ω) , ∂ v ∂t ∈ L 4 3 0, τ ; (V 0div ) ′ , p ∈ H -1 0, τ ; L 2 0 (Ω)
such that, for all ϕ ∈ V 0 and for all χ ∈ D(0, τ ), we have

d dt ( v, ϕ) , χ D ′ (0,τ ),D(0,τ ) + b( v, v, ϕ), χ D ′ (0,τ ),D(0,τ ) -p, div(ϕ) , χ D ′ (0,τ ),D(0,τ ) +a(T ; v, ϕχ) + Ψ( v + ϕχ) -Ψ( v) ≥ (f, ϕ), χ D ′ (0,τ ),D(0,τ ) -a(T ; G 0 ζ, ϕχ) - G 0 ∂ζ ∂t , ϕ , χ D ′ (0,τ ),D(0,τ ) -b(G 0 ζ, v + G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) -b( v, G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) (13) with the initial condition v(0, •) = v 0 ∈ H, ( 14 
)
where H is the well known closure in L 2 (Ω) of the space {ϕ ∈ C ∞ (Ω) : div ϕ = 0 in Ω}, (•, •) denotes the inner product in L 2 (Ω) and •, • D ′ (0,τ ),D(0,τ ) the duality product between D ′ (0, τ ) and D(0, τ ). Let us emphasize that we identify v + ϕχ and v with their trace on Γ 0 in the definition of Ψ( v + ϕχ) and Ψ( v).

Approximate problems

The variational formulation of the problem (1)-( 7) leads to an inequality involving Tresca's functional Ψ, which is convex continuous but not differentiable. To overcome this difficulty we use a regularization of Ψ. More precisley, for any ε > 0, we introduce Ψ ε defined by

Ψ ε (u) = τ 0 Γ 0 ℓ ε 2 + |u| 2 dx ′ dt ∀u ∈ L 2 0, τ ; L 2 (Γ 0 ) which is Gâteaux-differentiable in L 2 0, τ ; L 2 (Γ 0 ) , with Ψ ′ ε (u) ∈ L 2 0, τ ; L 2 (Γ 0 ) ′ = L 2 0, τ ; L 2 (Γ 0 ) for all u ∈ L 2 0, τ ; L 2 (Γ 0 ) given by Ψ ′ ε (u), w = τ 0 Γ 0 ℓ u • w ε 2 + |u| 2 dx ′ dt ∀w ∈ L 2 0, τ ; L 2 (Γ 0 )
where •, • denotes the inner product in L 2 0, τ ; L 2 (Γ 0 ) . Then we consider a sequence of initial data ( v ε0 ) ε>0 such that

v ε0 -→ ε→0 v 0 strongly in H (15) 
and we approximate problem (P ) by the following problems (P ε ), ε > 0:

Problem (P ε ) Find v ε ∈ L 2 0, τ ; V 0div ∩L ∞ 0, τ ; L 2 (Ω) , ∂ v ε ∂t ∈ L 4 3 0, τ ; (V 0div ) ′ , p ε ∈ H -1 0, τ ; L 2 0 (Ω)
such that, for all ϕ ∈ V 0 and for all χ ∈ D(0, τ ), we have

d dt ( v ε , ϕ) , χ D ′ (0,τ ),D(0,τ ) + b( v ε , v ε , ϕ), χ D ′ (0,τ ),D(0,τ ) -p ε , div(ϕ) , χ D ′ (0,τ ),D(0,τ ) +a(T ; v ε , ϕχ) + Ψ ′ ε ( v ε ), ϕχ = (f, ϕ), χ D ′ (0,τ ),D(0,τ ) -a(T ; G 0 ζ, ϕχ) - G 0 ∂ζ ∂t , ϕ , χ D ′ (0,τ ),D(0,τ ) -b(G 0 ζ, v ε + G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) -b( v ε , G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) (16) with the initial condition v ε (0, •) = v ε0 ∈ H. ( 17 
)
As it has been explained in Section 1, a classical technique to solve such problems consists in choosing divergence free test-functions. Indeed if ϕ ∈ V 0div , the term p ε , div(ϕ) , χ D ′ (0,τ ),D(0,τ ) vanishes and we simply get a variational problem for the fluid velocity v ε . Then the existence of p ε ∈ H -1 0, τ ; L 2 0 (Ω) is derived via abstract results of functional analysis (see [START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF][START_REF] Simon | On the existence of the pressure for solutions of the variational Navier-Stokes equations[END_REF][START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems[END_REF] for instance).

With this technique the pressure appears as a by product of the study. In order to get better insights into the links between the velocity and pressure fields, we will follow an idea proposed by J.L. Lions in [START_REF] Lions | Some problems connected with Navier-Stokes equations[END_REF] and recently used in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF], which consists in relaxing the divergence free condition. More precisely, we consider the following penalized problems (P δ ε ), δ > 0, ε > 0:

Problem (P δ ε ) Find v δ ε ∈ L 2 0, τ ; V 0 ∩ L ∞ 0, τ ; L 2 (Ω) , ∂ v δ ε ∂t ∈ L 4 3 0, τ ; (V 0 ) ′
such that, for all ϕ ∈ V 0 and for all χ ∈ D(0, τ ), we have

d dt v δ ε , ϕ , χ D ′ (0,τ ),D(0,τ ) + b( v δ ε , v δ ε , ϕ), χ D ′ (0,τ ),D(0,τ ) + 1 2 Ω v δ ε div( v δ ε )ϕ dx, χ D ′ (0,τ ),D(0,τ ) + 1 δ div( v δ ε ), div(ϕ) , χ D ′ (0,τ ),D(0,τ ) + a(T ; v δ ε , ϕχ) + Ψ ′ ε ( v δ ε ), ϕχ = (f, ϕ), χ D ′ (0,τ ),D(0,τ ) -a(T ; G 0 ζ, ϕχ) - G 0 ∂ζ ∂t , ϕ , χ D ′ (0,τ ),D(0,τ ) -b(G 0 ζ, v δ ε + G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) -b( v δ ε , G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) (18) with the initial condition v δ ε (0, •) = v δ ε0 ∈ L 2 (Ω) (19) 
and we assume that the sequence of initial data ( v δ ε0 ) δ>0 satisfies

v δ ε0 -→ δ→0 v ε0 strongly in L 2 (Ω). (20) 
Let us emphasize that the last term of the first line of ( 18) is added for technical reasons (see (28)) while the first term of the second line is the penalty term:

-1 δ div( v δ ε ) will play the role of an approximate pressure (see Section 5). Furthermore, the approximate initial velocities ( v δ ε0 ) ε>0,δ>0 and ( v ε0 ) ε>0 are not assumed to be more regular that v 0 .

4 Existence result for the penalized problems (P δ ε )

We prove the existence of solutions for the system ( 18)-( 19), for any ε > 0 and δ > 0, by using the Galerkin method. Since V 0 is a closed subspace of H 1 (Ω), it admits an Hilbertian basis (w i ) i≥1 , which is orthogonal for the inner product of H 1 (Ω) and orthonormal for the inner product of L 2 (Ω). Then, for all m ≥ 1, we look for a function v δ εm given by

v δ εm (t, x) = m j=1 g δ εj (t)w j (x), ∀t ∈ (0, τ ), ∀x ∈ Ω, (21) 
such that, for all k ∈ {1, . . . , m}, we have

∂ v δ εm ∂t , w k + b( v δ εm , v δ εm , w k ) + 1 2 Ω v δ εm div( v δ εm )w k dx + 1 δ div( v δ εm ), div(w k ) + Ω 2µ(T )D( v δ εm ) : D(w k ) dx + Γ 0 ℓ v δ εm • w k ε 2 + | v δ εm | 2 dx ′ = (f, w k ) - Ω 2µ(T )D(G 0 ζ) : D(w k ) dx -G 0 ∂ζ ∂t , w k -b(G 0 ζ, v δ εm + G 0 ζ, w k ) -b( v δ εm , G 0 ζ, w k ) a.e. in (0, τ ) (22) with the initial condition v δ εm (0, •) = v δ εm0 (23)
where v δ εm0 is defined as the orthogonal projection of v δ ε0 in L 2 (Ω) on Span w 1 . . . w m . For all i, j, k ∈ {1, . . . , m} we denote

F k = (f, w k ) - Ω 2µ(T )D(G 0 ζ) : D(w k ) dx -G 0 ∂ζ ∂t , w k -b(G 0 ζ, G 0 ζ, w k ) ∈ L 2 (0, τ ) and A j,k (T ) = Ω 2µ(T )D(w j ) : D(w k ) dx ∈ L ∞ (0, τ ), B i,j,k = b(w i , w j , w k ) ∈ R.
By replacing v δ εm by its expression [START_REF] Simon | On the existence of the pressure for solutions of the variational Navier-Stokes equations[END_REF] in equation ( 22) and using the orthonormality of (w i ) i≥1 in L 2 (Ω), we obtain

(g δ εk ) ′ + m i,j=1 g δ εj g δ εi B i,j,k + 1 2 m i,j=1 g δ εi g δ εj Ω w i div(w j )w k dx + 1 δ m j=1 g δ εj div(w j ), div(w k ) + m j=1 g δ εj A j,k (T ) + Γ 0 ℓ m j=1 g δ εj w j • w k ε 2 + m j=1 g δ εj w j 2 dx ′ = F k - m j=1 g δ εj b(G 0 ζ, w j , w k ) - m j=1 g δ εj b(w j , G 0 ζ, w k ) ∀k ∈ {1, . . . , m}. (24) 
We can rewrite this differential system as

(g δ ε ) ′ = G(t, g δ ε ), g δ ε = g δ εj 1≤j≤m
where G satisfies the assumptions of the Caratheodory theorem (see [START_REF] Coddington | Theory of ordinary differential equations[END_REF]). Moreover, the function G is locally Lipschitz continuous with respect its the second argument. It follows that, for any given initial data, the differential system (24) admits an unique maximal solution g δ εj in H 1 (0, τ m ), 1 ≤ j ≤ m, with 0 < τ m ≤ τ , which implies the existence of a maximal solution v δ εm ∈ H 1 (0, τ m ; V 0 ) to ( 22)- [START_REF] Zhang | An augmented Lagrangian approach to simulating yield stress fluid flows around a spherical gas bubble[END_REF]. In the following lemma, some a priori estimates independent of m, δ and ε will be established, which allow us to extend this solution to the whole interval [0, τ ]. Lemma 4.1. Assume that (8), ( 9) and [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems[END_REF] hold and that ( v δ ε0 ) ε>0,δ>0 is a bounded sequence of L 2 (Ω). The problem ( 22)-( 23) admits a unique solution v δ εm ∈ H 1 0, τ ; V 0 which satisfies the following estimates

v δ εm L ∞ (0,τ ;L 2 (Ω)) ≤ C (25) v δ εm L 2 (0,τ ;H 1 (Ω)) ≤ C (26) div( v δ εm ) L 2 (0,τ ;L 2 (Ω)) ≤ C √ δ ( 27 
)
where C is a constant independent of m, δ and ε.

Proof. By multiplying equation ( 22) by g δ εk (t) and adding from k = 1 to m, we obtain

∂ v δ εm ∂t , v δ εm + b( v δ εm , v δ εm , v δ εm ) + 1 2 Ω v δ εm div( v δ εm ) v δ εm dx + 1 δ div( v δ εm ), div( v δ εm ) + Ω 2µ(T )D( v δ εm ) : D( v δ εm ) dx + Γ 0 ℓ | v δ εm | 2 ε 2 + | v δ εm | 2 dx ′ = (f, v δ εm ) - Ω 2µ(T )D(G 0 ζ) : D( v δ εm ) dx -G 0 ∂ζ ∂t , v δ εm -b(G 0 ζ, v δ εm + G 0 ζ, v δ εm ) -b( v δ εm , G 0 ζ, v δ εm ) a.e. in (0, τ m ).
With [START_REF] Girault | Finite element approximation of the Navier-Stokes equations[END_REF] we get

b( v δ εm , v δ εm , v δ εm ) + 1 2 Ω v δ εm div( v δ εm ) v δ εm dx = 0 ( 28 
)
and since div(G 0 ) = 0 in Ω, we have also b(G 0 , v δ εm , v δ εm ) = 0. Furthermore since ℓ ∈ L 2 (0, τ ; L 2 + (Γ 0 )), we obtain

∂ v δ εm ∂t , v δ εm + 1 δ div( v δ εm ), div( v δ εm ) + Ω 2µ(T )D( v δ εm ) : D( v δ εm ) dx ≤ (f, v δ εm ) - Ω 2µ(T )D(G 0 ζ) : D( v δ εm ) dx -G 0 ∂ζ ∂t , v δ εm -b(G 0 ζ, G 0 ζ, v δ εm ) -b( v δ εm , G 0 ζ, v δ εm )
a.e. in (0, τ m ). Let us estimate now the terms in the right-hand side of the previous inequality. We denote hereinafter by K the constant of the continuous injection of H 1 (Ω) into L 4 (Ω). By using Cauchy-Schwarz's and Young's inequalities, we obtain

(f, v δ εm ) ≤ f L 2 (Ω) v δ εm L 2 (Ω) ≤ 1 2 f 2 L 2 (Ω) + 1 2 v δ εm 2 L 2 (Ω) , Ω 2µ(T )D(G 0 ζ) : D( v δ εm ) dx ≤ µ * |ζ| v δ εm H 1 (Ω) G 0 H 1 (Ω) ≤ α 4 v δ εm 2 H 1 (Ω) + µ 2 * α |ζ| 2 G 0 2 H 1 (Ω) , G 0 ∂ζ ∂t , v δ εm ≤ ∂ζ ∂t G 0 L 2 (Ω) v δ εm L 2 (Ω) ≤ 1 2 ∂ζ ∂t 2 G 0 2 L 2 (Ω) + 1 2 v δ εm 2 L 2 (Ω) , b(G 0 ζ, G 0 ζ, v δ εm ) ≤ |ζ| 2 G 0 L 4 (Ω) ∇G 0 L 4 (Ω) v δ εm L 2 (Ω) ≤ 1 2 v δ εm 2 L 2 (Ω) + K 4 2 |ζ| 4 G 0 2 H 1 (Ω) ∇G 0 2 H 1 (Ω) , and 
b( v δ εm , G 0 ζ, v δ εm ) ≤ |ζ| v δ εm L 4 (Ω) ∇G 0 L 4 (Ω) v δ εm L 2 (Ω) ≤ α 4 v δ εm 2 H 1 (Ω) + K 4 α |ζ| 2 ∇G 0 2 H 1 (Ω) v δ εm 2 L 2 (Ω) .
With [START_REF] Hervet | Flow with slip at the wall: from simple to complex fluids[END_REF] and an integration from 0 to s, with 0 < s < τ m , we get

1 2 v δ εm (s) 2 L 2 (Ω) + 1 δ s 0 div( v δ εm ) 2 L 2 (Ω) dt + α 2 s 0 v δ εm 2 H 1 (Ω) dt ≤ 1 2 v δ εm (0) 2 L 2 (Ω) + 1 2 s 0 f 2 L 2 (Ω) dt + µ 2 * α G 0 2 H 1 (Ω) s 0 |ζ| 2 dt + 1 2 G 0 2 L 2 (Ω) s 0 ∂ζ ∂t 2 dt + 3 2 0 v δ εm 2 L 2 (Ω) dt + K 4 α ∇G 0 2 H 1 (Ω) s 0 |ζ| 2 v δ εm 2 L 2 (Ω) dt + K 4 2 G 0 2 H 1 (Ω) ∇G 0 2 H 1 (Ω) s 0 |ζ| 4 dt.
Reminding that v δ εm0 is defined as the orthogonal projection of v δ ε0 in L 2 (Ω) on Span w 1 . . . w m and that the sequence ( v δ ε0 ) ε>0,δ>0 is bounded in L 2 (Ω), we infer that there exists a constant C 0 , independent of δ and ε such that

v δ εm (0) L 2 (Ω) = v δ εm0 L 2 (Ω) ≤ v δ ε0 L 2 (Ω) ≤ C 0 ∀m ≥ 1, ∀δ > 0, ∀ε > 0.
It follows that

1 2 v δ εm (s) 2 L 2 (Ω) + 1 δ s 0 div( v δ εm ) 2 L 2 (Ω) dt + α 2 s 0 v δ εm 2 H 1 (Ω) dt ≤ C 1 +C 2 s 0 v δ εm 2 L 2 (Ω) dt, (29) 
where C 1 and C 2 are two constants independent of m, δ and ε, namely

C 1 = 1 2 C 2 0 + 1 2 τ 0 f 2 L 2 (Ω) dt + µ 2 * α G 0 2 H 1 (Ω) τ 0 |ζ| 2 dt + 1 2 G 0 2 L 2 (Ω) τ 0 ∂ζ ∂t 2 dt + K 4 2 G 0 2 H 1 (Ω) ∇G 0 2 H 1 (Ω) τ 0 |ζ| 4 dt
and

C 2 = 3 2 + K 4 α ∇G 0 2 H 1 (Ω) ζ 2 L ∞ (0,τ ) .
With Grönwall's lemma, we obtain

v δ εm (s) 2 L 2 (Ω) ≤ 2C 1 exp (2sC 2 ) ≤ 2C 1 exp (2τ C 2 ) ∀s ∈ [0, τ m ). (30) 
With ( 21) and ( 24) we infer that the functions g δ εj , 1 ≤ j ≤ m, admit a limit at τ m and, by definition of the maximal solution, we may conclude that τ m = τ . Now, (25) follows from (30). By inserting (30) in (29) with s = τ , we obtain (26) and (27).

In the following lemma, we establish an estimate of the time derivative for the approximate velocity. Lemma 4.2. Under the same assumptions as in Lemma 4.1, we have

∂ v δ εm ∂t L 4 3 (0,τ ;V ′ 0 ) ≤ C δ (31)
where C δ is a constant independent of m and ε.

Proof. Let ϕ ∈ V 0 . For all m ≥ 1, we define ϕ m as the othogonal projection with respect to the inner product of H 1 (Ω) of ϕ on Span w 1 , . . . , w m . With [START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF] we get

∂ v δ εm ∂t , ϕ m = -b( v δ εm , v δ εm , ϕ m ) - 1 2 Ω v δ εm div( v δ εm )ϕ m dx - 1 δ div( v δ εm ), div(ϕ m ) - Ω 2µ(T )D( v δ εm ) : D(ϕ m ) dx - Γ 0 ℓ v δ εm • ϕ m ε 2 + | v δ εm | 2 dx ′ + (f, ϕ m ) - Ω 2µ(T )D(G 0 ζ) : D(ϕ m ) dx -G 0 ∂ζ ∂t , ϕ m -b(G 0 ζ, v δ εm + G 0 ζ, ϕ m ) -b( v δ εm , G 0 ζ, ϕ m ) a.e. in (0, τ ).
We estimate all the terms in the right hand side of the previous equality, we obtain

∂ v δ εm ∂t , ϕ m ≤ v δ εm L 3 (Ω) ∇ v δ εm L 2 (Ω) + 1 2 v δ εm L 3 (Ω) div( v δ εm ) L 2 (Ω) ϕ m L 6 (Ω) + 1 δ div( v δ εm ) L 2 (Ω) div(ϕ m ) L 2 (Ω) + µ * v δ εm H 1 (Ω) ϕ m H 1 (Ω) + ℓ L 2 (Γ 0 ) ϕ m L 2 (Γ 0 ) + f L 2 (Ω) ϕ m L 2 (Ω) + µ * |ζ| G 0 H 1 (Ω) ϕ m H 1 (Ω) + ∂ζ ∂t G 0 L 2 (Ω) ϕ m L 2 (Ω) + |ζ| G 0 L 4 (Ω) ∇ v δ εm + ∇G 0 L 2 (Ω) ϕ m L 4 (Ω) +|ζ| v δ εm L 4 (Ω) ∇G 0 L 2 (Ω) ϕ m L 4 (Ω)
a.e. in (0, τ ).

By using the classical inequality

u L 3 (Ω) ≤ u 1 2 L 2 (Ω) u 1 2 L 6 (Ω) ∀u ∈ L 6 (Ω) ∩ L 2 (Ω)
and the injection of H 1 (Ω) in L 6 (Ω), we infer that there exists a constant c, independent of m, δ and ε, such that

v δ εm L 3 (Ω) ∇ v δ εm L 2 (Ω) ϕ m L 6 (Ω) ≤ c v δ εm 1 2 L 2 (Ω) v δ εm 3 2 H 1 (Ω) ϕ m H 1 (Ω) .
As (w j ) j≥1 is an orthogonal family of L 2 (Ω) and ϕ m is the orthogonal projection with respect to the inner product of H 1 (Ω) of ϕ on Span w 1 , . . . , w m , we have

ϕ m H 1 (Ω) ≤ ϕ H 1 (Ω) and v δ εm ∂t , ϕ m = ∂ v δ εm ∂t , ϕ k ∀k ≥ m.
Since (w j ) j≥1 is an Hilbertian basis of V 0 , the sequence (ϕ k ) k≥1 converges strongly to ϕ in H 1 (Ω) and we get

v δ εm ∂t , ϕ m = ∂ v δ εm ∂t , ϕ .
Then, we obtain

∂ v δ εm ∂t , ϕ ≤ √ 3 2 + 1 c v δ εm 1 2 L 2 (Ω) v δ εm 3 2 H 1 (Ω) ϕ H 1 (Ω) + √ 3 δ div( v δ εm ) L 2 (Ω) ϕ H 1 (Ω) + µ * v δ εm H 1 (Ω) ϕ H 1 (Ω) + c ℓ L 2 (Γ 0 ) ϕ H 1 (Ω) + f L 2 (Ω) + µ * |ζ| G 0 H 1 (Ω) + ∂ζ ∂t G 0 L 2 (Ω) ϕ H 1 (Ω) + K 2 |ζ| G 0 H 1 (Ω) v δ εm + G 0 ζ H 1 (Ω) + K 2 |ζ| v δ εm H 1 (Ω) G 0 H 1 (Ω) ϕ H 1 (Ω) a.e. in (0, τ ),
where c is the norm of the trace operator γ 0 :

H 1 (Ω) → L 2 (Γ 0 ). Hence ∂ v δ εm ∂t V ′ 0 ≤ √ 3 2 + 1 c v δ εm 1 2 L 2 (Ω) v δ εm 3 2 H 1 (Ω) + √ 3 δ div( v δ εm ) L 2 (Ω) + µ * v δ εm H 1 (Ω) +c ℓ L 2 (Γ 0 ) + f L 2 (Ω) + µ * |ζ| G 0 H 1 (Ω) + ∂ζ ∂t G 0 L 2 (Ω) +K 2 |ζ| G 0 H 1 (Ω) v δ εm + G 0 ζ H 1 (Ω) + K 2 |ζ| v δ εm H 1 (Ω) G 0 H 1 (Ω) a.e. in (0, τ ).
Observing that

τ 0 v δ εm 1 2 L 2 (Ω) v δ εm 3 2 H 1 (Ω) 4 3 dt = τ 0 v δ εm 2 3 L 2 (Ω) v δ εm 2 H 1 (Ω) dt ≤ v δ εm 2 3 L ∞ (0,τ ;L 2 (Ω)) v δ εm 2 L 2 (0,τ ;H 1 (Ω)) ,
we infer from the estimates of Lemma 4.1 that there exists a constant C δ > 0, independent of m and ε, such that

τ 0 ∂ v δ εm ∂t 4 3 V ′ 0 dt ≤ C δ
which concludes the proof.

In order to pass to the limit as m tends to +∞, we will use also the following Lemma.

Lemma 4.3. Let ε > 0 and ℓ ∈ L 2 0, τ ; L 2 + (Γ 0 ) ∩ L ∞ 0, τ ; L ∞ + (Γ 0 ) . Then the mapping Ψ ′ ε is Lipschitz continuous from L 2 0, τ ; L 2 (Γ 0 ) to L 2 0, τ ; L 2 (Γ 0 ) . Proof. Let us recall that, for all u ∈ L 2 0, τ ; L 2 (Γ 0 ) , Ψ ′ ε (u) ∈ L 2 0, τ ; L 2 (Γ 0 ) ′ = L 2 0, τ ; L 2 (Γ 0 ) is defined by Ψ ′ ε (u), w = τ 0 Γ 0 ℓ u • w ε 2 + |u| 2 dx ′ dt ∀w ∈ L 2 0, τ ; L 2 (Γ 0 )
where •, • denotes the inner product in L 2 0, τ ; L 2 (Γ 0 ) , i.e.

Ψ ′ ε (u) = ℓ u ε 2 + |u| 2 ∀u ∈ L 2 0, τ ; L 2 (Γ 0 ) .
But the mapping

h ε :    R d → R d u → u ε 2 + |u| 2 is Fréchet differentiable on R d and Jac(h ε )(u) = ∂h εi ∂x j (u) 1≤i,j≤d =   δ i,j ε 2 + |u| 2 - u i u j ε 2 + |u| 2 3 2   1≤i,j≤d
where δ i,j = 1 if i = j and δ i,j = 0 if i = j. It follows that

∂h εi ∂x j (u) ≤ 2 ε ∀i, j ∈ {1, . . . , d}, ∀u ∈ R d and h ε is Lipschitz continuous on R d . Since ℓ ∈ L ∞ 0, τ ; L ∞ + (Γ 0 ) , we infer that Ψ ′ ε is Lipschitz continuous from L 2 0, τ ; L 2 + (Γ 0 ) into L 2 0, τ ; L 2 + (Γ 0 ) .
Now, by using the estimates obtained in Lemma 4.1 and Lemma 4.2 combined with compactness arguments, we can prove the following existence result for the penalized problems (P δ ε ).

Theorem 4.4. Let ε > 0 and δ > 0. Assume that ( 8), ( 9) and ( 10) hold and that ( v δ ε0 ) ε>0,δ>0 is a bounded sequence of L 2 (Ω). Then, there exists a subsequence of

( v δ εm ) m≥1 , still denoted ( v δ εm ) m≥1 , such that v δ εm ⇀ v δ ε weakly star in L ∞ 0, τ ; L 2 (Ω) (32) v δ εm ⇀ v δ ε weakly in L 2 (0, τ ; V 0 ) (33)
and v δ ε is solution of (P δ ε ). Furthermore

∂ v δ ε ∂t belongs to L 4 3 (0, τ ; V ′ 0 ).
Proof. The convergences (32)-(33) follow immediately from the a priori estimates (25)-( 26) obtained in Lemma 4.1. From the estimate (31) obtained in Lemma 4.2, we infer that, possibly extracting another subsequence still denoted denoted ( v δ εm ) m≥1 , we have

∂ v δ εm ∂t ⇀ ∂ v δ ε ∂t weakly in L 4 3 (0, τ ; V ′ 0 ). ( 34 
)
By using Aubin's lemma [START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF] and the convergences (33) and (34), with X 0 = V 0 , X = L 4 (Ω) and

X 1 = V ′ 0 we obtain v δ εm → v δ ε strongly in L 2 (0, τ ; L 4 (Ω)).
We may use again Aubin's lemma with X 0 = V 0 , X = H s (Ω) and X 1 = V ′ 0 with 1 2 < s < 1: the embedding of X 0 into X is compact, so we obtain

v δ εm → v δ ε strongly in L 2 (0, τ ; H s (Ω)).
Then, with trace theorem [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF], we infer that

v δ εm → v δ ε strongly in L 2 (0, τ ; L 2 (Γ 0 ))
where we identify here the functions v δ εm and v δ ε with their trace on Γ 0 . Now, using (32)-(34) and Simon's lemma [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] and possibly extracting another subsequence, still denoted ( v δ εm ) m≥1 , we obtain

v δ εm → v δ ε strongly in C 0 (0, τ ; H), (35) 
for any Banach space H such that L 2 (Ω) ⊂ H ⊂ V ′ 0 with continuous injections and compact embedding of L 2 (Ω) into H.

Let χ ∈ D(0, τ ) and ϕ ∈ V 0 . For all m ≥ 1 we define again ϕ m as the othogonal projection with respect to the inner product of H 1 (Ω) of ϕ on Span w 1 , . . . , w m . With [START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF] we have

τ 0 ∂ v δ εm ∂t , ϕ m + b( v δ εm , v δ εm , ϕ m ) + 1 2 Ω v δ εm div( v δ εm )ϕ m dx χ dt + 1 δ τ 0 div( v δ εm ), div(ϕ m )χ dt + a(T ; v δ εm , ϕ m χ) + Ψ ′ ε ( v δ εm ), ϕ m χ = τ 0 (f, ϕ m )χ dt -a(T ; G 0 ζ, ϕ m χ) - τ 0 G 0 ∂ζ ∂t , ϕ m + b(G 0 ζ, v δ εm + G 0 ζ, ϕ m ) + b( v δ εm , G 0 ζ, ϕ m ) χ dt.
With an integration by parts of the first term we get

τ 0 v δ εm , ϕ m ∂χ ∂t dt + τ 0 b( v δ εm , v δ εm , ϕ m ) + 1 2 Ω v δ εm div( v δ εm )ϕ m dx χ dt + 1 δ τ 0 div( v δ εm ), div(ϕ m )χ dt + a(T ; v δ εm , ϕ m χ) + Ψ ′ ε ( v δ εm ), ϕ m χ = τ 0 (f, ϕ m )χ dt -a(T ; G 0 ζ, ϕ m χ) - τ 0 G 0 ∂ζ ∂t , ϕ m + b(G 0 ζ, v δ εm + G 0 ζ, ϕ m ) + b( v δ εm , G 0 ζ, ϕ m ) χ dt.
Reminding that (ϕ m ) m≥1 converges strongly to ϕ in H 1 (Ω) and using Lemma 4.3, we can pass to the limit in all the terms and we obtain

τ 0 v δ ε , ϕ ∂χ ∂t dt + τ 0 b( v δ ε , v δ ε , ϕ) + 1 2 Ω v δ ε div( v δ ε )ϕ dx + 1 δ div( v δ ε ), div(ϕ) χ dt +a(T ; v δ ε , ϕχ) + Ψ ′ ε ( v δ ε ), ϕχ = τ 0 (f, ϕ)χ dt -a(T ; G 0 ζ, ϕχ) - τ 0 G 0 ∂ζ ∂t , ϕ + b(G 0 ζ, v δ ε + G 0 ζ, ϕ) + b( v δ ε , G 0 ζ, ϕ) χ dt.
which gives [START_REF] Goulart | Global stability analysis of fluid flows using sum-of-squares[END_REF]. It remains to chek that the initial condition ( 19) is satisfied. Indeed, with (35), we have

v δ εm (0) → v δ ε (0) strongly in H with L 2 (Ω) ⊂ H ⊂ V ′
0 and we have also

v δ εm (0) = v δ εm0 → v δ ε0 strongly in L 2 (Ω). Hence v δ ε (0) = v δ ε0 .

Properties of the approximate pressure

For any ε > 0 and δ > 0 we define and approximate pressure p δ ε ∈ L 2 0, τ ; L 2 (Ω) by

p δ ε = - 1 δ div( v δ ε ) (36) 
where v δ ε is the solution of the penalized problem (P δ ε ) obtained in the previous Section. From [START_REF] Goulart | Global stability analysis of fluid flows using sum-of-squares[END_REF] we get

d dt v δ ε , ϕ , χ D ′ (0,τ ),D(0,τ ) + b( v δ ε , v δ ε , ϕ), χ D ′ (0,τ ),D(0,τ ) + 1 2 Ω v δ ε div( v δ ε )ϕ dx, χ D ′ (0,τ ),D(0,τ ) -p δ ε , div(ϕ) , χ D ′ (0,τ ),D(0,τ ) + a(T ; v δ ε , ϕχ) + Ψ ′ ε ( v δ ε ), ϕχ = (f, ϕ), χ D ′ (0,τ ),D(0,τ ) -a(T ; G 0 ζ, ϕχ) - G 0 ∂ζ ∂t , ϕ , χ D ′ (0,τ ),D(0,τ ) -b(G 0 ζ, v δ ε + G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) -b( v δ ε , G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) , ∀ϕ ∈ V 0 , ∀χ ∈ D(0, τ ).
(37) Furthermore, with Green's formula, we obtain

Ω p δ ε dx = - 1 δ ∂Ω v δ ε • n dx = 0 a.e. in (0, τ ) (38) 
and, with (27) and (33), we have

p δ ε L 2 (0,τ ;L 2 (Ω)) ≤ C √ δ
where C is a constant independent of δ and ε. Unfortunately this last estimate does not allow us to pass to the limit in the term p δ ε , div(ϕ) , χ D ′ (0,τ ),D(0,τ ) as δ tends to zero. So we will establish an estimate independent of ε and δ by using the same kind of technique as in [START_REF] Boukrouche | Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary[END_REF]).

Lemma 5.1. Under the same assumptions as in Lemma 4.1, there exists a constant C, independent of δ and ε, such that

p δ ε H -1 (0,τ ;L 2 (Ω)) ≤ C. (39) 
Proof. Let χ ∈ D(0, τ ) and w ∈ L 2 0 (Ω). Then there exists ϕ ∈ H 1 0 (Ω) such that div(ϕ) = w in Ω and ϕ = P (w) where P is a linear continuous operator from L 2 0 (Ω) into H 1 0 (Ω) (see [START_REF] Lions | Some problems connected with Navier-Stokes equations[END_REF]). With an integration by parts of the first term of (37), we get

τ 0 p δ ε , div(ϕ) χ dt = - τ 0 v δ ε , ϕ ∂χ ∂t dt + τ 0 b( v δ ε , v δ ε , ϕ) + 1 2 Ω v δ ε div( v δ ε )ϕ dx χ dt +a(T ; v δ ε , ϕχ) - τ 0 (f, ϕ)χ dt + a(T ; G 0 ζ, ϕχ) + τ 0 G 0 ∂ζ ∂t , ϕ + b(G 0 ζ, v δ ε + G 0 ζ, ϕ) + b( v δ ε , G 0 ζ, ϕ) χ dt
Let us denote ϕχ = η and recall that K is the constant of the continuous injection of H 1 (Ω) into L 4 (Ω). We get

τ 0 b( v δ ε , v δ ε , ϕ) + 1 2 Ω v δ ε div( v δ ε )ϕ dx χ dt ≤ ≤ 1 + √ 3 2 v δ ε L 2 (0,τ ;L 4 (Ω)) v δ ε L 2 (0,τ ;H 1 (Ω)) η L ∞ (0,τ ;L 4 (Ω)) ≤ K 2 1 + √ 3 2 v δ ε 2 L 2 (0,τ ;H 1 (Ω)) η L ∞ (0,τ ;H 1 (Ω)) .
Then we obtain

τ 0 (p δ ε , w)χ dt ≤ v δ ε L 2 (0,τ ;L 2 (Ω)) ∂η ∂t L 2 (0,τ ;L 2 (Ω)) +K 2 1 + √ 3 2 v δ ε 2 L 2 (0,τ ;H 1 (Ω)) η L ∞ (0,τ ;H 1 (Ω)) +µ * √ τ v δ ε L 2 (0,τ ;H 1 (Ω)) η L ∞ (0,τ ;H 1 (Ω)) + √ τ f L 2 (0,τ ;L 2 (Ω)) η L ∞ (0,τ ;L 2 (Ω)) +µ * G 0 H 1 (Ω) ζ L 1 (0,τ ) η L ∞ (0,τ ;H 1 (Ω)) + G 0 L 2 (Ω) ∂ζ ∂t L 1 (0,τ ) η L ∞ (0,τ ;L 2 (Ω)) +K 2 G 0 H 1 (Ω) ζ L 2 (0,τ ) v δ ε + G 0 ζ L 2 (0,τ ;H 1 (Ω)) η L ∞ (0,τ ;H 1 (Ω)) +K 2 G 0 H 1 (Ω) ζ L 2 (0,τ ) v δ ε L 2 (0,τ ;H 1 (Ω)) η L ∞ (0,τ ;H 1 (Ω)) .
By using the continuity of the operator P and the continuous injection of H 1 (0, τ ) into L ∞ (0, τ ), we have

η L ∞ (0,τ ;H 1 (Ω)) = χ L ∞ (0,τ ) P (w) H 1 (Ω) ≤ C χ H 1 (0,τ ) w L 2 (Ω) ≤ C η H 1 (0,τ ;L 2 (Ω)) ,
where C is a constant independent of δ and ε. With the estimates (25) and (26), we infer that v δ ε is bounded in L 2 (0, τ ; H 1 (Ω)) ∩ L ∞ (0, τ ; L 2 (Ω)) independently of δ and ε, and we obtain

τ 0 (p δ ε , w)χ dt ≤ C wχ H 1 (0,τ ;L 2 (Ω)) ∀w ∈ L 2 0 (Ω), ∀χ ∈ D(0, τ ) (40) 
where we denote again by C a constant independent of δ and ε.

Let now w ∈ L 2 (Ω). We can apply (40) with

w = w - 1 mesΩ Ω w dx.
Indeed, w ∈ L 2 0 (Ω). Furthermore, with (38), we have

τ 0 p δ ε , w - 1 mesΩ Ω w dx χ dt = = τ 0 (p δ ε , w)χ dt - 1 mesΩ τ 0 Ω p δ ε dx Ω w dx χ dt = τ 0 (p δ ε , w)χ dt .
Observing that w L 2 (Ω) ≤ w L 2 (Ω) , we obtain

τ 0 (p δ ε , w)χ dt = τ 0 (p δ ε , w)χ dt ≤ C wχ H 1 (0,τ ;L 2 (Ω)) , ∀ w ∈ L 2 (Ω), ∀χ ∈ D(0, τ ).( 41 
)
Then the density of D(0, τ )⊗L 2 (Ω) into H 1 0 (0, τ ; L 2 (Ω)) allows us to conclude.

6 Existence results for the problems (P ε ) and (P )

Now we can pass to the limit in the penalized problems (P δ ε ) when δ tends to zero.

Theorem 6.1. Let ε > 0 and assume that ( v δ ε0 ) ε>0,δ>0 is a bounded sequence of L 2 (Ω). Assume moreover that (8), ( 9), ( 10) and (20) hold. Then, there exists a subsequence of (

v δ ε , p δ ε ) δ>0 , still denoted ( v δ ε , p δ ε ) δ>0 , such that v δ ε ⇀ v ε weakly star in L ∞ 0, τ ; L 2 (Ω) (42) v δ ε ⇀ v ε weakly in L 2 (0, τ ; V 0 ) (43) p δ ε ⇀ p ε weakly in H -1 0, τ ; L 2 0 (Ω) (44) and ( v ε , p ε ) is solution of (P ε ). Furthermore ∂ v ε ∂t belongs to L 4 3 0, τ ; (V 0div ) ′ .
Proof. Observing that the estimates obtained in Lemma 4.1 are independent of m, δ and ε, we infer that the sequence ( v δ ε , p δ ε ) δ>0 is bounded in L 2 (0, τ ; V 0 ) ∩ L ∞ 0, τ ; L 2 (Ω) . Moreover, with Proposition 5.1, the sequence (p δ ε ) δ>0 is bounded in H -1 0, τ ; L 2 (Ω) and the convergences (43)-( 42)-(44) follow immediately.

From (27) we infer that

div( v δ ε ) L 2 (0,τ ;L 2 (Ω)) ≤ C √ δ
with a constant C independent of δ and ε. Thus

div( v δ ε ) → 0 strongly in L 2 0, τ ; L 2 (Ω) .
Finally we can obtain an estimate of

∂ v δ ε ∂t in L 4 3 0, τ ; (V 0div )
′ by using the same kind of computations as in Lemma 4.2. Indeed, let ϕ ∈ V 0div and χ ∈ D(0, τ ). With (37) we get

d dt v δ ε , ϕ , χ D ′ (0,τ ),D(0,τ ) = τ 0 Ω ∂ v δ ε ∂t ϕχ dxdt = -b( v δ ε , v δ ε , ϕ), χ D ′ (0,τ ),D(0,τ ) - 1 2 Ω v δ ε div( v δ ε )ϕ dx, χ D ′ (0,τ ),D(0,τ ) -a(T ; v δ ε , ϕχ) -Ψ ′ ε ( v δ ε ), ϕχ + (f, ϕ), χ D ′ (0,τ ),D(0,τ ) -a(T ; G 0 ζ, ϕχ) - G 0 ∂ζ ∂t , ϕ , χ D ′ (0,τ ),D(0,τ ) -b(G 0 ζ, v δ ε + G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) -b( v δ ε , G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) .
We can estimate all the terms in the right hand side of the previous equality and we obtain

τ 0 Ω ∂ v δ ε ∂t ϕχ dxdt ≤ √ 3 2 + 1 c τ 0 v δ ε 1 2 L 2 (Ω) v δ ε 3 2 H 1 (Ω) ϕ H 1 (Ω) |χ| dt +µ * τ 0 v δ ε H 1 (Ω) ϕ H 1 (Ω) |χ| dt+c τ 0 ℓ L 2 (Γ 0 ) ϕ H 1 (Ω) |χ| dt + τ 0 f L 2 (Ω) + µ * |ζ| G 0 H 1 (Ω) + ∂ζ ∂t G 0 L 2 (Ω) ϕ H 1 (Ω) |χ| dt + τ 0 K 2 |ζ| G 0 H 1 (Ω) v δ ε + G 0 ζ H 1 (Ω) + K 2 |ζ| v δ ε H 1 (Ω) G 0 H 1 (Ω) ϕ H 1 (Ω) |χ| dt.
Observing that

τ 0 v δ ε 1 2 L 2 (Ω) v δ ε 3 2 H 1 (Ω) ϕ H 1 (Ω) |χ| dt ≤ ≤ v δ ε 1 2 L ∞ (0,τ ;L 2 (Ω)) τ 0 v δ ε 2 H 1 (Ω) dt 3 4 ϕ H 1 (Ω) χ L 4 (0,τ ) ≤ v δ ε 1 2 L ∞ (0,τ ;L 2 (Ω)) v δ ε 3 2 L 2 (0,τ ;H 1 (Ω)) ϕχ L 4 (0,τ ;H 1 (Ω))
and reminding that ( v δ ε ) δ>0 is bounded in L 2 0, τ ; H 1 (Ω) ∩ L ∞ 0, τ ; L 2 (Ω) independently of δ and ε, we infer that

∂ v δ ε ∂t L 4 3 (0,τ ;(V 0div ) ′ ) ≤ C (45) 
with a constant C independent of δ and ε.

It follows that, possibly extracting another subsequence still denoted ( v δ ε ) δ>0 , we have

∂ v δ ε ∂t ⇀ ∂ v ε ∂t weakly in L 4 3 0, τ ; (V 0div ) ′ . ( 46 
)
By using Aubin's lemma, with X 0 = V 0 , X = L 4 (Ω) and X 1 = (V 0div ) ′ , we obtain

v δ ε → v ε strongly in L 2 0, τ ; L 4 (Ω)
and, with

X 0 = V 0 , X = H s (Ω), 1 2 < s < 1, and X 1 = (V 0div ) ′ , v δ ε → v ε strongly in L 2 0, τ ; H s (Ω) . Hence v δ ε → v ε strongly in L 2 0, τ ; L 2 (Γ 0 ) .
Finally, using (42)-( 46) and Simon's lemma, and possibly extracting another subsequence still denoted ( v δ ε ) δ>0 , we obtain

v δ ε → v ε strongly in C 0 (0, τ ; H)
for any Banach space H such that L 2 (Ω) ⊂ H ⊂ (V 0div ) ′ with continuous injections and compact embedding of L 2 (Ω) into H. With all these convergences and with the assumption [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF], we can pass to the limit in [START_REF] Goulart | Global stability analysis of fluid flows using sum-of-squares[END_REF] and ( 19) by the same techniques as in Theorem 4.4 and we get ( 16) and [START_REF] Biryuk | Bounds on Kolmogorov spectra for Navier-Stokes equations[END_REF]. Now, observing that Ψ ε is convex, we obtain that 

Ψ ε ( v ε + ϕχ) -Ψ ε ( v ε ) ≥ Ψ ′ ε ( v ε ),
) for all ϕ ∈ V 0 and for all χ ∈ D(0, τ ), with the initial condition

v ε (0, •) = v ε0 . (48) 
In order to pass to the limit as ε tends to zero in the previous inequality, we use the following lemma. Lemma 6.2. Let (w ε ) ε>0 be a sequence of L 2 0, τ ; L 2 (Γ 0 ) and w ∈ L 2 0, τ ; L 2 (Γ 0 ) such that (w ε ) ε>0 converges strongly to w in L 2 0, τ ; L 2 (Γ 0 ) . Then lim Now we can prove that problem (P ) admits a solution.

Theorem 6.3. Assume that ( v δ ε0 ) ε>0,δ>0 is a bounded sequence of L 2 (Ω). Assume moreover that (8), ( 9), ( 10) and ( 15) hold. Then, there exists a subsequence of ( v ε , p ε ) ε>0 , still denoted ( v ε , p ε ) ε>0 such that

v ε ⇀ v weakly star in L ∞ 0, τ ; L 2 (Ω) (49) 
v ε ⇀ v weakly in L 2 (0, τ ; V 0 ) (50) p ε ⇀ p weakly in H -1 0, τ ; L 2 0 (Ω) (51)

and ( v, p) is solution of (P ). Furthermore ∂ v ∂t belongs to L 4 3 0, τ ; (V 0div ) ′ .

Proof. Recalling that the estimates (25)-( 26) are independent of m, δ and ε, we deduce that ( v ε ) ε>0 is bounded in L 2 0, τ ; H 1 (Ω) ∩ L ∞ 0, τ ; L 2 (Ω) . Moreover, since the estimate (39) is independent of δ and ε, the sequence (p ε ) ε>0 is bounded in H -1 0, τ ; L 2 (Ω) and we may infer the convergences (49)-( 50)-(51). Furthermore the estimate (45) implies that that ∂ v ε ∂t ε>0 is bounded in L With all these convergences and the assumption [START_REF] Lions | Some problems connected with Navier-Stokes equations[END_REF], we can pass to the limit in (47) and (48) by the same techniques as in Theorem 4.4 and Theorem 6.1 and we get ( 13) and ( 14).

D

  ϕχ ∀ϕ ∈ V 0 , ∀χ ∈ D(0, τ ) and in[START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF] we getd dt ( v ε , ϕ) , χ D ′ (0,τ ),D(0,τ ) + b( v ε , v ε , ϕ), χ D ′ (0,τ ),D(0,τ )p ε , div(ϕ) , χ D ′ (0,τ ),D(0,τ ) +a(T ; v ε , ϕχ) + Ψ ε ( v ε + ϕχ) -Ψ ε ( v ε ) ≥ (f, ϕ), χ D ′ (0,τ ),D(0,τ )a(T ; G 0 ζ, ϕχ) ′ (0,τ ),D(0,τ ) b(G 0 ζ, v ε + G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ ) b( v ε , G 0 ζ, ϕ), χ D ′ (0,τ ),D(0,τ )

ε→0Ψℓℓ ε 2 +ℓ

 2 ε (w ε ) = Ψ(w).Proof. Let ε > 0. By definition of Ψ ε and Ψ, we haveΨ ε (w ε ) -Ψ(w) = |w ε | -|w| dx ′ dt + |w ε | 2 -|w ε | dx ′ dt. It follows that Ψ ε (w ε ) -Ψ(w) ≤ |w ε | -|w| dx ′ dt + τ 0 Γ 0 ℓε dx ′ dt ≤ ℓ L 2 (0,τ ;L 2 (Γ 0 )) w εw L 2 (0,τ ;L 2 (Γ 0 )) + ε τ meas(Γ 0 )which allows us to conclude.

4 3 0

 3 , τ ; (V 0div ) ′ . Hence, possibly extracting another subsequence still denoted ( v ε ) ε>0 , we have τ ; (V 0div ) ′ and with the same arguments as in the previous Theorem, we getv ε → v strongly in L 2 0, τ ; L 4 (Ω) , v ε → v strongly in L 2 0, τ ; L 2 (Γ 0 ) , and v δ ε → v ε strongly in C 0 (0, τ ; H),for any Banach space H such that L 2 (Ω) ⊂ H ⊂ (V 0div ) ′ with continuous injections and compact embedding of L 2 (Ω) into H.