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Abstract

The need for globally optimizing expensive-to-evaluate functions frequently
occurs in many real-world applications. Among the methods developed for
solving such problems, Efficient Global Optimization (EGO) is regarded
as one of the state-of-the-art unconstrained continuous optimization algo-
rithms. The most important control on the efficiency of EGO is the Gaussian
process covariance function which must be chosen together with the objec-
tive function. Traditionally, a parameterized family of covariance functions
is considered whose parameters are learned by maximum likelihood or cross-
validation. In this report, we theoretically and empirically analyze the effect
of length-scale covariance parameters and nugget on the design of experi-
ments generated by EGO and the associated optimization performance.
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1 Introduction

We wish to find the global minimum of a function f , minx∈S f(x), where the
search space S = [LB,UB]d is a compact subset of Rd. We assume that f is
an expensive-to-compute black-box function. In this situation, optimization
can only be attempted at a low number of function evaluations. The Efficient
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Global Optimization (EGO) algorithm [5, 6, 3] has become a standard for
optimizing such expensive unconstrained continuous problems. Its efficiency
stems from an embedded conditional Gaussian Process (GP, also known as
kriging) which acts as a surrogate for the objective function.

The way the kriging model is learned from data points is essential to the
EGO performance. A kriging model is mainly described by the associated
kernel and this kernel determines the set of possible functions processed by
the algorithm to make optimization decisions. Several methods alternative
to cross-validation or Maximum Likelihood (ML) have been proposed to
tune the kernel parameters. For example, a fully Bayesian approach is used
in [2]. In [5], the process of estimating parameters and searching for the
optimum are combined together through a likelihood which encompasses a
targeted objective. In [10], the bounds on the parameter values are changing
with the iterations following an a priori schedule. Nevertheless, we feel that
the existing methods for learning kernel parameters are complex so that the
basic phenomena taking place in the optimization when tuning the kernel
cannot be clearly observed. This study allows to more deeply understand
the influence of kriging parameters on the efficiency of EGO by studying the
convergence of EGO with fixed parameters on a unimodal and a multimodal
function. The effect of nugget is also investigated.

2 Kriging model summary

Let X = {x1, . . . ,xn} be a set of n design points and y = {f(x1), . . . , f(xn)}
the associated function values at X. Suppose the observations are a real-
ization of a GP, Y (x). The kriging model is the GP conditional on the
observations, Y (x) | Y (x1) = y1, . . . , Y (xn) = yn, also written in a more
compact notation, Y (x) | Y (X) = y. The GP’s prediction (kriging mean)
and variance of prediction (kriging variance) at a point x are

m(x) = µ+ r(x)>R−1(y− 1µ), (1)

s2(x) = σ2
(

1− r(x)>R−1r(x)
)
. (2)

Here, µ and σ2 are the process mean and variance, 1 is a n×1 vector of ones,
r(x) is the vector of correlations between point x and the n sample points,
r(x) = [Cor(Y (x), Y (x1)), . . . ,Cor(Y (x), Y (xn))], and R is an n×n correla-
tion matrix between sample points of general term Rij = Cor(Y (xi), Y (xj)).
The covariance function (i.e., the kernel) used here is the isotropic Mateŕn
5/2 function defined as [8]

k(x,x′) = σ2Cor(Y (x), Y (x′)) = σ2
(

1 +
√
5‖x−x′‖
θ + 5‖x−x′‖2

3θ2

)
exp

(
−
√
5‖x−x′‖
θ

)
, (3)

in which the parameter θ > 0 is called characteristic length-scale and con-
trols the correlation strength between pairs of response values. More gener-
ally, all stationary isotropic covariance functions have such a characteristic
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length-scale. Anisotropic covariance functions have d such length-scales, one
per dimension, as can be seen below with the usual tensor product kernel,

k(x,x′;θ) = σ2
d∏
i=1

ki
(
xi, x

′
i; θi
)

(4)

In order to simplify the analysis, we will focus in the following on the
isotropic case, θ1 = · · · = θd = θ. The smaller θ, the least two response
values at given points are correlated, and vice versa, see Fig. 1.
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Figure 1: Kriging mean (thick solid line) along with the 95% confidence
intervals (thick dashed lines), i.e., m(x)±1.96s(x), for θ = 0.1 (left) and θ =
1 (right). The thin lines are the sample paths of the GP. As θ changes, the
class of possible functions considered for the optimization decision changes.
Therefore, θ is a central decision for the optimization that deserves an in-
depth study.

When a nugget, τ2, is added to the model, the covariance function be-
comes

kτ2(x,x′) = k(x,x′) + τ2δ(x,x′), (5)

where δ(., .) is the Kronecker’s delta. Adding nugget to the model means that
the observations are perturbed by an additive Gaussian noise N (0, τ2). The
resulting kriging predictions, m(x), are smoother as they no longer inter-
polate the observations1. Nugget also increases kriging variance throughout
the search domain since, beside the changes in the covariance matrix R, the
term σ2 becomes σ2 + τ2 in Equation (2).

1Strictly speaking, if the covariance function of Eq. (5) is directly input into the kriging
model, the trajectories are discontinuous and interpolating the observations. Therefore,
often, nugget is only put on the covariance matrix and not on the covariance vector, which
means that the observations are noisy but the prediction is not.
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Classically here, the process mean and variance are estimated by the
following ML closed-form expressions [8],

µ̂ =
1>R−1y

1>R−11
, σ̂2 =

(y− 1µ̂)>R−1(y− 1µ̂)

n
, (6)

so that the only kernel parameters left are θ and τ2.
At any point x in S, the improvement is defined as the random variable

I(x) = max(0, fmin − Y (x) | Y (X) = y) where fmin is the best objective
function value observed so far. The improvement is the random excursion
of the process at any point below the best observed function value. The
expected improvement can be calculated analytically as

EI(x) =

{
(fmin −m(x))Φ

(
fmin−m(x)

s(x)

)
+ s(x)φ

(
fmin−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0 ,
(7)

where Φ and φ denote the cumulative distribution function and probability
density function of the standard normal distribution, respectively. EI(x)
is positive everywhere in S. If τ2 = 0, it is null at data points, but not
when τ2 > 0. It is increasing when the kriging variance increases (at a
fixed kriging mean) and when the kriging mean decreases (at a fixed kriging
variance). The first term in Eq. (7) is dominated by the contribution of
kriging mean to the improvement while the second term is dominated by
the contribution of kriging variance. The EGO algorithm consists in the
sequential maximization of EI, xn+1 = arg maxx∈S EI(x) followed by the
updating of the kriging model with X∪{xn+1} and the associated responses
y.

3 EGO with fixed length-scale

We start by discussing the behavior of EGO with two different fixed length-
scales (small and large). The magnitude of length-scale is measured with
respect to the longest possible distance in the search space, Distmax which,
in our d-dimensional search space is equal to (UB − LB)

√
d. θ is large if

it is close to or larger than Distmax and vice versa. Here, LB = −5 and
UB = 5. Fig. 5 illustrates the kriging models on the Ackley test function
(defined below) in 1 dimension and the associated EIs for small and large
length-scales.

3.1 Small characteristic length-scale

When θ is small, there is a low correlation between response values so that
data points have an influence on the process only in their immediate neigh-
borhood. As θ → 0 and away from the data points, the kriging mean and
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variance of Equations (1) and (2) turn into the constants µ and σ2, respec-
tively, thus the EI becomes a constant flat function: when x is away from xi,

EI(x)→ EIasymp := (fmin−µ̂)Φ
(
fmin−µ̂

σ̂

)
+σ̂φ

(
fmin−µ̂

σ̂

)
, where µ̂→

n∑
i=1

yi

n

and σ̂2 →
n∑

i=1
(yi−µ̂)2

n since R tends to the identity matrix in Equation (6).

Proposition 1 (EGO iterates for small length-scale) As the charac-
teristic length-scale of the GP kernels tend to 0, the EGO iterates are located
in a shrinking neighborhood of the most isolated best observed point.

This proposition is explained and proved below.
Irrespectively of the function being optimized and the current DoE (pro-

vided the best observed point is uniquely defined), the set of design points
created by EGO with small θ has characteristically repeated samples near
the best observed points. An example is provided in Fig. 2 where θ = 0.001.
Elements of proof of this phenomenon is given below.
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Figure 2: Left: search points obtained during 20 iterations of EGO with a
small length-scale (θ = 0.001) on the Sphere function whose contour lines
are plotted. Crosses are the initial design points. The points accumulate
in the vicinity of the design point with the lowest function value. Right
picture: zoom around the best observed point; the contour lines show the
kriging mean.

When the length-scale is small, the observations have a low range of
influence. In the limit case, one can assume that in a vicinity of ith design
point the correlation between Y (xi) and the other observations is zero, i.e.,
Cor(Y (xi), Y (xj)) → 0 , 1 ≤ j ≤ n , j 6= i, so that R → I. Let x be in
the neighborhood of xi, Bε(x

i) =
{
x ∈ S : ‖x− xi‖ ≤ ε

}
, for a sufficiently

small ε and away from the other points of the Design of Experiments (DoE)
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j 6= i so that the correlation vector tends to r(x)→ [0, . . . , 0, r, 0, . . . 0] where
r = Cor(Y (x), Y (xi)). In this situation, the kriging mean and variance can
be fully expressed in terms of the correlation r (a scalar in [0, 1]):

m(r) =µ̂+ r(yi − µ̂) = µ̂(1− r) + ryi, (8)

s2(r) =σ̂2(1− r2), (9)

It is visible from the above equations that, among the points of the DoE,
the expected improvement will be the largest near the best observed point
as, for any given r, the variance will be the same and the mean will be
the lowest. If many points of the DoE share the same best performance
fmin, we will consider xmin, the most isolated2 one. By setting yi = fmin in
Eqs. (8) and (9), the expected improvement (Eq. (7)) in the vicinity of the
best observed point becomes,

EI(r) =(1− r)(fmin − µ̂)Φ

(
fmin − µ̂

σ̂

√
1− r
1 + r

)
+

σ̂
√

1− r2φ
(
fmin − µ̂

σ̂

√
1− r
1 + r

)
. (10)

Dividing both sides of Equation (10) by σ̂ and introducing the new variable
A := fmin−µ̂

σ̂ , the normalized expected improvement EI(r)/σ̂, reads

EI(r)/σ̂ = (1− r)AΦ

(
A

√
1− r
1 + r

)
+
√

1− r2φ
(
A

√
1− r
1 + r

)
. (11)

The normalized improvement is handy in that, for small length scale, it
sums up what happens for all objective functions, design of experiments
and kernels in terms of only two scalars, the correlation r and A. Note that
because fmin ≤ yi , ∀i, A ≤ 0. Instances of normalized EI are plotted for
a set of A’s in [−2,−0.001] in the left of Fig. 3. The value of EI when
r → 0+ is the asymptotic value of expected improvement as x moves away
from data points. The maximum of EI (equivalently EI/σ̂) is reached at
r? which is strictly larger than 0. All the values of r? are represented as a
function of A in the right plot of Fig. 3. As A decreases (i.e., fmin further
drops below µ̂, or the best observation improves with respect to the other
observations), r? tends to 1, that is EGO will create the next iterate closer
to xmin, which makes sense since the point gets better. Vice versa, as the
advantage of the best observation reduces (A diminishes), r? approaches 0,
which means that EGO will put the next iterate further from xmin. Note
that the analytical formulas for the first and second derivative of EI with
respect to r are given in Appendix A.

2the most isolated in terms of the metric used by the covariance functions of the GP.
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Figure 3: Left: Normalized EI as a function of r ∈]0, 1] in the vicinity of the
sample point with the lowest function value for a small length-scale. Right:
location of the next EGO iterate (r? where EI is maximized) as a function
of A.

3.2 Large characteristic length-scale

Proposition 2 (EGO iterates for large length-scale) As the character-
istic length-scale of the GP kernels increases, θ → ∞, the EGO algorithm
degenerates into the sequential minimization of the kriging mean m(x).

This behavior of EGO can be understood by seeing that as the length-scale
increases, the points have more influence on each other and the uncertainty,
as described by kriging variance s2(x) in Equation (2), vanishes. Then, we
will see that maximizing the expected improvement is equivalent to mini-
mizing the kriging mean when kriging variance is null.

Let us demonstrate the above statements. We first establish that the
term r(x)>R−1r(x) in the kriging variance of Equation (2) tends to 1. As
θ →∞, all the responses Y (x) are strongly correlated, therefore r(x) and R
become a vector and a matrix of 1’s. This matrix R has only one non-zero
eigenvalue that equals n, the matrix size [1]. The corresponding eigenvector

is v =
√
n
n (1, . . . , 1)>. To invert such a non-invertible matrix, we use Moore-

Penrose pseudoinverse [9], which is equivalent to regularizing it with a very
small nugget (see [7]). The pseudoinverse of R, denoted by R†, is

R† = [v W]

[
1
n 01×(n−1)

0(n−1)×1 0(n−1)×(n−1)

]
[v W]> , (12)

in which W contains the n−1 eigenvectors associated with the zero eigenval-
ues. Regularizing R−1 as R† in r(x)>R−1r(x) and since r(x)> → (1, . . . , 1)
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as θ →∞ , it is easy to show that r(x)>R†r(x) = 1. As a result, s2(x)→ 0
and EI(x)→ fmin −m(x). In this case, the EGO search degenerates to an
iterative minimization and updating of the kriging mean m(x).

Minimizing kriging mean does not define a valid global optimization
scheme for two reasons. Firstly, because premature convergence occurs as
soon as the minimum of m(x) coincides with an observation of the true
function [5]: when m(xn+1) = f(xn+1) where xn+1 = arg minx∈S m(x), the
EGO iterations with large θ stop producing new points, however xn+1 ∪X
may not even contain a local optimum of f . Secondly, it should be remem-
bered that the kriging mean discussed here is that stemming from large
length-scale, which may not allow an accurate prediction of the objective
function considered: it would suit a function like the sphere with a Matérn
kernel, but it would not suit a multimodal function like Ackley.

The DoE created by EGO with large θ can vary greatly depending on
the function and the initial DoE. On the one hand, if the function is regular
and well predicted by m() around xn+1, like the Sphere function, the kriging
mean rapidly converges to the true function and points are accumulated in
this region which may or not be the global optimum. Fig. 4 illustrates both
situations (true and false convergence) with the DoEs created by an EGO
algorithm with large length-scale on a unimodal and a multimodal function
(Sphere and Rastrigin functions, respectively). The Rastrigin function is
defined as

fRastrigin(x) = 10d+
d∑
i=1

(
x2i − 10 cos(2πxi)

)
. (13)

On the other hand, if m(xn+1) is different from f(xn+1), the kriging
mean changes a lot between iterations because new observations have a long
range influence. The kriging mean overshoots observations in both upper
and lower directions (cf. the dotted blue curve in the upper left plot of
Fig. 5). The resulting DoE is more space-filling than the DoE of small
length scale. An example of such DoE is provided at the bottom right of
Fig. 5.

3.3 Comparison of EGO with fixed and adapted length-scale

In the sequel, the efficiency of EGO with different fixed length-scale is com-
pared with the standard EGO whose length-scale is learned by ML. Tests are
carried out on two isotropic functions, the unimodal sphere and the highly
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Figure 4: DoE created by EGO with θ = 100. For such a large θ, the global
search turns into the sequential minimization of the kriging mean. Left:
premature convergence of the algorithm in a local minimum of the Rastrigin
function because m(xn+1) = f(xn+1). The true optimum is at x? = 2.5 in
the neighboring basin of attraction. Right: the algorithm converges to the
global minimum of the unimodal Sphere function. In both functions the
global minimum is located at 2.5.

multimodal Ackley functions:

fSphere(x) =

d∑
i=1

(xi)
2, (14)

fAckley(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2i

)
− exp

(
1
d

d∑
i=1

cos (2πxi)

)
+ 20− exp(1). (15)

Each optimization is repeated 5 times on 5 dimensional instances of the
problems, d = 5. The initial DoE is fixed and has size 3 × d. The search
length is 70×d. To allow comparisons of the results, the functions are scaled
(multiplied) by 2

fmax
DoE−f

min
DoE

, where fminDoE and fmaxDoE are the smallest and the

largest value of function f in the initial DoE.
Fig. 6 shows the results of the comparison in terms of median objective

functions. Moreover, the first and the third quartiles are plotted in Fig.
7. The θ values belong to the set {0.01, 0.1, 1, 5, 10, 20}. On both test
functions, the algorithm does not converge quickly towards the minimum
when θ = 0.01 or θ = 0.1 because, as explained in Section 3, it focuses
on the neighborhoods of the best points found early in the search. On the
Sphere function, EGOs with large length-scale, θ = 20 or θ = 10, have
performances equivalent to that of the standard EGO. Indeed, the Sphere
function is very smooth and, as can be seen on the rightmost plot of Fig. 6,
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Figure 5: Ackley function (black solid line and defined in (15)) approximated
by a kriging model (mean ± std. deviation, thick/thin lines) with θ = 0.001
(dashed pink) and θ = 100 (dotted blue). The crosses are the initial DoE.
Top, right: EIs at iteration 1 with the stars indicating the EI maximums.
Bottom, red bullets: DoEs created by EGO after 20 iterations with θ = 0.001
(left) and θ = 100 (right).
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ML estimates of θ are equal to 20 (the upper bound of the ML) rapidly after
a few iterations. With the multimodal Ackley function, the best fixed θ is
equal to 1. It temporarily outperforms the standard EGO at the beginning
of the search (until about 70 evaluations) but then ML allows decreasing
the θ’s until about 0.5 (see rightmost plot) and fine tuning the search in
the already located high performance region. Note however that this early
advantage of θ = 1 over the adapted θ seem to be dependent on the initial
DoE (cf. experiment with an alternative DoE in Fig. 8).
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Figure 6: Median of the best objective function vs. number of calls of
standard EGO and EGO with different fixed length-scale on the Sphere
(left) and the Ackley (middle) functions, d = 5. Right: evolution of θ
learned by ML in standard EGO.
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Figure 7: Dispersion of the results of Fig. 6 : first and the third quartiles of
the results for the Sphere (left) and Ackley (right) functions.

In order to investigate the effect of initial DoE on the above results, we
repeat the same experiments with another fixed DoE. The results with the
new DoE are given in Fig. 8. These results are similar to those already
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reported in Fig. 6, therefore showing a low sensitivity of EGO to the initial
DoE. The main difference is visible in the initial iterations (before 100 calls)
for the multimodal Ackley function and questions the early advantage at
using θ = 1 over θ adapted by ML.
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Figure 8: Median of the best objective function vs. number of calls of
standard EGO and EGO with different fixed length-scale on the Sphere
(left) and the Ackley (middle) functions, d = 5. Although the initial DoE is
different from the one used in Fig. 6, the EGO performance does not change
a lot.

A complementary view on convergence, focusing on distances to the op-
timum in the x-space and the whole set of search points created, as opposed
to the objective function of the best point in the convergence plots (e.g.,
Fig. 6), is given in Fig. 9. Each curve represents the density of search
points closer to the global minimum than a given distance. The proce-
dure for calculating this density is to divide the number of points closer to
the global minimum by the total number of the points of the search (here
350 when d = 5). The distances are normalized by dividing them by the
square root of the problem dimension. For small distances to the optimum
(< 0.3×

√
d), the algorithms hierarchy recovered from these graphs is based

on the best points and is similar to that of Fig. 6. For larger distances, we
find out that EGO with fixed θ = 1 performs very well at creating many
points within a distance of 1×

√
d to the optimum.

4 Effect of nugget on EGO convergence

To investigate the effect of nugget on EGO, we carry out the same test pro-
tocol as above but the length-scales are set by ML and two scenarios are
considered: 1) the nugget τ2 is estimated by ML, 2) a fixed nugget is taken
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Figure 9: Density of points closer to the optimum than a given distance on
Sphere (left) and Ackley (right) functions. Each curve is the median of 5
runs.

from the set τ2 ∈ {10−2, 10−4, 10−6, 10−8, 0} (τ2 = 0 means no nugget).
Fig. 10 shows the results. For both test functions, when the nugget value
is large (10−2 or 10−4 or ML estimated on Ackley), EGO exhibits the worst
performances: it does not converge faster and stops further from the op-
timum. The reason is that a large nugget deteriorates the interpolation
quality of a kriging model when observations are not noisy like here. On the
Sphere function, EGO rapidly locates the area of the optimum but the EI
without nugget, which is null at data points, pushes the search away from
it. However, a nugget value equal to 10−6 or 10−8 hardly slows down con-
vergence and significantly improves the accuracy with which the optimum
is found. Indeed, by increasing the uncertainty s2(x) everywhere including
in the immediate vicinity of data points, where it would be null without
nugget, nugget increases the EI there and allows a higher concentration of
EGO iterates near the best observed point. The nugget learned by ML on
the Sphere tends to 0 which, as just explained, is not the best setting for
optimization.

On Ackley, besides large nugget values (τ2 ≥ 10−4) which significantly
degrade the EGO search, values ranging from τ2 = 0 to 10−6 do not notably
affect performance. In this case, the global optimum is not accurately lo-
cated after 70×d evaluations of f , there is no need to allow through nugget
an accumulation of points near the best observation.

Note that on both functions, when considering the best point found so
far, ML estimation of nugget is not a good strategy. Finally, the dispersion
of all the search points the across the x-space is characterized in Fig. 11
through the number (the density) of points closer to the optimum than a

13



0 50 150 250 3501e
-0
5

1e
-0
3

1e
-0
1

1e
+
01

no. calls to f

b
es
t
f
va
lu
e

Nug=10−2

Nug=10−4

Nug=10−6

Nug=10−8

Nug=NoNug
EstimNug

0 50 150 250 350

2
5

10
20

no. calls to f
b
es
t
f
va
lu
e

Nug=10−2

Nug=10−4

Nug=10−6

Nug=10−8

Nug=NoNug
EstimNug

0 50 150 2501e
-0
9

1e
-0
7

1e
-0
5

1e
-0
3

1e
-0
1

iteration

n
u
gg
et

es
ti
m
at
ed

b
y
M
L

Ackley
Sphere

Figure 10: Median of the best objective function vs. number of calls to f for
EGO with different nugget values on the Sphere (left) and Ackley (middle)
functions in dimension 5. Right: ML estimated nugget, τ2, vs. number of
calls to f .

given distance (cf. previous section for a more detailed definition). For the
Sphere function, τ2 = 10−6, 10−4 and 10−2 allow locating more points in a
larger neighborhood of the optimum, respectively. For the Ackley function,
no to moderate (τ2 = 10−4) nuggets produce similar densities of points
around the optimum; τ2 = 10−2 seems to be often missing high performance
areas; the ML estimate of τ2, which after initial oscillations between 0 and
5.10−2, stabilizes over 5.10−2, puts 7% of the search points within a distance
of 0.07×

√
d of the optimum (which makes it the best strategy at this distance

to the optimum) but then puts the remaining points far from the optimum.
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Figure 11: Cumulative probability of search points under different scenarios
of nugget values on Sphere (left) and Ackley (right) function.
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5 Concluding remarks

To sum up, this paper carefully explains the DoEs generated by EGO with
fixed length-scale and nugget. In terms of performance, ML estimation of
the length-scale is a good choice but ML estimation of nugget is not recom-
mended (a fixed small nugget value should be preferred). As a perspective,
EGO strategies starting with a large fixed length-scale and then decreasing
it while keeping a small amount of nugget should be efficient while avoiding
ML estimations which require O(n3) computations [4].
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A Expected Improvement and its derivatives for
small length-scale

When the length-scale is small, the normalized expected improvement tends
to the following analytical expression

EI(r)

σ
= (1− r)AΦ

(
A

√
1− r
1 + r

)
+
√

1− r2φ
(
A

√
1− r
1 + r

)
, (16)

where r is the correlation with the best observed point and A = fmin−µ̂
σ̂ .

Such expression applies to any objective functions, designs of experiment
and kernels as long as the length-scale tends to 0. We want to calculate
the first and the second derivatives of the normalized expected improvement
with respect to r: To do so, we need to calculate the derivative of each term.

Here, we present the derivatives of the terms Φ
(
A
√

1−r
1+r

)
, φ
(
A
√

1−r
1+r

)
and√

1−r
1+r which are

∂

∂r
Φ

(
A

√
1− r
1 + r

)
= A

(
∂

∂r

√
1− r
1 + r

)
φ

(
A

√
1− r
1 + r

)
, (17)

∂

∂r
φ

(
A

√
1− r
1 + r

)
= −

(
A

√
1− r
1 + r

)
∂

∂r

(
A

√
1− r
1 + r

)
φ

(
A

√
1− r
1 + r

)
,

(18)

∂

∂r

√
1− r
1 + r

=
−
√

1− r
2(1 + r)3/2

− 1

2
√

1− r2
. (19)
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After calculating all the derivatives and simplification, the first derivative of
EI(r)
σ with respect to r can be written as

∂EI(r)

σ∂r
= −AΦ

(
A

√
1− r
1 + r

)
− r√

1− r2
φ

(
A

√
1− r
1 + r

)
. (20)

In Fig. 12, the first derivative of EI(r)σ for different values of A is numerically

calculated. The location of a stationary point, r?, is where ∂EI(r?)
σ∂r = 0, and

it is also numerically estimated.
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Figure 12: First derivative of EI(r)
σ with respect to r for different values of

A. The location of the stationary point becomes closer to r = 0 as A→ 0−.
In other words, for (negative) values of A different from 0, r is finite and
the maximum of the EI is achieved near the best known point.

To determine the nature of the stationary points, the second derivative
of EI(r)

σ , i.e., ∂2EI
σ∂r2

, is required which is:

∂2EI

σ∂r2
=

[
A2(1− r)− (1 + r)

(1 + r)5/2(1− r)3/2
]
φ

(
A

√
1− r
1 + r

)
. (21)

In the left picture of Fig. 13 the second derivative of EI(r)
σ , ∂2EI

σ∂r2
, with

the same A values as used in Fig. 12 is shown. In the right picture, the
value of ∂2EI

σ∂r2
is plotted at the stationary points r?. It can be seen that the

second derivatives are always negative. In other words, the curvature of the
function EI(r)

σ at any stationary points is negative and the function has a
maximum there.
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Figure 13: Left: second derivative of EI(r)
σ when A equals to

−2,−1,−0.5,−0.1,−0.01. The second derivative is negative most of the
time excepted when A is small and r is close to 0 (compare to Fig. 3).

Right: the value of ∂2EI
σ∂r2

is plotted for different values of r?. This curvature
is always negative.
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