Benoit Arbelot

Romain Vergne

Thomas Hurtut

Joëlle Thollot

Color Transfer and Colorization based on Textural Properties

Keywords: Color transfer, colorization, textures Transfert de couleurs, colorisation, textures

This paper targets two related color manipulation problems: Color transfer for modifying an image colors and colorization for adding colors to a greyscale image. Automatic methods for these two applications propose to modify the input image using a reference that contains the desired colors. Previous approaches usually do not target both applications and suer from two main limitations: possible misleading associations between input and reference regions and poor spatial coherence around image structures. In this paper, we propose a unied framework that uses the textural content of the images to guide the color transfer and colorization.

Our method introduces an edge-aware texture descriptor based on region covariance, allowing for local color transformations. We show that our approach is able to produce results comparable or better than state-of-the-art methods in both applications.

Introduction

In this paper, we propose a method to automatically apply local color transfer and colorization between images. Manually colorizing a greyscale image, or tuning colors to obtain a desired ambiance is challenging, tedious and requires advanced skills. Examplar-based methods oer an intuitive alternative by automatically changing colors of an input image according to a reference image (the examplar) containing the desired colors. The main challenge of these methods is to accurately match content between the input and reference image.

The rst color transfer algorithms were based on global approaches reshaping the input image color histogram to match the histogram of the reference image. While these approaches can be simple and successful with carefully chosen image pairs, they often mismatch regions in the input and reference images, and are not suited for the colorization problem when the input image does not have a color histogram to begin with.

Alternatively, local approaches (soft-)segment an image into several subregions that can be processed independently. Colors are then added or transferred between similar regions. Those regions can be either manually provided, or automatically computed based on image descriptors.

Our approach is automatic and relies on regions dened as areas of similar textural content.

This choice was driven by the fact that textures can be found everywhere in nature, and thus in a lot of photographs. Moreover, perceptual studies showed that the early stages of human vision are composed of several lters to analyze textures and color variations in our visual eld [YJ * 93,[START_REF] Balas | Texture synthesis and perception: using computational models to study texture representations in the human visual system[END_REF]. This suggests that textures are important when observing images and should be a pertinent basis for local color transformations. Furthermore, textures can be eciently described by a summary of rst and second order statistics, and present an attractive middle ground between low-level descriptors (luminance, chromaticity) that cannot eciently describe textured regions, and high-level descriptors (object and region semantic) that are complex, error-prone and slow to compute.

To apply color transfer between textured regions, our descriptors are computed on a large scale to be able to characterize large textures, but they must also preserve image structures.

Existing methods for texture and structure decomposition are not well suited for our application:

edge-aware image descriptors (such as bilateral ltering) have troubles when analysing highly contrasted textures and may introduce discontinuities in the color transfer. The alternative consists in detecting variations of the descriptors themselves (such as region covariance), but in that case, image edges are smoothed, leading to halos in the transfer.

Our solution to estimate texture properties is based on a texture analysis, followed by an edge-aware processing to compute edge-aware texture based descriptors. Our contributions can be summarized as follows:

A method for computing accurate textural information while preserving image structure.

Texture descriptors are computed based on rst and second order statistics of the images luminance, then edge-aware transformations are applied to those descriptors to preserve the image structure.

A generic framework for local color transfer and colorization between images based on textural properties.

Related Work

In this section, we review previous work on color transfer and colorization, before discussing several approaches to extract and analyze textures for image manipulation.

RR n°8834

Color Transfer. Color transfer consists in changing the colors of an input image to match those of a reference image. It was rst introduced in [RAGS01] as a simple histogram reshaping, where the mean and variance of each channel are transferred separately, using the decorrelated Lαβ color space. This rather straightforward method can be surprisingly eective with well chosen input images. A rotation component was added in the matching process by Xiao and Ma [START_REF] Ma | Color transfer in correlated color space[END_REF], allowing the transfer to be done in a correlated color space (such as RGB). Instead of processing each channel independently, Pitié et al. [START_REF] Pitié | Automated colour grading using colour distribution transfer[END_REF] proposed to tightly match the 3-dimensional histograms using iterative 1-dimensional matchings. While the matching oered by this approach is very good, it is almost "too good" for the color transfer application as it tends to produce artifacts by forcing the input to have exactly the same number of pixels of each color as the reference. Finally, a more recent approach based on multiscale histogram reshaping was proposed in [START_REF] Pouli | Progressive color transfer for images of arbitrary dynamic range[END_REF] where the user can control how tightly the histograms should be matched.

Overall, these global methods are simple, but histogram matchings do not ensure colors to be transferred between similar regions. When such automatic methods fail, manual segmentations can be provided to locally transfer between selected regions [DX09, AP10, LSZ12].

In order to automatically apply a local color transfer, Tai et al. [START_REF] Tai | Local color transfer via probabilistic segmentation by expectation-maximization[END_REF] proposed to use mixtures of Gaussians to segment the input images and transfer colors between regions of similar luminances. A method to color grade videos based on color transfer between sequences was proposed in [START_REF] Bonneel | Example-based video color grading[END_REF]. Their color transformation segments the images using the luminance and transfer chrominance between detected shadows, midtones and highlight regions. In a similar vein, Hristova et al. [START_REF] Hristova | Style-aware robust color transfer[END_REF] partition the images into Gaussian distributed clusters considering their main features between light and colors. While more accurate than global transfers, these approaches are still only based on rst order information to segment the image and do not take higher order information for region matching between images. Consequently, regions with dierent textural properties but similar luminance cannot be distinguished.

Colorization. These descriptors are known to be ecient and discriminative, but also computationally and memory intensive due to their high number of features. Similarly, the shape-based texture descriptors introduced in [XDG10, XHJF12], although oering multiple invariants, are too complex for an image manipulation application where we expect to compute results in a reasonable time for relatively large images. The recent approaches proposed in [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF][START_REF] Cho | Bilateral texture ltering[END_REF] precisely separate texture from structure using a relative total variation, but their descriptors are not accurate Inria enough to discriminate textures among themselves. Finally, Karacan et al. [START_REF] Karacan | Structure-preserving image smoothing via region covariances[END_REF] proposed to use region covariance as a texture descriptor for image smoothing. Our method also relies on a variant of this descriptor, as it is compact and ecient in describing textural properties. One main drawback is that most of these descriptors tend to be unreliable around image edges and texture transitions, especially when estimated on large neighborhoods. For that reason, we also briey describe edge-aware ltering methods that could be used to solve this issue.

Edge-aware lters are crucial to preserve image structures when smoothing, denoising, enhancing details, or extracting textural information from images. A well known approach regarding that goal is the bilateral lter [START_REF] Tomasi | Bilateral ltering for gray and color images[END_REF], which eciently smoothes images while mostly preserving luminance edges. However, it tends to locally introduce halos and gradient reversal artifacts which can modify textural properties. The guided lter [START_REF] He | Guided image ltering[END_REF] oers a dierent approach by using a linear transform of a guidance image to lter an image but may also produce halos Our approach for automatically editing image colors based on textural content is summarized in Figure 1. First, descriptors are computed for the input and reference images in three steps (A):

covariance matrices of several local image features are computed over a coarse scale to roughly characterize the textural content of each region (A.1). A multi-scale gradient descent then locally displaces descriptors in order to recover texture edges lost during the coarse scale analysis (A.2). Finally, an edge-aware lter is applied to obtain descriptors that accuratly discriminate homogeneous textural regions while preserving detailed texture transitions (A.3).

RR n°8834

Our descriptors allow the computation of similarities between pixels. As such, they also enable soft segmentations of the input and reference images, where smooth and sharp structures are preserved. This is illustrated in Figure 1 (B), where the vegetation is automatically isolated in both the input and reference images. Finally, similarity maps locally control the transfer of colors between images (C1) or colorize regions according to similar textural content (C2).

The remainder of the paper is organized as follows: Descriptors are described in Section 4 and local color manipulation algorithms are detailed in Section 5. Results and comparisons are then presented in Section 6 before concluding in Section 7.

4 Edge-aware Texture Descriptors

Local Texture Descriptors

We want to analyze the textural information surrounding each pixel in both the input and the reference images. To that end, we chose to use region covariance [START_REF] Tuzel | Region covariance: A fast descriptor for detection and classication[END_REF][START_REF] Karacan | Structure-preserving image smoothing via region covariances[END_REF] as it is an ecient and compact way of describing image regions. Region covariance captures the underlying texture by computing a small set of second order statistics on specic image features such as the luminance or the gradient. Let us consider a pixel p, described by a d-dimensional feature vector z(p). The region covariance is dened as the following d × d covariance matrix:

C r (p) = 1 W q∈N p r (z(q) -µ µ µ r)(z(q) -µ µ µ r) T w r (p, q),
where N p r is a square neighborhood centered on p of size (2r + 1) × (2r + 1) and µ µ µ r is a vector containing the mean of each feature inside this region. Unlike [START_REF] Tuzel | Region covariance: A fast descriptor for detection and classication[END_REF], we add a gaussian weighting function with standard deviation r/3 that ensures descriptors to be smoothly dened from pixel to pixel:

wr(p, q) = exp(-9 q-p 2 2r 2

) . Note that this weight function should also be used to compute the mean features µ µ µ r . W is the normalization factor: W = q∈N P r w r (p, q).

We typically use r ∈ [20, 30] and rely on a 5-dimensional feature vector based on luminance derivatives to capture coarse scale textural content on natural images:

z(p) = L(p) ∂L(p) ∂x ∂L(p) ∂y ∂ 2 L(p) ∂x 2 ∂ 2 L(p) ∂y 2 ∂ 2 L(p) ∂x∂y ,
where L(p) denotes the luminance of pixel p. In practice, each feature is rst normalized (i.e.

divided by its standard deviation) to equally contribute to the analysis.

As explained in [HCS * 09, KEE13], region covariances only describe second-order statistics, which can be a limitation when describing textural content. Moreover, computing distances between covariance matrices is expensive because they do not lie in a Euclidean space. We thus follow the solution proposed by Karacan et al. [START_REF] Karacan | Structure-preserving image smoothing via region covariances[END_REF] who use the Cholesky decomposition to transform covariance matrices into vectors that can be easily compared and enriched with rst-order statistics. Our descriptor is then represented by:

S S S r = L 1 r • • • L d r µ µ µ r , (1)
where L i r is the i th column of the lower triangular matrix L r obtained with the Cholesky decomposition C r = L r L T r at scale r and µ µ µ r are the rst-order mean features in the corresponding region.

Visualizations of our descriptors are shown in Figure 2 where we can see that their values are similar when computed on the same types of regions. This suggests that our descriptor Inria successfully discriminates dierent textural regions. Figure 3 shows how descriptors are aected by the scale r. Small scales (b) preserve edges but tend to produce noisy descriptors. Conversely, larger scales successfully describe uniform regions but fail to accurately preserve sharp texture transitions that often occur inside images. This is shown in (c), where the sharp transition between trees and sky is blurred when computing the descriptor with a large neighborhood. This phenomenon is perfectly normal since, on these particular pixels, both tree and sky features are mixed to compute the descriptor, which then tend to represent this transition as a third texture.

However, this is problematic for our color manipulation applications, where such descriptors will produce halos around edges. Note that we cannot integrate luminance edges in the weight function w r (as in the bilateral lter for instance). Indeed, this would prevent highly contrasted textures to be accurately captured since such textures would be fragmented into multiple pieces.

For our purpose, we need both constraints to be satised: homogeneous descriptors inside regions and sharp texture edges preserved.

Multiscale Gradient Descent

To prevent texture transitions from being blurred, we propose to use a multiscale gradient descent algorithm to give these regions valid descriptors. Intuitively this multiscale gradient descent locally propagates relevant descriptor values (occurring inside homogeneous textural regions) to replace irrelevant ones (occurring around region borders). In order to do so, we use the variance of the descriptors to guide a gradient descent as this variance is low on homogeneous regions and high around texture edges. This gradient descent will then replace descriptors with high variance by those contained in uniform regions. Formally, the variance of a pixel p is computed Inria as follows:

V r (p) = 1 W q∈N p r (S S S r (q) -ν ν ν r)(S S S r (q) -ν ν ν r) T w r (p, q) , (2)
where S S S r (p) is the descriptor at pixel p and ν ν ν r is the weighted average of the descriptors over the neighborhood N p r .

The gradient descent displaces the descriptors on either side of the variance (e.g. texture edges) and consequently tends to sharpen descriptor edges. Figure 5 (bottom) shows the pseudo-code of the proposed multi-scale gradient descent process.

The idea is to iteratively apply gradient descents, from ne to coarse scales, in order to displace pixels into homogeneous regions while preserving complex texture edges. At small scales, the descent accurately preserves edges, but quickly falls into local minima. Increasing scales let slowly select pixels away from the detailed edges, ensuring that the descriptors are consistent.

In practice, the number of iterations used for a given scale is set to the size of the neighborhood (small and large scales may respectively lead to small and large displacements). Note that, even if small scale descriptors are needed to compute the variance, the resulting new coordinates only modify the coarse scale descriptor. The resulting displacement is shown in Figure 4 (c). The obtained descriptor (top) better preserves complex texture transitions. The red pixel (bottom) now successfully takes descriptor values of a homogeneous region inside the sky.

Unnormalized Bilateral Filtering

Gradient descent ensures the precise capture of textural properties around each pixel, even near texture edges. Yet, descriptors might still contain some variations that do not appear in the original image. They might happen around U-shaped texture transitions (as in the left part of Figure 4 (c)) or when a region cannot be properly dened by its textural content (such as a ne edge on a uniform background). This has to be prevented since any variations in the descriptors might lead to color changes during transfer or colorization. In a last step, we thus smooth the descriptor using an edge-aware lter to perfectly t to the image structure. To that end, we adapt the unnormalized bilateral lter [APH * 14], such that it iteratively smoothes the descriptor according to luminance variations. This lter is simple, ecient, and does not introduce too much halos near edges. However, any other edge-aware lter could have been used [TM98, HST13, PM90]. Formally, we use the unnormalized bilateral lter as follows:

S S S ubf (p) = S S S(p)

+ q∈N p Gσ s (q -p)Gσ l (L(q) -L(p))(S S S(q) -S S S(p)) √ 2πσ 2 s , (3)
where G σ (x) = exp(-x 2 2σ 2) is a standard gaussian kernel. σ s and σ l respectively control the inuence of spatial distances and luminance variations. In practice, we iteratively apply Equation 3 with rather small values of σ s and σ l (typically 2 and 0.05) in order to accurately diuse

RR n°8834

Gradient descent 1: Input: coordinate map M , variance map V , number of steps n 2: for all pixels p do 3: M ← Gradient descent(M, V r , r) 6: end for 7: for all pixels p do 8:

S S S rmax (p) ← S S S rmax (M (p))

9: end for descriptors on large neighborhoods. Figure 6 shows the eect of the lter on a problematic region, where the descriptors do not precisely follow edges around the palm tree (a). The unnormalized bilateral lter accurately brings back the leave edges, as shown in (b). The last image (c) shows the eect of the lter when applied on the original descriptor (i.e. without gradient descent). In that case, halos are propagated inside regions and create unreliable descriptors.

The supplemental material also contains an example illustrating how each step aects the color transfer result.

Local Color Manipulation

Now that we have obtained reliable descriptors, we propose to use them for color manipulations by dening transfer functions that only rely on similar pixels between the input and reference images.

Pixel similarity

We dene a similarity measure based on the L2 Euclidean distance between two descriptors:

D σ d (p, q) = exp -S S S(p) -S S S(q) 2 2σ 2 d , (4)
where S S S(p) and S S S(q) are the descriptors at locations p and q and σ d is the standard deviation that controls how close descriptors should be to contribute to the similarity measure. Note that where pixels (b), (c) and (d) are compared with all the other pixels of the input image (a). We can observe that trees, sky and grass regions are accurately selected and distinguished in the results.

Color Transfer

The main idea for transferring colors between images is to rely on local histogram matchings between input and reference images, where both sets of color points are dened by their texture similarities. The matching process is based on a translation and scaling of the distribution in a decorrelated color space, as originally proposed by Reinhard et al. [START_REF] Ashikhmin | Color transfer between images[END_REF]. Input and reference images are therefore rst transformed into the uncorrelated and perceptually uniform CIE-Lab color space before being processed. The following transfer function is then applied on each channel c ∈ {L, a, b} separately:

T σ d (p) = std ref (p) std in (p) c in (p) -µ in (p) + µ ref (p), (5)

RR n°8834

Input/reference

σ d = 1 σ d = 2 σ d = 4
Input/reference where superscripts in, ref denote the input and reference images respectively. µ, std are the weighted mean and standard deviations respectively, computed as follows, according to the similarities of the pixel p of the input image:

σ d = 0.2 σ d = 1 σ d = 2
µ img (p) = 1 W q c img (q)D σ d (p in , q img) std img (p) = 1 W q (c img (q) -µ img (p)) 2 D σ d (p in , q img),
where img ∈ {in, ref } and W is the normalization factor: W = q Dσ d (p in , q img). A color transfer example is shown in Figure 8 (top) where we can observe the eect of the σ d parameter.

When σ d is small, colors are transferred only between highly similar regions, such as the sea or the clouds of the input and reference images here. Wider and wider regions are considered when increasing σ d , leading to results closer to the global matching of [START_REF] Ashikhmin | Color transfer between images[END_REF].

Colorization

Histogram matching techniques cannot be used directly for colorizing images that do not contain chrominance channels. In this case, we simply assign the mean chrominance of the reference Inria τ = 0, 20min τ = 0.001, 40s τ = 0.01, 10s τ = 0.1, <1s

Figure 9: Optimization impact. Color transfer results for increasing τ values for 512 × 512

images. The lower τ , the higher the speed-up and the probability of quantization artifacts. In this example, τ = 0.1 allows a real-time transfer which can be used for ecient results exploration despite the visual artifacts.

image to each input pixel, weighted by our similarity measure:

C σ d (p) = q c ref (q)D σ d (p in , q ref) q D σ d (p in , q ref) . (6)
Note that this transfer function is applied on chrominance channels only, although the luminance could also be modied depending on the purpose. A colorization example is shown in Figure 8 (bottom). Large values of σ d tend to average colors on large regions and consequently create pale and monochrome results. Therefore σ d should be kept small enough for colorization purpose, in order to only average colors over regions of highly similar descriptors.

Implementation & performances

We fully implemented our color manipulation functions on the GPU using Cuda. All the results presented in this paper were obtained with a NVIDIA Quadro 6000 graphics card. In practice, we rst precompute the descriptors S S S for both the input and reference images before applying a transfer or a colorization. Depending on the number of iterations chosen for the unnormalized bilateral lter, it approximately takes 20 to 40 seconds to obtain both descriptors. However, Equations 5 and 6 require to iterate over all the pixels of the input image, and compute the similarities with the whole reference for each of them in order to obtain the weighted mean and standard deviations. This leads to extensive computation times: about 20 minutes for 512 × 512 images.

To achieve reasonable speed, we propose to quantify similarities using a user-dened distance τ that controls how close two descriptors should be to be considered as equal. Considering a particular input pixel p, all the other pixels p i such as D σ d (p, p i) < τ are processed using the same similarity function. That way, increasing τ decreases the total number of iterations needed to obtain the result. The eect of this optimization can be seen in Figure 9, where important speed-up is achieved without visual impacts. High values of τ tend to produce quantization artifacts, but may be used to interactively explore the result space.

To summarize, the user can tune the following parameters to achieve the desired results:

r max controls the size of the window on which descriptors are computed and thus denes the scale at which textures are estimated. Typically, we found that r max = 21 works well for natural images of resolution 512 × 512.

σ s and σ l respectively control the inuence of spatial distances and luminance variations when smoothing the descriptor with the unnormalized bilateral lter. All the results in the paper were done with σ s = 2 and σ l = 0.05. The number of iterations used for this lter depends on the complexity of texture edges. We typically used 500 iterations for our results.

σ d controls how strongly the weight between two pixels is inuenced by their distances in the descriptors space. In practice, we respectively used σ d = 1 and σ d = 0.2 for most color transfer and colorization results.

τ controls the quantization step. In our results, we used τ = 0.01 as it provides a good speed-up while keeping a good visual quality in almost every case.

Results

Results and comparisons presented in the paper and in the supplemental materials were all made with the default parameters given in the previous section.

Color Transfer Results

Figure 10 (top) shows the results of our color transfer against other state-of-the-art methods.

The results of [START_REF] Ashikhmin | Color transfer between images[END_REF][START_REF] Ma | Color transfer in correlated color space[END_REF] were computed with our own implementation of their method.

The results of [START_REF] Pitié | Automated colour grading using colour distribution transfer[END_REF][START_REF] Pouli | Progressive color transfer for images of arbitrary dynamic range[END_REF] were computed using the available code on the authors webpage, we used a full match (100%) for [START_REF] Pouli | Progressive color transfer for images of arbitrary dynamic range[END_REF]. The results of [START_REF] Hristova | Style-aware robust color transfer[END_REF] were taken from the authors webpage and drove our choice of images.

These results rst show that global approaches [RAGS01, PKD07, XM06] tend to produce saturated colors due to the stretching of the input color histogram. Furthermore, global histogram matchings will tend to match regions of similar colors and luminance, failing in transferring colors between similar textured regions if they have highly dierent luminance or colors. This is showcased in the bottom row where the orange color of the reference buildings is transferred to the input sky.

Local or progressive approaches based on color information [PR11, HLMCB15] lead to better results, but also fail in matching regions of similar textural content because they dene similar regions by their luminance and color distributions. Our approach successfully matches those regions, as shown in the third row, where the ower eld of the reference is matched to the grass of the input (making it yellow); or in the fourth row where the buildings of the reference are matched to those of the input (making them orange). Figure 11 shows two more examples where the matching between dierent regions is clearly eective thanks to our descriptors. were computed using the available code on the authors webpage, using the default parameters suggested in their code.

Colorization Results

Those results show that the method of [START_REF] Welsh | Transferring color to greyscale images[END_REF] based on luminance matching fails when the input images are too complex: dierent regions with similar luminance get the same colors, such as the building and clouds in the rst example. The method of [START_REF] Charpiat | Automatic image colorization via multimodal predictions[END_REF] uses SURF descriptors and Gabor lters which are strongly discriminative, leading to ecient colorization when the better results with more robust descriptors, however they fail to distinguish between intricate regions such as the clouds and the sky in the rst and fourth row, or the river and the land in the fourth row. Finally, the method from [START_REF] Bugeau | Patch-based image colorization[END_REF] is very prone to halos due to the window used in the descriptors computation.

Inria Input Reference [RAGS01] [PKD07] [XM06] [PR11] [HLMCB15] Our Result Input Reference [WAM02] [CHS08] [GCR * 12] [BT12] Our Result
As seen in the last column, our approach accurately matches corresponding textures and produces colorful results: sky, cloud, vegetation, mountain and building colors of the references are successfully transferred into the input images. Figure 11 shows two more results demonstrating a clear separation between regions of the input image and correct color associations from the reference image.

Combining Colorization and Transfer

Since our framework is the same for colorization and color transfer, we can easily apply a combination of both to a greyscale input by adding chrominance via colorization, while modifying the luminance by transferring only the luminance from the reference image. The results of this approach can be seen in Figure 12. They show that this combination can produce a result closer to the style of the reference image, while still using only the input luminance. Comparing this to the result of the color transfer (which also transfers luminance), we see that color transfer remains more colorful because the chrominance information of the input image is also used, however it requires a color version of the input image which is more restrictive.

Discussion and Future Works

In this paper, we presented a generic framework for both color transfer and colorization. Our edge-aware descriptor accurately captures similar textural content in images while being robust to texture transitions. It allows local color transfer and colorization between similar regions of an input and reference images. Our method suers from two main limitations, as described below.

(1) Considering colorization, the input and reference images should be similar enough to produce coherent results. If a particular region in the input image does not have any correspondence in the reference one, the similarity function (based on a gaussian distance) tends to give the same weight to all pixels, resulting in a monochrome colorization. Note that this is equivalent to increasing σ d for this particular region, as seen in Figure 8 (bottom-right). This problem also occurs for color transfer but is much less visible since the mean and variance are only used to modify the histogram. To prevent this, one possibility would be to automatically detect mismatched regions and ask the user to disambiguate the transfer by providing more specic reference images.

(2) The proposed descriptors eciently capture texture regions and their transitions, but they are not able to detect higher-level semantic information such as faces, man made objects or background and foreground. Our descriptors might be altered by such objects, thus aecting the quality of the transfers. Again, this is most visible in colorization results, as shown in Figure 13.

The yellow color obtained in the top left part of the image is due to the electric wires that are associated to the warning sign contained in the reference. The wheels of the motorbike contain ne structures associated to the girl's hat, resulting in a bluish color against a light red background. One way to mitigate these issues would be to rely on more complex, but slower, descriptors combining both semantic and texture information.

Despite these limitations, we believe that our descriptor constitutes a good basis that could contribute to other applications such as tone mapping, edge-aware image decomposition, and color content modication of videos.

RR n°8834

Figure 1 :

 1 Figure 1: Pipeline overview. Edge-aware descriptors are rst computed to accurately describe the textural content of the input and reference images (A). They are then used to compute per-pixel distances and allows similar regions to be associated, as shown for the vegetation in (B). We nally use these distance maps for both color transfer (C1) and colorization (C2), where attributed colors depends on pixel similarities.

Figure 2 :

 2 Figure 2: Texture descriptors. Patches taken from several regions of the image in Figure 1 (top) and their respective descriptors computed for the central pixel of the window (bottom).Patches from similar regions have similar descriptors.

Figure 4 :

 4 Figure 4: Gradient descent illustration. (a) A zoom in the sky/trees transition of the image shown in Figure 3. (b) A gradient descent guided by the variance of the coarse scale descriptor tends to sharpen edges (top), but may mistakenly assign descriptors to the wrong side of the edges: The red sky pixel (bottom) is considered as part of the trees here. (c) A gradient descent gradually performed at multiple scales (from ne to coarse) better preserves complex texture transitions. The red pixel is now successfully assigned to the sky.

 Figure4, where initial descriptors (a) are displaced toward homogeneous regions by following the gradient of the variance (b). The result obviously depends on the scale at which descriptors are computed. On large scales, complex texture transitions are smoothed out and consequently, some descriptors might be incorrectly attributed to dierent regions. This is illustrated in the bottom row of Figure4, where the red pixel located in the sky (a) is mistakenly associated with the descriptor of a tree (b) after the gradient descent pass. Our solution to preserve complex texture changes with large scale descriptors is to use a multiscale gradient descent, where the scale of both descriptor and variance are gradually increased to guide the gradient descent of the initial (coarse scale) descriptor.

for i = 1 to n do 4 :M

 4 (p) ← M (p) + ∇V (M (p)) M with pixel coordinates 2: Compute S S S rmax using Equation. 1 3: for r = 1 to r max do 4: Compute V r using Equation. 2 5:

Figure 5 :

 5 Figure 5: Multiscale gradient descent algorithm.

Figure 6 :Figure 7 :

 67 Figure 6: Unnormalized bilateral lter. (a) The descriptor obtained from the image after gradient descent. (b) The unnormalized bilateral lter accurately propagates descriptors and follows luminance edges. (c) Without the multiscale gradient descent, halos are propagated inside regions and descriptors are altered. In these examples, we used 2000 iterations with σ s = 2 and σ l = 0.05.

Figure 8 :

 8 Figure 8: Impact of σ d on transfer functions. Top: color transfer example. When increasing σ d , more and more pixels are considered as similar, resulting in a transfer close to a basic global histogram matching. Bottom: colorization example. As colors are obtained from the weighted average of similar pixels in the reference image, increasing σ d tends to produce a monochrome result.

Figure 10 (

 10 Figure 10 (bottom) compares the results of our colorization against other state-of-the-art methods. The results of [WAM02, CHS08, GCR * 12] were taken from [GCR * 12]. The results of [BT12]

Figure 10 :Figure 11 :

 1011 Figure 10: Comparison with previous methods. Top and bottom respectively compare color transfer and colorization results with previous state-of-the-art methods. See the text for more details.

Figure 12 :Figure 13 :

 1213 Figure 12: Combining colorization and luminance transfer. Our framework allows for an easy combination of colorization and luminance transfer. This combination provides a good style transfer between the input and reference images. While less colorful than a color transfer result, this result only requires a greyscale input. In those results, σ d = 0.5.

RR n°8834

Acknowledgements

The input image used in Figures 1,2, 3, 4, 7, 9, 12 and the house reference image in Figure 8 are courtesy of freebigpictures.com. Color transfer comparisons were made using the images from [HLMCB15]. Colorization comparison images were taken from [GCR * 12].

RESEARCH CENTRE GRENOBLE -RHÔNE-ALPES