
Isotropic and Anisotropic Interfaced Lambertian Microfacets

Daniel Meneveaux, Benjamin Bringier, Emmanuelle Tauzia,
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Abstract

Specular microfacet distributions have been successfully employed by many authors for repre-
senting materials glossiness, and they are generally combined with a Lambertian term that accounts
for the colored aspect. Such a representation makes use of the Fresnel reflectance factor at the in-
terface, but the transmission factor is often ignored. In addition, the generalization to microfacet
distributions with a more general reflectance is known to be complex, since it requires to solve an
angular integral that has no analytical solution. This paper proposes a complete framework for
physically handling both reflection and transmission with microfacet distributions. First, we show
how transmission a↵ects reflectance of an interfaced Lambertian model, and provide an analytical
description of an individual microfacet reflectance. Second, we describe a method for handling
distributions of such microfacets in any physically based Monte-Carlo rendering systems, as well
as an approximate representation (which includes light multiple reflexions based on V-cavities rep-
resentation) that can be used for GPU applications or for measured data fitting. Our approach
generalizes several previous models, including flat Lambertian materials as well as specular and
Lambertian microfacets. The result section illustrates the wide range of materials that can be
possibly taken into account with this representation.

1 Introduction

Realistic and physically plausible representations of reflectance have been studied for a long time
in optics and computer graphics. Yet, many questions still remain open because the mathematical
models dedicated to Bidirectional Reflectance Distribution Functions (BRDFs) must fulfill various
requirements, such as physical plausibility, ability to naturally represent existing/measured materials,
visual realism, computation time e�ciency for producing computer generated images, material control
for users and artists, etc.

The wide variety of empirical models, introduced for instance by Phong [1], Blinn-Phong [2], or the
revised version proposed by Lewis [3], o↵ers a competitive and intuitive way to define surface optical
properties, but the parameters used do not correspond to actual physical characteristics and they have
limited expressiveness. Other approaches favor function bases whose coe�cients can be obtained from
measurements using projection or parameter fitting, e.g. with wavelets [4], spherical harmonics [5], or
Phong lobes [6]. Unfortunately with such representations, both the nature and the large number of
coe�cients make it di�cult for users to tune material appearances manually. Finally, physically based
BRDF models [7–14] are often preferred because they are defined by parameters that correspond to
physical aspects of materials, such as surface roughness, chromaticity, or refractive indices. Many of
them rely on a statistical distribution of microfacets associated with their reflectance property.

BRDFs based on microfacet distributions have been introduced in computer graphics for the repre-
sentation of glossy reflections on rough surfaces [7, 15]. The formulation corresponds to a product of
Fresnel reflectance, distribution and attenuation factors. Materials can be metallic (complex refractive
index), highly reflecting light [16,17], or dielectric (real refractive index) which only partly reflect light.
In this latter case, transmission should be accounted for. For instance, Walter et al. [11] propose to
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handle refraction of rough transparent dielectrics. With paints, plastics, ceramics, and so on, light
goes through the dielectric interface and scatters within the material body before re-exiting the sur-
face. In most models, this e↵ect is approximated using a Lambertian term that does not depend on
the specular aspect of the surface.

However, as pointed out by several authors, the matte component of rough materials is not constant
and often exhibit backscattering [9, 18, 19]. The Lambertian term should at least account for BRDF
specular albedo to deduce the remaining body reflectance behavior [20, 21]. Though physically plau-
sible, this latter representation does not explicitly correlate reflectance with the substrate roughness,
and backscattering is not handled.

Simonot [22] introduces interfaced Lambertian microfacets for physically handling the transmission
through a Fresnel interface and multiple reflections with a Lambertian substrate. This theoretical
model has been originally defined with a Gaussian distribution of normals, without taking masking
and shadowing into account, and numerical integration is required because microfacets are not only
specular.

In this paper, we extend Simonot’s work and make it possible to use interfaced Lambertian microfacets
in rendering systems. We render the e↵ects of this model, and confront the obtained results with other
microfacet-based BRDFs. Figure 1 illustrates some results produced with the approaches described in
this paper. While Jakob et al. [12] define materials explicitly with rough translucent layers, interfaced
Lambertian microfacets are closer to Oren and Nayar’s approach [9], and handle backscattering. In
our case, contrary to Jakob et al., explicit lighting simulation within layers is not required since inter-
reflections between the substrate and the interface are analytically described. Our representation can
be directly integrated in any Monte-Carlo based lighting simulation renderer, and we also propose an
approximate model which includes light multiple reflections within V-cavities.

More specifically, the contributions of this paper consist of:

• a consistent framework dedicated to microfacet BRDFs, that integrates a homogeneous matte
body with a rough interface; it extends previous models for opaque materials, including flat
specular or Lambertian, as well as a range from specular to Lambertian rough surfaces, with
various distributions;

• a practical solution for straightforwardly integrating such models within Monte-Carlo-based
rendering systems, including importance sampling and anisotropy;

• a method based on path tracing for handling light multiple reflection contributions within V-
cavities;

• an approximate model that can be employed for direct lighting, GPU, and measurement fit-
ting, based on the Oren-Nayar representation, and which handles light inter-reflections between
microfacets.

Our results show that this model accounts for many reflection phenomena, including backscattering,
anisotropy, and BRDF darkening at incoming and outgoing grazing angles, that can be observed on
some measured materials. These e↵ects are naturally included in the model since it physically handles
balance between specular and body reflections.

The remainder of the paper is organized as follows. Section 2 presents the theory of microfacet
BRDF models and introduces notations. Section 3 describes interfaced Lambertian microfacet BRDFs.
Section 4 explains how scattering microfacets can be employed in various configurations in rendering
systems. Section 5 presents our results for various cases, including comparisons and fittings from
measured BRDFs. Conclusion and future work are provided in Section 6.
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2 Microfacet-Based BRDF

This paper focuses on microfacet-based models for opaque materials, as described by Torrance and
colleagues [7, 15], Oren and Nayar [9], Ashikhmin et al. [10], Bagher et al. [23], Dupuy et al. [24],
or Heitz [25]. They have been successful at representing various families of materials with only a
few parameters clearly related to surface observations and intuitive to manipulate. So far, they have
been described using (i) a microfacet distribution, (ii) an elementary reflectance (purely specular or
Lambertian), and (iii) geometric factors accounting for light shadowing and masking.

2.1 Definitions and Notations

The notations used in this paper are given in Table 1, they correspond to those proposed by Nicodemus
et al. [26]. Any direction u is defined with a polar angle ✓

u

and an azimutal angle '

u

expressed
according to the macrosurface normal n.

Let us consider a surface sample of normal n lit by a collimated light source, from direction i, as
illustrated in Figure 1. The radiance reflected toward an observer o is given by the BRDF f(i,o,n).
It is defined as the ratio between the elementary radiance dL(i,o,n) reflected by the surface in direction
o and the incident irradiance dE(i,n) coming from direction i:

f(i,o,n)=
dL(i,o,n)

dE(i,n)
. (1)

A BRDF should be physically plausible, i.e. should satisfy Helmoltz reciprocity, i.e. f(i,o,n)=f(o, i,n)
and energy conservation, i.e.

R
⌦

+

f(i,o,n)|on|d!
o

1, 8i2⌦
+

, with |on|=o·n if o·n>0 and 0 otherwise.

The microfacet representation of a BRDF f(i,o,n) corresponds to a statistical description of micro-
facet distribution. Given the BRDF f

µ(i,o,m) of an individual microfacet associated with normal m,
its contribution is weighted by the distribution D(m) and a geometric attenuation factor (or GAF)
G(i,o,m). The distribution function D(m) defines the surface roughness, indicating the proportion
of microfacets oriented according to a given orientation m; the attenuation factor G(i,o,m) deter-
mines the portion of a microfacet of normal m visible from both the light source and the observer,
with a major influence at grazing angles. Many authors have studied the use of various distribu-
tions and geometric attenuation factors [7, 9–11, 15, 20, 23, 24, 27], which have to be carefully chosen
together [10, 25]:

f(i,o,n)=

Z

⌦

+

|im|
|in| f

µ(i,o,m)
|om|
|on| D(m)G(i,o,m)d!

m

. (2)

All microfacets are supposed to be oriented in the upper hemisphere, with D(m)= 0 if m·n0; the pro-
jected areas of all microfacets have to be equal to the macroscopic surface, i.e.

R
⌦

+

D(m)|mn|d!
m

=1.

In the case of purely specular microfacets, Equation 2 simplifies to [7, 11, 15]:

f(i,o,n)=
F (i,h)D(h)G(i,o,h)

4|ih||oh| , (3)

where h= i+o

||i+o|| is the half angle vector between i and o, and F (i,h) corresponds to Fresnel reflectance,

depending on the medium refractive index n

i

(see Table 1). This equation defines the glossy aspect
of the surface.

2.2 Discussion

On the one hand, rough metallic surfaces are almost opaque (Fresnel reflectance values are close to
1), and n

1

is defined by a complex value, with reflectance variations according to wavelengths [16].
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Figure 1: Geometry of reflection with our notation.

Table 1: Notations used in this paper.

n Macroscopic normal unit vector

m Microfacet normal unit vector

i Incident light unit vector direction

o Observer unit vector direction

h Half angle unit vector, bisector between i and o

✓

u

Polar angle associated with direction u

'

u

Azimutal angle associated with direction u

d!

u

Elementary solid angle around direction u

⌦
+

Upper hemisphere of direction n

f(i,o,n) Macroscopic BRDF

f

µ(i,o,m) Microfacet BRDF

D(m) Microfacet normal distribution

�

x

, �
y

Roughness parameters given in local coordinate system for dealing with
anisotropy

G(i,o,m) Geometric attenuation factor

n

0

External refractive index

n

1

Internal refractive index

n

i

= n

1

n

0

Ratio of refractive indices

F (i,m) Fresnel term, interface reflectance

T (i,m) Interface transmittance T (i,m)= 1 -F (i,m)
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Such materials are handled with specular microfacets directly since the resulting chromaticity and
glossiness are completely handled by the Fresnel term and the chosen distribution. On the other hand,
dielectrics correspond to real values of n

1

, with negligible wavelength dependency (the wavelength
dependency is only related to body reflection). For common values of n

i

(i.e. 1  n

i

< 3), the Fresnel
reflectance is low except at grazing angles. With energy conservation, the interface transmittance is
significant although it is generally ignored [7] or roughly approximated [20]. The model presented
in this paper handles this latter type of material and deals with transmission of light through the
interface represented by a real refractive index and multiple light reflections between a Lambertian
substrate and the interface.

The strong assumption of considering only pure Lambertian or pure specular microfacets restricts the
gamut of materials that can be reproduced. For instance, the objects represented by the Oren-Nayar
model [9] cannot exhibit any glossy appearance, while the Cook-Torrance model [7] only employs a
constant Lambertian term, that does not account for backscattering with rough materials [9]. These
models should not be combined for taking into account simultaneously glossy and matte aspects for
three main reasons: first, Oren and Nayar use a distribution which is very rarely used in other models;
second, interfaced Lambertian microfacets exhibit chromaticity variations according to the interface
refractive index discontinuity, that cannot be handled using a simple combination of models; third,
energy conservation is not handled with such a combination since body reflection should also depend
on n

i

.

The choice of D(m), G(i,o,m), and f

µ(i,o,m) may provide a wide range of physically plausible
materials, as long as the combinations are carefully chosen [10,11,25,27].

3 Interfaced Lambertian BRDF

The model presented in this paper defines rough surfaces (Figure 2) made up with a Lambertian
substrate of parameter K

d

(which depends on the wavelength �), covered with a flat interface corre-
sponding to a refractive index discontinuity n

i

(a real index for dielectrics) between these two media.
It accounts for both surface and body reflections.

Fresnel interface

Microfacets distribution

Lambertian substrate

Single microfacet

Lambertian interfaced Lambertian interfaced

Figure 2: Surface built up with interfaced Lambertian microfacets. The substrate scatters light while
the interface provides brightness.

3.1 Single Microfacet (or flat surface)

Interfaced Lambertian microfacets are associated with a BRDF f

µ(i,o,m) defined by a pure specular
interface reflection f

µ

s

(i,o,m) combined with the material volume body di↵use reflection f

µ

b

(i,o,m):

f

µ(i,o,m)= f

µ

s

(i,o,m)+ f

µ

b

(i,o,m). (4)

Since microfacet interfaces are considered as perfectly flat, the surface reflection component fµ

s

(i,o,m)
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is [11]:

f

µ

s

(i,o,m)=F (i,h)
�!

m

(h,m)

4|ih|2 , (5)

where h is the bissector direction of i and o, �!
m

is the dirac distribution associated with the elemen-
tary solid angle d!

m

around m, so that for any solid angle ⌦:

Z

⌦

�!

m

(s,m)d!
m

=

(
1 if s 2 ⌦

0 otherwise
(6)

and F (i,h) is the reflectance of the interface (for unpolarized irradiance), corresponding to the Fresnel’s
law between an outer medium of index n

0

and a medium of index n

1

:

F (i,h)=
1

2

(g - c)2

(g+ c)2

⇢
1+

[c(g+ c) - 1]2

[c(g - c)+ 1]2

�
, (7)

where c= i·h and g

2=n

2

i

+ c

2 - 1.

Lambertian substrate

Fresnel interface

Incoming light

First specular reflection

Scattering after multiple reflections

Substrate-interface multiple reflections

Figure 3: Interfaced microfacet body reflection: light is both reflected and transmitted by the interface.
Our model also accounts for light multiple scattering.

Body scattering (Figure 3) should account for the first interface transmission T (i,m)= 1 -F (i,m) of
light, followed by a Lambertian reflection due to the substrate (of reflectance K

d

), inner multiple
interactions between interface and substrate 1/(1 -K

d

r

i

), and final transmissions toward the outgoing
direction, of transmittance T (o,m):

f

µ

b

(i,o,m)=
1

⇡n

2

i

T (i,m)T (o,m)
K

d

(1 -K
d

r

i

)
, (8)

where r

i

is the internal reflectance on the flat interface lit by a Lambertian source coming from the
medium of index n

1

:

r

i

=

Z ⇡

2

✓

u

= 0

F

i

(u,m) sin(2✓
u

)d✓
u

, (9)

with F

i

the microfacet inner Fresnel reflectance. We use the analytical expression n

2

i

(1 - r
i

)= 1 - r
e

with r

e

provided by Molenaar et al. [28]:

r

e

=
1

2
-
2n3

i

(n2

i

+2n
i

- 1)

(n2

i

+1)(n4

i

- 1)
+

(n
i

- 1)(3n
i

+1)

6(n
i

+1)2
+ (10)

8n4

i

(n4

i

+1)

(n2

i

+1)(n4

i

- 1)2
ln(n

i

)+
n

2

i

(n2

i

- 1)2

(n2

i

+1)3
ln

✓
n

i

- 1

n

i

+1

◆

This model considers an interface between two media, i.e. with a refractive index discontinuity, thus
not subject to interferences.

With interfaced Lambertian microfacets in Equation 8, 1/n2

i

expresses an extension of the light beam
from a medium of index n

1

to a less refringent medium of index n

0

< n

1

. The multiple reflections
between the interface and the substrate lead to chromatic variations depending on parameter n

i

.
Figure 4a provides three spectral reflectances of the Macbeth color checker corresponding to CIE
xy values given in Figure 4b for normalized illuminant D65. This diagram shows that chromaticity
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nm
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0.8

Reflectivity
Purple

Green

Blue

(a) Spectral reflectance K

d

(�) for three colored samples.

Eq. 9

Kd!!

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x0.0

0.2

0.4

0.6

0.8

y

Purple

Green

Blue

(b) Chromaticity variations for the three color

checker samples given above and the color gamut

PAL/SECAM, according to n

i

for values equal to

n

i

={1.0, 1.1, 1.2, 1.3, 1.4, 1.5}, with ✓

i

=65

�
. The arrows

illustrate the variation direction when n

i

is increased.

n

i

=1.0 n

i

=1.1 n

i

=1.2 n

i

=1.3

n

i

=1.4 n

i

=1.5

(c) Visual aspect of chomaticity variations according
to ni for the purple sample, with PAL/SECAM color
gamut and ✓i =65�.

Figure 4: K
d

(�) and chromaticity variations according to n

i

, for three sample colors from the Macbeth
color checker.

actually varies according to n

i

, providing darker and more saturated colors. Figure 4c illustrates
colored disks with these variations, according with n

i

.

With achromatic objects, some variations are also noticeable, since increasing values of n
i

also tend
to provide higher transmission, and consequently darker body reflection. Figure 5 shows the curves
and a rendered 3D object with materials corresponding to a flat interfaced Lambertian surface, with
varying values of n

i

. Light inter-reflections between the interface and the substrate a↵ect the object
appearance depending on K

d

/(1 -K
d

r

i

). Reflected radiance deacreases when n

i

increases, and when
observation angles become grazing, contrary to Lambertian or rough Lambertian materials.

3.2 Rough Interfaced Lambertian BRDF

Using f

µ from Equation 4 in Equation 2, the global BRDF remains an expression composed of a glossy
and a matte components (resp. f

s

and f

b

):

f(i,o,n)= f

s

(i,o,n)+ f

b

(i,o,n). (11)

The specular component that provides glossiness, corresponds to Equation 3 (coming from Equations 2
and 5), while from Equations 2 and 8, the body reflection becomes:

f

b

(i,o,n)=
K

d

⇡n

2

i

(1 - r
i

K

d

)
⇥ (12)

Z

⌦

+

T (i,m)T (o,m)D(m)G(i,o,m)
|im|
|in|

|om|
|on| d!m

.

With this representation, several noticeable characteristics can be underlined:

• when K

d

=0, this formulation corresponds to purely specular microfacets;
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(a) Body reflection according to refractive index (the specular reflection peak is not illustrated

here since it only corresponds to a dirac).

n

i

=1 n

i

=1.2 n

i

=1.33 n

i

=1.5

(b) Rendered images of a flat interfaced Lambertian BRDF, with various values of n

i

.

Figure 5: (a) BRDF of a flat interfaced Lambertian surface with K

d

=0.6 for each component r,v,b,
and n

i

={1.0, 1.2, 1.33, 1.5}; (b) rendered images of the same BRDFs applied on a 3D object.

• when n

i

=1, then T =1 and r

i

=0, it corresponds to purely Lambertian microfacets;

• when �=0, the BRDF is a flat interfaced Lambertian surface;

• when n

i

=1 and �=0, the model is equivalent to a flat Lambertian material.

In this paper, we have employed various distributions and geometric attenuation factors from the
literature.

Gaussian distribution of normals is essentially used in the Oren-Nayar model [9]. This distribution
is employed in this paper only for comparison purposes, with the following isotropic formulation:

D(m)=C e

(- ✓2
m

/2�

2

)

/ |mn|, (13)

where � is the roughness parameter (expressed in radians) and 1/C =2⇡
R
⇡/2

✓

m

= 0

e

(- ✓2
m

/2�

2

) sin ✓
m

d✓

m

.
Using such a distribution remains di�cult in practice because of the estimation of C. The correspon-
dance with Beckmann or GGX distributions requires �0=

p
2�. We employ this distribution as Oren

and Nayar [9], in association with the Torrance-Sparrow geometric attenuation factor [15], which is
mathematically well-posed [25]. This factor assumes V-cavities much longer than large:

G(i,o,m)=max

✓
0,min

✓
1,
2|in||mn|

|im| ,

2|on||mn|
|om|

◆◆
. (14)

However, this assumption is somehow physically unrealistic and prone to discontinuities at grazing
angles.

Beckmann distribution is often referenced in the literature [7,10,20]. It corresponds to a Gaussian
distribution of microfacet slopes. Ward [8] proposes a derived anisotropic distribution, and Kurt et
al. [13] provides the following formulation, that includes the correct normalization:

D(m)=
e

✓
� tan

2

✓

m

✓
cos

2

'

m

�

2

x

+

sin

2

'

m

�

2

y

◆◆

⇡�

x

�

y

|mn|4 (15)

where �

x

and �

y

correspond to the roughness parameters (standard deviations of slopes) associated
with a local coordinate system. The well-known Cook-Torrance model corresponds to the isotropic
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form of this distribution (for �
x

=�

y

), associated with the Torrance-Sparrow GAF. Several authors have
discussed attenuation factors [10,25,29] since the Torrance-Sparrow model makes the assumption of V-
cavities that cannot represent actual physical surfaces. One of the most used representations [10,11,25]
has been proposed by Smith [29], making the assumption of a separable form, so that masking and
shadowing are independent:

G(i,o,m)=G

1

(i,m)G
1

(o,m). (16)

Given that the GAF should be independent from the normal m of a microfacet, i.e. G

1

(u,m) does
not correlate with any other microfacet, even nearby, it leads to the following expression:

G

1

(u,m)=

(
G

1

(u) when u·m > 0

0 when u·m  0,
(17)

with
G

1

(u)=
u·nR

⌦

+

u

D(m)|um|d!
m

. (18)

Ashikhmin et al. [10] suggest a prior numerical integration for all directions u. In the case of Beckmann
distribution, this integral has an analytical expression [25] with G

1

(u)= 1/(1+⇤(u)), where:

⇤(u)=
erf(a) - 1

2
+

1

2a
p
⇡

e

- a2
, (19)

and a=1/(↵
u

tan ✓
u

), ↵
u

=
q
�

2

x

cos2 '
u

+�

2

y

sin2 '
u

. In the remainder of this paper, we will make the

distinction between Gaussian and Beckmann distributions as described in the two previous paragraphs,
although Beckmann also corresponds to a Gaussian.

GGX distribution, described in [11,30], has been extended to anisotropic distribution [25]:

D(m)=
1

⇡↵

x

↵

y

|mn|4
⇣
1+ tan2 ✓

m

⇣
cos

2

'

m

�

2

y

+ sin

2

'

m

�

2

y

⌘⌘
2

. (20)

The associated GAF is also obtained using G

1

(u)= 1/(1+⇤(u)), with:

⇤(u)=
�1 +

p
1+1/a2

2
, (21)

where a=1/(↵
u

tan ✓
u

), ↵
u

=
q
�

2

x

cos2 '
u

+�

2

y

sin2 '
u

.

3.3 Light Inter-reflections

Light multiple reflections between microfacet interface and body (Figure 3) are analytically handled
by our model (Equations 9 and 8). In addition, light reflections between microfacets should also be
accounted for. Equation 2 stands for single-bounce reflections; to the best of our knowledge, multiple-
bounce inter-reflections with microfacets have only been handled by Oren and Nayar [9], who consider
the influence of two bounces of reflections with pure Lambertian microfacets, under the assumption
of V-cavities (Figure 6).

This problem is di�cult since it requires to solve the infinite dimensional integral rendering equation.
We have implemented a numerical Monte-Carlo integration for estimating light inter-reflections with V-
cavities and interfaced Lambertian microfacets given in Equation 4. Given an incident light direction i,
the BRDF is the sum of all the contributions f1= f

1+ f

2+ · · · , where fk corresponds to the observed
radiance (or reflectance with unitary irradiance) after k reflections:

f

1(i,o,n) =
dL

1(i,o,n)

|in|

=

Z

⌦+

R

1(i,o,m)

|in|
|om|
|on| D(m)d!

m

,

(22)
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o
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Path contribution

i

o

(a) Light path x̄ (b) Sensor and sensor cell

Figure 6: Light inter-reflections within V-cavities: (a) Light path starts using a given direction i

and interacts with the microfacets before exiting in direction o; (b) its contribution is collected on a
hemispherical sensor subdivided in equal solid angle cells; f1(i,o,n) is computed in each cell using
density estimation based on all paths contributing to the cell.

where dL

1 is the total reflected radiance in direction o for a collimated light beam coming from
direction i. This formulation takes into account all light interactions with all possible microfacets
complying with distribution D. R

1(i,o,m)=
R
S

L(x̄)dx̄ is the total reflected radiance for all light
paths x̄ (from the path domain S and L(x̄) is the path contribution function) with at least one bounce
inside a V-cavity represented by its normal m. L(x̄) is estimated using path tracing.

We propose to evaluate Equation 22 using Monte-Carlo quadrature. First, a microfacet orienta-
tion is chosen according to importance sampling, depending on the probability density function (pdf)
D(m)|mn|; second, a point x

i

is uniformly chosen on the microfacet; third, a light path is built sim-
ilarly to the photon mapping rendering method [31], from a randomly chosen direction i. This path
hits the point x

i

from direction i, reflects several times within the V-cavity and finally gets out of the
microsurface. The path contribution is collected on a virtual hemispherical sensor, subdivided such
that all cells correspond to the same solid angle (Figure 6). With this simulation method, shadowing
and masking terms are automatically handled. Moreover, similarly to Oren and Nayar [9], V-cavities
are considered as much longer than large.

Inside each sensor cell, density estimation is used to capture f1(i,o,n) where o is the center direction
of the cell solid angle:

f

1(i,o,n) ⇡

P
N

j= 1

1

|in|L(x̄j)
|o

x̄

j

m

j

|
|o

x̄

j

n| D(m
j

)

N

tot

�!

o

, (23)

where N

tot

is the total number of samples used to estimate Equation 22, N is the number of paths
contributing to the cell, o

x̄

j

is the outgoing direction of path x̄

j

, m
j

is the sampled microfacet normal
and d!

o

the cell’s solid angle.

Figure 7 illustrates the e↵ects of taking into account inter-reflections (two and multiple bounces).
Simulations are done with one billion light paths and a sensor containing 3240 cells. When the
microfacet BRDF is close to Lambertian, inter-reflections play a role in the total reflection model in
case of a rough surface. On the other hand, pure specular microfacets produce almost no additional
reflected light. Two light bounces are significant for Lambertian microfacets, while further reflections
produce only very low additional reflected radiance in most configurations (as already explained in [9]).
Some more results can be found in the joined additional material file.

This protocol makes use of V-cavities, with the advantage that it does not require to explicitly construct
a surface composed of fixed microfacets, and enables the computation without loss of generality. Using
other types of representation complying with Smith’s GAF would require some more experiments,
which are beyond the scope of this paper.
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(a) K

d

=0.9, n

i

=1.0,�=0.6 (b) K

d

=0.9, n

i

=1.5,�=0.6

Figure 7: V-cavities reflectance with inter-reflections, Beckmann distribution: f

1

corresponds to a
single bounce; f

2

corresponds to the BRDF with two light bounces; f1 includes all bounces, using
the Russian roulette strategy.

4 BRDF Integration and Sampling

Interfaced Lambertian microfacet BRDFs are composed of two terms f
s

and f

b

(Section 3.2) that can
be processed independently with the rendering equation, due to integration linearity:

L

o

(x,o,n)=

Z

⌦

+

L

i

(x, i,n)f(i,o,n)|in|d!
i

, (24)

where x is the considered surface element location, L
o

(x,o,n) corresponds to the outgoing radiance,
L

i

(x,o,n) is the incident radiance, coming from direction !

i

, and f(i,o,n)= f

s

(i,o,n)+ f

b

(i,o,n).
The glossy term corresponds to the well-known formulation provided by Equation 3, while the body
part is directly derived from Equation 2, using the microfacet body contribution f

µ

b

(Equation 12):

f

b

(i,o,n)=

Z

⌦

+

|im|
|in| f

µ

b

(i,o,m)
|om|
|on| D(m)G(i,o,m)d!

m

. (25)

Unfortunately, Equation 25 requires numerical integration. The next section shows how it can be
handled straightforwardly in any Monte-Carlo rendering system, producing correct results without
making use of any approximation. We also provide in this paper an approximate isotropic model, that
can be used without Monte-Carlo integration, for instance for GPU applications or data fitting.

4.1 Monte-Carlo Integration

Most renderers based on ray-tracing approaches make use of Monte-Carlo integration for estimating
the rendering equation. In those cases, BRDF importance sampling is used for reducing variance, as
pointed out by many authors [11, 20,32,33].

Sampling BRDFs requires integrating Equation 25 (corresponding to the body contribution), using a
stochastic process that only requires choosing microfacet orientations. Although microfacet reflectance
and the resulting BRDF are smooth, uniform sampling is not e�cient due to the distribution function
D that might introduce high frequencies (thin peaks and long tails), resulting in noise. Importance
sampling should thus also be used, based on D(m)|mn|, as for path tracing importance sampling.

The specular component (Equation 3) can be processed as in any rendering system, without changing
the importance sampling strategy, as it corresponds to the usual Cook-Torrance formulation (with
potentially di↵erent distributions and/or attenuation factors).

Choosing between surface and body sampling is the first step. Ideally, f
s

and f

b

should be
integrated over hemispherical incidence directions to determine each term weight. However, this
process would be ine�cient in practice. Instead, we propose to apply the process as for a Lambertian
surface with a flat interface (Equations 5 and 8). The resulting analytical formulation depends on

11



K

d

and n

i

; it is physically exact with a plane interface, and this assumption is e�cient with rough
surfaces since the balance between the two terms remains approximately identical.

Let us define R

s

= r

e

the total specular reflectance provided by Molenaar, in Equation 11, and the
total body reflectance R

b

= 1

n

2

i

(1 - r
e

)2 K

d

1 -K
d

r

i

; We use the proportion between R

s

and R

b

for choosing

the contribution between specular and body directions. Given a uniform random value ⇠

0

2 [0, 1[, if
⇠

0

< R

s

/(R
s

+R

b

), then sample a specular direction, otherwise, sample a body direction.

Importance sampling the specular/glossy term has been discussed by many authors; Walter et
al. [11] provide an overview on the subject. Based on the microfacet distribution (see below for an
anisotropic representation), the pdf is given by D(m)|mn|. The weight associated with the outgoing
direction is:

w(i)=
f

s

(i,o,m)D(m)G(i,o,m)

4|in||on|p
o

(i)
, (26)

with:

p

o

(i)=pdf(m)

����
@!

h

@!

o

����=pdf(m)
1

4|om| . (27)

Body term sampling is more di�cult since all microfacet contributions should be accounted for.
We propose to transfer BRDF integration in the rendering system directly. The Monte-Carlo process
can be applied to the whole rendering equation, including the analytical BRDF:

L

o

(o,n)=

Z

⌦

+

L

i

(i,n)

Z

⌦

+

f̂

b

(i,o,n)|in|d!
m

d!

i

, (28)

where f̂

b

(i,o,n)= |im|
|in| f

µ

b

(i,o,m) |om|
|on| D(m)G(i,o,m), as stated in Equation 25.

This equation exhibits a four dimensional integral that can also be solved according to Monte-Carlo
importance sampling. Therefore, the process consists in selecting the incoming direction i according to
a first importance sampling process, based on a pdf equal to |in|/⇡, as well as a microfacet orientation
m with on a second importance sampling process based on a pdf equal to D(m)|mn|. Anisotropy is
straightforwardly handled by the chosen distribution of D(m).

Using the anisotropic distributions for Beckmann and GGX (Equations 15 and 20), importance
sampling of a single microfacet is given by the following sampling. In the following, (⇠

1

, ⇠

2

) are two
uniform random variables in [0, 1[2; the value of '

m

is identically sampled for all distributions:

'

m

=arctan

✓
�

y

�

x

tan(2⇡⇠
2

)

◆
. (29)

The value for ✓
m

depends on the chosen distribution, reversing the cumulative density function (cdf)
associated with pdf(m)=D(m)|mn|.

With the Beckmann distribution:

✓

m

=arctan

0

B@

vuut � log(⇠
1

)
cos

2

'

m

�

2

x

+ sin

2

'

m

�

2

y

1

CA . (30)

With the GGX distribution:

✓

m

=arctan

0

B@

vuut
⇠

1

(1� ⇠

1

)
⇣
cos

2

'

m

�

2

x

+ sin

2

'

m

�

2

y

⌘

1

CA . (31)

Note that importance sampling a Gaussian distribution is not straightforward since the cdf cannot be
analytically represented and thus inverted.
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5 Results and Discussion

Our model has been added as a plugin to the Mitsuba renderer [34], and the approximate version has
been derived as a glsl shader. Table 2 provides the configurations of distributions and attenuation
factors we have used in this paper. In the following tables and figures, IL refers to our interfaced
Lambertian microfacets.

Table 2: Configurations of distributions and attenuation factors used in this paper.

Notation Distribution (D) Attenuation factor

(G)

Gauss, TS Gaussian normals Torrance-Sparrow

Beckm, TS Beckmann (slopes) Torrance-Sparrow

Beckm, SB Beckmann (slopes) Smith-Bourlier

GGX GGX GGX GAF

Influence of interface on body reflection is illustrated in Figure 8, according to the choice of
functions D(m) and G(m). The discontinuity corresponding to the Torrance-Sparrow GAF V-cavities
essentially influences the BRDF at grazing incidence and/or observation angles. In addition, when �

is low and/or when n

i

is close to 1, the di↵erence between Torrance-Sparrow and Smith GAFs tends
to decrease. Note that the higher tail for GGX distribution produces increasing values at grazing
observation angles (Figure 8.c).

(a) n

i

=1.0,�=0.1 (b) n

i

=1.0,�=0.6

(c) n

i

=1.5,�=0.1 (d) n

i

=1.5,�=0.6

Figure 8: Influence of distributions and GAFs for several values of n
i

and �, illustrated for ✓

i

=60o

(log scale).

Rough interfaced Lambertian materials can be compared with combinations of existing models; the
closest configuration would be Oren-Nayar’s (Gaussian distribution and Torrance-Sparrow GAF) for
the body component and Cook-Torrance’s formulation using the same distribution and GAF. Fig-
ure 9 illustrates this configuration, the curves exhibit a new behavior with interfaced Lambertian
microfacets, which does not correspond to a Lambertian surface, nor to Lambertian microfacets.

Monte-Carlo rendering results are also provided, using path tracing. Figures 10 and 11 illustrate
rendered images with isotropic materials associated to two objects in the scene with various values of
n

i

and �. Anisotropic materials can be rendered with the same method, as shown in Figure 12. Note
that even with n

i

=1.0 (Lambertian microfacets), anisotropy remains visible.
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(a) �=0.001 (b) �=0.05

(c) �=0.3 (d) �=0.6

Figure 9: Comparison between Oren-Nayar coupled with specular microfacets (Gaussian distribu-
tion and Torrance-Sparrow GAF) and interfaced Lambertian (IL, same distribution and GAF), with
K

d

=0.6, n
i

=1.5, and various values of � (log scale).

(a) �=0.001 (b) �=0.1 (c) �=0.3

(d) �=0.001 (e) �=0.1 (f) �=0.3

Figure 10: Isotropic IL elephants (with both the same parameters), rendered using path tracing:
(top) n

i

=1.5, for glossy materials and various roughnesses, clearly visible on the specular highlight;
(bottom) n

i

=1.1, with matte objects and backreflections (progressively darkening the right part of
the bigger elephant).
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1
.
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n

i

=
1
.
3
3

n

i

=
1
.
2

n

i

=
1
.
0

�=0.001 �=0.005 �=0.1 �=0.3

Figure 11: Appearance variations according to n

i

and �, with Beckmann distribution and Smith GAF.
The bottom line corresponds to pure Lambertian microfacets, and the bottom-left image is an almost
flat Lambertian surface.

(a) �

x

=0.1,�

y

=0.1 (b) �

x

=0.2,�

y

=0.6 (c) �

x

=0.6,�

y

=0.2

Beckmann and Smith GAF, n

i

=1.5

(d) �

x

=0.1,�

y

=0.1 (e) �

x

=0.1,�

y

=0.6 (f) �

x

=0.6,�

y

=0.1

Beckmann and Smith GAF, n

i

=1.0

Figure 12: Anisotropic interfaced Lambertian microfacets, with (top) n
i

=1.5 and (bottom) n
i

=1.0.
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6 Conclusion

This paper presents an analysis and implementation methods for interfaced Lambertian microfacet
BRDFs. The presented model relies on very few parameters (refractive index, substrate reflectance and
surface roughness) and generalizes the Lambert model, as well as specular microfacets and Lambertian
microfacets. It is physically plausible and can be straightforwardly integrated in any Monte-Carlo-
based rendering system using importance sampling with any distribution and geometric attenuation
factor. The proposed methodology can be extended to any type of microfacet-based reflectances.

We have also proposed an approximate version (corresponding to two distributions) of this model that
can be employed with interactive rendering systems, or fitting BRDF data, for avoiding numerical
integration that remains time consuming. It also integrates light inter-reflections between microfacets.

Our model and the methods we propose in this paper do not correspond to a subset of Jakob et al.’s
approach [12] due to the interface management which is di↵erent from multi-layers; for instance, pure
Lambertian microfacet BRDFs are inherently included in our model, and no light simulation between
layers is required.

A limitation of our method concerns the mean to estimate light inter-reflections between microfacets.
The corresponding contributions are handled by our approximate model, with V-cavities approxima-
tions, but including this computation within path tracing remains a di�cult issue, a deeper analysis
would be needed.

An interesting question concerns the correlation between the interface and the substrate roughnesses,
since a single-roughness value constrains both specular peaks and body reflection, which is not always
observed in measured materials. We also wish to investigate such a representation.
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