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Abstract. We consider a two-component ideal Fermi gas in an isotropic harmonic

potential. Some eigenstates have a wavefunction that vanishes when two

distinguishable fermions are at the same location, and would be unaffected by s-wave

contact interactions between the two components. We determine the other, interaction-

sensitive eigenstates, using a Faddeev ansatz. This problem is nontrivial, due to

degeneracies and to the existence of unphysical Faddeev solutions. As an application we

present a new conjecture for the fourth-order cluster or virial coefficient of the unitary

Fermi gas, in good agreement with the numerical results of Blume and coworkers.

PACS numbers: 03.75.Ss - Degenerate Fermi gases

1. Introduction and motivations

We consider a three-dimensional trapped two-component ideal Fermi gas. The two

components, noted as ↑ and ↓, correspond to two spin components of a single fermionic

atomic species, or to two different fully polarised fermionic atomic species. The single

particle masses m↑ and m↓ in each component may thus differ. There is no coherent

coupling between the two states ↑ and ↓ so the total particle numbers in each component

N↑ and N↓ are fixed, not simply the total particle number N = N↑ +N↓. One can then

take as reference spin configurations the N↑ + N↓ configurations ↑ . . . ↑↓ . . . ↓, where

the wavefunction ψ(r1, . . . , rN) is antisymmetric under the exchange of the positions of

the first N↑ particles, and under the exchange of the positions of the last N↓ particles.

The particles are trapped in the isotropic harmonic potential Uσ(r) = mσω
2r2/2 that

depends on the component σ =↑, ↓ in such a way that the angular oscillation frequency ω

is σ-independent. In the experiments on cold atoms, where the interaction strength can

be tuned via a Feshbach resonance [1, 2], our system is not a pure theoretical perspective

and can be realised.

Imagine now that one turns on arbitrarily weak binary contact interactions between

opposite spin particles. As the interaction has a zero range, it acts only among pairs of

particles that approach in the s-wave. If one treats the interaction as a Dirac delta to
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first order in perturbation theory, some eigenstates of the ideal gas will experience an

energy shift, some others will not. By definition, the shifted energy levels correspond

to interaction-sensitive states, and the unshifted ones to interaction-insensitive states.

This criterion can be implemented experimentally, by measuring the energy levels in the

trap [3]. Interestingly, the interaction-insensitive states have a vanishing wavefunction

when any pair of particles converge to the same location; they thus remain unaffected

by the interaction whatever its strength, provided that it remains zero range.

Even if this is an ideal gas problem, it is to our knowledge not treated in the

classic literature. The interactions are usually of nonzero range, in nuclear physics or in

quantum chemistry, and are not restricted to the s-wave channel; in this traditional

context, our problem totally lacks physical motivation. This is probably why this

problem was not mentioned in the classic book of Avery on hyperspherical harmonics

[4], although the wavefunctions we are looking for are particular cases of hyperspherical

harmonics, as we shall see. Actually, specifically determining the interaction-sensitive

states, and not simply all the eigenstates of trapped non-interacting fermions, is

nontrivial due to the occurrence of large degeneracies of the unperturbed spectrum

in an isotropic harmonic trap, so one faces the diagonalisation of large matrices

in the degenerate perturbation theory, even if the problem can be first analytically

reduced by the explicit construction of hyperspherical harmonics in Jacobi coordinates

that are invariant (up to a global sign) under the exchange of identical fermions

[5]. This degeneracy issue is reminiscent of the Fractional Quantum Hall Effect for

contact interactions between cold atoms in an artificial magnetic field, where the

macroscopic degeneracy of the Lowest Landau Level makes it nontrivial, even to first

order perturbation theory, to determine the gapped phases induced by the interactions

[6]. The famous Laughlin wavefunction, when transposed to spinless bosons, is actually

an interaction-insensitive state, which is thus automatically separated in energy space

from the other, interaction-sensitive states when a repulsive contact interaction is

turned on. This is why, in reference [7], the interaction-insensitive states were termed

laughlinian states.

Another physical motivation is the calculation of the cluster or virial coefficients of

the spatially homogeneous spin-1/2 unitary Fermi gas, where the opposite-spin fermions

interact with a contact interaction of infinite s-wave scattering length. It is indeed now

possible to measure the equation of state of the unitary gas with cold atoms [8, 9, 10],

from which one can extract the cluster coefficients up to fourth order [8, 10]. We

recall that the cluster coefficients bN↑,N↓
are, up to a factor, the coefficients of the

expansion of the pressure of the thermal equilibrium gas of temperature T in powers

of the small fugacities zσ = exp(µσ/kBT ), that is in the low-density, non-degenerate

limit where the chemical potential µσ of each spin component σ tends to −∞ [11].

For the unitary gas, it is efficient to use the harmonic regulator technique of reference

[12], that is to determine the cluster coefficients BN↑,N↓
(ω) for the trapped system, in

order to use its SO(2,1) dynamical symmetry [13, 14, 15]; then one takes the ω → 0

limit to obtain the bN↑,N↓
. It only remains to solve trapped few-body problems, since
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BN↑,N↓
can be expressed in terms of the energy spectrum of all the n↑+n↓ systems, with

nσ ≤ Nσ. For the third cluster coefficient, this procedure was implemented numerically

in reference [16], and then analytically in reference [17] by a generalisation to fermions of

the inverse residue formula used for bosons in reference [18]. The predictions agree with

the experimental results. For the fourth virial coefficient, its numerical implementation

by a direct calculation of the first few energy levels of four trapped fermions could not

be pushed to low enough values of ~ω/kBT to allow for a successful comparison with

experiment [19], and its analytical implementation is still an open problem [20].

In all these calculations, what is actually computed is the difference ∆BN↑,N↓
(ω)

between the cluster coefficients of the unitary gas and of the ideal gas, so as to get rid

of the contributions of the interaction-insensitive states, which are common to the two

systems and exactly cancel. So for the ideal gas, one must determine the energy levels

of the interaction-sensitive states. For the 2+1 fermionic systems (or equivalently for 3

bosons) this was done analytically in references [16, 18]. For the 3+1 and 2+2 fermionic

systems, this was done numerically for the first few energy levels in reference [19]. In

this work, we obtain from a Faddeev ansatz an analytical prediction for all values of

N↑ and N↓. We then face a subtlety of the problem, that was already known for 2 + 1

fermions [7]: some of the energy levels predicted by our Faddeev ansatz are unphysical

and must be disregarded, since the corresponding wavefunction is zero. We solve this

issue for 3 + 1 and 2 + 2 fermions, with a general analytical reasoning completed for

2 + 2 fermions by a case by case analysis.

The paper is organised as follows. In section 2, we introduce the basic theory tools

already available in the literature [21], allowing us to reduce the problem to a zero energy

free space problem with a wavefunction of the Faddeev form, each free space solution,

characterised by a scaling exponent s, giving rise in the trapped system to a semi-infinite

ladder of interaction-sensitive energy levels equispaced by 2~ω. In section 3, we give

the corresponding scaling exponents s for an arbitrary N↑ + N↓ spin configuration. In

section 4, we investigate for N = 4 the unphysical values of s, that are artifacts of the

Faddeev ansatz. In section 5 we present some applications to the cluster expansion of

the unitary gas, with a new conjecture for the fourth cluster coefficient and a comparison

to the numerical results of [19]. We conclude in section 6.

2. The theoretical building blocks

In this section, we remind the reader how, due to scale invariance, the energy levels

of the trapped system can be deduced from the zero-energy free space solutions, more

precisely from their scaling exponents (for a review, see reference [21]). We also explain,

building on a footnote of reference [18], how the interaction-sensitive states of the ideal

gas can be singled out from the interaction-insensitive ones using a Faddeev ansatz for

the N -body wavefunction.
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2.1. Scale invariance and the resulting SO(2,1) symmetry

In free space, the ideal gas Hamiltonian

Hfree =

N↑
∑

i=1

−
~2

2m↑
∆ri +

N
∑

i=N↑+1

−
~2

2m↓
∆ri (1)

is scale invariant. Therefore, if ψfree(r1, . . . , rN) is an eigenstate of Hfree with the

eigenvalue zero,

Hfreeψfree = 0 (2)

so is ψλ
free(r1, . . . , rN) ≡ ψfree(λr1, . . . , λrN), where all coordinates are multiplied by

the same arbitrary scaling factor λ > 0. An elementary consequence is that one can

choose ψfree to be scale invariant, which means that the wavefunctions ψλ
free and ψfree are

proportional. The corresponding scaling exponent s of ψfree is then conveniently defined

as follows:

ψfree(λr1, . . . , λrN) = λs−
3N−5

2 ψfree(r1, . . . , rN) ∀λ > 0 (3)

In other words, ψfree(r1, . . . , rN) is a positively homogeneous function of the coordinates

of degree s − (3N − 5)/2. Further using the free space translational invariance, one

imposes that the centre of mass of the system is at rest:

ψfree(r1 + u, . . . , rN + u) = ψfree(r1, . . . , rN) ∀u ∈ R
3 (4)

A more elaborate consequence is that one can generate from ψfree a semi-infinite

ladder of exact eigenstates of the Hamiltonian H of the trapped system,

H = Hfree +Htrap, Htrap =

N↑
∑

i=1

1

2
m↑ω

2r2i +

N
∑

i=N↑+1

1

2
m↓ω

2r2i (5)

Each rung of the ladder is indexed by a quantum number q ∈ N. The corresponding

unnormalised wavefunction is [15]

ψq(r1, . . . , rN) = L(s)
q (R2/a2ho)e

−
∑N

i=1 miωr
2
i /(2~)ψfree(r1, . . . , rN) (6)

where mi is the mass of particle i, R is the internal hyperradius of the N particles

R ≡

[

1

mu

N
∑

i=1

mi(ri −C)2

]1/2

(7)

involving the position of the centre of mass C =
(

∑N
i=1miri

)

/
(

∑N
i=1mi

)

of the system

and some arbitrary mass referencemu, aho = [~/(muω)]
1/2 is the corresponding harmonic

oscillator length and L
(s)
q (X) is the generalised Laguerre polynomial of degree q:

L(s)
q (X) ≡

X−seX

q!

dq

dXq
(Xq+se−X) (8)

In a harmonic potential, the centre of mass motion and the relative motion are separable.

Since the wavefunction ψfree and the internal variable R are translationally invariant,

the wavefunction ψq corresponds to the centre of mass motion in its ground state with
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an energy 3~ω/2. The eigenenergy of ψq is thus Eq = 3
2
~ω + Erel

q , where Erel
q is the

relative or internal eigenenergy, given by [15]

Erel
q = (s+ 1 + 2q)~ω ∀q ∈ N (9)

Physically, this ladder structure reflects the fact that scale invariant systems acquire in

a harmonic trap an exact breathing mode of angular frequency 2ω [13, 14]. This mode,

when quantised, is a bosonic mode of Hamiltonian 2~ωb̂†b̂, where the creation operator

b̂† and the annihilation operator b̂, obeying the usual commutation relation [b̂, b̂†] = 1,

are raising and lowering operators in each semi-infinite ladder, exciting and deexciting

the breathing mode by one quantum [15]. Mathematically, this reflects the SO(2,1)

dynamical symmetry of the trapped system, H being part of a SO(2,1) Lie algebra.

One can show that the mapping (6) is complete, meaning that all eigenstates in

the trap with a ground state centre of mass are obtained if one uses all possible ψfree

[15]. The trapped problem is thus reduced to a zero energy free space problem in the

rest frame and we only need in practice to determine the scaling exponents s of the

corresponding interaction-sensitive eigenstates ψfree.

2.2. The Faddeev ansatz in real space and in Fourier space

To filter out the interaction-sensitive states of the ideal gas, we use the technique

proposed in a footnote of reference [18]. We introduce a zero-range interaction between

the opposite spin fermions, with a finite s-wave scattering length a, in the form of

Wigner-Bethe-Peierls contact conditions on the N -body wavefunction [22, 23]: for all

↑↓ pairs, that is for all particle indices i and j, with 1 ≤ i ≤ N↑ and N↑ + 1 ≤ j ≤ N ,

there exists a function Aij , called the regular part, such that

ψfree(r1, . . . , rN)
rij→0
=

(

1

rij
−

1

a

)

Aij((rk −Rij)k 6=i,j) +O(rij) (10)

Here, the relative coordinates rij = ri − rj of particles i and j tend to zero at a fixed

position Rij = (miri + mjrj)/(mi + mj) of their centre of mass, different from the

positions rk, 1 ≤ k ≤ N and k 6= i, j, of the other particles. Due to the assumed

translational invariance (4) of the wavefunction in free space, we have directly considered

here Aij as a function of the relative positions rk − Rij. The idea now is that the

interaction-insensitive states have identically zero regular parts, Aij ≡ 0, for all i and j.

The interacting states, on the contrary, have nonzero regular parts, and they converge,

when a→ 0, to the desired interaction-sensitive states of the ideal gas.

To solve Schrödinger’s equation in the presence of the contact conditions (10), one

formulates it in the framework of distributions [24, 25]. Due to the 1/rij singularities,

to the identity ∆r(1/r) = −4πδ(r) and to the rewriting

−
~
2

2mi
∆ri −

~
2

2mj
∆rj = −

~
2

2M↑↓
∆Rij

−
~
2

2µ↑↓
∆rij (11)

with M↑↓ = m↑ + m↓ the total mass and µ↑↓ = m↑m↓/M↑↓ the reduced mass of two

opposite spin particles, equation (2) acquires three-dimensional Dirac delta terms in the
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right-hand side:

Hfreeψfree(r1, . . . , rN) =

N↑
∑

i=1

N
∑

j=N↑+1

2π~2

µ↑↓
Aij((rk −Rij)k 6=i,j)δ(rij) (12)

Multiplying formally equation (12) by the inverse of the operatorHfree, that is expressing

its solution in terms of the Green’s function of a 3N dimensional Laplacian, we obtain

ψfree as a sum over i and j of Faddeev components, ψfree =

N↑
∑

i=1

N
∑

j=N↑+1

Fij, with

Fij ≡
1

Hfree

2π~2

µ↑↓
Aij((rk −Rij)k 6=i,j)δ(rij) (13)

Let us review the symmetry properties of the Faddeev components. First, the

(i, j) source term in equation (12) is translationally invariant, as well as Hfree, and so

is Fij. Second, the (i, j) source term is invariant by rotation of rij at fixed Rij, and

so is Fij because the i and j Laplacians in Hfree can be rewritten as in equation (11);

as a consequence, Fij depends on rij only through its modulus rij. Third, due to the

fermionic exchange symmetry, the regular parts Aij are not functionally independent and

coincide with A1N↑+1 up to a sign, which is the signature of the permutation that maps

(1, . . . , i, . . . , N↑, N↑ + 1, . . . , j, . . . , N) to (i, 1, . . . , i− 1, i+ 1, . . . , N↑, j, N↑ + 1, . . . , j −

1, j + 1, . . . , N):

Aij((xk)k 6=i,j) = (−1)i−1(−1)j−(N↑+1)A1N↑+1((xk)k 6=i,j) (14)

Similarly, the Faddeev components can all be expressed in terms of the first Faddeev

component F1N↑+1, noted as F for concision. Fourth, at fixed (i, j) = (1, N↑ + 1), the

fermionic exchange symmetry among the last N↑−1 spin ↑ particles and among the last

N↓−1 spin ↓ particles imposes that F(r; (xk)k 6=1,N↑+1) is a fermionic function of its first

N↑−1 vectorial variables, and a fermionic function of its last N↓−1 vectorial variables:

F(r; (xσ(k))2≤k≤N↑
, (xk)N↑+2≤k≤N) = ǫ(σ)F(r; (xk)k 6=1,N↑+1) (15)

F(r; (xk)2≤k≤N↑
, (xσ(k))N↑+2≤k≤N) = ǫ(σ)F(r; (xk)k 6=1,N↑+1) (16)

where σ, of signature ǫ(σ), is any permutation of N↑−1 or of N↓−1 objects, respectively.

We finally take the non-interacting limit a→ 0 and we obtain the following Faddeev

ansatz for the wavefunction of the interaction-sensitive states of the ideal gas:

ψfree(r1, . . . , rN) =

N↑
∑

i=1

N
∑

j=N↑+1

(−1)i−1+j−(N↑+1)F(rij; (rk −Rij)k 6=i,j) (17)

The key point is that, in the (i, j) component, particles i and j approach in a purely

s-wave relative motion, which is a necessary condition for them to be sensitive to s-wave

contact interactions.

It will be shown in section 4 that this is not always sufficient to make ψfree

interaction-sensitive, because the Faddeev ansatz leads in some cases to ψfree ≡ 0, that

is to unphysical solutions. To investigate this point, the momentum space version of
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the Faddeev ansatz will be helpful. It was originally put forward for the interacting

gas [20, 25, 26, 27], but it can also be used to find the unphysical solutions of the non-

interacting gas, as they are the same at all interaction strength. Introducing the Fourier

representation of the regular part,

2π~2

µ↑↓
A1N↑+1((xk)k∈I) =

1

(2π)3

∫

∏

j∈I

d3kj
(2π)3

D((kj)j∈I)e
i
∑

j∈I kj ·xj (18)

where all indices run over the set I of integers from 2 to N different from N↑ + 1,

I = {1, . . . , N} \ {1, N↑ + 1} (19)

we obtain the Fourier space representation of the Faddeev component

F(r; (xk)k∈I) =

∫

d3q

(2π)6

∏

j∈I

d3kj
(2π)3

D((kj)j∈I)e
i
∑

j∈I kj ·xjeiq·r

~2q2

2µ↑↓
+

~2(
∑

j∈I kj)2

2M↑↓
+
∑

j∈I
~2k2j
2mj

(20)

where r is any vector of modulus r and, physically, q is the relative wave vector of

particles 1 and N↑ + 1 and −
∑

j∈I kj their total wave vector. This corresponds to the

following ansatz for the Fourier transform of the N -body wavefunction:

ψ̃free(k1, . . . ,kN ) =
δ(
∑N

i=1 ki)
∑N

i=1
~2k2i
2mi

N↑
∑

i=1

N
∑

j=N↑+1

(−1)i−1+j−(N↑+1)D((kn)n 6=i,j)(21)

in agreement with reference [28]. Obviously, D((kj)j∈I) is fermionic with respect to its

first N↑ − 1 vectorial variables, and fermionic with respect to its last N↓ − 1 vectorial

variables, exactly as A1N↑+1 and F . Also, its scaling exponent in the unitary limit can

be expressed in terms of the scaling exponent s of the wavefunction through the usual

power-counting argument for the Fourier transform:

D(λ(kn)n∈I) = λ−(s+ 3N−5
2

)D((kn)n∈I) ∀λ > 0 (22)

3. Scaling exponents of the interaction-sensitive states of the ideal gas

3.1. The general result for arbitrary particle numbers

It is well known from the one-body case that all eigenstates of the trapped system

Hamiltonian H are products of polynomials in the 3N coordinates of the particles and

of the Gaussian factor appearing in equation (6), and so are the ψq. Taking q = 0 in

that equation, so that L
(s)
q ≡ 1, one sees that the free space eigenstate ψfree(r1, . . . , rN) is

necessarily such a polynomial, and so is the Faddeev component F‡. As F depends on

‡ Up to an appropriate coordinate rescaling to account for a possible mass difference m↑ 6= m↓,

ψfree(r1, . . . , rN ) is a harmonic polynomial of degree d, since it is homogeneous and of zero Laplacian,

and is translationally invariant, so it can be written as RdYd(Ω), where R is the internal hyperradius (7),

Ω is a set of hyperangles and Yd is a so-called hyperspherical harmonic. We are however only interested

in the specific case of interaction-sensitive states, not discussed in the extensive book of Avery on

hyperspherical harmonics [4]. The reference [5] implemented the formalism of Avery with cleverly

chosen Jacobi coordinates ρi, that are invariant (up to a global sign) under the exchange of identical
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the modulus r (and not on the direction) of the relative coordinates of two ↑↓ particles,

only even powers of r can contribute to its expansion, hence the specific ansatz:

F(r; (xi)i∈I) =
∑

k≥0

r2kPk((xi)i∈I) (23)

where the set I is given by equation (19). Since ψfree has a well defined scaling exponent

s, see equation (3), F is a homogeneous polynomial of degree

d = s−
3N − 5

2
(24)

so that each polynomial Pk is homogeneous of degree d − 2k as long as d − 2k ≥ 0,

otherwise it is identically zero and the series (23) terminates. Last, ψfree has a zero

eigenenergy with respect to the free space Hamiltonian, see equation (2):

HfreeF(r1N↑+1; (ri −R1N↑+1)i∈I) = 0 (25)

From the explicit form (1) of Hfree, modified with equation (11) for the first ↑ and ↓

particles, and the chain rule of differential calculus, this is turned into a differential

equation for F :

(∆r + D̂)F(r; (xi)i∈I) = 0 (26)

Here ∆r, the usual three-dimensional Laplacian, can be restricted to its radial part

r−1∂2r (r ·) as far as the variable r is concerned, and the differential operator D̂, acting

only on the vectorial variables of the Faddeev component, is given by

D̂ = (1−t2)

N↑
∑

i=2

∆xi
+t(2−t)

N
∑

j=N↑+2

∆xj
+2t(1−t)

N↑
∑

i=2

N
∑

j=N↑+2

∇xi
·∇xj

(27)

with the mass ratio

t =
m↑

m↑ +m↓
∈]0, 1[ (28)

When applied to the expansion (23), the equation (26) gives a recurrence relation on

the polynomials Pk,

Pk+1((xi)i∈I) = −
1

(2k + 2)(2k + 3)
D̂Pk((xi)i∈I) ∀k ≥ 0 (29)

that ultimately allows to express them in terms of repeated actions of D̂ on the

polynomial P0, the generating polynomial.

In conclusion, to generate an arbitrary interaction-sensitive state ψfree of zero energy

in free space, one simply has to arbitrarily choose a polynomial P0((xi)i∈I) which is

homogeneous of degree d ∈ N and antisymmetric under the exchange of its first N↑ − 1

vectorial variables and under the exchange of its last N↓ − 1 ones. The corresponding

fermions. For example, for equal mass ↑↑↓ fermions, it took ρ1 = r1 − r2 and ρ2 = (r1 + r2)/2 − r3.

To express however the fact that, in an interaction-sensitive state, the opposite-spin particles 1 and 3

approach in the s-wave, one must rather use a system of coordinates containing r13 = r1 − r3, which

is not invariant by permutation of particles 1 and 2. This is why we introduced the extra ingredient of

the Faddeev ansatz in equation (17), not relying on a specific choice of Jacobi coordinates.
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scaling exponent is given by (24), and the corresponding Faddeev component is given

by

F(r; (xi)i∈I) =
∑

k≥0

r2k(−D̂)k

(2k + 1)!
P0((xi)i∈I) (30)

Then, one reconstructs the wavefunction ψfree from equation (17), and one generates a

semi-infinite ladder of interaction-sensitive eigenstates of the trapped system using the

mapping (6).

A natural choice, inspired by the rotational invariance, is to take as a basis of the

polynomials of a single vectorial variable x the set of homogeneous monomials

x 7→ x2n+ℓY m
ℓ (x̂) (31)

where n ∈ N, x̂ = x/x is the direction of x, parametrised by a polar angle and

an azimuthal angle in spherical coordinates, and Y m
ℓ is the corresponding spherical

harmonic of orbital quantum number ℓ ∈ N and azimuthal quantum number m (in

roman style to avoid confusion with a mass). To construct P0, one then puts one ↑

fermion in each (ni, ℓi,mi) state for 2 ≤ i ≤ N↑, and one ↓ fermion in each (ni, ℓi,mi)

state for N↑ + 2 ≤ i ≤ N , where the monomial states are chosen freely, except for

the constraint that, within each spin manifold, they must be different and sorted in

alphanumeric order to avoid multiple counting. This simple construction leads to a

total degree d =
∑

i∈I(2ni + ℓi) and to a scaling exponent

s =
3N − 5

2
+
∑

i∈I
(2ni + ℓi) (32)

According to the equation (9) the corresponding semi-infinite ladder of internal energies

of interaction-sensitive states is

Erel
q =

(

2q +
3

2

)

~ω +
∑

i∈I

(

2ni + ℓi +
3

2

)

~ω (33)

This writing lends itself to a simple physical interpretation. The first term is an energy

level of a harmonically trapped fictitious particle with zero angular momentum; this

fictitious particle corresponds to the relative motion of two opposite spin fermions in

the trap, and its restriction to the zero angular momentum sector ensures that it is

sensitive to s-wave interactions. The second contribution in equation (33) is any energy

level of an ideal gas of N↑ − 1 spin ↑ fermions and N↓ − 1 spin ↓ fermions in the trap.

As we shall see, the result (32) has to be refined for N > 2, as well as the transparent

form (33): some scaling exponents are unphysical and must be disregarded.

3.2. Explicit results for 2 + 1, 3 + 1 and 2 + 2 fermions

For few-body systems, it is most convenient to take generating polynomials P0 with

a well defined total angular momentum ℓ. As the r variable in equation (30) carries

a zero total angular momentum, the Faddeev component F and the corresponding

wavefunction ψfree have a total angular momentum ℓ. This conclusion extends to the
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trapped eigenstates ψq since the variable R and the Gaussian factor in equation (6)

are rotationally invariant (remember that the centre of mass of the gas is in its ground

state). Similarly, the eigenstates have the same parity as P0.

For 2+1 fermions, the sum in equation (32) contains a single term. The generating

exponents of the interaction-sensitive states are thus

sℓ,n = 2n+ ℓ + 2, ∀(n, ℓ) ∈ N
2 (34)

with a degeneracy 2ℓ + 1 and a parity equal to the natural parity (−1)ℓ. This agrees

with reference [16].

For 3 + 1 fermions, the sum in equation (32) runs over the set I = {2, 3} so it

involves the principal ni and orbital ℓi quantum numbers of particles 2 and 3. As these

are identical fermions, it is more convenient to use the principal (ncom, nrel) ∈ N2 and

orbital (ℓcom, ℓrel) ∈ N2 quantum numbers of their centre of mass and relative motions,

rewriting (32) as

s =
7

2
+ 2(ncom + nrel) + ℓcom + ℓrel (35)

and restricting to odd values of ℓrel. From the composition of the two angular momenta

ℓcom and ℓrel, an angular momentum ℓ can be obtained if and only if (ℓrel, ℓcom, ℓ) can

be the lengths of the sides of a triangle, that is |ℓrel − ℓcom| ≤ ℓ ≤ ℓrel + ℓcom, or more

conveniently

|ℓrel − ℓ| ≤ ℓcom ≤ ℓrel + ℓ (36)

The resulting parity (−1)ℓrel+ℓcom can now differ from the natural parity (−1)ℓ. We write

it as σ(−1)ℓ, where σ = ±1. Equivalently, ℓrel + ℓcom ≡ ℓ+ (1− σ)/2 (mod 2) so we set

s
(σ)
ℓ,n = 2n+ ℓ+

1− σ

2
+

7

2
, ∀(n, ℓ) ∈ N

2, ∀σ ∈ {−1, 1} (37)

It remains to sum the natural degeneracy 2ℓ + 1 over all values of (ncom, nrel) and

(ℓcom, ℓrel) to obtain the full degeneracy

D
(σ)
ℓ,n = (2ℓ+ 1)

∑

ℓrel∈2N+1

ℓ+ℓrel
∑

ℓcom=|ℓ−ℓrel|

∑

(nrel,ncom)∈N2

δ2(nrel+ncom),p−ℓrel−ℓcom (38)

where δ is the Kronecker symbol and p = ℓ + 2n + 1−σ
2
. The sum over (nrel, ncom) is

readily performed using the variables ntot = nrel + ncom ∈ N and nrel ranging from 0 to

ntot, as the summand depends only on ntot. This sum is nonzero only if ℓcom ≤ p− ℓrel
and if p− ℓrel − ℓcom is even, this second condition being taken care of by inclusion of a

factor [1 + (−1)p−ℓrel−ℓcom ]/2. Similarly, one introduces a factor [1 − (−1)ℓrel ]/2 to take

care of the oddness of ℓrel due to the fermionic antisymmetry. This leads to

D
(σ)
ℓ,n = (2ℓ+ 1)

∑

ℓrel∈N

min (ℓ+ℓrel,p−ℓrel)
∑

ℓcom=|ℓ−ℓrel|

[

1− (−1)ℓrel

2

] [

1 + (−1)p−ℓrel−ℓcom

2

]

×

(

1 +
p− ℓrel − ℓcom

2

)

(39)
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The double sum is calculated by distinguishing the cases 0 ≤ p−ℓ
2

≤ ℓ and ℓ < p−ℓ
2

§ and

the subcases σ = ±1. We finally obtain for 3 + 1 fermions:

D
(σ)
ℓ,n =

(2ℓ+1)
{

(2ℓ+1+σ)(n+1)(n+2)−[σ+(−1)ℓ]
[

n+1+ 1+(−1)n

2

]}

8
(40)

For 2 + 2 fermions, the particles indexed by the set I = {2, 4} are now

distinguishable. One reuses the last calculation, simply relaxing the parity condition on

ℓrel, that is removing the factor 1−(−1)ℓrel

2
in equation (39). The scaling exponent of the

interaction-sensitive states, written as in equation (37), now has a degeneracy

D
(σ)
ℓ,n = (2ℓ+ 1)

(

ℓ+
1 + σ

2

)

(n+ 1)(n+ 2)

2
(41)

Both results (40) and (41) vanish at all n for (ℓ, σ) = (0,−1) as they should, since

isotropic states of two particles (corresponding to the set I) necessarily have the natural

parity +1. Both also include unphysical scaling exponents corresponding to a vanishing

Faddeev ansatz wavefunction (17); this will be corrected in section 4.

4. Refining the theory: exclusion of the unphysical solutions

For N > 2, some of the scaling exponents predicted in section 3 are unphysical, as they

do not correspond to any interaction-sensitive state of the ideal gas: the corresponding

Faddeev ansatz wavefunction (17) vanishes, due to the destructive interference of its

individually nonzero Faddeev components. This problem was already solved for N = 3:

there is a single unphysical solution [7], corresponding to (n, ℓ) = (0, 0) in equation (34),

that is to a generating polynomial P0 = 1 and a Faddeev component F = 1 obviously

giving ψfree ≡ 0 in equation (17). To our knowledge, it is still open for N > 3. We

investigate it explicitly for N = 4. An infinite number of unphysical solutions is easily

predicted by a formal reasoning in Fourier space with divergent integrals, in section 4.1.

Then we perform a real space calculation on a case by case basis in section 4.2: for a

specific unphysical solution, taken as an example, we confirm the value of the generating

polynomial P0 predicted by the general Fourier space reasoning, giving a meaning to

the divergent integrals by analytic continuation; we also show that some unphysical

solutions are missed by the Fourier space reasoning.

4.1. Reasoning in Fourier space for N = 4

We start with the Faddeev ansatz (21) for the Fourier transform ψ̃free(k1, . . . ,kN)

of the wavefunction. It may happen that ψ̃free is identically zero, although the

individual contributions D((kn)n 6=i,j) are not. The corresponding scaling exponent is

then unphysical and must be disregarded.

§ In the first case, ℓcom runs from ℓ − ℓrel to ℓ + ℓrel for 0 ≤ ℓrel ≤
p−ℓ

2 , from ℓ − ℓrel to p − ℓrel for
p−ℓ

2 < ℓrel ≤ ℓ, and from ℓrel− ℓ to p− ℓrel for ℓ < ℓrel ≤
p+ℓ

2 . In the second case, ℓcom runs from ℓ− ℓrel
to ℓ + ℓrel for 0 ≤ ℓrel ≤ ℓ, from ℓrel − ℓ to ℓ + ℓrel for ℓ < ℓrel ≤

p−ℓ

2 , and from ℓrel − ℓ to p − ℓrel for
p−ℓ

2 < ℓrel ≤
p+ℓ

2 . In both cases, the sum over ℓcom is empty for ℓrel >
p+ℓ

2 .
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For 3+ 1 fermions, this happens if the function D is a non identically zero solution

of

D(k2,k3)−D(k1,k3) +D(k1,k2) = 0 ∀k1,k2,k3 (42)

From equation (22), it is expected that D(k1,k3) has a finite limit when k3 → +∞:

lim
k3→+∞

D(k1,k3) = f(k1) (43)

Taking this limit in equation (42) leads to the correctly antisymmetrised form

D(k1,k2) = f(k1)− f(k2) (44)

More generally, differentiating (42) with respect to k1 and k2, one sees that D(k1,k2)

has a vanishing crossed differential, which leads to the same ansatz (44). The value of

the function f(k) is actually imposed, up to constant factor, by the rotational symmetry

and the scaling invariance. For a total angular momentum ℓ and a scaling exponent s,

we get

f(k) = k−(s+ 7
2
)Y m

ℓ (k̂) (45)

where Y m
ℓ is a spherical harmonic and k̂ = k/k is the direction of k. Clearly f(k),

D(k1,k2) and the final wavefunction have the natural parity (−1)ℓ. Furthermore, as

we have seen, the Faddeev component F must be a homogeneous polynomial of degree

d. From the usual power-counting argument in the Fourier transform, we find that

s = d + 7/2, in agreement with equation (24) specialised to N = 4. Finally, we take

as a particular case x3 = r = 0 and we isolate in equation (20) the contribution of

the piece f(k2) in D(k2,k3). We then perform the change of variables k3 = k2k
′
3 and

q = k2q
′ and formally integrate over k3 and q the inverse of the energy denominator,

which simply pulls out a factor k42. We are left with an integral of the form
∫

d3k2Y
m
ℓ (k̂)k

1
2
−s

2 eik2·x2 (46)

This must be a homogeneous polynomial in x2 of angular momentum ℓ, of the form (31)

with n any natural integer. Again using a power-counting argument or the change

of variable k2 = x2k
′
2, we arrive at the unphysical value of the scaling exponent

s = 2n+ ℓ+ 7
2
, corresponding to the form (37) with σ = 1 and a degeneracy 2ℓ+ 1.

There is however a little subtlety. In the particular case (n, ℓ) = (0, 0), that is for

a total degree d = 0 and s = 7/2, there cannot exist a nonzero fermionic polynomial

P0(x2,x3) of degree zero; the expression (46) is a constant, as the change of variable

k2 = x2k
′
2 shows, and so are the contributions to F(0;x2,x3) of the pieces f(k2) and

f(k3) of D(k2,k3), which thus exactly cancel. This was already taken into account in

the reasoning above equation (32) and there is no unphysical solution to disregard.

As a consequence, we obtain a correction to the degeneracy of the scaling exponents

of the 3 + 1 interaction-sensitive states,

D̄
(σ)
ℓ,n = (2ℓ+ 1)

1 + σ

2
(1− δn,0δℓ,0) (47)

to be subtracted from the degeneracy D
(σ)
ℓ,n in equation (40).
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For 2 + 2 fermions, ψ̃free(k1, . . . ,kN) is identically zero if

D(k2,k4)−D(k2,k3)−D(k1,k4) +D(k1,k3) = 0 ∀k1,k2,k3,k4 (48)

It is now expected that

lim
k3→+∞

D(k1,k3) = f(k1) and lim
k1→+∞

D(k1,k3) = g(k3) (49)

As D is not subjected to any exchange symmetry, the functions f(k) and g(k) are in

general independent, but they both tend to zero at large k. Taking the limit k1 → +∞

and k3 → +∞ in equation (48), we obtain the ansatz

D(k2,k4) = f(k2) + g(k4) (50)

The more direct argument of cross-differentiation of equation (48) with respect to k2

and k4, which kills all terms but the first one, also leads to the ansatz (50). The previous

3+1 reasoning is readily adapted to this case. Due to the rotational symmetry and the

scale invariance,

f(k) = αk−(s+ 7
2
)Y m

ℓ (k̂) and g(k) = βk−(s+ 7
2
)Y m

ℓ (k̂) (51)

where α and β are arbitrary constants. As the Faddeev components F(0;x2, 0) and

F(0; 0,x4) must be of the form (31), with n any natural integer, we conclude that the

unphysical scaling exponents are of the form (37) with a a parity σ = 1 relative to the

natural parity, and a degeneracy 2(2ℓ + 1), the extra factor two reflecting the linear

independence of α and β.

There is here again a little subtlety. In the particular case (n, ℓ) = (0, 0), the total

degree is d = 0 and the contributions to F(0;x2,x4) of the pieces f(k2) and g(k4) in

D(k2,k4) are constants proportional to α and β, so they are not linearly independent.

No extra factor two is required.

As a consequence, we obtain a correction to the degeneracy of the scaling exponents

of the 2 + 2 interaction-sensitive states,

D̄
(σ)
ℓ,n = (2− δn,0δℓ,0)(2ℓ+ 1)

1 + σ

2
(52)

to be subtracted from the degeneracy D
(σ)
ℓ,n in equation (41).

The predictions (40), (41), (47), (52) can be tested against the results of reference

[19], where the scaling exponents of the interaction-sensitive states of four trapped spin

1/2 non-interacting fermions were calculated numerically, exhaustively up to some cut-

off s ≤ 19/2 ‖. As the table 1 shows, there is agreement for 3 + 1 fermions and for

the unnatural parity states of 2 + 2 fermions, but there is disagreement for the natural

parity states of 2 + 2 fermions. This means that some unphysical states are missed by

the above Fourier space reasoning. This is confirmed in section 4.2, where it is also

exemplified that, surprisingly, the obviously sufficient conditions (42) and (48) to have

an unphysical solution are not always necessary.

‖ For the (ℓ, n, σ) = (0, 3,+) channel of the 2+ 2 system, there is a typo in table I of the supplemental

material of reference [19], as kindly communicated to us by Dörte Blume: the scaling exponent of the

ideal gas level labeled “st. no. 16” should be 19
2 instead of 23

2 . This is corrected here.
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Still we can give to the unphysical state degeneracies (47) and (52) a simple physical

picture. Everything happens as if the particles absent from the set I, that is the spin ↑

particle i = 1 and the spin ↓ particle j = N↑+1, were in fact still there and both prepared

in the mode (n, ℓ,m) = (0, 0, 0). This adds an extra constraint to the modes (ni, ℓi,mi)i∈I
that can be populated by fermions, a constraint not included in the reasoning above

equation (32). This immediately leads to the occurrence of three types of unphysical

solutions:

• unphysical solutions of type ↑: one puts one of the spin ↑ fermions of the set

I, 2 ≤ i ≤ N↑, in the mode (0, 0, 0). All the spin ↓ fermions of the set I,

N↑ + 2 ≤ i ≤ N , are put in modes (ni, ℓi,mi) 6= (0, 0, 0).

• unphysical solutions of type ↓: one puts one of the spin ↓ fermions of the set I,

N↑ + 2 ≤ i ≤ N , in the mode (0, 0, 0). All the spin ↑ of the set I, 2 ≤ i ≤ N↑, are

put in modes (ni, ℓi,mi) 6= (0, 0, 0).

• unphysical solutions of type ↑↓: one puts one of the spin ↑ fermions and one of the

spin ↓ fermions of the set I in the mode (0, 0, 0).

A natural expectation, that we shall not try to prove here, is that this physical picture

applies to all N .

4.2. An investigation in real space for N = 4

The previous reasoning in Fourier space, though elegant, is formal. It involves integrals

with arbitrarily severe infrared divergences, see for example (46), since s can be

arbitrarily large and positive. To believe in this reasoning, it is essential to extract

a well defined prediction for the generating polynomial P0((xk)k∈I) of the unphysical

solutions, and to check explicitly, by manipulating polynomials in real space, that the

corresponding Faddeev ansatz vanishes.

We shall use two main recipes to obtain finite generating polynomials P0 from the

diverging Fourier space integrals. First, we can pull out infinite constants, since P0

is defined up to a global factor. Second, we can use analytic continuation. Here, we

exemplify the procedure for 3 + 1 fermions in the manifold ℓ = 1, n = 2 and σ = +1.

According to the Fourier space reasoning, there should be a single unphysical solution

of azimuthal quantum number m = 0. The corresponding polynomial P0(x2,x3) =

F(0;x2,x3), of degree d = 2n+ ℓ = 5, is given by

P0(x2,x3) = [−i∇x2φ(x2,x3)− (x2 ↔ x3)] · ez (53)

where ez is the unit vector along the quantization axis z and where the function φ is

φ(x2,x3) =

∫

d3qd3k2d
3k3

(2π)12
k
−(d+8)
2

ei(k2·x2+k3·x3)

~2

2m↑
[k22 + k23 + t(k2 + k3)2 +

q2

1−t
]

(54)

as it results from equation (20) and a differentiation with respect to x2 under the integral

sign. First, we transform (54) only using scaling laws and scale invariances. At fixed

k2, we perform the change of variable k3 = k′
3 −

t
1+t

k2 to make the energy denominator
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(ℓ, n, σ) s
(σ)
ℓ,n

D(σ)
ℓ,n

2ℓ+1

D̄(σ)
ℓ,n

2ℓ+1
DBlume

2ℓ+1

D(σ)
ℓ,n

2ℓ+1

D̄(σ)
ℓ,n

2ℓ+1

DRef.[19]
2ℓ+1

(0, 0,+) 7
2

0 0 0 1 1 0

(0, 1,+) 11
2

1 1 0 3 2 1

(0, 2,+) 15
2

2 1 1 6 2→3 3

(0, 3,+) 19
2

4 1 3 10 2→4 6

(1, 0,+) 9
2

1 1 0 2 2 0

(1, 1,+) 13
2

3 1 2 6 2→3 3

(1, 2,+) 17
2

6 1 5 12 2→4 8

(1, 0,−) 11
2

1 0 1 1 0 1

(1, 1,−) 15
2

2 0 2 3 0 3

(1, 2,−) 19
2

4 0 4 6 0 6

(2, 0,+) 11
2

1 1 0 3 2 1

(2, 1,+) 15
2

4 1 3 9 2→3 6

(2, 2,+) 19
2

8 1 7 18 2→3 15

(2, 0,−) 13
2

1 0 1 2 0 2

(2, 1,−) 17
2

3 0 3 6 0 6

Table 1. For 3 + 1 fermions (left) and 2 + 2 fermions (right), values and degeneracies

of the scaling exponents of the interaction-sensitive states up to s = 19/2. The column

D
(σ)
ℓ,n corresponds to the bare degeneracies (40) and (41). When subtractively corrected

by the degeneracies of the unphysical solutions given in the column D̄
(σ)
ℓ,n , it agrees

with the numerical results of reference [19] reported in the column DRef.[19] (see our

footnote ‖). The values of D̄
(σ)
ℓ,n are given by the Fourier space predictions (47) and

(52), corrected if necessary (and as indicated by an arrow) by the real space predictions

of section 4.2. The parity is σ(−1)ℓ, σ = ± being relative to the natural parity (−1)ℓ.

rotationally invariant. Second we set k2 = (1+t)k′
2 and k′

3 = (1+2t)1/2k′′
3 so that k

′
2 and

k′′3 have identical coefficients in the energy denominator. This leads to the introduction

of modified coordinates:

X = (1 + t)x2 − tx3 and Y = (1 + 2t)1/2x3 (55)

We integrate over q using a scaling law,
∫

d3q
q2+Q2 ∝ Q for Q > 0, as the change of variable

q = Qq′ shows; this amounts to extracting a diverging constant factor. Integrating over

the directions of k′
2 and k′′

3 and dropping the primes for simplicity, we are left with

φ(x2,x3) ∝

∫ +∞

0

dk2dk3
k3(k

2
2 + k23)

1/2

XY kd+7
2

[cos(k2X−k3Y )−cos(k2X+k3Y )](56)

We move to polar coordinates, (k3, k2) = (ρ cos θ, ρ sin θ) to again take advantage of scale

invariance: in the integral over ρ involving the first/second cosine term, we perform the

change of variable ρ = ρ′/|X sin θ∓Y cos θ| and we pull out a common infinite constant

factor
∫

R+
dρ′

ρ′d+4 cos ρ
′. As d + 3 is even, we can remove the absolute values and we are

left with

φ(x2,x3) ∝

∫ π/2

0

dθ
cos θ[(X sin θ−Y cos θ)d+3−(X sin θ+Y cos θ)d+3]

XY sind+7 θ
(57)
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When expanded, the expression in between square brackets only involves odd powers

of sin θ and of cos θ. Eliminating the cosine with cos2 θ = 1 − sin2 θ, we are left with

integrals over θ of the form f(−n), n ∈ N∗ and

f(z) ≡

∫ π/2

0

dθ sin2z+1 θ (58)

For ℜz > −1 this integral is convergent and given by f(z) =
π1/2

2

Γ(z + 1)

Γ(z + 3
2
)
. By the

usual analytic continuation of Euler’s Gamma function, one can extend f(z) to C \ R,

where it can also be written as

f(z) =
π1/2

2 tan(πz)

Γ(−z − 1
2
)

Γ(−z)
(59)

thanks to Euler’s reflection formula Γ(z)Γ(1− z) = π/ sin(πz). Unfortunately, this still

has poles at the negative integers. As we are allowed to pull out from equation (57) a

constant diverging factor, we divide it by f(−1), and then we regularise the integrals

by introducing a tiny imaginary part in the argument of f . We now face

An ≡ lim
ǫ→0

f(−n+ iǫ)

f(−1 + iǫ)
(60)

As the tangent function is periodic of period π, the troublesome first denominator in

equation (59) is canceled out, the poles disappear and we obtain the recipe
∫ π/2

0
dθ sin−2n+1 θ

∫ π/2

0
dθ sin−1 θ

= An =
Γ(n− 1

2
)

π1/2Γ(n)
∀n ∈ N

∗ (61)

For d = 5 this leads to the finite prediction

φ(x2,x3) ∝ [A6Y
6+A5Y

4(7X2−4Y 2)+A4Y
2(7X4−21X2Y 2+6Y 4)

+A3(X
6−14X4Y 2+21X2Y 4−4Y 6)+A2(Y

2−X2)(X4−6X2Y 2+Y 4)] (62)

Turning to the original variables x2 and x3 and calculating the gradient in equation (53),

we obtain an explicit expression for P0(x2,x3), and then from (30) an explicit expression

for F(r;x2,x3). We can then evaluate the four-body wavefunction when particles 1 and

4 are at the same location, say at the origin of coordinates, from (17):

ψfree(0,x2,x3, 0) = F(0;x2,x3)− F(x2;−tx2,x3 − tx2) (63)

+ F(x3;−tx3,x2 − tx3) (64)

After lengthy calculations, we find that it is zero at all x2 and x3. While we have taken

r1 = r4 = 0 for simplicity in the above argument, we can also show, after lengthy

calculations, that ψfree(r1, r2, r3, r4) is identically zero for all ri, 1 ≤ i ≤ 4. Thus, our P0

obtained from the Fourier space reasoning indeed generates an unphysical solution.

Is this solution the only one, or is there some unphysical solution missed in section

4.1? To answer this question, still in the manifold ℓ = 1, n = 2 and σ = +1 for 3 + 1

fermions, we write P0 in the most general form

P0(x2,x3) = x3 · ez

[

5
∑

k=0

ckpk(x2,x3)

]

− (x2 ↔ x3) (65)
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where the pk(x,y) is a basis of rotationally invariant homogeneous polynomials of degree

4, for example p0(x,y) = y4, p1(x,y) = x4, p2(x,y) = x2y2, p3(x,y) = y2(x · y),

p4(x,y) = x2(x · y), p5(x,y) = (x · y)2, and the coefficients ck are unknown.

Then, we calculate the Faddeev component and we expand the resulting polynomial

ψfree(0,x2,x3, 0) in the same basis, as in equation (65), with coefficients (c′k)0≤k≤5

linearly related to the (ck)0≤k≤5 via a six-by-six matrix A (too long to be given here).

Then ψfree(0,x2,x3, 0) is identically zero if and only if all the c′k are zero, that is

A~c = ~0, (66)

where the vector ~c collects the six unknowns (ck)0≤k≤5. For a mass ratio 0 < t < 1 we

find that the null space of A is indeed of dimension one¶, and is spanned by the Fourier

space prediction discussed above.

We have systematically searched for unphysical solutions missed by the Fourier

space reasoning for 2 + 2 fermions in natural parity states, for all the values of

(ℓ, n) appearing in the table 1. The strong motivation to do so is to recover the

degeneracies obtained numerically in reference [19], which by construction are exempt

from unphysical solutions. We use the previous procedure, expanding P0(x,y) over

a basis of the homogeneous polynomials pk(x,y) of angular momentum ℓ and degree

2n + ℓ. We restrict to a zero angular momentum along ez, multiplying the obtained

degeneracy by 2ℓ + 1. As we have seen, for ℓ = 0, we take as a basis the set of

monomials x2n1y2n2(x · y)n3, with n1 + n2 + n3 = n. For ℓ = 1, we take the set

(x · ez)x
2n1y2n2(x · y)n3 and (y · ez)x

2n1y2n2(x · y)n3, with n1 + n2 + n3 = n. For

ℓ = 2, we take [3(x · ez)
2 − x2]x2n1y2n2(x · y)n3, [3(y · ez)

2 − y2]x2n1y2n2(x · y)n3 and

[3(x · ez)(y · ez) − x · y]x2n1y2n2(x · y)n3, with n1 + n2 + n3 = n. From the generating

polynomial with arbitrary coefficients ck in the basis, we calculate the polynomial

ψfree(0,x, 0,y) and expand it with coefficients c′k in the same basis. This gives the

coefficients of the matrix A relating the c′k to the ck: ~c
′ = A~c. The number of unphysical

solutions is equal to the dimension of the null space of A. As indicated by an arrow in

the second D̄ column of the table, this corrects the Fourier space prediction in six cases.

We then obtain agreement with the numerical results of reference [19].

In all cases, we have found that the unphysical solutions predicted by the

Fourier space reasoning (amenable to an explicit prediction for P0(x,y) by analytical

continuation as explained in this section) are in the null space of the matrix A. As we

now show on a simple example, some elements of the null space are missed due to the

fact that the conditions (42) and (48) are sufficient but not necessary. Let us consider

the case of 2 + 1 fermions and take D(k) = k−(s+2) = k−4, which corresponds to the

already known s = 2 unphysical solution. This does not satisfy the condition equivalent

to (42) for 2 + 1 fermions, that is D(k2)−D(k1) = 0. Still the generating polynomial

¶ Interestingly, the null space of A is of dimension 2 for the infinite mass impurity t = 0 and of

dimension 4 for the zero mass impurity t = 1, leading to spurious unphysical solutions.
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P0 is a constant, as a power-counting shows:

P0(x) ∝

∫

d3qd3k2
D(k2)e

ik2·x

q2 + (1− t2)k22
∝

∫

d3k2
eik2·x

k32
∝ x0 (67)

So is the Faddeev component and, due to the fermionic antisymmetry, the whole Faddeev

ansatz ψfree is zero
+.

5. Implications for the cluster or virial expansion for the unitary gas

The cluster expansion is an expansion of the pressure of a thermal equilibrium system

in powers of the fugacity, that is at a low density or a high temperature relative to the

quantum degeneracy threshold. It is a powerful tool, because it applies even for strongly

interacting systems. Recently, the cluster coefficients were accessed experimentally in

the unitary spin 1/2 Fermi gas up to fourth order [8, 10]. To calculate the cluster

coefficients with the harmonic regulator technique [12, 16, 18], one must determine the

interaction-sensitive energy levels of the unitary gas and of the ideal gas in a harmonic

trap. This makes the connection with the present study. In section 5.1 we show that the

interaction-sensitive energy levels of the ideal gas are related to poles vn of a generalised

Efimov transcendental function Λ(s), while the interaction-sensitive energy levels of

the unitary gas are related to roots un of Λ(s). In section 5.2 we obtain optimised

writings of the third and fourth cluster coefficients in terms of sums
∑

n(e
−ω̄un − e−ω̄vn),

which allows us to extend the applicability of the numerical calculations of the fourth

cluster coefficient of the reference [19] to lower values of ω̄ ≡ ~ω/(kBT ). In section 5.3,

we produce some explicit results, showing that the conjecture of reference [20] for the

fourth cluster clearly fails in the 2 + 2 fermion sector, and we construct on physical

grounds a new, more successful conjecture.

5.1. The ideal and unitary gas scaling exponents versus the poles and roots of Efimov’s

transcendental function

We consider now a zero energy E = 0− solution of Schrödinger’s equation for two-

component interacting fermions in free space, with ↑↓ contact interactions described

+ There is a s ↔ −s duality due to the evenness of Efimov’s transcendental function, see section 5.1.

As D(k) ∝ k−(s+2), the dual of D(k) = k−4 is D(k) = 1. It corresponds to a negative value s = −2,

it can not be mapped to a polynomial Faddeev component in real space and it is not acceptable here.

However, it does solve the sufficient condition D(k2) − D(k1) = 0 for a zero Faddeev ansatz. For

three identical bosons, the unphysical solution in the sector ℓ = 1, σ = 1 is s = 3 [7], corresponding

to D(k) ∝ k̂·ez

k5 , so its dual D(k) ∝ k · ez obeys the sufficient condition D(k1) +D(k2) +D(k3) = 0

restricted to the subspace k1 + k2 + k3 = 0; the unphysical solution in the sector ℓ = 0 is s = 4

[7], corresponding to D(k) ∝ k−6, so its dual D(k) ∝ k2 by no means obeys the sufficient condition

D(k1) +D(k2) +D(k3) = 0, but one can argue that D(k1) +D(k2) +D(k3) ∝ k21 + k22 + k23 simplifies

with the energy denominator in the bosonic equivalent of equation (21), leading to ψfree(r1, r2, r3) = 0

except on a set of zero measure, if the Fourier transform is taken in the framework of distributions.
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by the Wigner-Bethe-Peierls contact conditions of equation (10). The regular part

A((xk)k∈I) = A1N↑+1((rk −R1N↑+1)k 6=1,N↑+1) then solves an integral equation [27, 28]

M [A] = a−1A (68)

where the linear operator M does not depend on the scattering length a and the set I

is given by the equation (19). In the unitary limit a−1 = 0 and in the ideal gas limit

a−1 = ∞, the gas is scale invariant and the function A has some scaling exponent sA,

conveniently defined by a shift of +1 in the exponent of equation (3):

A(λ(xk)k∈I) = λsA+1− 3N−5
2 A((xk)k∈I) ∀λ > 0 (69)

Inserting in the equation (68) the ansatz A((xk)k∈I) = R
sA+1− 3N−5

2
A Φ(ΩA) where RA

is the hyperradius and ΩA are hyperangles parametrising the (xk)k∈I , one obtains an

implicit equation for sA,

Λ
(σ)
ℓ (sA)

a−1=0
= 0 or Λ

(σ)
ℓ (sA)

a−1=∞
= ∞ (70)

where we could restrict to a subspace of fixed angular momentum ℓ ∈ N and parity

σ(−1)ℓ, σ = ±1, due to the rotational invariance and the parity invariance. Formally

Φ(ΩA) is the eigenvector of some linear sA-dependent operator M
(σ)
ℓ (sA) with a zero or

an infinite eigenvalue, the function Λ
(σ)
ℓ (sA) is the determinant of that linear operator,

Λ
(σ)
ℓ (sA) = det M

(σ)
ℓ (sA) (71)

and is obviously independent of a. We call it Efimov’s transcendental function, because it

was calculated analytically by Efimov forN = 3 [29], see also references [7, 30, 31, 32, 33].

For N = 4, it was evaluated numerically, for imaginary values of sA only [20, 26].

Importantly, it is an even function of sA. In what follows, we assume that there is no

N -body Efimov effect, which leads to known constraints on the mass ratio m↑/m↓ for

N = 3 [29, 33, 34] and for N = 4 [20, 26]. As a consequence, all the roots of Λ
(σ)
ℓ (sA)

are real. Considering (70) we call (u
(σ)
ℓ,n)n∈N the set of positive roots of Λ

(σ)
ℓ and (v

(σ)
ℓ,n )n∈N

the set of positive poles of Λ
(σ)
ℓ , counted with a degeneracy 2ℓ + 1, the negative roots

and poles being their opposites:

Λ
(σ)
ℓ (u

(σ)
ℓ,n > 0) = 0 and Λ

(σ)
ℓ (v

(σ)
ℓ,n > 0) = ∞, ∀n ∈ N (72)

The last step is to relate the scaling exponent sA in equation (69) of the regular

part A to the scaling exponent s (3) of the wavefunction ψfree(r1, . . . , rN). For the

unitary gas, denoted by a diacritical sign, the term 1
a
vanishes in the Wigner-Bethe-

Peierls contact condition, so ψfree ∼ r−1A and, thanks to the shift of +1 of the exponent

in the definition (69) one simply has

š
a−1=0
= sA (73)

For the ideal gas, the term 1
a
diverges in the Wigner-Bethe-Peierls contact condition, so

ψfree ∼ a−1A and

s
a−1=∞
= sA + 1 (74)
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Combining the equations (70) and (72), the general considerations from the SO(2,1)

symmetry of the Hamiltonian in section 2.1, and the fact that only positive values of s

are physical in the absence of N -body resonances [15, 35, 36, 37], we obtain the general

expressions for the SO(2,1) ladders of internal energy levels of the unitary gas and of the

ideal gas in terms of the positive roots and the positive poles of Efimov’s transcendental

function, each energy level being counted with a degeneracy 2ℓ+ 1:

Ěrel
q

a−1=0
= (u

(σ)
ℓ,n+1+2q)~ω and Erel

q
a−1=∞
= (v

(σ)
ℓ,n +2+2q)~ω ∀q ∈ N(75)

This remarkable property was noticed and used in reference [18] for three bosons and

in reference [17] for three fermions, but it was not physically interpreted. We have

presented here a general physical derivation of this fact, independently of the particle

number. Note that (75) includes the unphysical solutions as defined in section 4 because

it involves an integral equation (68) ultimately relying on the Faddeev ansatz; these

unphysical solutions are common to the ideal gas and the unitary gas, because the

Faddeev ansatz, being zero, satisfies the Wigner-Bethe-Peierls contact conditions for all

values of the scattering length a [18]. Whereas the u
(σ)
ℓ,n can probably not be determined

analytically beyond N = 3, the v
(σ)
ℓ,n can be explicitly obtained from our results of section

3.

5.2. Optimized writing of the fourth-order cluster coefficients

In the harmonic regulator method [12], one performs the cluster or virial expansion

for the thermal equilibrium harmonically trapped system. The grand potential of the

trapped two-component Fermi gas is by definition

Ω = −kBT ln





+∞
∑

N↑=0

+∞
∑

N↓=0

ZN↑,N↓
z
N↑

↑ z
N↓

↓



 (76)

where ZN↑,N↓
is the canonical partition function of N↑ + N↓ fermions at temperature

T in isotropic harmonic traps with a common angular frequency ω for the ↑ and ↓

components, and the fugacities zσ of the components are related to their chemical

potentials µσ by zσ = eβµσ , with β = (kBT )
−1. In the low density, non-degenerate

limit µσ → −∞ at fixed temperature, that is zσ → 0, one performs the so-called cluster

expansion of the grand potential [11]:

Ω = −kBTZ1

+∞
∑

N↑=0

+∞
∑

N↓=0

BN↑,N↓
z
N↑

↑ z
N↓

↓ (77)

where Z1 = Z1,0 = Z0,1, the single fermion partition function in the trap, is given by

Z1 =
1

[2 sinh(ω̄/2)]3
with ω̄ ≡ β~ω (78)

It is convenient to restrict to the differences ∆ZN↑,N↓
and ∆BN↑,N↓

between the

interacting gas and the ideal gas values of ZN↑,N↓
and BN↑,N↓

: the ideal gas values
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are elementary to calculate, and in the differences, the contribution of the interaction-

insensitive states exactly cancel. Also, one can use the separability of the centre of

mass and the relative motion of the particles to restrict to the partition functions of the

internal energy levels,

∆ZN↑,N↓
= Z1∆Z

rel
N↑,N↓

(79)

These internal or relative energies are what is ultimately calculated, see the equations

(9), (33) and (75) and the references [16, 19]. Expanding the equation (76) in powers of

the fugacities and equating the coefficients of z
N↑

↑ z
N↓

↓ to those of the equation (77), one

obtains up to fourth order:

∆B1,1 = ∆Zrel
1,1 (80)

∆B2,1 = ∆Zrel
2,1 − Z1∆B1,1 (81)

∆B3,1 = ∆Zrel
3,1 − Z1Z

rel
2,0∆B1,1 − Z1∆B2,1 (82)

∆B2,2 = ∆Zrel
2,2 − Z2

1∆B1,1 − Z1

(

1

2
∆B2

1,1 +∆B2,1 +∆B1,2

)

(83)

At any given order, we have recursively used the relations obtained at a lower order

to eliminate partition functions ∆Zrel in terms of cluster coefficients ∆B. The cluster

coefficients with N↑ < N↓ are obtained by exchanging the roles of ↑ and ↓ in the above

expressions. Note that ∆BN↑,0 = ∆B0,N↓
= 0. Also the ideal gas values Ba=0

N↑,N↓
are zero

except if N↑ = 0 or N↓ = 0. Last, from a use of the centre of mass and relative quantum

numbers of two ↑ fermions as explained around equation (35), one has

Zrel
2,0 =

∑

ℓrel∈2N+1

+∞
∑

nrel=0

(2ℓrel + 1)e−(2nrel+ℓrel+3/2)ω̄ =
e−3ω̄/2(1 + 3e2ω̄)

(2 sinh ω̄)3
(84)

From now on, the interacting two-component Fermi gas is taken in the unitary

limit a−1 = 0. For 1 + 1 fermions the scaling exponents in equations (3) and (9) are

respectively š = −1/2 and s = 1/2 in the unitary and non-interacting limits so, from

equation (80),

∆B1,1 =
∑

q∈N

[

e−(2q+1/2)ω̄ − e−(2q+3/2)ω̄
]

=
1

2 cosh(ω̄/2)
(85)

For higher order cluster coefficients, the goal is to obtain optimized writings in terms of

the following sums,

SN↑,N↓
≡

∑

n,ℓ,σ

(2ℓ+ 1)
[

e−u
(σ)
ℓ,n

ω̄ − e−v
(σ)
ℓ,n

ω̄
]

(86)

where the roots u
(σ)
ℓ,n and poles v

(σ)
ℓ,n of Efimov’s transcendental function (71) for N↑+N↓

fermions are defined in section 5.1, and since this sum only involves interaction-sensitive

states, the relative parity σ is +1 for N = 3 and ±1 for N = 4. The motivation is

that these sums evoke the sums of residues resulting from the application of Cauchy’s

theorem to a contour integration of the functions sA 7→ e−sAω̄ d
dsA

ln Λ
(σ)
ℓ (sA) [18], which

suggests that they can be expressed in terms of an integral of these functions on the
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imaginary axis where they can be calculated even for N = 4 [20, 26]. Importantly, these

sums SN↑,N↓
include the unphysical solutions discussed in section 4. This is in marked

contrast with ∆Zrel
2,1, ∆Z

rel
3,1 and ∆Zrel

2,2 where one can indifferently include or exclude the

unphysical solutions for N = 3 and N = 4, since they are common to the ideal gas and

the unitary gas and cancel out in ∆Zrel
2,1, ∆Z

rel
3,1 and ∆Zrel

2,2.

To express the ∆B in terms of the sums S, we start from

∆Zrel
N↑,N↓

=
∑

n,ℓ,q,σ

(2ℓ+ 1)
[

e−(u
(σ)
ℓ,n

+1+2q)ω̄ − e−(v
(σ)
ℓ,n

+2+2q)ω̄
]

(87)

then we use a plus-minus trick, writing exp[−(v
(σ)
ℓ,n +2+2q)ω̄] = exp[−(v

(σ)
ℓ,n +1+2q)ω̄]−

(exp ω̄ − 1) exp[−(v
(σ)
ℓ,n + 2 + 2q)ω̄] to obtain

∆Zrel
N↑,N↓

=
SN↑,N↓

2 sinh ω̄
+ (eω̄ − 1)Zrel,int.sens.withunphys.sol.

N↑,N↓
(88)

where Zrel,int.sens.withunphys.sol.
N↑,N↓

=
∑

n,ℓ,σ,q(2ℓ + 1) exp[−(v
(σ)
ℓ,n + 2 + 2q)ω̄] is the partition

function of the interaction-sensitive states of the relative motion of trapped 2 + 1

fermions, 3 + 1 fermions or 2 + 2 fermions including the unphysical solutions. This

partition function is known from the equation (33): it is equal to Zℓ=0
1 times the partition

function of respectively one trapped particle Z1, two trapped ↑↑ fermions Z2,0 or two

trapped ↑↓ non-interacting particles Za=0
1,1 = Z2

1 . Here Zℓ=0
1 = e−ω̄/2/[2 sinh ω̄] is the

single particle partition function restricted to the ℓ = 0 states and accounts for the term

(2q + 3
2
)~ω in the equation (33). Since

(eω̄ − 1)Zℓ=0
1 −∆B1,1 = 0 (89)

this leads to the reduced forms∗

∆B2,1 =
S2,1

2 sinh ω̄
(90)

∆B3,1 =
S3,1

2 sinh ω̄
− Z1∆B2,1 (91)

∆B2,2 =
S2,2

2 sinh ω̄
− Z1

(

1

2
∆B2

1,1 +∆B2,1 +∆B1,2

)

(92)

To obtain the cluster coefficients of the spatially homogeneous gas, one must calculate

the (finite) limit of the ∆B when ω̄ → 0. These forms are then optimised in the sense

that one has got rid in the ∆B of the term ∝ Z1 diverging as 1/ω̄3 for N = 3, and of

the terms ∝ Z2
1 diverging as 1/ω̄6 for N = 4.

∗ In evaluating
∑

n,ℓ,σ,q(2ℓ + 1) exp[−(v
(σ)
ℓ,n + 2 + 2q)ω̄] we include unphysical solutions. Thus, the

corresponding sum SN↑,N↓
must also include unphysical solutions. An alternative choice would be to

exclude the unphysical solutions in both sums; this would be inconvenient because we do not know all

unphysical solutions for 2 + 2 fermions.



Ideal Fermi gas interaction-sensitive states and unitary Fermi gas virial expansion 23

5.3. Application to the numerical data of reference [19] and test of old and new

conjectures

For 2+1 unitary fermions, an application of Cauchy’s theorem to the reduced form (90)

as in reference [18] gives the exact result:

∆B2,1 =
∑

ℓ∈N
(2ℓ+ 1)

∫

R

dS

2π

sin(ω̄S)

2 sinh ω̄

d

dS
[lnΛℓ(iS)] (93)

For 3 + 1 or 2 + 2 unitary fermions, it is not understood yet how the terms ∝ Z1

in equations (91) and (92), which diverge for ω̄ → 0+ contrarily to ∆BN↑,N↓
, can

be compensated by poles of the logarithmic derivative of the corresponding Efimov’s

transcendental function♯. Simply the following conjectured values were proposed in

reference [20], by an abrupt generalisation of equation (93) with no justification:

∆Bold conj
N↑,N↓

= IN↑,N↓
(94)

Here IN↑,N↓
is the following imaginary axis integral, shown to be finite in reference [20]:

IN↑,N↓
≡

∑

ℓ∈N,σ=±1

(2ℓ+ 1)

∫

R

dS

2π

sin(ω̄S)

2 sinh ω̄

d

dS

[

ln Λ
(σ)
ℓ (iS)

]

(95)

where Λ
(σ)
ℓ is given by the equation (71) and the corresponding linear operatorsM

(σ)
ℓ (iS)

are given in reference [26] for 3 + 1 fermions and in reference [20] for 2 + 2 fermions.

The resulting value of the fourth cluster coefficient ∆b4 of the spatially homogeneous

system for m↑ = m↓ is however in complete contradiction with the experimental results

[8, 10], even for its sign.

We make here a more detailed test of the conjecture (94). From the scaling

exponents š
(σ)
ℓ,n and s

(σ)
ℓ,n of the interaction-sensitive states of the unitary and ideal four-

particle systems calculated numerically up to the cut-off š = 19/2 in reference [19], one

can accurately calculate ∆B3,1 and ∆B2,2 for not too small ω̄. To evaluate ∆B2,1, which

appears in the expressions of ∆B3,1 and ∆B2,2, we do not use a numerically calculated

three-body spectrum, but rather the exact expression (93).

Various results for ∆B3,1 and for ∆B2,2, corresponding to various expressions given

in the present paper, are plotted as functions of ω̄ = β~ω in figure 1. The green dashed

lines correspond to the original formulas (82) and (83). They start diverging at ω̄ . 1.3,

due to the finite cut-off. The red dotted lines correspond to an incorrect application of

the optimised formulas (91) and (92), that is including in S3,1 and S2,2 only the physical

solutions obtained by the reference [19]; the unphysical solutions are missing, and the

red dotted curves start diverging at larger values of ω̄, ω̄ ≃ 2.2. The blue dashed-dotted

lines correspond to the correct use of the optimised formulas (91) and (92): one includes

♯ Alternatively to such unexpected poles, one can invoke a nonzero contribution of the infinite-radius

quarters of circle used to connect the contour integration enclosing the poles on the real axis to the

integral along the imaginary axis. Due to the continuous spectrum of the operators M
(σ)
ℓ (iS), one

can also suspect the existence of branch cuts for the function z 7→ d
dz [ln Λ

(σ)
ℓ (z)] in the complex plane;

turning around those branch cuts in the contour integration would then lead to extra contributions.

Our current knowledge of the function Λ
(σ)
ℓ (z), limited to z ∈ iR, does not allow to settle the problem.
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in S3,1 and S2,2 both the physical and the unphysical solutions up to the cut-off, where

the degeneracies of the unphysical solutions are obtained as the difference of the bare

degeneracies D
(σ)
ℓ,n given by the equations (40) and (41) with the degeneracies of the

physical solutions obtained numerically in reference [19]. As expected, the blue dashed-

dotted lines start diverging at smaller values of ω̄, ω̄ ≃ 1. The black dashed line for

∆B3,1 is an improvement over the blue dashed-dotted line: one sums over all unphysical

solutions, without cut-off, assuming that their degeneracy D̄
(σ)
ℓ,n is given by the Fourier

space reasoning (47) of section 4.1; the divergence then starts at an even smaller value of

ω̄, ω̄ . 0.9. Such improvement can not be performed for ∆B2,2, because the degeneracy

D̄
(σ)
ℓ,n predicted by the equation (52) is an underestimate, see the table 1 and the section

4.2.

The conjectured values (94) are plotted as black solid lines (lower black solid

line on the right panel). For 3 + 1 fermions, they essentially agree with the blue

dashed-dotted line up to the point of its cut-off induced divergence. This leaves the

possibility that the conjecture is correct for ∆B3,1. Incidentally, its ω̄ → 0+ limit

∆Bold conj
3,1 (0+) = 0.02297(4) [20] is close to the prediction 0.025 of the approximate

diagrammatic method of reference [38] (this value was communicated to us privately by

Jesper Levinsen). For 2 + 2 fermions, the conjectured values (94) clearly disagree with

the blue dashed-dotted lines even in the cut-off unaffected region ω̄ ≥ 1 and with the

approximate value ∆B2,2(0
+) = −0.036 of reference [38], by a factor close to 2. The

conjecture (94) is thus invalidated for ∆B2,2.

Let us now construct a less arbitrary conjecture than (94) for the fourth-order

cluster coefficients, building on our physical understanding. The imaginary axis integrals

(95) have a finite limit when ω → 0+ [20]. They must differ from the expected sum of

residues SN↑,N↓
/(2 sinh ω̄), that diverges when ω̄ → 0+ as we have seen, by counter-terms

CN↑,N↓
of unelucidated mathematical origin:

IN↑,N↓
=

SN↑,N↓

2 sinh ω̄
− CN↑,N↓

(96)

The new feature of the 3 + 1 and 2 + 2 fermion problem with respect to the 2 + 1

one is that M
(σ)
ℓ (iS) in equation (71), rather than being a finite size matrix of a

purely discrete spectrum, is an operator with a continuous spectrum. We then expect

that this continuous spectrum is at the origin of the sought counter-terms. Crucially,

the continuous spectrum can be interpreted in terms of decoupled asymptotic objects

(DAOs), emerging for large amplitude oscillations of the four fermions in the trap or

equivalently for eigenstates with large quantum numbers [20, 26]. For such asymptotic

states, one indeed expects that the N↑+N↓ particles split into single particles or groups

of strongly correlated particles, that we call DAOs and that do not interact with the

other groups or particles because they have high amplitude relative motions. The

relevant DAOs and their spectral properties are presented in the table 2. The partition

functions ZDAO of the DAOs in the trap, or more precisely the relative partition functions

Zrel
DAO = ZDAO/Z1 after removal of the centre of mass, are easy to calculate since by

essence the DAOs do not interact. They will be assumed to provide the counter-terms
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Figure 1. Fourth-order cluster coefficients ∆B3,1 (left panel) and ∆B2,2 (right

panel) of a harmonically trapped two-component unitary Fermi gas with equal masses

m↑ = m↓, as functions of β~ω, where ω is the trapping angular frequency, β = 1/(kBT )

and T is the temperature. Green dashed lines: from the original formulas (82) and

(83) and the numerical four-body spectrum of reference [19]. Red dotted lines: from

an incorrect use of the optimised formulas (91) and (92), only the physical solutions

being included. Blue dashed-dotted lines: from a correct use of (91) and (92), both

the physical and the unphysical solutions being included and subjected to a cut-off.

Black dashed line (left panel only): idem, except that all unphysical solutions are

included, with a degeneracy (47). All these lines diverge at low ω̄, because the four-

body spectrum in reference [19] is calculated up to some cut-off [in our calculations,

any three-body cut-off is avoided thanks to the exact expression (93)]. Black solid lines:

the conjectured values; left panel: the old (94) and new (100) conjectures coincide and

are in good agreement with the numerics; right panel: the old conjecture (94) (lower

black solid line) disagrees with the numerics, whereas the new conjecture (105) (upper

black solid line) is in good agreement.

in the new conjecture.

The 3 + 1 fermion case is the simplest one. As a whole, the continuous spectra of

the operators M
(±)
ℓ (iS) are composed of branches k 7→ Λ↑↑↓

L (ik) of degeneracy 2L + 1,

k ∈ R and L ∈ N. Each branch corresponds to two DAOs: a cluster of neighbouring,

strongly correlated ↑↑↓ fermions of angular momentum L and a decoupled ↑ atom of

orbital angular momentum compatible with the total spin ℓ. We call the ↑↑↓ cluster

a triplon; its wavefunction has scaling exponents s given by the positive roots u↑↑↓L,n of

Λ↑↑↓
L (s); in the trap, it moves as a free particle with an internal structure of energy levels

(u↑↑↓L,n + 1+ 2q)~ω, (L, n, q) ∈ N3. Its ideal gas counterpart and the difference, indicated

as above by the letter ∆, of their relative partition functions ∆Zrel
↑↑↓ triplon, are given in

the table 2. We expect that the counter-term C3,1 to be subtracted from S3,1/(2 sinh ω̄)

is the difference of the relative atom+triplon partition functions in the unitary and ideal

gases,

C3,1 = ∆Zrel
↑ atom+↑↑↓ triplon (97)

hence the new conjecture

I3,1 =
Snew conj
3,1

2 sinh ω̄
−∆Zrel

↑ atom+↑↑↓ triplon (98)
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DAO ǫunitint /~ω ǫidealint /~ω ∆Zrel
DAO

↑ or ↓ atom 0 0 0

↑↓ pairon 2q + 1
2

2q + 3
2

∆Zrel
1 pairon = ∆B1,1

↑↑↓ triplon u↑↑↓L,n + 2q + 1 v↑↑↓L,n + 2q + 2 ∆Zrel
↑↑↓ triplon = ∆Zrel

2,1 − Z1∆B1,1 = ∆B2,1

↑↓↓ triplon u↑↓↓L,n + 2q + 1 v↑↓↓L,n + 2q + 2 ∆Zrel
↑↓↓ triplon = ∆Zrel

1,2 − Z1∆B1,1 = ∆B1,2

Table 2. For 3+1 or 2+2 trapped fermions, the relevant decoupled asymptotic objects

(DAOs), their internal energy levels ǫunitint and ǫidealint and the difference (indicated by the

letter ∆) of their relative partition functions in the unitary and ideal gas cases. Each

DAO moves as a free particle in the trap, and internal or relative means after removal

of this centre-of-mass motion. All integers q, L, n run over N. The pairon internal

states, which correspond to the interaction-sensitive states of the relative motion of

two opposite-spin fermions, have a zero angular momentum and are not degenerate.

The triplon internal energies of angular momentum L are related to the positive roots

uL,n or poles vL,n of Efimov’s three-body transcendental function s 7→ Λ↑↑↓

L (s) or

s 7→ Λ↑↓↓

L (s), and have a degeneracy 2L + 1. The effective partition function of a

triplon involves a subtraction of the partition function of two associated emerging

DAOs (one atom and one pairon) to avoid double-counting. The equation (80) was

used, as well as the identity (81) and its ↑↔↓ counterpart.

Considering the absence of atom-triplon interaction, one has

∆Zrel
↑ atom+↑↑↓ triplon = Z1∆B2,1 (99)

where the factor Z1 is the partition function of the atom-triplon relative motion in the

trap. When combined with (91) and (94) this shows that the new conjecture coincides

with the old one for the 3 + 1 system:

∆Bnew conj
3,1 = ∆Bold conj

3,1 (100)

This is partly accidental as the old conjecture was a guess. Two inspiring rewritings

of the above equations will be invaluable in what follows. First, we rewrite the

conjecture (98) in a mathematically insightful way, that better reveals the key role

played by the continuous spectrum k 7→ Λ↑↑↓
L (ik), k ∈ R and L ∈ N, in the failure of the

näıve residue formula. Using (93) and (99) we get

I3,1 =
Snew conj
3,1

2 sinh ω̄
− Z1

∑

L∈N
(2L+ 1)

∫

R

dS

2π

sin(ω̄S)

2 sinh ω̄

d

dS

[

ln Λ↑↑↓
L (iS)

]

(101)

where the factor Z1 originates from the partition function of the DAOs relative motion.

Second, we attribute the coincidence of the old and new conjectures to the absence of

atom-triplon correlations, hence the physically insightful rewriting of equation (100):

∆Bnew conj
3,1 = ∆Bold conj

3,1 +Z−1
1 (∆Z↑ atom+↑↑↓ triplon−Z↑ atom∆Z↑↑↓ triplon)(102)

The 2 + 2 fermion case is richer. It leads to the expected continuous spectrum

branches k 7→ Λ↑↑↓
L (ik) and k 7→ Λ↑↓↓

L (ik) of degeneracies 2L+ 1, k ∈ R and L ∈ N [20],

associated to the asymptotic splitting of the four fermions into one ↓ fermion plus one

↑↑↓ triplon, and one ↑ fermion plus one ↑↓↓ triplon. But the continuous spectrum of
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M
(σ)
ℓ (iS) for σ = +1 has an additional, nondegenerate branch k 7→ 1√

2
[1 − (−1)ℓ

cosh(kπ/2)
],

corresponding to two decoupled pairons, that is s-wave correlated pairs of neighbouring

↑↓ particles, with relative orbital angular momentum ℓ [20]. A pairon is a freely

moving bosonic particle in the trap, with an internal structure given in the table 2

that reproduces the asymptotic three-body spectrum††. The mathematical formulation

(101) of the new conjecture immediately becomes

I2,2 =
Snew conj
2,2

2 sinh ω̄

−Z1

∑

L∈N
(2L+ 1)

∫

R

dS

2π

sin(ω̄S)

2 sinh ω̄

d

dS

[

ln Λ↑↑↓
L (iS) + lnΛ↑↓↓

L (iS)
]

(103)

−
∑

n,ℓ

(2ℓ+ 1)e−ω̄(2n+ℓ+ 3
2
)

∫

R

dS

2π

sin(ω̄S)

2 sinh ω̄

d

dS
ln

[

1−
(−1)ℓ

cosh Sπ
2

]

(104)

Due to the identity (93) and its 1 + 2 counterpart, the second term reduces to

−Z1(∆B2,1 +∆B1,2), which partially reconstructs the right-hand side of equation (92).

In the third term, it is apparent that Z1 can no longer be factored out and that one

must keep a sum over the quantum numbers n and ℓ of the pairons relative motion,

since the additional branch of the continuous spectrum depends on ℓ; the integral over

S can be calculated exactly by taking the sum and the difference of the odd and even

ℓ integrals and using
∫

R
dS sin(xS)

sinh(Sπ)
= tanh x

2
, x ∈ R; the result differs from the last term

−Z1∆B
2
1,1/2 of equation (92). The new conjecture for the 2+2 system thus differs from

the old one:

∆Bnew conj
2,2 = ∆Bold conj

2,2 +
1

32

1

cosh3 ω̄
2
cosh ω̄

(105)

To obtain the physical formulation (102) of the new conjecture, one must realize that,

contrarily to the distinguishable atom and triplon, the pairons are identical bosons,

which induces statistical correlations among them even if they do not interact, so

∆Bnew conj
2,2 = ∆Bold conj

2,2 + Z−1
1

[

∆Z2 pairons −
1

2
∆(Z2

1 pairon)

]

(106)

where ∆ still represents the difference between the unitary gas and ideal gas values, for

example ∆(Z2
1 pairon) = (Zunit

1 pairon)
2 − (Z ideal

1 pairon)
2. In the sum over the internal quantum

numbers q and q′ of each pairon appearing in Z2 pairons, the internal states (q, q′) and

(q′, q) are physically equivalent and shall not be double-counted. Also, when the relative

angular momentum ℓ of the pairons is odd, their internal state must be antisymmetric,

which excludes the state (q, q). In the unitary gas case, this leads to the relative two-

pairon partition function

Zrel,unit
2 pairons =

ℓ even
∑

n,ℓ

(2ℓ+ 1)e−ω̄(2n+ℓ+ 3
2
)

[

∑

q

e−2ω̄(2q+ 1
2
) +

1

2

∑

q 6=q′

e−ω̄(2q+ 1
2
+2q′+ 1

2
)

]

††After removal of the centre of mass the energy levels of a pairon and a ↑ particle in the trap are

(2q + 1
2 + 2n+ ℓ + 3

2 )~ω in the unitary limit. In the limit of large quantum numbers ℓ ≫ 1 or n ≫ 1

this must differ from (u↑↑↓ℓ,n +2q+1)~ω by o(1)~ω, which is confirmed by the exact asymptotic analysis

of reference [7]. For the ideal gas there is an additional term ~ω and one recovers the result (34).
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+
ℓ odd
∑

n,ℓ

(2ℓ+ 1)e−ω̄(2n+ℓ+ 3
2
)

[

1

2

∑

q 6=q′

e−ω̄(2q+ 1
2
+2q′+ 1

2
)

]

(107)

We replace each term 1
2
under the exponentials by 3

2
to obtain Zrel,ideal

2 pairons and form the

difference ∆Zrel
2 pairons = Zrel,unit

2 pairons − Zrel,ideal
2 pairons. This leads in equation (106) to exactly the

same result as in equation (105), which was not granted and is a good consistency check.

To be complete, and make the new conjecture as physically transparent as possible,

we note that it takes a posteriori a very simple form if, rather than using the four-body

sums SN↑,N↓
or cluster coefficients ∆BN↑,N↓

, one turns back to the four-body partition

functions ∆Zrel
N↑,N↓

of equations (82,83):

I3,1 = ∆Zrel,new conj
3,1 − Z2,0∆B1,1 − Z1∆B2,1 (108)

I2,2 = ∆Zrel,new conj
2,2 − Z1∆B2,1 − Z1∆B1,2 −∆Zrel

2 pairons

− Z1(Z1 − Zrel,ideal
1 pairon)∆B1,1 (109)

In the equation (108) the second and third terms in the right-hand side correspond to the

two possible splittings of ↑↑↑↓ into DAOs, respectively (↑) + (↑) + (↑↓) and (↑) + (↑↑↓);

double-counting is avoided by the way the triplon partition function is calculated, see

the table 2. In the equation (109), the second, third, fourth and fifth terms in the right-

hand side correspond to the four possible splittings of ↑↑↓↓ into DAOs, respectively

(↓) + (↑↑↓), (↑) + (↑↓↓), (↑↓) + (↑↓) and (↑) + (↓) + (↑↓). The only subtlety lies in

the fifth term: one must include only the interaction-insensitive states of the (↑) + (↓)

system, hence the subtraction of Zrel,ideal
1 pairon from the partition function Z1 of their relative

motion, to avoid a double-counting with the first pairon contribution of the fourth term.

The new conjectured value (105) for ∆B2,2 corresponds to the upper black solid

line in the right panel of figure 1. It is now in good agreement with the numerics. Its

ω̄ → 0+ limit ∆Bnew conj
2,2 (0+) = −0.0305(2) is of the same order as the approximate

value ∆B2,2(0
+) = −0.036 of reference [38]. There is therefore a good possibility that

the new conjecture for ∆B2,2 is exact.

In figure 2 we plot the total fourth-order cluster coefficient of the trapped

unpolarised spin-1/2 unitary Fermi gas, or more precisely its deviation ∆B4(ω) =
1
2
[∆B3,1(ω) + ∆B2,2(ω) + ∆B1,3(ω)] from the ideal gas value, as a function of ~ω/kBT .

The new (old) conjecture corresponds to the upper (lower) black solid line. Remarkably,

it is not monotonic. Its ω → 0+ limit is related to the homogeneous gas value ∆b4
by ∆B4(0

+) = 1
8
∆b4, where the homogeneous gas cluster expansion for the pressure

difference ∆P = Punit − Pideal takes the form ∆Pλ3dB/kBT = 2
∑

n≥1∆bnz
n with z↑ =

z↓ = z and λdB = (2π~2/mkBT )
1/2. It can be compared to the most recent experimental

result ∆b4 = 0.096(10) [10]: while the old conjecture had even its sign wrong, the new

conjecture, leading to ∆Bnew conj
4 (0+) = 0.00775(10) and ∆bnew conj

4 = 0.062(1), is not far

but still off by more than two standard deviations. We conclude that either the new

conjecture is wrong, or there is an underestimated systematic error in the experimental

result due to the extrapolation to z = 0 of data all having for accuracy reasons a fugacity

z > 1 (see the figure 4.11 in reference [39]). The recent path integral Monte Carlo result
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Figure 2. Total fourth-order cluster coefficient ∆B4(ω) of the trapped unpolarised

spin-1/2 unitary Fermi gas, as a function of β~ω as in figure 1. Upper (lower) black

solid line: the new (old) conjecture. Green line with symbols: numerical results

of reference [19] (disks connected by a solid line: actually calculated values; circles

connected by a dashed line: values resulting from an extrapolation). Symbol with an

error bar: most recent experimental result [10].

∆bPIMC
4 (0+) = 0.078(18) [40] is almost exactly halfway and does not allow to arbitrate.

6. Conclusion

We have determined the interaction-sensitive states of a harmonically trapped two-

component ideal Fermi gas, using a Faddeev ansatz for the N -body wavefunction.

We have found a simple rule to obtain the interaction-sensitive relative or internal

energy levels as follows. One removes one spin ↑ fermion and one spin ↓ fermion to

build a pair of particles with a zero relative orbital momentum, which renders the state

interaction-sensitive. One freely distributes the remaining N↑−1 spin ↑ fermions and the

remaining N↓−1 spin ↓ fermions among the single-particle energy levels of the harmonic

oscillator, in a way compatible with Fermi statistics. One adds to the resulting energy

levels the energy (2q + 3
2
)~ω, where 3

2
~ω may be interpreted as the internal energy of

the subtracted ↑↓ pair and 2q~ω, with q running over all natural integers, corresponds

to the quantised excitation spectrum of the collective breathing mode of our SO(2,1)-

symmetric system.

This simple rule must be refined because some of its energy levels actually

correspond to a zero Faddeev ansatz for the wavefunction, by destructive interference of

individually nonzero Faddeev components, and are unphysical solutions. This problem

was known for 2 + 1 fermions, where there is a single unphysical solution. We studied

it for 3 + 1 and 2 + 2 fermions and we found a countable infinite number of unphysical

solutions. A Fourier space reasoning leads to a class of unphysical solutions that lends

itself to a simple picture: everything happens as if each particle of the subtracted ↑↓ pair
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was prepared in the harmonic oscillator ground state |0, 0, 0〉; the unphysical solutions in

question then formally correspond to putting one of the N↑−1 remaining spin ↑ particles

or one of the N↓− 1 remaining spin ↓ particles in the state |0, 0, 0〉, thus “violating” the

Pauli exclusion principle. In the case of 2 + 2 fermions, however, this is not the end of

the story: there exist additional unphysical solutions, as a comparison to a numerically

calculated four-body spectrum shows. We could find them on a case by case basis by a

real space calculation, with linear algebra within a set of homogeneous polynomials of

fixed total angular momentum, degree and parity.

We have applied the above results to the cluster or virial expansion of a two-

component unitary Fermi gas. To evaluate the cluster coefficients with the harmonic

regulator technique, one needs to calculate the difference of the partition functions of

the interaction-sensitive energy levels of the unitary gas and of the ideal gas, which

makes the link with our problem. For an arbitrary particle number, we have defined

a generalised transcendental Efimov function Λ(s) such that the interaction-sensitive

energy levels for the unitary gas can be expressed in terms of the positive roots un of

Λ(s). We then showed that the interaction-sensitive energy levels of the ideal gas can

be expressed in terms of the positive poles vn of Λ(s). We reached an optimised writing

of the third and fourth cluster coefficients in terms of the sums
∑

n(e
−ω̄un − e−ω̄vn),

with ω̄ = ~ω/(kBT ), which evoke the residues of Cauchy’s theorem applied to a contour

integration of s 7→ e−sω̄ d
ds
ln Λ(s). This optimised writing allowed us to extend the

applicability domain of the numerical calculations of the cluster coefficients ∆B3,1 and

∆B2,2 of the reference [19] to lower values of ω̄, before they diverge due to the energy

cut-off in the numerics. Over this range of values of ω̄, 1 . ω̄, it shows that the

blind conjecture given in the reference [20] for ∆B3,1 is accurate, while the one for

∆B2,2 disagrees by a factor ≃ 2. Using a physical reasoning, we have constructed

a new conjecture in terms of the decoupled asymptotic objects (DAOs) emerging in

the four-body interaction-sensitive spectrum at large excitation amplitudes or quantum

numbers, i.e. individual atoms, pairons and triplons, in the unitary and ideal gases.

The new conjecture gives the same value for ∆B3,1, and a new, now accurate value for

∆B2,2. The failure of the old conjecture for ∆B2,2 results a posteriori from the omission

of the statistical correlations between pairons induced by their bosonic nature. The

most recent numerical calculations, based on a dedicated path integral Monte Carlo

approach, lead to a ω̄ → 0 limit in agreement with our new conjecture within error bars

[40], but are not (yet) accurate enough to exclude the possibility that this agreement is

fortuitous.
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[40] Yan Yangqian and Blume D 2016 arXiv:1602.02328

http://tel.archives-ouvertes.fr/tel-00285587
https://tel.archives-ouvertes.fr/tel-00491711
http://arxiv.org/abs/1602.02328

	Introduction and motivations
	The theoretical building blocks
	Scale invariance and the resulting SO(2,1) symmetry
	The Faddeev ansatz in real space and in Fourier space

	Scaling exponents of the interaction-sensitive states of the ideal gas
	The general result for arbitrary particle numbers
	Explicit results for 2+1, 3+1 and 2+2 fermions

	Refining the theory: exclusion of the unphysical solutions
	Reasoning in Fourier space for N=4
	An investigation in real space for N=4

	Implications for the cluster or virial expansion for the unitary gas
	The ideal and unitary gas scaling exponents versus the poles and roots of Efimov's transcendental function
	Optimized writing of the fourth-order cluster coefficients
	Application to the numerical data of reference Blumeb4 and test of old and new conjectures

	Conclusion

