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Abstract

The goal of this paper is the reconstruction of topo-
logically accurate 3-dimensional triangular meshes
representing a complex, multi-layered plant tissue struc-
ture. Based on time sequences of meristem images of the
model plant Arabidopsis thaliana, displaying fluorescence
markers on either cell membranes or cell nuclei under
confocal laser scanning microscopy, we aim at obtaining
faithful reconstructions of all the cell walls in the tissue.
In the presented method, the problem is tackled under the
angle of topology, and the shape of the cells is seen as the
dual geometry of a 3-d simplicial complex accounting for
their adjacency relationships. We present a method for
optimizing such complexes using an energy minimization
process, designed to make them fit to the actual adjacencies
in the tissue. The resulting dual meshes constitute a light
discrete representation of the cell surfaces that enables
fast visualization, and quantitative analysis, and allows in
silico physical and mechanical simulations on real-world
data.

Keywords : mesh optimization, voronoi diagrams, topo-
logical transformation, confocal microscopy, shoot apical
meristem

1. Introduction
The technological progresses of 3-d microscopy over

the last decade have opened unprecedented perspectives

for developmental biology [18] where monitoring complex

growth or physiological processes at cell-level over a large

amount of individuals is now made possible. However the

huge amounts of produced image data require automatic or

semi-automatic computational pipelines to be interpreted,

and deliver quantitative information over the biological phe-

nomena at play in the living tissue.

In the context of developmental plant biology, we fo-

cus on the shoot apical meristem (SAM), a small dome-

shaped tissue formed by stem cells, located at the tip of

plant stems. Every organ of the aerial part of a plant (leaves,

flowers, stems...) is initiated in the SAM, which constitutes

therefore the key to understanding morphogenesis (the pat-

terning, formation and growth of the organs) and has been

widely studied by plant biologists.

(a) (b)

(c) (d)

Figure 1. 3-d Confocal microscopy images of shoot apical meris-

tems : SAM imaged with membrane marker (a) and its resulting

seeded watershed segmented image [11] (b), SAM imaged with

nuclei marker (c) and its resulting detected nuclei points (d)
Over the last years, an increasing number of works have

proposed automatic image processing pipelines for cell re-

construction and tracking in sequences of 3-d+t microscopy

SAM images (as the one displayed in Figure 1 (a)) initially

focusing on the reconstruction of the surface [20] to ana-

lyze the growth and division dynamics of the first layer of

cells (L1) in the meristem [1]. More recently, complete re-

constructions of the dynamic multi-layered tissue structure

have emerged, based on confocal laser scanning microscopy

(CLSM) images, using a watershed segmentation algorithm

[11] or representing cells as truncated ellipsoids [8].

A segmented image as the one presented in Figure 1 (b)

is often not the most convenient object for quantitative anal-
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ysis, temporal registration and interpolation, or physical and

biomechanical simulation. Cell walls or cell membranes

surround the cells and provide all the information, from cell

shapes to topological relationships, but a higher level repre-

sentation of these specific objects is needed for most simu-

lation applications [15, 4].

This explains why many computational biology works

aim at reconstructing discrete topological representations of

the cell boundaries, defining a triangular mesh on the sur-

face of the meristem only [3, 2], and even in three dimen-

sions with triangular meshes obtained from segmented im-

ages [6], or using 3-d Voronoi diagrams [25] or other forms

of anisotropic tessellations on membrane images [7].

The method presented here is in line with the previously

mentioned works, but focuses on the dual side of the cell

shape reconstruction : their topological relationships. The

Section 2 details why such an approach is pertinent in the

first place. The proposed optimization method is described

in Section 3 and its results evaluated in Section 4. More

general conclusions are detailed in Section 5.

2. Motivation
The cell shapes in the shoot apical meristem, when we

look at them in membrane image slices such as the one in

Figure 2 (a), inevitably remind those of a Voronoi diagram,

in their simplicity, their regularity and their arrangement.

This was exploited by computational biologists, and tis-

sue reconstruction using such a convenient tessellation has

proved to be rather realistic [25, 14, 1].

(a) (b)

(c) (d)

Figure 2. Reconstruction of a tissue by 2-d dual geometry : slice of

a meristem imaged with membrane marker (a), its segmentation as

a Voronoi diagram (b) and comparison of inexactly reconstructed

cell walls (c) with false edges in the Delaunay triangulation (d)

In fact, previous works concluded that Voronoi bound-

aries reflect remarkably well the geometry of the cells when

they are computed in 2-d (Figure 2 (c)). Topologically

speaking, the Voronoi diagram is the dual of a Delaunay tri-

angulation, where triangles correspond to points, and trian-

gle edges to the boundaries of the Voronoi cells. And it ap-

pears that the wrong cell boundaries generally coincide with

Delaunay links between cells that are not actually neighbors

in the tissue, as illustrated in Figure 2 (d) (typically around

5 or 10% of the links [25]). This evidence suggests that the

geometry of the cells would correspond to the dual geome-

try of a topological complex linking cell centers, provided

the links reflect the actual relationships in the tissue.

However, when applied on 3-dimensional data, the

Voronoi approach generally fails to reproduce the same con-

vincing results [25]. The dual Delaunay complex in 3-d is

composed by tetrahedra, and their edges correspond to 3-d

cell interfaces. What was relatively easy in 2-d where cells

were projected in a same plane, is now much more compli-

cated due to the fact that cells are no longer co-planar and

surrounded by potential neighbors in all directions.

The reconstruction problem comes with the dualiza-

tion of the Delaunay complex. The points delimiting the

Voronoi cells, and thus defining their geometry, are the dual

of the highest dimension elements in the Delaunay com-

plex, for instance the triangles in 2-d. An error of 5% on

the links between cells (1-d elements) will result in around

20% of error on the triangles, and on the corresponding dual

cell points. But in 3-d, we observed a typical 25% of error

on cell links, that results in nearly 80% error on the tetrahe-

dra of the Delaunay simplicial complex, making a plausible

reconstruction of cell shapes very unlikely.

Plant cell tissue does not constitute a proper Voronoi di-

agram, but it still forms a cell complex, dual of an adja-

cency complex [1]. The reason why Voronoi cells are not

satisfying is the strong, locally varying, anisotropy of the

cell shapes resulting from individual growth and division

processes. The use of other tessellation methods such as

power diagrams or Centroidal Voronoi Tessellations (CVT)

[9] would introduce too much regularity for this biological

reality.

On the other hand, it has been shown that other

anisotropic tessellations were perfectly able to reconstruct

adequate cells, with a faithful shape [7] based on a pre-

cise estimation of this anisotropy. Anisotropic Voronoi di-

agrams [21] or anisotropic CVT [22] assume that a smooth

anisotropy field is known. However these assumptions are

not compatible with plant tissue where cell principal direc-

tions may vary importantly between neighbors [26].

We propose a method based on the adjacency relation-

ships of the cells in the tissue, which actually constitute a

manifestation of the local anisotropy. The reconstruction of

the tissue images is performed by the dualization of a topo-

logical complex that reflects those relationships better than

the Delaunay complex, capturing this essential biological

anisotropy information. The outline of the method is given

in Figure 3.
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Figure 3. Summary of the reconstruction process

3. Adjacency optimization
The main goal of the method is to represent faithfully

the topology of the tissue, namely the neighborhood rela-

tionships between cells, seen as the vertices of a topological

complex. It supposes that those cells have been detected be-

forehand and their spatial position is known, typically after

a 3-d watershed segmentation of a confocal image display-

ing membrane markers [11] where cells are identified and

their position set as the barycenter of their region. But it

is also possible to work on images showing nuclei markers

(Figure 1 (c)), in which cells can be detected using common

approaches of blob detection, such as scale-space maxima

of difference of Gaussians (DoG) [23] (Figure 1 (d)).

In the case of segmented images, a substantial infor-

mation on adjacency is available, as two neighbor voxels

with different labels indicate a link between neighbor cells.

However this topology information is sensitive to the dis-

cretization of data, to noise in the signal and to segmen-

tation errors. Though some corrections might be done to

enhance the adjacency graph (removal of links when the in-

terface surface is small for instance) it will generally not be

possible to build a valid simplicial complex out of it. As for

detected nuclei, there is no information at all concerning the

neighbors of a given cell, and only the relative position of

points might help.

In any case, the Delaunay tetrahedralization of the cell

points provides a first approximation of the adjacency re-

lationships that has the advantage of being a well-defined

simplicial complex, making deformation operations and du-

alization much more convenient.

3.1. Adjacency as a simplicial complex

In the following, we represent the adjacency between

cells by a simplicial complex of dimension 3, in other terms

a tetrahedral mesh whose vertices are the points correspond-

ing to the identified cells in the tissue. The simplicial def-

inition makes a strong assumption: since the dimension 3

elements are tetrahedra, no more than 4 cells can be simul-

taneously adjacent (or, there can not be any 5-clique in the

cell adjacency graph). This hypothesis is consistent with

what can be observed in tissue images, where no more than

4 cells (or 3 at the surface) meet at a given point, and is

therefore very important to preserve the biological plausi-

bility of the tissue we are reconstructing.

A tetrahedral mesh T is defined as a 3-d incidence graph,

composed of:
• 4 sets of elements (W0,W1,W2,W3) accounting re-

spectively for vertices, edges, triangles and tetrahedra
• 3 topological boundary relationships (B1,B2,B3) de-

limiting the elements of dimensions 1, 2 and 3 by their

boundaries in the lower dimension
• A geometrical information {P(c), c ∈ W0} determin-

ing the positions of the vertices (here the cell centers)

In this case, the number of boundaries for an element of

dimension d will always be equal to d+1 given the simpli-

cial constraint. For instance any triangle t ∈ W2 will have

B2(t) = (e1, e2, e3) with e1, e2, e3 ∈ W1.

The boundary relationship Bd defines a converse region

relationship Rd−1 listing, for an element, all the elements

of greater dimension for which it constitutes a boundary:

∀w ∈ Wd,Rd(w) = {w′ ∈ Wd+1 | w ∈ Bd+1(w
′)}. The

notion of boundaries (and regions) can be extended to other

dimensions by mere transitivity, and noted Bn
d with B1

d=Bd:

∀w ∈ Wd,Bn
d (w) =

⋃
u∈Bd(w) Bn−1

d−1 (u). This also defines

two different neighborhood relationships between elements

of the same dimension d : N−d listing the elements that

share a boundary with a given element, and the converse

N+
d listing the elements that share a region with it.

With this formulation, the input data consists of W0

and P , the identified cells and the positions of their cen-

ter point in space. Based on this, the Delaunay tetra-

hedralization provides an initial tetrahedral mesh TΔ =(
W0,P,WΔ

1 ,BΔ
1 ,WΔ

2 ,BΔ
2 ,WΔ

3 ,BΔ
3

)
similar to the one

displayed in Figure 4 (a). The optimization problem con-

sists then in finding the solution
(
W1,B1,W2,B2,W3,B3

)
that best approximates the adjacencies between cells in the

tissue.

(a) (b)

Figure 4. Delaunay tetrahedralization of cell points detected in the

image of a developing flower in the SAM (a) and its optimized

version after cleaning of oversized triangles (b)

3.2. Tetrahedral mesh optimization

The mesh optimization we consider is somewhat partic-

ular in the sense that it can not affect the mesh geometry P ,

and therefore will not incorporate any smoothing which is

445445445



often used to improve the quality of a mesh [12, 13]. Nei-

ther is it possible to insert or remove vertices that would

ameliorate the mesh elements [5, 27, 19] since the set of

cells defining the verticesW0 is fixed.

Consequently, the only possible deformations of the

mesh consist in topological operations, reconfiguring lo-

cally the connections between vertices and the mesh ele-

ments of higher dimension. Various topological transfor-

mation are possible, but almost all of them require a specific

configuration of the tetrahedra to ensure that the operation

does not alter the validity of the mesh (loss of simplicial

criterion, intersection of elements). The described possible

topological transformations are the following:

• Triangle swapping (or 2-3 flip) [13] : consisting in

transforming any interior triangle separating 2 tetrahe-

dra into an edge between their opposite vertices, creat-

ing 3 new tetrahedra (Figure 5 (a))
• 3-2 flip : the reverse operation, converting an edge

with 3 incident tetrahedra into the triangle linking their

3 other vertices (Figure 5 (a))
• 4-4 flip : consisting in transforming an edge with 4 in-

cident tetrahedra into another edge linking 2 opposite

vertices among their 4 other vertices, creating 4 new

tetrahedra
• Edge removal [5, 19, 28] : converting any edge with n

incident tetrahedra into a triangulation of all their other

vertices, creating 2n − 4 new tetrahedra, an operation

that generalizes the 3-2 flips and 4-4 flips (Figure 5 (b))
• Multi-face removal [19, 28] : the reverse operation,

converting any set of triangles sandwiched between the

two same vertices into the edge between those vertices,

an operation that generalizes 2-3 flips, as well a some

cases of 4-4 flips (Figure 5 (b))
• Multi-face retriangulation [24] : consisting in trans-

forming any set of triangles sandwiched between the

two same vertices into a new triangulation of all their

vertices, creating the same number of tetrahedra

Among these, we retained only two operations: triangle
swapping and edge removal, that share the advantage of

being directly based on the elements of a simplicial com-

plex, respectively of dimension 1 and 2 regardless of their

topological configuration (the geometrical applicability still

needs to be checked to ensure no intersection is created).

The interest of multi-face removal appeared limited, since

the most common configuration (apart from 2-3 flips) is a

4-4 flip configuration that might as well be handled by edge

removal. The computational complexity of the multi-face

retriangulation, made us prefer more basic transformation

that, combined, might generally produce the same result.

Concerning the edge removal transformation, we made

the operation unique not by selecting the best triangulation

of the neighboring vertices of an edge, but by considering

only the Delaunay triangulation of their projections on the

(a)

(b)

Figure 5. Topological transformations on a tetrahedral mesh : tri-

angle swapping operation (a) and edge removal operation (b)

median plane of the edge. Given that, in 2 dimensions, De-

launay provides a satisfactory approximation of the cell ad-

jacencies, we made the hypothesis that this triangulation

would generally be the right choice, plus making all the

topological tranformations we consider unequivocal.

3.3. The exterior trick

The problem with the simplicial complex and the oper-

ations defined as such is that they do not make it possible

to transform the topology at the exterior border of the com-

plex. Exterior triangles belong to a single tetrahedron and

therefore can not be swapped, and exterior edges might have

only 2 neighboring vertices, which can not be triangulated

in edge removal. Modifying the adjacencies between cells

at the surface of the tissue is nevertheless crucial to obtain a

plausible reconstructed volume.

To solve this problem, we introduced an artificial exterior

vertex vext representing a hypothetical ”exterior cell”. We

complete the Delaunay simplicial complex TΔ by adding

new exterior tetrahedra: for each exterior triangle t ∈ WΔ
2

such that |RΔ
2 (t)| = 1 we add a new tetrahedron which

vertices are those of t plus vext. With this definition, the

topological operations will produce changes at the surface,

in particular 4-4 flips produced by edge removal when vext
is a neighbor vertex will produce the same effect on the sur-

face that a 2-d edge flip on a triangular surface mesh.

The tricky part comes from the fact that the exterior does

not have a unique geometrical position as the rest of the

vertices do, and its position will have strong impacts to de-

termine if a configuration allows for a topological transfor-

mation, or if an operation is applicable or not. Therefore,

we are forced to determine for each element of the mesh

where its relative exterior lies. We approximate these rel-

ative positions using the normal vectors at the vertices of

the mesh, always oriented towards its exterior, and placing
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the exterior at a typical distance from the barycenters of the

edges or triangles following their mean normal vector.

The first operation performed on this newly defined sim-

plicial complex TΔ′ consists in removing aberrant elements.

A seen in Figure 4 (a) one issue with the Delaunay tetrahe-

dralization is that it produces a convex topological complex,

when the underlying structure most often present large con-

cave parts. It is therefore necessary to remove the false exte-

rior triangles that come covering these concave parts, which

are generally oversized.

This is done by iteratively performing passes of trian-
gle swapping operations on triangles separating vext and

another vertex. The swapping of the triangle (Figure 5 (a))

basically removes it from the surface of the triangulation, as

it creates 3 new tetrahedra joining the 3 other faces of the

original interior tetrahedron and the exterior. The decision

of swapping or not a triangle is made following a threshold

criterion: if the maximal length of an edge of the triangle

exceeds lmax, the triangle is swapped.

This first optimization results in a simplicial complex

noted TΔ� that constitutes a much more plausible approx-

imation of the tissue topology (Figure 4 (b)) that still re-

spects the Delaunay criterion. It is similar to what would

produce an α-shape [10] of value α = lmax, with the no-

table difference that by using such a topological optimiza-

tion, we guarantee that it contains only tetrahedra and no

hole inside the tissue (a strong biological prior).

3.4. Energy minimization

Starting from TΔ�, our goal is to optimize the connec-

tivity of the adjacency simplicial complex T using the in-

troduced local topological transformations to reproduce the

ones in the tissue here represented by its segmented image

S, in the case of a membrane marker image. We chose

to formulate this optimization as an energy minimization

problem, a common approach for mesh optimization [16].

Following the widespread formalism regarding deformable

models, from their first application to contour detection

[17], the energy functional we aim at minimizing is decom-

posed into an external data attachment term, a shape prior

term and an internal regularization term:

E(T ,S) = Eimage(T ,S) + Eprior(T ) + Eregularity(T )
(1)

In our case the image attachment energy has the role of

making the adjacency complex fit with the relationships be-

tween cells that can be found in the case of a segmented

cell image S. Screening through the image, it is possible

to detect the voxels around which at least 4 different labels

can be found. They correspond to cell corners, and their

detection creates a set of 4-uples TS = {(v1, v2, v3, v4)} of

cell labels that match the vertices of T (including vext that

matches the label used for the exterior region in the image).

It is important to note that, even though TS could be seen as

a set of tetrahedra, its topological properties does not make

it a valid simplicial complex, and its dualization would not

result in a consistent reconstruction of the tissue.

We use TS as a set of reference tetrahedra to which the

tetrahedra of T should fit as well as possible. Consequently,

the data attachment energy term we use simply measures

the overlap between TS and the tetrahedra of the current

simplicial complex TT = {B3
3(t), t ∈ W3}, computed as a

Jaccard index that we want to maximize:

Eimage(T ,S) = −ωadjacency
|TT ∩ TS |
|TT ∪ TS|

(2)

The prior energy term is here to incorporate some exte-

rior knowledge in the optimization process, and in our con-

text give more biological plausibility to the result. For a

plant tissue, an important constraint is the number of neigh-

bors one cell can have, that follows a regular distribution

throughout the tissue. By studying neighborhood relation-

ships in segmented tissue images, we remarked that the

number of neighbors of an epidermis cell was 9.0± 2.1 and

13.0± 2.7 for an inner cell. Consequently, we set Nepi = 9
and Ninn = 13 and define the prior energy using the dis-

tance of the number of neighbors of each vertex to its ideal

value (depending whether it touches the exterior or not):

Eprior(T ) = ωneighbor
1

|W0|
∑

v∈W0\vext

(
|N+

0 (v)| −N(v)
)2

(3)

∀v ∈ W0 \ vext, N(v) =

{
Nepi + 1 if vext ∈ N+

0 (v)

Ninn otherwise

And finally, the inner energy term aims at adding a regu-

larization constraint to the geometry of the mesh elements.

It tries to improve the quality of the tetrahedra in a way that

should fit the goal of recreating a plausible cell adjacency.

With this goal, we defined it on the tetrahedra of T , trying

to avoid that links appear between cells that are too distant

by measuring the maximal edge length of each tetrahedron:

Eregularity(T ) = ωlength
1

|W3|
∑
t∈W3

max
e∈B2

3(t)
‖P(v1)− P(v2)‖

(v1,v2)=B1(e)

(4)

The sum of these energies is then minimized following

an iterative, annealing-like, optimization process, a succes-

sion of temperature cycles divided in two phases of topo-

logical transformations: one consisting in edge removals,

and the second one in triangle swaps. In each phase, the

tetrahedra resulting from the transformation of each edge

and each triangle respectively are computed, and the lo-

cal energy variations associated with the modification of

the tetrahedra impacted by the transformations estimated.

The edges (resp. triangles) are ranked in ascending order of

the energy variation, and the legal operations are performed
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in that order, with a temperature-dependent probability for

transformations leading to an increase of the energy.

The termination criterion was set as a number of itera-

tions, and our experiments concluded that 5 temperature cy-

cles were enough to optimize the complex. The energy hav-

ing different, sometimes antagonist effects, it is important to

balance well their influence to get the best result. The val-

ues ωadjacency = 8.0, ωneighbor = 0.05 and ωlength = 0.5
empirically proved to offer the best compromise.

(a) (b) (c)

(d) (e)

Figure 6. Reconstruction of plant tissue through adjacency op-

timization: segmented tissue image with located cell points (a),

cleaned-up Delaunay tetrahedralization of the cells (b) and trian-

gular mesh obtained from the dual Voronoi diagram (c), and result

of the optimization of the adjacency simplical complex (d) with

the more accurate reconstructed dual geometry of the tissue (e)

4. Results and opened perspectives
We performed tests over two different sets of images:

images of membrane marker of floral meristems segmented

using the MARS pipeline [11] with segmented region cen-

ters used as cell points, and images of nuclei marker of

shoot apical meristems with nuclei points detected as scale-

space maxima of DoG. In the first case, the optimization

was based on image data and the complete energy could be

used, as well as the image adjacencies for evaluation of the

results. The second case was performed to assess the re-

sults without any information on adjacency, and only prior

and regularity energy terms could be used. Tests were per-

formed following this constraint on images from the first set

to try to evaluate the accuracy of the approach.

4.1. Optimization results

The energy minimization process produces an optimal

mesh T � (Figure 6 (c)) that is significantly different from

the initial one TΔ� (Figure 6 (b)). To evaluate the quality

of this adjacency simplicial complex, the most significant

indicator is the comparison between the adjacency relation-

ships in the mesh and in the segmented image S. This can

actually be performed in several different ways, depending

on the number of cells used to define an adjacency:

• Considering cells 2 by 2 (2-adjacency) we can

compare edges of the adjacency complex ET =

{B1(e), e ∈ W1} with the set of all pair of cells shar-

ing an interface (large enough) in the segmented im-

age, noted ES .

• Considering cells 4 by 4 (4-adjacency) we can com-

pare directly the tetrahedra of the adjacency complex

TT with the 4-uples reprensenting the junction points

of 4 cells in the image TS .

Both criteria are computed as Jaccard indexes between

the two compared sets, with values ranging from 0 for no

overlap to 1 only when the overlap is perfect. The second

criterion is of course more constraining, but it is a better

indication on the quality of the result: since the cell cor-

ners, dual of the adjacency tetrahedra, define the geometry

of the cell, their adequation to the image really reflects how

well we may reconstruct the tissue. The simple cell adja-

cency measure is also important to have an idea of which

proportion of the reconstructed interfaces actually exists in

the tissue.

In addition to these topological values, we also measure

other estimators of quality, to observe their correlation with

these target indicators, and assess the relevance of their op-

timization in the case that no information on adjacency is

available (as in the case of nuclei marker images). We use

the average neighborhood error, computed as in Equation

3 to measure the regularity of cell neighborhood. The intrin-

sic quality of the mesh is measured using common measures

such as the average tetrahedra eccentricity (computed us-

ing shape factor), and the average minimal and maximal
dihedral angles of the tetrahedra triangle planes.

We computed those measures over a dozen of segmented

meristem images with a typical number of cells varying be-

tween 800 and 2000. They were computed for the three

steps of the optimization method: the Delaunay tetrahedral-

ization TΔ, its version after the oversized triangle swapping

phase TΔ�, and its optimized version T �. The evaluation

measures averaged over the dataset are given in Table 1.

Table 1. Evaluation of the adjacency optimization over a set of

segmented meristem images
2-adj 4-adj N error T ecc min angle max angle

TΔ 0.68 0.28 0.12 0.45 37.4 117.5

TΔ� 0.76 0.33 0.11 0.42 39.2 116.5

T � 0.89 0.76 0.10 0.39 39.7 116.1

The main observation that can be drawn from these re-

sults is the significant improvement that is achieved regard-

ing cell adjacency relationships, jumping from an average

Jaccard score of 0.33 to 0.76 through topological optimiza-

tion. This means that, even if the links between 2 cells show

a 0.76 overlap, the Delaunay tetrahedralization is overall

wrong concerning cell corners, and the method we propose

manages to covert it into an overall more consistent simpli-

cial complex. The consequence is that many more points

will be correct when reconstructing the tissue, producing a

much more accurate representation.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Tessellation for tissue reconstruction : floral mersitem imaged with membrane marker and segmented (a) and shoot apical

meristem imaged with nuclei marker (d); dual geometry obtained from Delaunay tetrahedralization (b)-(e) and reconstructed tissue mesh

after adjacency optimization (c)-(f)

The other interesting fact is that the other quality estima-

tors seem correlated to the improvement of the adjacency,

in the good direction (decrease of the neighborhood error

and increase of the tetrahedra regularity). The improvement

is weak though, and there is not a very clear sign that trying

to improve those factors only will end up producing a great

correction of the adjacency, though it would contribute to it

in a moderate extent.

4.2. Segmented tissue reconstruction

To produce an actual reconstruction of the cells in

the tissue, the missing step is to build the dual geome-

try of the simplicial complex T �. Topologically speak-

ing, it can be seen as an inversion of the dimensional-

ity of its elements, and of the boundary and region re-

lationships B and R, resulting in a dual mesh G =(
D0, P,D1,B1,D2,B2,D3,B3

)
. For instance the edges in

W1 will generate faces in the dual geometry, and the bor-

ders B2(f) of the dual face f corresponding to the edge e
will be the dual edges corresponding to the trianglesR1(e)
incident on e.

The geometry of the whole mesh is once again deter-

mined only by the positions of the elements of dimension 0,

here cell corners. In the dualization process, the dual ver-

tices in D0 corresponding to tetrahedra in W3, the position

of ν corresponding to a tetrahedron T has to be computed

using the position P of the 4 vertices B3
3(T ) of T using a

geometrical transform function g. The creation of the dual

geometry consists then in building a mesh G such that:

• D0 = {ν|ν = T ∈ W3}
• ∀ν ∈ D0, P (ν) = g({P

(
B3
3(T )

)
| ν = T ∈ W3})

• D1 = {ε|ε = t ∈ W2}
• ∀ε ∈ D1,B1(ε) = {ν | ν = T ∈ R2(t), ε = t ∈ W2}
• D2 = {f |f = e ∈ W1}
• ∀f ∈ D2,B2(f) = {ε | ε = t ∈ R1(e), e = f ∈ W1}
• D3 = {c|c = v ∈ W0}
• ∀c ∈ D3,B3(c) = {f | f = e ∈ R0(v), c = v ∈ W0}

To match the shapes produced by a Voronoi diagram, that

proved to convey some realism, we defined the geometri-

cal function g so that it places the dual point of a tetrahe-

dron at the center of the circumsphere of its vertices. How-

ever, to ensure the validity of the reconstructed geometry, it

seemed safer that all the points remained inside their respec-

tive tetrahedron to avoid intersections and folding. Conse-

quently, if the center of a circumsphere lies outside its tetra-

hedron, it is projected to the center of the circumcircle of

the closest triangle, and if it lies again outside this triangle,

it is projected to the middle of the closest edge.

Concerning tetrahedra containing vext as one of their

vertices, it has been chosen to consider simply the center of

the circumcircle of the triangle without vext, rather than try-

ing to estimate a realistic exterior position. This generates

a slight lowering of the tissue surface, that can be corrected

afterwards. The geometry defined this way, as displayed in

Figure 7 (c), conforms with a Voronoi diagram in the regu-

lar cases, while ensuring that no problematic configurations

will arise in the dualization process.
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The cell interfaces in G are defined by a set of edges that

do not necessarily define a planar polygon, even less a tri-

angle. To make visualization, computation and all other ap-

plications possible on the object, it is necessary to produce

a triangular interface mesh out of it. There are different

ways to convert the interfaces of D2 into a set of triangles

suitable for the desired application (Delaunay triangulation

again, fitting of a regular triangular grid of chosen fineness)

and we chose a star-shaped triangulation of the polygon by

adding a vertex corresponding to its barycenter, and linking

all the edges to it. This is followed by the 4-split of all tri-

angles, and by a smoothing phase optimizing the shape of

the triangles [29, 6].

The reconstructed tissue presents very interesting traits

compared with triangular meshes with similar complexity

that can be generated directly from the voxel image, using

tetrahedral mesh generation [27] for instance. For a sim-

ilar number of mesh elements, on the same images, those

directly generated meshes might show a better 2-adjacency

Jaccard index (0.91 vs. 0.89) but the index for 4-adjacency

is significantly lower (0.69 vs. 0.76). This means that if the

interfaces are well identified by direct meshing techniques,

they will be topologically better represented by the dual ap-

proach we presented.

More importantly, those meshes produce a significant

proportion of vertices where more than 4 cells coincide,

which may be a major problem for biologically accurate

simulations. Among all the cell corners in those meshes

we detect an average of 12% of them showing such a prob-

lematic configuration, when our method structurally creates

none. This makes the tissue we reconstruct a better tool for

growth simulations, or other finite element based biome-

chanical of biophysical applications, provided the quality

of the triangles is sufficiently improved by the smoothing.

4.3. Reconstruction from nuclei

In the case of cells detected from nuclei markers, the

cleaned-up Delaunay complex TΔ� is optimized using only

the prior and regularization energy terms, with no data at-

tachment since there is no adjacency data to rely on. It is

therefore very difficult to assess to which extent the opti-

mized topology T � is more accurate than the original one

and how much improved the cell geometry is, except from

the angle of regularity and visual plausibility.

The closest to a quantitative analysis we can do is to sim-

ulate nuclei detection by centers of segmented regions in

membrane images, knowing that the position of the nucleus

does not necessarily coincide with the center of the cell. For

a better evaluation, we would need meristems imaged with

both membrane and nuclei markers, which is biologically

and technically difficult. Still we evaluated the topology

optimization based on those energies on the same images as

previously, with the results presented in Table 2.

Table 2. Evaluation of the adjacency optimization with no data

attachment energy over a set of segmented meristem images
2-adj 4-adj N error T ecc min angle max angle

TΔ 0.68 0.28 0.12 0.45 37.4 117.5

TΔ� 0.76 0.33 0.11 0.42 39.2 116.5

T � 0.73 0.29 0.07 0.31 44.7 116.1

The result is that no sensible improvement of the topo-

logical relationships seemed to be achieved by the optimiza-

tion, though the produced complex presents a more regular

stucture and gives a more realistic tissue as shown in Figure

7 (f). This is to balance by the fact that cell centers are not

nuclei, but it would appear that geometry itself is not de-

cisive enough to help guess adjacencies between cells in a

complex multi-layered tissue, as indicates the performance

observed on the 3-d Voronoi diagrams. Still the method

produces a plausible tissue structure with interesting topo-

logical properties, that could make it handy for simulations

when only nuclei data is available.

5. Conclusions
The tissue reconstruction method we described consti-

tutes a new step bridging the gap between imaged exper-

imental data and higher-level computational simulations.

Based on a tissue imaged with a membrane marker, it pro-

duces, after segmentation, a topologically accurate repre-

sentation of the tissue as a triangular mesh of adaptable

complexity. Its inherent topological properties (adequation

with the adjacency relationships in the tissue, respect of bi-

ological constraints regarding cell intersection) along with

its good quality triangles in a compact structure makes it

ideal for biophysical simulations.

The method offers the possibility of creating a contin-

uous 3-d tissue structure from discrete data points, while

ensuring desirable properties, a novelty in the case of meris-

tems imaged with nuclei markers. The produced structure

is a helpful tool for fast computation of volumes, principal

curvatures or other shape statistics that are useful to moni-

tor throughout time in the context of plant morphogenesis.

It constitutes also a good way to visualize the tissue and

to project functional information on cells (such as expres-

sion of genetic markers allowing to trace morphogenetic

signals distribution or cell identities) in a continuous way

on a whole volume.

Finally, the angle of topology is critical when it comes to

reconstructing 4-d plant tissue as an interpolation of con-

secutive images of an individual at different time points.

Provided we are able to compute the cell lineage, the inter-

polation of the simplicial complex of adjacency would be a

rather straightforward process, making the generation of an

interpolated dual geometry almost implicit. Such a 4-d ob-

ject preserving the properties of the tissue would be of great

interest for spatio-temporal registration of meristem image

sequences, and a major step towards the constitution of a

4-d atlas of complex dynamic tissues such as the meristem.
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