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The paper presents a survey of fuzzy rule base reduction techniques. The identification of fuzzy models from training data needs to consider both data fitness and complexity. The methodologies of model design can be mainly divided into two groups: the semantic-driven modelling and the data-driven modelling. The first model design type proposes models which are built based on expert knowledge. However, it is often the case that the model contains redundant rules and /or variables, so there is a need to reduce the redundancy of the model. The second model design type became more popular in the last decade partly due to the fact that fuzzy models were found to be able to approximate with arbitrary accuracy any continuous control function . These models usually use tremendously large number of rules and do not take into account the complexity of the model. This characteristic also emerged the issue of rule base reduction. The present paper summarizes the efforts done on the complexity reduction field.

INTRODUCTION

The research of complexity reduction methods depend on the model design techniques, which can mainly be divided into two groups: the semantic driven modeling and the data driven modeling. In the First category models are build based on expert knowledge and the rule base is set up manually. The Mamdani version of fuzzy model became very popular in practice. This version required much less computational effort because the projection spaces are used instead of the multidimensional product space. The idea of the Mamdani algorithm is to use the heights of the intersections of the observations with the antecedents and weighting the consequents with these, by simply cutting them at the given height. Semantic based models used semantically interpretable fuzzy terms and rules with fuzzy sets as consequents. The rules are usually of Mamdani type [1], with fuzzy sets in the consequents:

: i R If 1 x is 1 i A and…and in x is in A then i B is y
However, it is often the case that the model contains redundant rules and / or variables, so it requires to reduce redundancy in the model. In the last decade data driven fuzzy model design became more popular due to the fact that fuzzy models were found to be universal approximators, capable to approximate with arbitrary accuracy any continous control function. Takagi-Sugeno-Kang (TSK) model type, were the rule consequen are linear function of the inputs, demonstrate the fact that are practically feasible and sufficiently good approximative models for control function approximation [6]: . When searching for the relevant rules for a given input, an exhaustive search among all the rules should be performed. The computational need of the model can be decreased either by decreasing the number of terms, T, or the reduction of the number of variable, k, or both.

: i R If 1 x is 1 i A and…and in x is in A then i i i b x a y   where   in i i a a a ,....

COMPLEXITY REDUCTION OF SEMANTIC BASED MODELS

This section surveys the methods proposed for complexity reduction of rule base designed by semantic driven model. The first method leads to sparse rule bases and rule interpolation, that . was the first introduced by Koczy and Hirota [START_REF] Wang | Fuzy basis functions, universal approximation and orthogonal least-squares learning[END_REF]. The second one, more effective, aims to reduce the dimension of the sub rule bases by using hierarchical fuzzy rule bases.

Rule interpolation

Fuzzy rule interpolation was one of the first approaches to reduce the complexity of fuzzy models. Its main idea is that particular fuzzy rules, which can be substituted by linear interpolation of the neighboring rules, can be omitted from the rule base. Therefore this method aims at reducing T in the rule equation of complexity. Classical fuzzy inference algorithms deal with dense rule-bases, (meaning that for any

X x 

, where X is the input space, at least one of the rules is firing). The if then rule "If x is A then Y is B" is interpreted as: "The more similar is x to A the more similar is y to B". For the case when the rule base is sparse, (the antecedents in the rule base don't cover the input space) different approaches should be used, as for example Koczy-Hirota interpolation, or one of its variants.

The K-H interpolation uses the "horizontal representation" of the fuzzy sets, based on

 cuts, { ] 1 , 0 ( :    A }, where } ) ( : {     x A x A .
A general notion of the degree of similarity was introduced, based on the family of  distances between two convez and normal fuzzy sets, which is defined as
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subscripts L and U denoting the minimum and maximum of the respective  cuts. Using this notion of distance ( 2), the fuzzy similarity set can be defined as
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the elements of similarity degree set being the reciprocals of the elements of the distance set. Yhe basic idea of the rule interpolation is formulated in the Fundamental Equation of Rule Interpolation:
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In this equation (the fuzzy distance family), linear interpolation between corresponding  cuts is performed. A more general from of (4 gives)
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where  s is some  cut related similarity degree, e.g., the fuzzy similarity (3) obtained from the reciprocal distances of the  cuts. The Mamdani type algorithms are thus replaced by
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were the normalized degree of similarity for fixed  and C is reciprocal distance of the observation from the corresponding antecedent, divided by the sum of all these distances.

In conclusion, the KH linear interpolation is such an approach which is able to work on sparse rule bases, and determines the conclusions by its  cuts in such a way that the ratio of distances among the conclusion ad the consequents should be identical wirh the ones among observation and antecedents for all important  cuts. This fundamental equation of KH linear rule interpolation is an extension of the linear interpolation for rule based convex and normal fuzzy sets in accordance with the gradual semantic interpretation, proposed first by Dubois and Prade [9], "the more similar is the observation to an antecedent the more similar the conclusion should be to the corresponding consequent of the given antecedent". The linear interpolation can be applied if: 1. there exists an ordering among the fuzzy sets in each dimension, 2. the observation is located between two antecedents and 3. all involed fuzzy sets are convex and normal. The KH method has a significant drawback: it may produce conclusions which are not interpretable as fuzzy sets. This problem can be solved by using the modified  cuts based method [3].

Hierarchical rule bases

This approach is based on the modification of rule base structure, and thus reduce the exponent k in the expression of complexity. In order to reduce computational complexity, hierarchically structured fuzzy rule bases may be used.

The fuzzy input domain

p X X X X     ... 2 1
is partitioned, so that some variable will belong to the meta-level

p p X X X Z p      0 0 2 1 0 , 
, and the rest to the sublevels. In

0 Z a partition } , , { 2 1 n D D D    can be determined: 0 1 Z D n i i   
and the meta-level rules will look like:

If 0 z is 1 D then use the sub-rulebase i R
While in the lower levels, we deal with the usual type of rules:

If 1 z is ij A then y is ij B
where the first subscript indicates the sub-rule base and the second subscript the number of the rule in the sub-rule base. In each element of  , for example i D , the sub-rule base i R has local validity. In the worst case, each sub-rule base refers to exactly

p p X X X Z X     0 0 / inputs.
The hierarchical approach does not improve the . The main problem of the method is that it is often difficult to determine a proper partition of the state space so that in the elements of the partition some variables can be omitted. There are attempts to combine hierarchical and sparse rule bases [4], which could lead to simultaneously reduce the base T and the exponent k in the expression of complexity
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COMPLEXITY REDUCTION OF DATA BASED MODELS

Orthogonal least squares-based techniques

The orthogonal least squares (OLS) method was first applied to fuzzy systems in [5], to select the most important fuzzy basis function needed to approximate a data set. Considering N input-output data pairs 
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This ratio offers a simple means of ordering the rule. The OLS method transforms he column of the firing matrix W into a set of orthogonal basis vectors in order to inspect the individual contribution of each rule. The main advantage of OLS method is that the user can select the required number of rules based on the approximation accuracy of he relative contribution of the selected rules.

Singular value besed decomposition

Fuzzy logic inference system are suffering from exponentially growing computational complexity in respect to their aprproximation property. The main goal of introducing fuzzy rule base complexity reduction techniques is enhancing the universal approximation property of the fuzzy inference by extending the number of antecedent set while the computational complexity is kept relatively low. Singular value based decomposition (SVD) based fuzzy approximation technique was initiated by Yam [7], which directly fimds a minimal rule-base from sampled values. Shortly after, this concept was introduced as SVD fuzzy rule base reduction and structure decomposition. Its key idea is conducting SVD of the consequents and generating proper linear combinations of the original membership functions to form new ones for the reduced set. An extension to multidimensional cases may also be conducted in a similar fashion as the Higher Order SVD (HSVD) reduction technique proposed in [8]. The key idea of using SVD in complexity reduction is that the singular values can be applied to decompose a given system and indicate the degree of significance of the decomposed parts. Reduction is conceptually obtained by the truncation of those parts, which have weak or no contribution at all to the output, according to the assigned singular values. This advantageous feature of SVD is used in Yams works to extract a given model approximation and discard those rules which have no significant role in the overall system according to a given apprixiation accuracy. Let an L-variable rule base given with the following rules: : ,....,

1 N i i R If 1 x is 1 , j a A and …. N x is N j N A , then y is N i i B ,... 1
. Applying TS-model the output is calculated as: 
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This property is the higher-order equivalent of the link between the SVD of a matrix and its best approximation in a least-squares sense.

If a rule base is given by tensor B and vectors

) ( n n x w
, its complexity can be minimized via executing HISVD on B as:
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If singular values are discarded the size of S and n U Decreases. Let's denote as 

CONCLUSIONS

This paper gives a brief survey of complexity reduction techniques. The motivation of this topic is that ihe identification of fuzzy models and controllers from training data needs to consider an important feature between data fitness and complexity. The importance of this feature is pointed out by the fact that fuzzy models and controllers with large number of local models may encounter the risk of having an approximation capable of fitting training data well, but incapable of running n low satisfactory computational cost. In order to help the developments of fuzzy models and controllers to strive for balance between the two conflicting design objectives, this paper survey various fuzzy model reduction techniques.

  firing strength of the jth rule. The equation (1) offers a way to handle the problem by classical numerical methods. Fuzzy model have exponential complexity. If a fuzzy model contains k variables and maximum T fuzzy terms in each dimension, the order of the number of necessary rules is   k T O
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  and A is an upper-triangular matrix, substituting W=PA in ec. (7) and using he fact that columns i p of P are orthogonal, the sum of squares of y(k) can be written as: An error reduction ratio due to an individual rule i can be determined:

  -th antecedent function on the n-th input universe. Equation (8) can be described in tensor-product form:

  S equal to zero. Then:

B

  is less than B if singular values are discarded hence the rule base is reduced.