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SPACE-MODULATED STABILITY AND AVERAGED DYNAMICS

L.MIGUEL RODRIGUES

Abstract. In this brief note we give a brief overview of the comprehensive theory, recently
obtained by the author jointly with Johnson, Noble and Zumbrun, that describes the nonlinear
dynamics about spectrally stable periodic waves of parabolic systems and announce parallel
results for the linearized dynamics near cnoidal waves of the Korteweg–de Vries equation. The
latter are expected to contribute to the development of a dispersive theory, still to come.
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1. Introduction
s:introduction

A classical approach to the qualitative analysis of dynamical behavior driven by partial dif-
ferential equations starts with the identification of special classes of solutions that exhibit some
simple internal structure. One hope is that when these coherent structures possess a nontrivial
basin of attraction they could serve as elementary blocks to describe a richer complex dynamics.

However, in many situations, determining dynamical stability even for the simplest reference
solutions appears as a daunting task. Hence the general strategy consisting in obtaining on
one hand general theorems — or at least general accurate frameworks — to derive dynamical
behavior from spectral information on linearized evolution and on the other hand in gathering
separately the required pieces of spectral information. Fortunately it turns out that in many
cases the latter may at least be obtained either analytically in some asymptotic regimes or
numerically for (a large part of) the full family of background solutions. Interestingly enough,
besides those classical ways of determining spectral stability, an approach based on interval
arithmetics and leading to computer assisted proofs of spectral stability seems to have reached
sufficient maturity to completely solve some stability issues; the reader is referred to

Barker
[2] for an

instance of such a line of study.
With this general scheme in mind some considerable amount of effort has been devoted re-

cently and is still directed towards the development of a general stability theory for periodic
traveling wave solutions of systems of partial differential equations. The purpose of this note
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is to offer both a terse introduction to the field and an overview of the recent activity of the
author, partly jointly with others.

As a preliminary warning we want to strongly emphasize that traveling waves under consider-
ation are solutions of equations modeling extended systems. In particular our physical domains
are unbounded, at least in the direction of propagation. This situation arises naturally when
idealizing a phenomena where boundaries seems to play a minor role as in the coherent motion
of waves over large distances. As a consequence in our set of problems periodicity in space is a
feature of the internal structure of background waves and not of the physical domain.

From the point of view of stability this results in the fact that we are not interested in co-
periodic or sub-harmonic perturbations but in stability under arbitrary smooth and localized
ones. Consequently we aim also at taking into account the rich multiscale spatio-temporal dy-
namics emerging from the slow modulations of periodic waves. In contrast with the local analysis
around patterns with a simpler internal spatial structure such as solitary waves, fronts, kinks or
shocks, and even for simpler-looking systems as those modeling reaction-diffusion processes, this
inherent complexity has precluded until very recently any completely satisfactory mathematical
analysis of dynamical stability and large-time asymptotic behavior.

Nevertheless, for general parabolic systems, after the pioneering work of Schneider
Schneider-SH,Schneider-proc
[34, 35] at

the end of the past century, an intense activity in the last few years — more or less culminating
in

JNRZ-conservation
[13] — has led to a clear picture of the relevant notion of spectral stability, called diffusive

spectral stability, and of the asymptotic description of the dynamics near stable periodic waves.
The general theory even includes systems that are only parabolic in the pointwise hypocoercive
sense of Kawashima, thus effectively including at least small waves of viscous compressible
models, and have been extended recently to some systems that are only symmetrizable in a
suitable averaged sense

RZ
[32], in particular relaxing the smallness condition for roll-waves of the

St. Venant system describing surface waves on fluid film flowing down an incline. Incidentally,
we point out that the diffusive spectral stability of the latter roll-waves have been extensively
studied by a combination of numerical methods and spectral perturbation analysis

BJNRZ-KdV-SV,BJNRZ-KdV-SV-note
[4, 3], leading

— jointly with the abstract nonlinear theory — to a fairly comprehensive description of the
dynamics near those primary instabilities.

In contrast, for dispersive equations, as far as the author knows, even a single example of a
proof of nonlinear stability is missing. Yet the detailed description of the linear dynamics of
solutions to the Korteweg–de Vries near cnoidal waves — recently obtained in

R_linKdV
[29] — shades

some light on what kind of nonlinear dynamics is to be expected.
Based essentially on

JNRZ-conservation,R_linKdV
[13, 29] our goal here is to give both an overview of the well-developed

parabolic theory and a glimpse at what could be expected of a dispersive theory, still to come.
On the former the reader may also benefit from consulting

R
[31]. We warn the reader that, to

keep the presentation as short as possible, in most of the present note the general tone is rather
descriptive and informal.

2. General information

We shall restrict our discussion to planar traveling waves — as these are the objects for which
the theory is more advanced — and we shall regard them as one-dimensional objects. The latter
choice comes with two main consequences. On one hand nonlinear analysis is considerably
harder in space dimension one since scattering mechanisms are weaker thus decay resulting
from diffusive-like or dispersive-like behavior is slower1. This is reflected by the fact that the
first results of nonlinear stability of spectrally stable periodic waves of parabolic systems of
conservation laws were first proved in dimension higher than two, then in dimension two and
finally in dimension one

Oh-Zumbrun-cons-low-freq-multiD,Oh-Zumbrun-cons-nonlinear,Oh-Zumbrun-cons-nonlinear-erratum,Johnson-Zumbrun-cons-generic
[26, 28, 27, 14],

Johnson-Zumbrun-cons-1D-2D
[15],

JNRZ-conservation
[13]. This is also responsible for the asymptotically

linear behavior exhibited by localized perturbations of periodic waves in dimension higher than

1Think about decay rate t−
N
2 in L∞-norms for solutions to the heat or the Schrödinger equation in space-

dimension N starting from integrable initial data.
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one. On the other hand, spectral stability may seem easier to met in dimension one since in some
sense spectral stability in dimension one may be interpreted as a higher-dimensional spectral
stability but restricted to co-planar perturbations. Obviously one may then rightfully wonder
what could be the physical meaning of a situation where a planar wave would be stable as
a one-dimensional object but unstable as a higher-dimensional object. An element of answer
lies in the fact that our one-dimensional solutions sometimes correspond in higher dimension
not to planar waves but to genuinely multidimensional objects resulting from some confinement
mechanisms that may preserve stability2. In short, dimension one offers both a richer nonlinear
dynamics — at the cost of a substantially more involved analysis — and better hope to find
stable waves.

Moreover, in this brief note we discuss only two sets of equations, on one side the Korteweg–de
Vries equation (KdV)

KdVKdV (2.1) Ut +
(

1
2 U

2
)
x

+ Uxxx = 0 .

and, on the other side, a general second-order semi-linear parabolic system of conservation laws

conservationconservation (2.2) Ut + (f(U))x = DUxx .

In the above, time variable t belongs either to R or R+ and spatial variable x belongs to R.
The unknown of (

KdV
2.1) is scalar, U(t, x) ∈ R, whereas the unknown of (

conservation
2.2) is vector-valued,

U(t, x) ∈ Rd, for some d ∈ N∗, the corresponding advection flux is given by a smooth function
f : Rd → Rd and the diffusion matrix D is some d× d positive definite symmetric matrix.

To start being more specific let us add that here by a periodic wave we mean a special solution
U(t, x) = U(kx+ωt) given by a periodic profile U and traveling with uniform velocity c = −ω/k.
When normalizing the period of U to one — as we shall do — k accounts for spatial wavenumber
and ω for time frequency.

The choice of (
conservation
2.2) is purely expository as it does not bring any significant simplification in

statements and proofs, which apply almost word-by-word to a much larger class of parabolic
systems. In contrast, the choice of (

KdV
2.1) is commanded by very specific reasons. Indeed, prior

to
R_linKdV
[29], the author was ignorant of what could be the best notion of spectral ”dispersive”

stability that one may expect and which kind of spectral conditions could ensure some form
of linear asymptotic stability. Hence the choice of (

KdV
2.1) that, beyond its own importance as

a universal amplitude equation for long weakly-nonlinear phenomena, enjoys the advantage of
being integrable so that in principle everything on its periodic waves and their spectra may
be explicitly derived. We stress however that the main intention of

R_linKdV
[29] is not to study the

Korteweg–de Vries equation specifically but to develop a strategy, first illustrated on (
KdV
2.1), that

transfers spectral knowledge to linear bounds. This opens possible applications to cases where
the spectrum is not known explicitly but where required spectral conditions may be either proved
in an asymptotic regime, for instance for small waves, or investigated numerically.

Since we aim at discussing dynamics near a specific wave described by some profiles U and
with wavenumber k and frequency ω it is convenient3 to switch to the moving frame of this
specific wave. For instance, defining implicitly W through U(t, x) = W (t, k x+ ω t), equation
(
KdV
2.1) becomes

KdV-moveKdV-move (2.3) Wt + ωWx + k
(

1
2 W

2
)
x

+ k3Wxxx = 0

and U is a stationary solution of (
KdV-move
2.3). A (naive) linearization of (

KdV-move
2.3) about U leads to the

consideration of W̃t − LW̃ = 0 where

linoplinop (2.4) LW̃ = −ω W̃x − k
(
U W̃

)
x
− k3 W̃xxx .

2Think about a fluid flowing down a channel.
3But not absolutely mandatory at least for some of the arguments. See for instance

KR
[18] where translational

invariance is essentially broken by discreteness of the spatial domain and no obvious way to turn traveling waves
in steady solutions is available.
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2.1. The Bloch transform. This naturally suggests the introduction of an integral transform
specially tailored to analyze differential operators with periodic coefficients, here normalized to
period one. To motivate its definition, let us observe that in this context the simplest relevant
class of functions that may span the full set of arbitrary functions is given by so-called Bloch
waves that have a simple behavior under translation by one period as they are simply multiplied
by some number of modulus one, say eiξ where ξ is a Floquet exponent. Equivalently those are
the functions that may be written as x 7→ eiξ xǔ(x) for some Floquet exponent ξ ∈ [−π, π) and
some function of period one ǔ.

One rationale behind the definition of the Bloch transform — sometimes called Floquet-Bloch
transform — is that one may indeed achieve a decomposition

inverse-Blochinverse-Bloch (2.5) g(x) =

∫ π

−π
eiξx ǧ(ξ, x) dξ,

with each ǧ(ξ, ·) periodic of period one, by summing modes of the Fourier decomposition sharing
the same Floquet exponent

BlochBloch (2.6) ǧ(ξ, x) :=
∑
j∈Z

ei 2jπx ĝ(ξ + 2jπ).

where

ĝ(ξ) :=
1

2π

∫
R

e−iξxg(x) dx.

An equivalent approach consists in introducing a periodization of x 7→ e−iξxg(x)

ǧ(ξ, x) :=
∑
`∈Z

e−iξ(x+`)g(x+ `)

which is readily seen to coincide with the above formula through the Poisson summation formula.
Bloch analysis has essentially the same flavor as classical Fourier analysis4. Observe for

instance that — modulo a multiplicative constant — the Bloch transform is a total isometry
between L2(R) and L2((−π, π), L2

per((0, 1))) and that interpolating between Parseval identity
and triangle inequalities leads to the following Hausdorff-Young inequalities, for 2 ≤ p ≤ ∞,

‖g‖Lp(R) ≤ (2π)1/p‖ǧ‖Lp′ ([−π,π],Lp((0,1))) , ‖ǧ‖Lp([−π,π],Lp′ ((0,1))) ≤ (2π)−1/p‖g‖Lp′ (R)

where p′ denotes conjugate Lebesgue exponent, 1/p+ 1/p′ = 1. Going on with the former point
it may be rather instructive5 to regard g ∈ L2(R) as an element of `2(Z, L2((0, 1))) providing
the L2((0, 1))-valued Fourier series of ξ 7→ eiξ·ǧ(ξ, ·) ∈ L2((−π, π), L2((0, 1))).

As expected, differential operators L with coefficients of period one and acting on a space
of functions defined on the whole line, say L2(R), may then be thought on the Bloch side as
operator-valued multipliers acting Floquet exponent by Floquet exponent, that is (Lg)̌ (ξ, ·) =
Lξ ǧ(ξ, ·) where for each ξ ∈ [−π, π) the operator Lξ acts on a space of functions of period one,
say L2

per((0, 1)). This follows readily from applying L to (
inverse-Bloch
2.5), a process that also gives

Lξ = e−iξ· L eiξ·

where L, Lξ are here used as formal operators.
This ”diagonalization” has direct counterparts for spectra and generated semi-groups. Ob-

serve in particular that for operators L obtained from linearization (in a suitable frame) of
either (

KdV
2.1) or (

conservation
2.2) each Lξ has compact resolvents (when acting say on L2

per((0, 1))) hence
has a spectrum made of a discrete set of eigenvalues with finite multiplicity and the associated

4That is why we have been rather loose with convergence issues in the above definitions since they are solved in
the classical way.
5This is probably the point of view that generalizes in the most straight-forward way to the spatially discrete
case, where, for any N ∈ N, a suitable discrete Bloch transform provides an isometry between `2(Z) and
L2((−π, π), `2per([[0, N ]])). See

KR
[18].
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spectral map ξ 7→ σ(Lξ) is continuous. Therefore the spectrum of L consists locally in curves
parametrized by Floquet exponents and

σL2(R)(L) =
⋃

ξ∈[−π,π)

σL2
per((0,1))(Lξ) .

As an illustration we mention that accordingly the minimal notion of spectral stability, that is
σ(L) ⊂ {λ |Re(λ) ≤ 0}, is also written as σ(Lξ) ⊂ {λ |Re(λ) ≤ 0} for any ξ ∈ [−π, π). Yet
obviously such a requirement is too weak to yield any form of dynamical stability even at the
linear level.

2.2. Stability. On the other hand, concerning the stability of traveling waves, the strongest
notion of spectral stability, that requires a spectral gap σ(L) ⊂ {λ |Re(λ) ≤ −η} for some
η > 0, is precluded by the presence of a full family of similar traveling waves near any given
wave of a specific type. Indeed at the very least translation invariance of the equations yields
that any translated copy of a traveling wave is a traveling wave. Then for traveling waves with
localized variations — fronts, solitary waves... — taking derivatives along this family of waves
provides elements of the generalized kernel of L. However, for localized waves of parabolic
systems one may still expect that σ(L) ⊂ {λ |Re(λ) ≤ −η} ∪ {0} for some η > 0 and that 0 is
an eigenvalue of finite multiplicity corresponding to the dimension of the family of neighboring
traveling waves. In this case one may prove by adapting the arguments providing the central
manifold theory that such waves are (orbitally) asymptotically stable and that at leading order
nonlinear dynamics is reduced to a finite-dimensional evolution describing the time evolution of
parameters encoding traveling waves. In short, the main dynamics occurs through modulation
in time of wave parameters. Let us observe already that some changes in parameters of the
waves — for instance phase parameters, encoding the position of the wave — have a dramatic
impact on norm comparisons and the notion of dynamical stability has to be accommodated
accordingly. This leads to the classical notion of orbital stability that asks for a control of the
proximity of orbits of functions under the action of symmetries of the equation, which when the
only relevant symmetry is space translation amounts to a bound on

inf
Ψ uniform
translation

‖U ◦Ψ− U‖X

(for some chosen functional norm ‖ · ‖X). See
Henry,KapitulaPromislow_book
[10, 19] for some related results, references and

discussions.
The situation differs significantly when periodic waves are considered. First when differenti-

ating a family of periodic waves along a parameter independent of the period one obtains not
elements of the generalized kernel of L — which is reduced to {0} — but of L0, since obtained
elements do not belong to L2(R) but to L2

per((0, 1)). This seems to be a minor difference but
then by varying ξ this implies that no matter how small η > 0 is chosen σ(L) \ {λ |Re(λ) ≤ −η}
contains curves of spectrum passing through zero. Therefore the best one can reasonably expect
is that when η is sufficiently small then the former set is indeed reduced to those curves, that the
number of such critical curves — which is the algebraic dimension of zero as an eigenvalue of L0

— is indeed the dimension of the family of periodic waves minus one6 and that those curves are
non degenerate at ξ = 0. The corresponding notion of spectral stability is now well-known as
diffusive spectral stability. We recall its precise definition in Section

s:parabolic
3.1. In such a situation there

is no hope for a reduction even at the leading-order to a finite-dimensional evolution that could
not account for such dispersion relations. Moreover there is also no hope for some exponential
decay and the decay mechanism of the critical part of the evolution is truly infinite-dimensional
as it is due to scattering of solutions by a diffusive spreading. We stress that with this respect
the assumption of non degeneracy of critical curves is crucial since this is the non vanishing at

6We remind the reader that derivatives corresponding to variations of the period do not generate elements of the
generalized kernel of L0.
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ξ = 0 of the second order derivatives of the real part of spectral curves that encodes at the
spectral level the diffusive character of the spectral stability. Note in particular that no matter
what the order of parabolicity of the original system is the deduced decay is of heat-like type.

The issue that even a small perturbation may modify spatial position and therefore have a
dramatic effect on direct norm comparison is even stronger for periodics as it occurs cell by
cell for an unbounded number of cells and thus can not be compensated by some spatially
uniform transformation, nor more generally by any element of a prescribed finite-dimensional
set of transformations. For the sake of clarification and unification, a specially-designed notion
of nonlinear stability was formalized in

JNRZ-conservation
[13] and called there space-modulated stability. It goes as

follows. Given a functional space X, instead of measuring at some prescribed time the proximity
of a function U to a background periodic wave U directly with ‖U − U‖X , one tries to control

sm_distancesm_distance (2.7) δX(U,U) = inf
Ψ one-to-one

‖U ◦Ψ− U‖X + ‖∂x(Ψ− Id)‖X .

This allows, before comparison, for a resynchronization of cells through a phase change Ψ that is
in turn forced to remain locally in space (and time) close to uniform translations. As the notion
of orbital stability does for unimodal waves, this provides a global way to quantify preservation
of shapes in a periodic context. Besides being a generalization of orbital stability, it is also closely
related to the Skohokhod metric on functions with discontinuities that allows for a near-identity
synchronization of jumps.

As we recall in Section
s:parabolic
3.1 abstract stability results for parabolic systems, as proved in

JNRZ-conservation
[13],

show that if a periodic wave is diffusively spectrally stable it is also nonlinear stable, in a space-
modulated sense, from L1 ∩ Hs to Hs provided s is large enough. However for Hamiltonian
systems as (

KdV
2.1), and this even in finite dimension, diffusive spectral stability is excluded by

Hamiltonian symmetry of the spectrum which implies that in a stable situation the whole spec-
trum lies on the imaginary axis. For finite dimensional Hamiltonian systems no decay mechanism
is available and one instead prove bounded — and not asymptotic — stability by a Lyapunov
functional argument. This actually does use a spectral gap argument but not on the dynamical
generator L but on the variational Hessian of the Hamiltonian. Generalizations of this argument
also apply for waves with localized variations of Hamiltonian partial differential equations. But
for the same reason expounded above on L, a spectral gap argument on the variational Hessian
is precluded by the Floquet structure of its spectrum and another argument is needed — even
at the linear level — to analyze the periodic wave problem. See however

Angulo-Pava,KapitulaPromislow_book,Benzoni-Mietka-Rodrigues
[1, 19, 5] for examples

of what may be obtained when one restricts to co-periodic or sub-harmonic perturbations and
hence enforce discreteness of Floquet exponents.

Contrary to what happens in finite dimension, note that for localized waves of Hamiltonian
partial differential equations it is actually possible to go further and prove in some cases asymp-
totic stability by using decay provided by scattering of dispersive type. In Section

s:KdV
3.2 we show

how the spreading argument is successfully generalized in
R_linKdV
[29] to prove linear asymptotic stability

of cnoidal waves of (
KdV
2.1). Observe that while in the diffusive context a similar argument is used

to deal with critical spectral curves passing through zero, here the whole spectrum is critical
and part of the difficulty is to apply uniform arguments to spectral curves containing an infinite
number of Floquet eigenvalues. We stress that linear stability also needs to be understood in a
space-modulated sense that we exhibit now.

To prove nonlinear space-modulated stability of U for (
KdV-move
2.3), one should introduce some (V, ψ)

related to the expected solution W through

space-mod-ansatzspace-mod-ansatz (2.8) W ◦Ψ = U + V , Ψ = Id− ψ .

Stability would then be proved if one were able to choose (W,ψ) in such a way that W is indeed
a solution and V and the derivatives of ψ remain small if they are sufficiently small initially.
With this in mind, we observe that in terms of (V, ψ) equation (

KdV-move
2.3) takes the form

(V + Uxψ)t − L (V + Uxψ) = N [V, ψt, ψx]
6



where L is the operator defined above, and N is nonlinear in (V, ψt, ψx) and their derivatives,
and, locally, at least quadratic. One important point is that the nonlinear part does not involve
ψ itself but only its derivatives. This is crucial since ψ itself is not expected to decay but to
become locally constant. Then the linearized dynamics of interest is given by

LinKdVLinKdV (2.9) (V + Uxψ)t − L (V + Uxψ) = 0 .

As a result, at the linear level, one may indeed focus on the evolution generated by L as we have
done up to now, but instead of aiming at controlling the evolved W through ‖W‖X one should
aim at bounding

sm_normsm_norm (2.10) NX(W ) = inf
W=V+Uxψ

ψ(∞)=−ψ(−∞)

‖V ‖X + ‖ψx‖X .

Observe that we have added the constraint ψ(∞) = −ψ(−∞) to ensure that ψ = ∂−1
x ψx,

where ∂−1
x is defined as a principal value on the Fourier side. It is intended to ensure that a

knowledge of ψx does provide some control on ψ. Mark that this constraint does not restrict
potential applications of linear estimates to a nonlinear analysis since the centering constraint
may be achieved initially by translating U by 1

2(ψ0(∞) +ψ0(−∞)) and is then preserved by the
evolution.

2.3. Averaged dynamics. We now turn to the question of determining a leading-order descrip-
tion of the dynamics. As we have already pointed out, since studied phenomena are genuinely
multi-scale in time and space, one can not expect a reduction to a finite-dimensional time evo-
lution as for localized patterns. As we have also suggested, in dimension one — in contrast with
what happens for higher dimensional cases — decay rates are too slow to expect that the non-
linear dynamics of (

conservation
2.2) will be asymptotically linear. So we must seek another set of nonlinear

partial differential equations providing an asymptotically equivalent simpler dynamics. Note
also that even when the original equation is scalar, as (

KdV
2.1) is, perturbations of periodic waves

may split in different parts traveling at distinct characteristic velocities — usually denominated
group velocities —, a phenomenon more easily captured by a system of equations, so that in
general7 no reduction in the number of equations may be expected either.

What is the expected gain then ? The gain is in separation of scales. For instance, we may
enumerate typical scales for (

conservation
2.2) as being of size one for oscillations of the background wave,

t for the hyperbolic-like behavior encoded by group velocities and
√
t for the heat-like diffusive

character leading to diffusive spectral stability. One may hope to capture the evolution at large
scales t,

√
t by some form of averaged dynamics that does not contain any oscillation anymore.

In this homogenized description the slow evolution then occurs near a constant solution — and
not near a periodic wave. In turn once the slow part of the evolution is known one expects to
be able to recover an asymptotic description of the full evolution including oscillations by using
solutions of one-cell problems provided by profiles of periodic waves.

To implement this reduction — even arguing on formal grounds — one needs a way to derive
averaged equations on one hand and on the other hand a way to translate initial data for the
original system into effective initial data for the averaged system. The former may be achieved
by inserting a slow/oscillatory ansatz, that is, by studying a suitable family of solutions evolving
from a family of well-prepared data. In contrast the main difficulty in answering the latter comes
from the fact that one needs to understand what is the effective initial datum emerging from
an ill-prepared datum. This problem may nevertheless be solved explicitly here by carrying out
the analysis.

In this way we prove in
JNRZ-conservation
[13] that in the large-time regime the dynamics of parabolic systems

near stable periodic waves follows at main order the slow modulation scenario that one may
derive formally by some second-order version of the averaging method of Whitham. As a by-
product this refined asymptotic description proves that the notion of space-modulated stability

7In particular this is always the case when the system contains only conservation laws as in the present note.
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is sharp for generic parabolic systems and identifies what are the null conditions — called phase
uncoupling in

JNRZ-conservation
[13] — that a given wave must satisfy to recover classical orbital stability from

space-modulated stability. In
R_linKdV
[29] we also show that a similar scenario occurs for the linearized

dynamics of (
KdV
2.1).

3. Specific results
s:results

We now state precise results concerning (
conservation
2.2) and (

KdV
2.1), as proved in

JNRZ-conservation
[13] and

R_linKdV
[29].

s:parabolic
3.1. Periodic waves of parabolic systems. We first give a precise definition of the notion of
diffusive spectral stability. To do so we fix a periodic wave of (

conservation
2.2), U(t, x) = U(kx+ωt). Then

we write (
conservation
2.2) in the corresponding moving frame

conservation-moveconservation-move (3.1) Ut + ωUx + k (f(U))x = k2 DUxx

and denote by L the generator of the corresponding linearized dynamics

LV = −ωVx − k (df(U)(V))x + k2 DVxx .

We shall say that the wave U is diffusively spectrally stable if the four conditions (
D1
D1), (

D2
D2),

(
D3
D3) and (

H
H) hold where

D1D1 (D1) σL2(R)(L) ⊂ { λ ∈ C | Re(λ) < 0 } ∪ {0}

D2D2 (D2)
There exists θ > 0 such that for any ξ ∈ [−π, π)

σL2
per((0,1))(Lξ) ⊂

{
λ ∈ C

∣∣ Re(λ) ≥ −θ ξ2
}
.

D3D3 (D3) 0 is an eigenvalue of L0 of algebraic dimension d+ 1.

HH (H)
First-order derivatives of critical curves
with respect to the Floquet exponent are distinct at ξ = 0.

It is not immediately clear that assumption (
H
H) makes sense since 0 is in general not semi-

simple and generally speaking spectral perturbation of a Jordan block does not yield differen-
tiable spectral curves. Nevertheless under assumption (

D3
D3) one may indeed prove that those

spectral curves are differentiable at ξ = 0 so that assumption (
H
H) makes perfect sense8. Moreover

assumption (
H
H) then implies that those critical curves are analytic with respect to the Floquet

exponent. In particular, under assumptions (
D1
D1), (

D3
D3) and (

H
H), assumption (

D2
D2) amounts to

the non vanishing at ξ = 0 of the second-order derivative of the real part of critical spectral
curves with respect to the Floquet exponent. See

Noble-Rodrigues
[25] for detailed proofs and further discussions.

As emphasized by the choice in notation, assumption (
H
H) plays a role distinct in the spectral

stability and is not expected to be sharp for the obtained results. Indeed it plays a role similar
to the assumption of strict hyperbolicity in the analysis of hyperbolic systems and could likely
be replaced with something analogous to an assumption of symmetrizability. See

R
[31] for further

discussions in this direction.
As is implicit in assumption (

D3
D3) one expects the family of periodic waves to be of dimension

d + 2 — counting phase translations. Indeed when analyzing the profile system arising from
(
conservation
2.2), it is immediate that all equations are conservative and hence may be integrated once by

introducing d constants of integration, besides the already-introduced phase speed. Once those
d+1 parameters are fixed one does expect that around a given periodic orbit in the phase portrait
of the reduced profile system no other periodic orbit co-exist. Hence in this case follows a local

8The most instructive proof of this leads to a connection at the spectral level with averaged dynamics. Yet
alternatively classical arguments proving Rellich’s theorem do show that this is also a consequence of (

D1
D1).

8



parametrization of periodic wave profiles by d+ 2 parameters. When a similar parametrization
is available then (

D3
D3) really is an assumption of minimal multiplicity. In turn assuming (

D3
D3)

one may prove that a parametrization by d+2 parameters holds and even identify wavenumber,
averages over a period (of components corresponding to conservation laws) and phase shift as a
set of suitable parameters. This essentially follows from an Evans function computation in the
spirit of

Serre
[36]. See detailed discussions in

JNRZ-conservation,Benzoni-Noble-Rodrigues,R
[13, 6, 31].

th:stab-conservation Theorem 3.1 (
JNRZ-conservation
[13]). Let K ≥ 3. For any U a periodic traveling wave profile of (

conservation
2.2) that is

diffusively spectrally stable there exist positive ε0 and C such that for any U0 such that

E0 := δL1(R)∩HK(R)(U0,U) < ε0

there exists U a global classical solution of (
conservation-move
3.1) with initial data U0 such that for any t ≥ 0

δHK(R)(U(t),U) ≤ C E0

and any 2 ≤ p ≤ ∞

δLp(R)(U(t),U) ≤ C (1 + t)
−1

2

(
1−1

p

)
E0 .

The proof of the foregoing theorem also includes decay in δHK but with non sharp decay rates.
Indeed our proof is not optimized in regularity — neither in decay of the high derivatives nor
in the threshold K ≥ 3 — but in robustness. In particular the proof does not rely directly on
analytic semigroup techniques and applies almost word-by-word to quasilinear cases satisfying
pointwise Kawashima conditions. See detailed discussion in

JNRZ-conservation,R
[13, 31]. By similar techniques one

does not expect to recover sharp decay rates in Ẇ k,p for 1
2K ≤ k ≤ K ; see

Rodrigues-compressible
[30] for instance.

The restriction 2 ≤ p ≤ ∞ has a distinct technical origin. It follows from our will to prove most
of the required linear estimates on the spectral side by relying on Hausdorff-Young estimates as
this leads to relatively simpler proofs than those relying on finer multiplier theorems or pointwise
bounds of Green functions. See however

Jung-pointwise-RD,Jung-pointwise-conservation
[16, 17] for examples of latter estimates.

In any case decay in L1 should not be expected when the main decay mechanism is — as here
— due to spatial dispersion of the solution. In this case, the trade-off encoded by estimates is
localization against (regularity and) decay. The situation is in some sense parallel to the case
where the decay mechanism is mixing and the trade is regularity against decay.

More generally one should not expect to be able to prove decay rates without loss — in
localization or in regularity or... — when optimal decay rates are not of exponential type. At
the linearized level the fact that this is indeed impossible is essentially a consequence of the
Datko-Pazy theorem

vanNeerven
[24, Theorem 3.1.5 & Corollary 3.1.6].

We now turn to large-time asymptotics. First we point out that assumption (
D3
D3) implies

the existence of a family of nearby periodic waves with profiles U(M,k)( · + φ) and phase speed
c(M, k), where k is the corresponding wavenumber, φ is a phase shift and M ∈ Rd are averaged-
values over a period

M =

∫ 1

0
U(M,k) .

As a consequence corresponding time frequency is ω(M, k) = −k c(M, k). Note carefully that

what was U in Theorem
th:stab-conservation
3.1 is now U(M,k) for some M and that ω = ω(M, k). Following

the extended version of the original strategy of Whitham
Whitham
[37, Chapter 14] introduced in

Noble-Rodrigues
[25]

— see also
JNRZ-conservation
[13, Appendix B] —, one may derive arguing on formal grounds that two-scale

slow/oscillating solutions of (
conservation
2.2) should behave as

slow-modulationslow-modulation (3.2) (t, x) 7→ U(M,κ)(t,x) (Ψ(t, x))

with κ = ∂xΨ, where (M, κ) are slowly evolving according to some system

whithamwhitham (3.3)
Mt + (F(M, κ))x = (d11(M, κ)Mx + d12(M, κ)κx)x ,

κt − (ω(M, κ))x = (d21(M, κ)Mx + d22(M, κ)κx)x .
9



Here F is simply the averaged flux

F(M, k) =

∫ 1

0
f(U(M,k)(x)) dx

and di,j are determined in a more complicated way as usually expected from higher-order cor-
rections in averaging processes.

Though we do not expound the full derivation of (
whitham
3.3) we emphasize now two key-points of

this derivation. The first one is that the last equation of (
whitham
3.3) is first obtained as

psieqpsieq (3.4) Ψt = ω(M, κ) + d21(M, κ)Mx + d22(M, κ)κx

that is then differentiated with respect to the space variable. It is important to note that a
completely similar scenario occurs at the spectral level, in particular when desingularizing the
Jordan block structure, as the generalized kernel is spanned by Ux, ∂M1U, · · · , ∂Md

U, but one
needs to unravel the role of ∂kU by transforming a phase-like component in a wavenumber-like
component through a suitable multiplication by iξ ; see

Noble-Rodrigues,Benzoni-Noble-Rodrigues,KR
[25, 6, 18]. The second point is that for

our purpose of describing to main order the large-time dynamics near (M, k) system (
whitham
3.3) is far

from being uniquely determined but there is a canonical choice that also ensures that though the
system has been derived by fitting slow evolutions — a low-Fourier requirement — the obtained
system is a well-posed hyperbolic-parabolic system — a high-Fourier feature. See

Noble-Rodrigues
[25] and

JNRZ-conservation
[13,

Appendix B].
To compare directly to solutions of (

conservation-move
3.1) (and not (

conservation
2.2)) we now denote by (W ) and (W )phase

system (
whitham
3.3) and equation (

psieq
3.4) written in the frame of U(M,k).

th:asymptotic-conservation Theorem 3.2 (
JNRZ-conservation
[13]). Let K ≥ 4. For any U a periodic traveling wave profile of (

conservation
2.2) that is

diffusively spectrally stable there exist positive ε0 and C such that for any U0 such that there
exists ψ0 such that

E0 := ‖U0 ◦ (Id− ψ0)−U‖L1(R)∩HK(R) + ‖∂xψ0‖L1(R)∩HK(R) < ε0

there exist U a global classical solution of (
conservation-move
3.1) with initial data U0, a local phase shift ψ with

initial data ψ0 and local averages M such that for any t ≥ 0 and any 2 ≤ p ≤ ∞

est:slow-modulationest:slow-modulation (3.5)

‖U(t, · − ψ(t, ·)) − U

(
M+M(t,·), k

(1−ψx(t,·))

)
( · )‖Lp(R) ≤ C E0 ln(2 + t) (1 + t)−

3
4

‖(M, k ψx)(t, ·)‖Lp(R) ≤ C E0 (1 + t)−
1
2

(1−1/p)

‖ψ(t, ·)− ψ0(−∞)+ψ0(+∞)
2 ‖L∞(R) ≤ C E0 ;

and setting Ψ(t, ·) = (Id − ψ(t, ·))−1, κ = k ∂xΨ, M(t, ·) = (M + M(t, ·)) ◦ Ψ(t, ·), and letting
(MW , κW ) solve (W ) with initial data

datadata (3.6)

κW (0, ·) = k ∂xΨ(0, ·) ,

MW (0, ·) = M + U0 −U ◦Ψ(0, ·) +

(
1

∂xΨ(0, ·)
− 1

)
(U ◦Ψ(0, ·)−M) ,

we have

(3.7) ‖(M, κ)(t, ·)− (MW , κW )(t, ·)‖Lp(R) ≤ C E0 (1 + t)−
1
2

(1−1/p)− 1
2

+η ;

at last recovering ΨW from (MW , κW ) though (W )phase with ΨW (0, ·) = Ψ(0, ·)

(3.8) ‖Ψ(t, ·)−ΨW (t, ·)‖Lp(R) ≤ C E0 (1 + t)−
1
2

(1−1/p)+η.

The upshot of estimates (
est:slow-modulation
3.5) is that U is indeed very well approximated by modulating

U in all its parameters, showing that asymptotically U essentially takes the form (
slow-modulation
3.2). The

remaining estimates prove that the evolution of slow parameters is indeed well-captured by (
whitham
3.3).

Observe that in order to achieve relevant comparisons one needs to stick to the description (
slow-modulation
3.2)

and effectively perform all modulations on U hence to invert Id− ψ(t, ·).
10



Observe also how (
data
3.6) prescribes data in a non trivial way. In particular the last term in

MW (0, ·) incorporates contributions of the high frequencies of ψ0 and hence cannot be included
in a formal slow/oscillatory ansatz.

Relying then on a fine description of near constant dynamics — see
Liu_Zeng
[22] and

JNRZ-conservation
[13, Appendices B

& C] —, one may then use Theorem
th:asymptotic-conservation
3.2 to obtain a very precise description of the dynamics

in terms of weakly interacting diffusion-waves in local parameters. This yields that decay rates
in Theorem

th:stab-conservation
3.1 are sharp for general systems but also enables us to identify various sharp

cancellation conditions, coined as phase uncoupling conditions in
JNRZ-conservation
[13], that leads when ψ0 is

constant (or when ∂xψ0 is mean-free) to extra decay hence to classical (and not space-modulated)
asymptotic orbital stability and to an asymptotically linear behavior.

s:KdV
3.2. Cnoidal waves of the Korteweg–de Vries equation. We now discuss similar results
for the linearized dynamics of (

KdV
2.1) near cnoidal waves.

First select such a cnoidal wave U and consider the operator L introduced in (
linop
2.4). One

readily checks that L does generates a group (S(t))t∈R on L2(R) (or on Hs(R) with s ∈ N,
or...) by using energy estimates which also lead to the crude bound

‖S(t)‖L2(R)→L2(R) . e|t|
k
2 ‖(Ux)−‖L∞(R) , t ∈ R .

That energy estimates yield such a poor bound is a manifestation of the fact that L is not a
normal operator.

Nevertheless space-modulated bounded linear stability holds in Hs(R) for any s ∈ N.

th:stab-KdV Theorem 3.3. For any cnoidal wave of (
KdV
2.1) and any s ∈ N, there exists C such that for any

W0 and any time t ∈ R

NHs(R)(S(t)W0) ≤ C NHs(R)(W0)

where (S(t))t∈R is the group of operator solutions of the linearized dynamics.

The foregoing theorem is non trivial even when s = 0. Yet there does not seem to be an easy
way to deduce the general case from the case s = 0. Since the emphasis here is in developing
robust techniques rather than in the result itself, we now give some hints about its proof9.

The starting point is that one knows that the spectrum of L lies on the imaginary axis — see
for instance

Bottman-Deconinck,R_linKdV
[7, 29]. Yet by itself this is insufficient to derive any suitable bound. To go beyond

one may build for each Floquet ξ a spectral decomposition of Lξ. This is essentially a consequence
of the theory pioneered by Keldyš

Keldysh-1,Keldysh-2
[20, 21] — see

Markus,Yakubov,Gohberg-Goldberg-Kaashoek-1
[23, 38, 9] — on spectral decompositions of

relatively compact perturbations of self-adjoint operators with compact resolvents. It relies on
the fact that as far as spectrum at infinity is concerned Lξ may be thought as a perturbation

of the skew-adjoint −k3(∂x + iξ)3. With this decomposition in hands and knowing that except
zero as an eigenvalue of L0 all Floquet eigenvalues are simple, after a desingularization of the
zero eigenvalue in a way similar to what was required in the analysis of parabolic cases — see
Benzoni-Noble-Rodrigues,R_linKdV
[6, 29] — one may then define Sobolev-like norms ‖ · ‖Xs(R) for which the evolution generated
by L is unitary. What is left then is to show that ‖ · ‖Xs(R) is indeed equivalent to NHs(R). This
is actually the core of the proof but relies, as above arguments, mostly on fine analyses of large
and small spectrum.

While some proofs are easier to carry out by using explicit formulas derived from Lax pair
representation, most of them may be obtained in a robust way. Notable exceptions are the
knowledge that the spectrum indeed lies on the imaginary axis — a minimal requirement for
linear stability — and that non zero Floquet eigenvalues are indeed simple.

9In contrast we have chosen not to comment proofs of Theorems
th:stab-conservation
3.1 &

th:asymptotic-conservation
3.2 since they are already sketched in the

introduction of
JNRZ-conservation
[13] itself, further commented in

R
[31] and one may gain some insight about their key-features by

looking first at the analysis of a simpler sub-case treated in
JNRZ-RD1,JNRZ-RD2
[11, 12]. Incidentally we mention that this sub-case

also exhibits the very specific feature that at the averaged level it is asymptotically self-similar and hence is
amenable to a resolution by the renormalization techniques initially used by Schneider; see

SSSU
[33].
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Figure 1. For a typical cnoidal wave, part of the spectrum of L with positive
imaginary part : Im(λ) vs ξ such that λ ∈ σL2

per((0,1))(Lξ). There are infinitely

many red branches going to infinity. spectrum-sketch

In contrast in order to derive asymptotic stability we do use a huge wealth of information.
Indeed our argument uses a non degeneracy assumption on the Floquet parametrization of the
spectrum similar to (

D2
D2) but here the whole spectrum is critical hence instead of requiring such

a condition at one point, zero, as in (
D2
D2) we need such a piece of information everywhere. To

be a bit less pessimistic let us precise that actually both at infinity and near zero the required
pieces of information may be obtained by robust techniques so that what remain is really a sign
control on smooth functions defined on compact intervals10.

Before giving a precise statement of this non degeneracy condition we give more details con-
cerning the structure of the spectrum of L. First, real and Hamiltonian symmetries yield that
λ ∈ σL2

per((0,1))(Lξ) if and only if −λ ∈ σL2
per((0,1))(L−ξ). As a by-product of the proof of Theo-

rem
th:stab-KdV
3.3 we also know on one side that the large spectrum consists in two symmetric branches

that by gluing together various Floquet parametrizations may be parametrized by two sym-
metric semi-unbounded intervals, with a parametrization equivalent to ξ 7→ −(ikξ)3 and whose
third order derivative of the imaginary part converges to 6k and on the other side that near zero
there are three branches of spectrum going through zero with second-order derivative vanishing
at zero but third order derivatives non zero. By the techniques used in

Bottman-Deconinck
[7] one may actually

derive a complete parametrization of (λ, ξ) in terms of an auxiliary parameter — a spectral Lax
parameter — and conclude that this picture extends as follows: the spectrum may be split in
two parts, one infinite line covering the imaginary axis, and a symmetric loop covering twice a
neighborhood of zero in the imaginary axis11; see Figure

spectrum-sketch
1. The picture is of course consistent

with descriptions obtained by more robust techniques in asymptotic regimes. In particular, in
the solitary wave limit

Gardner-large-period
[8] the line coincides with the essential spectrum of solitary waves and

the loop arises from the embedded eigenvalue zero.

Despite the relatively explicit description of the spectrum of L, up to now the author has not
been able to prove the following condition

AA (A)
Along the line the third-order derivative with respect to Floquet exponent
does not vanish. Along the loop the second-order derivative
with respect to Floquet exponent does not vanish except at zero.

10This is typically the kind of verification amenable to computer-assisted proofs relying on interval arithmetics
as in

Barker
[2].

11The presence of this triply-covered area near zero does not contradict the simplicity of Floquet eigenvalues as
the passage at the same point of the spectrum occurs at distinct Floquet parameters.
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However for all cnoidal waves picked randomly by the author an eye inspection of corresponding
graphs seems to show that condition (

A
A) is satisfied.

th:asymptotic-KdV Theorem 3.4. For any cnoidal wave of (
KdV
2.1) satisfying (

A
A), there exists C such that for any

W0 and any time t ∈ R∗

NL∞(R)(S(t)W0) ≤ C |t|−1/3NL1(R)(W0)

and
NL∞(R)(S(t)W0) ≤ C (1 + |t|)−1/3NL1(R)∩H1(R)(W0)

where (S(t))t∈R is the group of operator solutions of the linearized dynamics.

In contrast with most of results introduced so far our proof of Theorem
th:asymptotic-KdV
3.4 is not carried

out on the Bloch side but proceeds by pointwise estimates of suitable Green functions through
oscillatory integral estimates. As in the parabolic case one may actually go further and prove
at this linearized level that the large-time dynamics is at main order of slow-modulation type
and that the involved local parameters evolve essentially according to a third-order hyperbolic-
dispersive system. For the sake of brevety we do not detail this here but add two comments.
First, as the reader may have already deduced from the structure of the spectrum of L, the
dimension of the family of cnoidal waves is 4 (counting phase shift), the extra parameter —
compared to phase shift, wavenumber, average of U —, which arises from the Hamiltonian
structure and invariance by space translation, may be chosen as the average of the Benjamin
impulse; see

Benzoni-Noble-Rodrigues,Benzoni-Mietka-Rodrigues
[6, 5]. Second, we stress that to capture the large-time effects encoded by the form

of spectral curves near zero one does need to include a third-order correction to the classical
first-order Whitham system.

At last we warn the reader that it is very unlikely that decay rates expounded here could
serve directly in a nonlinear large-time study since they seem by far too slow for such a purpose,
and that the lack of normality of L prevents a direct use of the classical T − T ∗ argument to
deduce from dispersive estimates of Theorem

th:asymptotic-KdV
3.4 bounds of Strichartz type.
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