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Convex relaxation for IMSE optimal design

in random �eld models

Bertrand Gauthier∗† Luc Pronzato‡§

December 18, 2015

Abstract

The de�nition of an Integrated Mean-Squared Error (IMSE) criterion for the learning of
a random �eld model yields a particular Karhunen-Loève expansion of the underlying �eld.
The model can thus also be interpreted as a Bayesian (or regularised) linear model based on
eigenfunctions of this Karhunen-Loève expansion, and can be approximated by a linear model
involving orthogonal observation errors. Using the continuous relaxation of approximate design
theory, the search of an IMSE optimal design can then be turned into a Bayesian A-optimal
design problem, which can be e�ciently solved by convex optimisation. We propose a greedy
extraction procedure, of the exchange type, that permits to select observation locations among
support points of an optimal design measure. In the presence of a parametric trend, we show
how speci�c treatments can be applied to avoid confusion between the trend and eigenfunctions.
The performance of the approach is investigated on a series of examples indicating that designs
with very high IMSE-e�ciency are easily obtained.

Keywords: random �eld model, Bayesian linear model, optimal design of experiments, integral
operator, kernel reduction.

1 Introduction

This work addresses the problem of computing designs of experiments for second-order Random
Field (RF) interpolation models with known covariance that are optimal in terms of Integrated
Integrated Mean-Squared Error (IMSE), see, e.g., Sacks et al. (1989), Rasmussen and Williams
(2006). The direct computation of IMSE-optimal designs for kernel-based models is often considered
as a numerically challenging problem, see, e.g., Fang et al. (2010, Chap. 2), Santner et al. (2003,
Chap. 6), in particular due to the presence of local minima.

The de�nition of an IMSE criterion for the leaning of a RF yields a particular Karhunen-Loève
(KL) expansion of the considered �eld. Following Fedorov (1996); Spöck and Pilz (2010), for a given
truncation level, we can interpret the initial RF model as a Bayesian (or regularised) Linear Model
(BLM) based on a subset of eigenfunctions of the KL expansion. The IMSE criterion for this exact
BLM corresponds to the truncated-IMSE criterion considered by Gauthier and Pronzato (2014).
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However, the exact BLM involves correlated errors, and in order to apply the classical machinery
of approximate design theory, we introduce an approximate BLM involving uncorrelated errors.
Using continuous relaxation with design measures, the construction of an IMSE-optimal design is
turned into a (convex) Bayesian A-optimal design problem, see Pilz (1983); Chaloner (1984) and
Pukelsheim (1993, Chap. 11). Many convex optimisation algorithms are available to solve this
problem, which ensure fast and guaranteed convergence to the optimum, see, e.g., Pronzato and
Pázman (2013, Chap. 9).

We present a careful analysis of the approach and propose a numerical implementation based
on a quadrature approximation of the IMSE. In particular, we investigate how to e�ciently extract
a design of given size n (the number of observations) from an optimal design measure, and how
to construct an optimal measure adapted to the given n (notice that repeated observations at the
same location are forbidden in an interpolation context).

For the sake of simplicity, we assume �rst (Sections 2 to 4) that the mean structure of the RF
is known (and equal to zero without any loss of generality). The case of RF models involving an
unknown linear parametric trend is considered in Section 6. Section 2 introduces the main notions
and notation used in this work. In Section 3 we de�ne the exact and approximate BLMs induced by
the initial RF model and the IMSE criterion. In particular, we show the equivalence between the
IMSE criterion of the exact BLM and the truncated-IMSE. We then consider two di�erent choices
for the variance structure of the observation noise in the approximate BLM: a homoscedastic model
and a heteroscedastic model, both having the same integrated variance as the initial RF model. The
Bayesian A-optimal design problem is introduced in Section 4. The numerical implementation of
the approach is described in Section 5, assuming that a pointwise quadrature is used to approximate
the integral of the Mean-Squared Error (MSE), and that the design space is restricted to quadrature
points. The extraction of a design of given size n is also discussed. Section 6 describes how the
convex relaxation approach can be applied to RF models with a linear parametric trend. We
�rst recall the direct approach of Spöck and Pilz (2010). Next, depending on the presence of an
informative prior on the �rst two moments of the trend-parameters, we propose two alternative
ways for the construction of the exact BLM. When a prior is available, we consider the initial RF
model with unknown trend as a RF model with known trend and augmented covariance kernel. In
absence of prior, we consider a reduction of the initial kernel that brings orthogonality between the
trend and the complementary centered RF, without any modi�cation of the predictive properties
of the model (see Theorem 6.1). Finally, some numerical experiments are carried out in Section 7,
and Section 8 concludes.

2 General framework and notations

2.1 Random �elds and related Hilbert structures

We consider a real RF (Zx)x∈X indexed by X , where X can be any general set but corresponds
to a compact subset of Rd, d > 1, in most applications. In what follows Z will refer to the RF
(Zx)x∈X . We assume that Z is centered, second-order, and de�ned on a probability space (Ω,F ,P).
We denote by L2 (Ω,P) the Hilbert space of second-order real random variables (r.v.) on (Ω,F ,P),
where we identify r.v. that are equal P-almost surely. The inner product between two r.v. U and V
of L2 (Ω,P) is denoted by E (UV ).

LetK : X ×X → R be the covariance kernel of Z, i.e., for all x and y ∈X , E (ZxZy) = K(x, y).
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Also, let H be the Hilbert space (sometimes called Gaussian Hilbert space) associated with Z, i.e.,
the closed linear subspace of L2 (Ω,P) spanned by the r.v. Zx, x ∈ X , endowed with the Hilbert
structure induced by L2 (Ω,P). We assume that H is separable.

We denote by H the RKHS of real valued functions on X de�ned by the kernel K(·, ·). The
two Hilbert spaces H and H are isometric thanks to the relation, for all x and y ∈ X , (Kx|Ky)H =
K(x, y) = E(ZxZy), where (·|·)H is the inner product of H. We denote by I : H → H the isometry
given by I (Kx) = Zx, where Kx stands for the function t 7→ K(x, t), t ∈X .

2.2 Hilbert space embedding and integral operator

We suppose that X is a measurable space; we denote by A the associated σ-algebra and consider
a σ-�nite measure µ on X (this is the measure used to de�ne the IMSE criterion, see Section 2.4).
We denote by L2(X , µ) the Hilbert space of real-valued functions on X that are square integrable
with respect to µ. Notice that elements of L2(X , µ) are in fact equivalent classes of functions that
coincide µ-almost everywhere; however, we shall assimilate elements of L2(X , µ) with functions on
X when it will not be source of confusion.

We assume that the kernel K(·, ·) is measurable on X ×X endowed with the product σ-algebra,
and that the diagonal of K(·, ·) is a measurable function on X . We also assume that the RKHS H
is continuously included into L2(X , µ), that is, for any h ∈ H, we have h ∈ L2(X , µ) and

‖h‖2L2 6 τ‖h‖2H, with τ =

∫

X
K(x, x)dµ(x) < +∞;

one may refer for instance to Gauthier and Pronzato (2014) for more precisions. We denote by H0

the closed linear subspace of H de�ned by H0 = {h0 ∈ H| ‖h0‖2L2 = 0} and by Hµ the orthogonal

of H0 in H (i.e., Hµ = H⊥H0 ).
We introduce the following linear operator Tµ on L2(X , µ),

∀f ∈ L2(X , µ), ∀x ∈X , Tµ[f ](x) =
(
Kx

∣∣f
)
L2 =

∫

X
f(t)K(x, t)dµ(t).

The operator Tµ is compact, positive and self-adjoint, and Tµ[f ] ∈ Hµ for all f ∈ L2(X , µ). Let
{λk | k ∈ I+} be the set (at most countable) of all strictly positive eigenvalues of Tµ. We denote by
ϕ̃k ∈ L2(X , µ) their associated eigenfunctions, i.e., in L2(X , µ),

∀k ∈ I+, Tµ[ϕ̃k] = λkϕ̃k, with λk > 0 ,

chosen to be orthonormal in L2 (X , µ). We also introduce their canonical extensions ϕk ∈ H,

∀x ∈X , ϕk(x) =
1

λk
Tµ[ϕ̃k](x) , k ∈ I+ , (2.1)

so that {√λkϕk | k ∈ I+} forms an orthonormal basis of Hµ for the Hilbert structure of H, see
Gauthier and Pronzato (2014, Prop. 3.1).
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2.3 Hilbert space decomposition

To the orthogonal decomposition H = Hµ
⊥
⊕ H0 of Section 2.2 corresponds the orthogonal decom-

position

H = Hµ

⊥
⊕ H0 (2.2)

via the isometry I. We denote by PHµ and PH0 the orthogonal projections of H onto Hµ and H0

respectively. The covariance kernel Kµ(·, ·) of the RF
(
PHµ [Zx]

)
x∈X

is given by

∀x and y ∈X , Kµ(x, y) =
∑

k∈I+
λkϕk(x)ϕk(y),

and K0(·, ·) = K(·, ·)−Kµ(·, ·) is the covariance of
(
PH0 [Zx]

)
x∈X

.

For all k ∈ I+, we introduce the r.v. ξk = I
(√
λkϕk

)
, so that by construction {ξk | k ∈ I+} is

an orthonormal basis of Hµ (see also Remark 2.1). We then have the following decomposition (or
Karhunen-Loève expansion) in L2 (Ω,P):

∀x ∈X , PHµ [Zx] =
∑

k∈I+

√
λkξkϕk(x). (2.3)

Remark 2.1. If we assume that the realisations of the RF Z belong to L2(X , µ) with P-probability
one, then the r.v. ξk have the following representation: ξk = (1/

√
λk)

∫
X Zxϕ̃k(x)dµ(x). However,

this assumption is stronger than those used in Section 2.2 and is not essential for our study. /

2.4 IMSE and truncated-IMSE

Let HD be a closed linear subspace of H and denote by PHD the orthogonal projection of H onto HD.
For x ∈ X , the r.v. PHD [Zx] is the best linear prediction (unbiased and in terms of the MSE) of
the r.v. Zx relatively to HD. This prediction is optimal in the Gaussian case and then corresponds
to the conditional mean of Zx relatively to HD. The IMSE associated with HD is given by

IMSE(HD) =

∫

X
E
[
(Zx − PHD [Zx])2

]
dµ(x).

For Itrc a subset of I+ (truncation subset), we introduce Htrc = span {ξk|k ∈ Itrc}
L2(Ω,P)

, the
closure in L2 (Ω,P) of the linear space spanned by the r.v. ξk, k ∈ Itrc. The truncated-IMSE, with
truncation subset Itrc, is de�ned by

IMSEtrc(HD) =

∫

X
E
[(
PHtrc

[
Zx − PHD [Zx]

])2]
dµ(x). (2.4)

More details concerning the truncated-IMSE can be found in (Gauthier and Pronzato, 2014); see
also Harari and Steinberg (2014). We have in particular:

IMSEtrc(HD) 6 IMSE(HD) 6 IMSEtrc(HD) +
∑

k 6∈Itrc
λk, (2.5)

where k 6∈ Itrc stands for k ∈ I+\Itrc.
An n-point design Dn = {x1, · · · , xn} (with n ∈ N∗ and xi ∈X ) is canonically associated with

the subspace HDn = span(Zx1 , · · · , Zxn) of H. We shall use the notation IMSE(Dn) = IMSE(HDn)
to refer to the IMSE associated with the design Dn.
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3 Spectral truncation and Bayesian linear models

3.1 Interpretation of the random �eld model as a Bayesian linear model

Consider a (�nite) truncation subset Itrc of I+ (usually corresponding to the ntrc largest eigenvalues
of Tµ). From (2.2) and (2.3), we have, in L2 (Ω,P),

∀x ∈X , Zx =
∑

k∈Itrc
βkϕk(x) + Ex, (3.1)

with βk =
√
λkξk and Ex =

∑
k 6∈Itrc

√
λkξkϕk(x) + PH0 [Zx]. The βk, k ∈ Itrc, are therefore mutu-

ally orthogonal centered r.v. in L2 (Ω,P) with variance λk. Also, (Ex)x∈X is a centered RF with
covariance given by

∀x and y ∈X , Kerr(x, y) = K(x, y)−Ktrc(x, y), (3.2)

where Ktrc(x, y) =
∑

k∈Itrc λkϕk(x)ϕk(y). In addition, for all x ∈X , the βk are orthogonal to Ex.
According to (3.1), we can thus interpret the RF model Z as a Bayesian Linear Model (BLM)

with functions ϕk as regressors, k ∈ Itrc, a given prior on the coe�cients βk, and observation errors
Ex. We shall refer to (3.1) as the exact BLM induced by Z and the truncation subset Itrc.

With vector-matrix notation, we shall denote β the (column) random vector with components
βk, and φtrc(x) the (column) vector with components ϕk(x), k ∈ Itrc, x ∈X , so that (3.1) becomes

Zx = φTtrc(x)β + Ex.

We shall also denote Λtrc = diag(λk|k ∈ Itrc) the covariance matrix of the random vector β; we
thus have in particular Ktrc(x, y) = φTtrc(x)Λtrcφtrc(y).

3.2 IMSE for the exact Bayesian linear model

Consider the exact BLM (3.1) for an n-point design Dn = {x1, · · · , xn}. De�ne the design matrix
Φtrc, with i, k entry ϕk(xi), 1 6 i 6 n and k ∈ Itrc, and the covariance matrix Kerr of the
observation errors (Ex1 , . . . , Exn), with i, j entry Kerr(xi, xj), see (3.2). The covariance matrix K
of the vector of observations z = (Zx1 , · · · , Zxn)T is then given by K = ΦtrcΛtrcΦ

T
trc + Kerr. For

the sake of simplicity, we assume that the design Dn is such that Kerr (and thus K) is invertible,
but extension to singular matrices is possible through the use of generalised inverses.

We consider the following estimator of β:

β̂ =
(
ΦT
trcK

−1
errΦtrc + Λ−1

trc

)−1
ΦT
trcK

−1
errz,

which is solution of the regularised least-squares problem de�ned by the minimisation of

L2(β) = (z−Φtrcβ)TK−1
err(z−Φtrcβ) + (β − β0)TΛ−1

trc(β − β0), (3.3)

with β0 = E(β) = 0. Note that when Z is Gaussian, β̂ is simply the posterior mean of β. The
Mean-Squared prediction Error (MSE) at x ∈X for the exact BLM is

MSEKerrtrc (x;Dn) = E
{[

φT (x)(β − β̂)
]2}

= φTtrc(x)
(
ΦT
trcK

−1
errΦtrc + Λ−1

trc

)−1
φtrc(x). (3.4)
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Remark 3.1. From the Sherman-Morrison-Woodbury matrix identity, we have

(
ΦT
trcK

−1
errΦtrc + Λ−1

trc

)−1
= Λtrc −ΛtrcΦ

T
trc(ΦtrcΛtrcΦ

T
trc + Kerr)

−1ΦtrcΛtrc (3.5)

= Λtrc −ΛtrcΦ
T
trcK

−1ΦtrcΛtrc.

For x ∈ X , the prediction φTtrc(x)β̂ can be written as

φTtrc(x)β̂ = φTtrc(x)ΛtrcΦ
T
trc(ΦtrcΛtrcΦ

T
trc + Kerr)

−1z.

It corresponds to the usual kriging predictor for a (centered) RF model with covariance kernel
Ktrc(·, ·) combined with centered observation errors with covariance Kerr(·, ·). In the same way, we
obtain for the MSE

MSEKerrtrc (x;Dn) = Ktrc(x, x)− φTtrc(x)ΛtrcΦ
T
trc(ΦtrcΛtrcΦ

T
trc + Kerr)

−1ΦtrcΛtrcφtrc(x),

which is, as expected, the usual (simple) kriging variance for a RF model with observation errors. /

Integrating (3.4) with respect to µ and applying Tonelli's theorem, we obtain

IMSEKerrtrc (Dn) =

∫

X
MSEKerrtrc (x;Dn)dµ(x)

= trace

{
(ΦT

trcK
−1
errΦtrc + Λ−1

trc)
−1

∫

X
φtrc(x)φTtrc(x)dµ(x)

}

= trace
{

(ΦT
trcK

−1
errΦtrc + Λ−1

trc)
−1
}
, (3.6)

where we have used the property that the eigenfunctions ϕk are orthonormal in L2(X , µ). Using
(3.5), we obtain that IMSEKerrtrc (Dn) given by (3.6) coincides with the truncated-IMSE (2.4) for the
design Dn, i.e., IMSEKerrtrc (Dn) = IMSEtrc(Dn), which can be written as

IMSEtrc(Dn) = trace
(
Λtrc −ΛtrcΦ

T
trcK

−1ΦtrcΛtrc

)
= trace

(
Λtrc

)
− trace

(
K−1ΦtrcΛ

2
trcΦ

T
trc

)
,

see Gauthier and Pronzato (2014). Notice that although the model (3.1) is exact, it only gives
access to the truncated version of IMSE(Dn).

3.3 Approximate Bayesian linear model

The main motivation for interpreting a RF model as a BLM is to be in a position to use the classical
machinery of approximate-design theory for linear models. However, this cannot be applied directly
to the exact model (3.1) where the observation errors are correlated. We therefore introduce an
approximate linear model with uncorrelated errors and consider

∀x ∈X , Z̃x =
∑

k∈Itrc
βkϕk(x) + Ex, (3.7)

where the βk and ϕk are de�ned as in (3.1), and where the errors Ex ∈ L2 (Ω,P) are centered,
orthogonal to the βk, k ∈ Itrc, and such that, for x and y ∈X ,

E
(
ExEy

)
= Σ(x, y) =

{
σ2(x) if x = y,

0 otherwise.
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In order to ensure that the two models (3.1) and (3.7) have the same integrated variance with
respect to µ, we impose that the variance σ2(x) satis�es

τerr =

∫

X
Kerr(x, x)dµ(x) =

∑

k 6∈Itrc
λk = τ − τtrc =

∫

X
σ2(x)dµ(x), (3.8)

with τtrc =
∑

k∈Itrc λk.
For an n-point designDn = {x1, · · · , xn}, we denote by Σ the (diagonal) covariance matrix of the

observation errors, with i, j entry Σ(xi, xj). The covariance matrix K̃ of the vector of observations

z̃ = (Z̃x1 , · · · , Z̃xn)T is thus K̃ = ΦtrcΛtrcΦ
T
trc + Σ. As in Section 3.2, we assume for the sake of

simplicity that Σ (and thus K̃) is invertible. The IMSE calculated with the approximate model
(3.7) is then given by

IMSEΣ
trc(Dn) = trace

[
(ΦT

trcΣ
−1Φtrc + Λ−1

trc)
−1
]
.

Homoscedastic errors with σ2(x) = σ2 constant are considered in (Spöck and Pilz, 2010), which
gives (assuming the measure µ is �nite) σ2 = τerr/µ(X ) for any x ∈X . However, even in the case
when K(x, x) is constant, the function x ∈X 7→ Kerr(x, x) is generally strongly oscillating due to
the form of the eigenfunctions that enter Ktrc(x, x), see Figs. 1 and 2 of Section 7.1. Choosing an
heteroscedastic model with σ2(x) = Kerr(x, x) seems therefore more appropriate than σ2(x) = σ2.
Note that it amounts to replacing Kerr by its diagonal in the developments of Section 3.2 and gives
Var(Z̃x) = Var(Zx).

4 Truncated-IMSE and continuous-design relaxation

We consider a linear model of the form (3.7) with orthogonal observation errors having variance
σ2(·). We assume that x 7→ σ2(x) is measurable on (X ,A), with σ2(x) > ε > 0 for all x ∈X (see
Remark 4.1), and that K(x, x) is bounded on X by some constant C. This implies that

∀x ∈X , |ϕk(x)| = |(ϕk|Kx)H| ≤ ‖ϕk‖H ‖Kx‖H =
√
K(x, x)/λk ≤

√
C/λk ,

and ϕk(x) is bounded on X . These assumptions ensure that the information matrix

Mν =

∫

X

1

σ2(x)
φtrc(x)φTtrc(x) dν(x), (4.1)

with k, l entry
∫
X [1/σ2(x)]ϕk(x)ϕl(x)d ν(x), is well de�ned for any measure ν in the set PA of

probability measures on (X ,A): Mν is bounded, symmetric and non-negative de�nite.
When ν is the empirical measure νn = (1/n)

∑n
i=1 δxi associated with Dn, where δxi stands for

the Dirac measure at xi, we obtain Mνn = (1/n) ΦT
trcΣ

−1Φtrc. Although such empirical measures
are the only ones that can be implemented in the form of an exact design without replication,
we shall consider relaxed optimisation problems involving general measures ν. Once a measure ν∗

optimal (or close enough to optimality) will be determined, its support will be used in Section 5.2
to generate an n-point design Dn.

For any �xed α ∈ R+, we de�ne the following functional Ψα(·) on PA,

∀ν ∈PA, Ψα(ν) = trace
[
(αMν + Λ−1

trc)
−1
]
, (4.2)
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so that Ψn(νn) = IMSEΣ
trc(Dn) for the empirical measure νn. The parameter α has a strong impact

on the optimal measure that minimises Ψα(·), as illustrated in Section 7. One can readily check
that, for a �xed ν ∈PA, the function α ∈ R+ 7→ Ψα(ν) is positive, decreasing, and satis�es

Ψ0(ν) =
∑

k∈Itrc
λk and lim

α→+∞
Ψα(ν) = 0.

For example, for the particular measure dν̌(x) = [σ2(x)/τerr] dµ(x), with τerr = τ − τtrc and σ2(·)
satisfying (3.8), we obtain Mν̌ = Id/τerr and Ψα(ν̌) =

∑
k∈Itrc(α/τerr + 1/λk)

−1.
The functional Ψα(·) de�ned by (4.2) corresponds to a Bayesian A-optimality criterion, see

Pilz (1983); Chaloner (1984); Pukelsheim (1993, Chap. 11), which is convex in ν ∈ PA and non-
increasing for Loewner ordering. In order to be able to address the minimisation of Ψα(ν) with
respect to ν ∈PA, we assume additionally that the set {φtrc(x)φTtrc(x)/σ2(x)|x ∈X } is compact.
This is not too restrictive, and is satis�ed in particular when X is �nite, or is a compact subset of
Rd with σ(·) and K : X ×X → R being continuous (so that the ϕk(·) are continuous on X ), see
the examples in Section 7.

Then, from classical results in optimum experimental design (approximate theory), there exists
at least one probability measure ν∗ ∈PA which minimises Ψα(·) and has m 6 1 + ntrc(ntrc + 1)/2
support points in X (see, e.g., Winkler (1988), Barvinok (2002, Chap. 3)); moreover, the optimal
matrix Mν∗ is unique. The directional derivative of Ψα(·) at ν in the direction η − ν is given by

FΨα(ν, η) = lim
γ→0+

Ψα[(1− γ)ν + γη]−Ψα(ν)

γ

= −α trace
{

(αMν + Λ−1
trc)
−1(Mη −Mν)(αMν + Λ−1

trc)
−1
}
, (4.3)

and the convexity and di�erentiability of Ψα(·) imply that a measure ν∗ ∈ P is optimal if and
only if FΨα(ν∗, η) > 0 for any η ∈ P. This corresponds to the Equivalence Theorem for Bayesian
A-optimal design stated below, see Pilz (1983).

Theorem 4.1. For any given α > 0, the measure ν∗ ∈ PA minimises Ψα(·) if and only if, for all
x ∈X ,

φTtrc(x)(αMν∗ + Λ−1
trc)
−2φtrc(x) 6 σ2(x) trace

{
Mν∗(αMν∗ + Λ−1

trc)
−2
}
. (4.4)

Equality is achieved in (4.4) ν∗-almost everywhere (that is, for any support point of ν∗). The
convexity and di�erentiability of Ψα(·) imply that, for any ν ∈ PA,

Ψα(ν) 6 Ψα(ν∗)− min
x∈X

FΨα(ν, δx), (4.5)

which can be used to check distance from optimality. Many e�cient convex optimisation algorithms
are available for the construction of a sequence of measures ν(k) such that Ψα(ν(k)) converges to
Ψα(ν∗), see, e.g., Pronzato and Pázman (2013, Chap. 9).

Remark 4.1. Assume that there exists x0 ∈X such that σ2(x0) = 0; we distinguish two cases.

1. There exists k ∈ Itrc such that ϕk(x0) 6= 0 (and therefore, Ktrc(x0, x0) 6= 0). One should then
include x0 in the design since it allows observation of the exact value of φTtrc(x0)β.

2. Ktrc(x0, x0) = 0. In that case, we can roughly say that there is nothing to learn in x0, and
we may exclude x0 from the search space. This can be achieved for instance by considering
the pseudo-inverse (σ2(x))† of σ2(x) in (4.1), with r† = 1/r if r 6= 0, and r† = 0 if r = 0. /
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5 Numerical approach

In this section we discuss the implementation of the method proposed in Sections 3 and 4, assuming
that a pointwise quadrature is used to approximate the integral of the MSE and restricting the
design space to quadrature points. A similar approach could be used for any design region formed
by a �nite set of points. We also consider the extraction of an n-point design from an optimal
measure for Ψα(·). The methods presented in this section can be straightforwardly applied to the
framework of Section 6 involving RF models that include an unknown linear parametric trend.

5.1 Quadrature approximation and quadrature-restricted continuous design

Assume that the measure µ has the following form

µ =

Nq∑

j=1

ωjδsj , (5.1)

with Nq quadrature points sj ∈X receiving weights ωj > 0. We introduce the two Nq×Nq matrices
W = diag

(
ω1, · · · , ωNq

)
and Q with i, j term Qi,j = K(si, sj), for 1 6 i, j 6 Nq; W is thus the

diagonal matrix of quadrature weights and Q is the covariance matrix for quadrature points.
Consider the spectral decomposition of the matrix QW in the Hilbert space RNq endowed

with the inner product (·|·)W, with, for x and y ∈ RNq , (x|y)W = xTWy, see Gauthier and
Pronzato (2014, 2015a) for more details. We denote by λ1 > λ2 > · · · > λNq > 0 the eigenvalues
of the matrix QW and by v1, . . . ,vNq the corresponding eigenvectors, i.e., QW = PΛP−1 with
Λ = diag(λ1, . . . , λNq) and P = (v1| · · · |vNq). Then,

{
v1, . . . ,vNq

}
forms an orthonormal basis of

RNq for the inner product (·|·)W, so that PTWP = IdNq , the Nq-dimensional identity matrix.
Let PA,µ ⊂PA denote the subset of probability measures dominated by µ given by (5.1), i.e.,

of all measures ν =
∑Nq

j=1 pjδsj , with pj > 0 and
∑Nq

j=1 pj = 1. For a truncation set Itrc, the matrix
Mν given by (4.1) and associated with a measure ν ∈PA,µ is then given by

Mν = (P.,Itrc)
TΩ(P.,Itrc), (5.2)

where Ω = diag
(
p1/σ

2(s1), · · · , pNq/σ2(sNq)
)
and P.,Itrc stands for the Nq ×ntrc matrix consisting

of the columns of P with index in Itrc.

5.2 Design extraction

Suppose that an optimal design measure ν∗m minimizing Ψα(ν) given by (4.2) and (5.2) has been
determined, ν∗m having support S∗m = {si1 , · · · , sim}. We must still de�ne a procedure for extracting
an n-point design Dn from ν∗m, for a given n. Note that the issue di�ers from the usual rounding
problem in approximate design theory, see, e.g., Fedorov (1972, p. 157); Pukelsheim and Reider
(1992), since we request exactly one observation per point and, moreover, the scalar α and number
ntrc of regressors in the underlying linear model can be used as tuning parameters.

First, note that the values of n and ntrc cannot be chosen in total independence: indeed, for a
given n, it seems in general illusory to predict the response of a model involving much more than
n regressors. Taking ntrc ≈ n thus seems reasonable. Second, since Ψn(νn) = IMSEΣ

trc(Dn) for the
empirical measure νn, see Section 4, choosing α ≈ n seems reasonable too. Optimal design measures
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ν∗m for values of α and ntrc close to the requested n tend to be constituted of n′ points, or n′ clusters
of neighboring points, with n′ ≈ n, all points or clusters of points receiving similar weights. One
may then proceed by trial an error, until n′ = n or is close enough to n, and merge points within
eventual clusters.

Various approaches can be used to automatize this construction, e.g., aggregation of support
points via minimum-spanning-tree clustering, branch-and-bound-type methods, etc. In what follows
we describe a greedy merging strategy (Algorithm 1) which is rather straightforward to implement,
has low complexity (of order O(m3)) and proved rather e�cient on the numerical tests that we
performed. A few examples are given in Section 7. If ν =

∑ns
j=1 pjδsij is the current design measure,

supported by ns quadrature points sij with ij ∈ {1, · · · , Nq} and pj > 0 for all j with
∑ns

j=1 pj = 1,
the algorithm considers all ns(ns−1)/2 possible measures ν[a→b] obtained by transferring the weight
pa from sia to sib (ν[a→b] is thus supported by ns−1 points, sia being removed from ν). The measure
ν[a∗→b∗] with smallest value of Ψα(·) is then carried forward to the next iteration. The current
measure ν after k iterations is such that Ψα(ν) = ψk and has m − k support points, the sequence
I1, . . . , Ik contains the indices of the k quadrature points that have been removed from the support
S∗m of ν∗m.

Algorithm 1 Greedy algorithm for design extraction

Require: ν∗m ∈PA,µ (with m support-points S∗m) and Ψα(·);
1: ν ← ν∗m; ns ← m; ψ0 ← Ψα(ν∗m);
2: while ns > 1 do

3: search for {a∗, b∗} = argmin Ψα(ν[a→b]), with a ∈ {1, · · · , ns} and b ∈ {1, · · · , ns}\{a};
4: ns ← ns − 1; ψm−ns ← Ψα(ν[a∗→b∗]); ν ← ν[a∗→b∗]; Im−ns ← ia∗ ;
5: end while

6: return {ψk} (Ψα values) and {Ik} (points removed from S∗m).

The sequence {ψk} is generally non-decreasing (due to the fact that ν∗m is optimal for Ψα(·)),
and we can stop removing points when ψk is signi�cantly larger than ψ0 = Ψα(ν∗m). Usually, this
occurs for an abrupt increase of Ψα, and the size n of the design extracted is then chosen equal to
the number of support points just before the jump. We shall denote by Dsupp

n this design, and by
Dext
n the best n-point design obtained by running a local descent algorithm, restricted to quadrature

points and initialized at Dsupp
n , see Gauthier and Pronzato (2015a). Section 7 will present some

examples.

Remark 5.1. A method based on the aggregation of support points of ν∗m via minimum-spanning-
tree clustering has also been considered, with the metric ∆(x, x′) = K(x, x) +K(x′, x′)− 2K(x, x′)
induced by K (the design points are given by the weighed barycentres of the clusters, with weights
given by the pk), see Gauthier and Pronzato (2015b). For the examples we have treated, the designs
obtained looked much similar to Dext

n obtained with Algorithm 1. Notice that this approach requires
the computation of canonical extensions (2.1), i.e., of summations over the Nq quadrature points,
since in general the measure obtained does not belong to PA,µ.

When X is a compact subset of Rd, a continuous local minimisation of the IMSE with respect to
Dn ∈X n (i.e., with respect to n× d variables), initialised at Dext

n , can be performed at reasonable
computational cost, using a standard optimisation algorithm (the canonical extensions (2.1) must
be used here too). For most covariance kernels the optimal design points lie in the convex hull of

10



X , and no constraint need to be taken into account if X is convex. However, the decrease of IMSE
compared to Dext

n is usually marginal when the set of quadrature points is dense enough, and we
shall not consider this procedure any further in the paper. /

6 Random �eld models with unknown linear parametric trend

The approach described in previous sections can be extended to RF models that include an un-
known linear parametric trend, as described in (Spöck and Pilz, 2010). Their method is detailed
in Sections 6.1 and 6.2. When prior information on the trend parameters is available, we show in
Section 6.3 how a rather straightforward kernel augmentation allows us to recast the problem as
one involving a RF with known trend. In absence of informative prior on the trend parameters, a
kernel reduction is proposed in Section 6.4 that permits to avoid confusion between the trend and
RF behaviours.

6.1 IMSE for a random �eld with unknown linear parametric trend

We still consider the framework and notation of Section 2, but now the RF is (Yx)x∈X such that,
for all x ∈X ,

Yx = gT (x)θ + Zx, (6.1)

where g(x) =
(
g1(x), · · · , gp(x)

)T
is a column vector of (known) real-valued functions on X and

where θ =
(
θ1, . . . , θp

)T ∈ Rp is an unknown vector, p ∈ N∗. We denote by T the linear subspace
spanned by the trend-functions {g1, · · · , gp}. We suppose that gj ∈ L2(X , µ) for all j ∈ {1, · · · , p}
and, in view of Section 4, we also assume that the set {g(x)gT (x)/σ2(x)|x ∈X } is compact.

Following Spöck and Pilz (2010), we consider a prior on the �rst two moments of θ and assume
that θi ∈ L2 (Ω,P) for all i ∈ {1, · · · , p} with

E(θ) = θ0 and Cov(θ) = A, (6.2)

where θ0 ∈ Rp and A is a p× p positive-de�nite matrix. We also assume that the θi are orthogonal
to H. The case where no prior information on θ is available corresponds to replacing A−1 by the
null matrix and will be considered into details in Section 6.4.

For the RF model (6.1) and design Dn = {x1, · · · , xn}, the MSE at x ∈X is given by (assuming
that all matrix inverses are well-de�ned)

MSE(x;Dn) = K(x, x)− kT (x)K−1k(x)

+
[
g(x)−GTK−1k(x)

]T (
GTK−1G + A−1

)−1[
g(x)−GTK−1k(x)

]
, (6.3)

where G is the n× p design-matrix with i, j entry Gi,j = gj(xi), and where

k(x) =
(
Kx1(x), · · · ,Kxn(x)

)T
.

This is the usual expression obtained in Bayesian kriging, see Omre and Halvorsen (1989), Santner
et al. (2003, Chap. 4). The IMSE criterion is then given by

IMSE(Dn) =

∫

X
MSE(x;Dn)dµ(x). (6.4)
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6.2 Direct spectral approximation and induced exact BLM

Consider the decomposition (3.1) for a truncation subset Itrc. It yields the following exact model
(with equality in L2 (Ω,P)),

Yx = fT (x)γ + Ex, (6.5)

where

f(x) =

(
g(x)

φtrc(x)

)
and γ =

(
θ
β

)
, with E(γ) = γ0 =

(
θ0

0

)
and Cov(γ) = Γ =

(
A 0
0 Λtrc

)
.

(6.6)
For a design Dn = {x1, · · · , xn}, denote by y the vector of observations (Yx1 , · · · , Yxn)T and let

F = (G,Φtrc). The underlying regularised least-squares problem yields the estimator

γ̂ =
(
FTK−1

errF + Γ−1
)−1(

FTK−1
erry + Γ−1γ0

)
.

The MSE at x ∈X is then

MSEKerrtrc (x;Dn) = E
([

fT (x)(γ − γ̂)
]2)

= fT (x)
(
FTK−1

errF + Γ−1
)−1

f(x). (6.7)

By expanding (6.7), we also obtain

MSEKerrtrc (x;Dn) = Ktrc(x, x)− kTtrc(x)K−1ktrc(x)

+
[
g(x)−GTK−1ktrc(x)

]T (
GTK−1G + A−1

)−1[
g(x)−GTK−1ktrc(x)

]
, (6.8)

where we have denoted ktrc(x) = ΦtrcΛtrcφtrc(x). Similarly to Section 3.2, MSEKerrtrc (x;Dn) cor-
responds to the MSE obtained from (6.3) through spectral truncation. Substituting a diagonal
matrix for Kerr we get an approximated IMSE that can be used for convex design optimisation, see
Sections 3.3 and 4.

Denote by Mg the Gram matrix of the trend functions g1, · · · , gp in L2(X , µ), that is, in matrix
notation,

Mg =

∫

X
g(x)gT (x)dµ(x).

We assume that Mg is invertible. The truncated IMSE is obtained by integrating (6.7) with respect
to µ,

IMSEKerrtrc (Dn) = trace
[(

FTK−1
errF + Γ−1

)−1
U
]
, (6.9)

where U is the Gram matrix of f(·) in L2(X , µ), i.e.,

U =

∫

X
f(x)fT (x)dµ(x) =

(
Mg

(
g
∣∣φTtrc

)
L2(

φtrc
∣∣gT
)
L2 Idntrc

)
. (6.10)

It is instructive to compare the IMSE (6.4) with the truncated-IMSE (6.9). For the initial RF
model (6.1), after recombination we obtain IMSE(Dn) = τ +B − C − 2D, where we have set

B =

∫

X
gT (x)

(
GTK−1G + A−1

)−1
g(x)dµ(x),

C =

∫

X
kT (x)

(
K−1 −K−1G

(
GTK−1G + A−1

)−1
GTK−1

)
k(x)dµ(x), and

D =

∫

X
gT (x)

(
GTK−1G + A−1

)−1
GTK−1k(x)dµ(x).
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In the same way, considering (6.8), we get IMSEKerrtrc (Dn) = τtrc +B − Ctrc − 2Dtrc, with

Ctrc =

∫

X
kTtrc(x)

(
K−1 −K−1G

(
GTK−1G + A−1

)−1
GTK−1

)
ktrc(x)dµ(x), and

Dtrc =

∫

X
gT (x)

(
GTK−1G + A−1

)−1
GTK−1ktrc(x)dµ(x).

We then obtain the following (the proof is given in Appendix A).

Proposition 6.1. For any truncation subset Itrc, we have 0 6 C − Ctrc 6 τerr = τ −∑k∈Itrc λk.

On the other hand, one may note that D and Dtrc respectively involve terms of the form∫
X K(x, xi)gj(x)dµ(x) = Tµ

[
gj
]
(xi) =

∑
k∈I+ λk

(
ϕk
∣∣gj
)
L2ϕk(xi) and

∫
X Ktrc(x, xi)gj(x)dµ(x) =∑

k∈Itrc λk
(
ϕk
∣∣gj
)
L2ϕk(xi), for i ∈ {1, · · · , n} and j ∈ {1, · · · , p}. The derivation of general error

bounds on the di�erence D − Dtrc seems therefore more complicated, which partly motivates the
two following sections (see also Section 7.4 for examples).

6.3 Presence of a prior: equivalence with a model with known trend

In presence of an informative prior on θ, the model de�ned by (6.1) and (6.2) can be interpreted as
a RF model with known trend. Indeed, for and x and y in X we have

E(Yx) = gT (x)θ0 and Cov(Yx, Yy) = gT (x)AgT (y) +K(x, y) = K full(x, y). (6.11)

We shall refer to the kernel K full(·, ·) as the augmented kernel. Applying the Sherman-Morrison-
Woodbury identity (assuming, for the sake of simplicity, that Dn is such that K + GAGT is
invertible), we can easily check that the two RF models (6.1) and (6.11) yield the same predictions.

We can then consider the integral operator

T full
µ [f ](x) =

∫

X
f(t)K full(x, t)dµ(x),

with f ∈ L2(X , µ) and x ∈ X , and apply the same approach as in Sections 3 and 4 for models
without trend. In particular, bounds similar to (2.5) are available and straightforward calculation
shows that

τ full =

∫

X
K full(x, x)dµ(x) = τ + trace

(
AMg

)
> τ.

6.4 Absence of informative prior: IMSE-adapted kernel reduction

Here we can take advantage of the non-uniqueness of the kernels associated with a given semi-Hilbert
structure. Denote by p the orthogonal projection of L2(X , µ) onto T and de�ne q = idL2 − p. For
f ∈ L2(X , µ), we obtain, in matrix notation,

pf = gTM−1
g

(
g
∣∣f
)
L2 .

Assume, for the sake of simplicity, that the realisations of (Zx)x∈X belongs to L2(X , µ) with P-
probability 1 (this assumption is not necessary, however, for the construction of the kernel Kq(·, ·)
given in (6.13) and for Theorem 6.1). For x ∈X , we can then de�ne

pZx = gT (x)M−1
g

∫

X
g(t)Ztdµ(t),
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so that pZx ∈ L2 (Ω,P), E(pZx) = 0 and, for y ∈X ,

E
(
(pZx)(pZy)

)
= gT (x)M−1

g

(
Tµ[g]

∣∣gT
)
L2M

−1
g gT (x) and E

(
(pZx)Zy

)
= gT (x)M−1

g Tµ[g](y).

Now, the model (6.1) can be written as

Yx = gT (x)θ + pZx + qZx = gT (x)θq + qZx, (6.12)

with θq = θ + M−1
g

∫
X g(x)Zxdµ(x). Since no informative prior on θ is available, the prior on θq

is non-informative too (see Remark 6.2). The covariance kernel of (qZx)x∈X in (6.12) is given by

Kq(x, y) = E
(
(qZx)(qZy)

)
= K(x, y) + gT (x)Sg(y)− bT (x)g(y)− gT (x)b(y), (6.13)

with S = M−1
g

(
Tµ[g]

∣∣gT
)
L2M

−1
g and b(x) = M−1

g Tµ[g](x). Such a kernel Kq(·, ·) is sometimes
called a reduction of the kernel K(·, ·), see Schaback (1999).

Our motivation for introducing the model (6.12) is that we now have orthogonality in L2(X , µ)
between the realisations of (qZx)x∈X and the trend subspace T . The property below shows that
predictions are not modi�ed when using (6.12) instead of (6.1), i.e., when considering the kernel
Kq(·, ·) instead of the kernel K(·, ·).

Theorem 6.1. Assume that the design Dn is such that the design matrix G has full rank p (such
a design is said to be T -unisolvant). Then the two RF models (6.1) and (6.12) yield the same
predictions and mean-squared prediction errors.

This result is a direct consequence of the non-uniqueness of the kernels associated with a given
semi-Hilbert space, and of the uniqueness of the optimal prediction in semi-Hilbert spaces, see
Duchon (1977); Gauthier (2011). A proof is given in Appendix A. Notice that if we denote by

Ŷx the resulting optimal linear prediction, and by θ̂q the underlying estimator of θq, then, by
construction, the following orthogonality holds:

∫

X

(
Ŷx − gT (x)θ̂q

)
g(x)dµ(x) = 0.

Remark 6.1. The substitution of the kernel Kq(·, ·) for K(·, ·) can be related to the interpretation
of the initial model (6.1) as an intrinsic random model, see Matheron (1973, 1971). For a real-
valued function f on X , let δx be the evaluation functional at x ∈X , that is δx[f ] = f(x). Using
a notation similar to Schaback (1999, Sect. 5), this kernel substitution amounts to replacing the
evaluation functional δx by the functional δ(x), de�ned by

∀x ∈X , f ∈ L2(X , µ), δ(x)[f ] = qf(x).

More precisely, for g ∈ L2(X , µ), let Ig,µ denote the functional de�ned by Ig,µ[f ] = (f |g)L2 . Using
vector-matrix notation, we then have, for x ∈ X , δ(x) = δx − gT (x)M−1

g Ig,µ, and we can write
δ(x)[f ] = δx[qf ] = (tqδx)[f ]. Notice that this kernel substitution is de�ned whenever T ⊂ L2(X , µ)
and the assumptions of Section 2.2 are veri�ed. In particular, it covers the case of a general
linear trend gT (x)θ in (6.1), whereas the theory of intrinsic random functions concerns translation-
invariant kernels and only addresses the case of polynomial regression, see Matheron (1971). /
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The integral operator associated with Kq is

T q
µ[f ](x) =

∫

X
f(t)Kq(x, t)dµ(x),

with f ∈ L2(X , µ) and x ∈X . By construction, it satis�es T q
µ[gj ] = 0 for all j ∈ {1, · · · , p}. Denote

by {λqk|k ∈ Iq+} the set of all strictly positive eigenvalues of T q
µ and let ϕq

k be their (canonically
extended) associated eigenfunctions. We have

τ q =

∫

X
Kq(x, x)dµ(x) = τ − trace

(
M−1

g

(
Tµ[g]

∣∣gT
)
L2

)
6 τ. (6.14)

For a truncation subset Iqtrc, using the same notations as in Section 6.2, the terms Dq and Dq
trc now

equal 0, and inequalities similar to (2.5) are available, with τ qerr =
∑

k 6∈Iqtrc λ
q
k quantifying the error

due to spectral truncation.

Remark 6.2. Starting from the prior (6.2), we obtain

E(θq) = θ0 and Cov(θq) = Aq = A + S.

When the prior is non-informative, that is, roughly speaking, when A−1 = 0, then the same holds
for Aq and the prior on θq remains non-informative.

The situation would be di�erent in presence of informative prior: in that case, orthogonality in
L2 (Ω,P) between the components of θq and the r.v. qZx, x ∈X , is lost when using the model (6.12),
and E

(
θq(qZx)

)
= b(x) − Sg(x) = M−1

g q
(
Tµ[g]

)
(x). The consequence on the IMSE calculation is

that the matrix Γq corresponding to Γ in (6.6) is no longer block diagonal, with the two o�-diagonal
blocks being not trivial to evaluate. /

Remark 6.3. Comparing with (6.10), we now have
(
φq
trc

∣∣gT
)
L2 = 0. In order to further reduce

the computational cost when using the reduced kernel Kq(·, ·), one may consider regressors g that
form an orthonormal basis of T for L2(X , µ), making Uq equal to the identity matrix. /

7 Numerical experiments

We consider a RF on X = [0, 1]d, d ∈ N, with kernel K(x, y) =
∏d
i=1K`i(xi, yi), where x =

(x1, · · · , xd) and K`i(xi, yi) = (1 +
√

3|xi − yi|)exp(
√

3|xi − yi|/`i), `i > 0 (Matérn 3/2). We use
d = 2 in Sections 7.1, 7.2 and 7.4, and d = 4 in Section 7.3.

In all Section 7 we consider measures µ that correspond to pointwise quadrature approximations
of the uniform probability on [0, 1]d, and we apply the methodology described in Section 5. Optimal
design measures ν∗ on the quadrature points are approximated by a vertex-exchange algorithm, see
Böhning (1985, 1986). Quadrature points sj that cannot be support points of the optimal measure
can be removed from the search space using the criterion in (Pronzato, 2013). The iterations are
stopped when the directional derivative (4.3) for the current approximated solution ν̂ satis�es

min
j∈{1,...,Nq}

FΨα(ν̂, δsj ) + ε > 0, (7.1)

which, by convexity, ensures that Ψα(ν̂) 6 Ψα(ν∗)+ε, see (4.5). With a slight abuse of terminology,
we refer to the obtained measures as the �optimal measures�.
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The IMSE-e�ciency of a design Dn is measured by the ratio IMSE(D∗n)/ IMSE(Dn), where D∗n
is the best n-point quadrature-design (i.e., a design only composed of quadrature-points) that we
were able to obtain using the simulated-annealing algorithm presented in (Gauthier and Pronzato,
2015a). One should note that, although it is rather e�cient, this global optimisation algorithm is
much more time consuming than the convex-optimisation approach considered here. The model is
without trend in Sections 7.1, 7.2 and 7.3; the presence of a linear parametric trend is considered
in Section 7.4.

7.1 Regular grid approximation

Here µ is the discrete probability measure on X = [0, 1]2 de�ned by a 33× 33 regular square grid
(midpoint rule), each grid-point receiving the same weight 1/Nq, with Nq = 332 = 1 089. We take
`1 = `2 = 0.15.

Figure 1 shows the optimal measures for the heteroscedastic and homoscedastic models, re-
spectively with σ2(x) = Kerr(x, x) (left) and σ2 = τerr/µ(X ) (right), for α = ntrc = 7 (so that
τtrc ≈ 0.4484). The optimal measure for the heteroscedastic model is supported by 11 points, but
97.71% of the mass is supported by 7 points only. The design Dsupp

7,het obtained by Algorithm 1 corre-
sponds to those 7 points, with an IMSE-e�ciency of 99.84%. A grid-restricted local descent starting
from Dsupp

7,het converges to D
∗
7. The optimal measure for the homoscedastic model is supported by 15

points, 7 of which (the same as above) carrying 79.39% of the total mass. The IMSE-e�ciency of
Dsupp

7,hom is 99.59%; Dext
7,hom obtained by local descent coincides also with D∗7.

As illustrated by this �rst example, the optimal measures obtained with the heteroscedastic
model have in general more support points than those obtained with the heteroscedastic model,
which often complicates the extraction of a design with a given number of points n. Only the
heteroscedastic model is used in the following.
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Figure 1: Contour-plot of the variance x 7→ σ2(x) = Kerr(x, x) (α = ntrc = 7) and optimal
measure ν∗m for Ψα(·) (disks with surface proportional to the weights pk, ε = 1e-7 in (7.1)) for the
heteroscedastic (left) and homoscedastic (right) models. The quadrature points are indicated by
grey crosses, the IMSE-optimal 7-point quadrature-design is indicated by triangles.

Figure 2 shows the optimal measure ν∗m for the heteroscedastic model, obtained for a �xed
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truncation level ntrc = 15 and di�erent values of α: the number of support points (or clusters of
support points) of ν∗m tends to increase when α increases. When α = 0.001 (not shown), ν∗m is
reduced to a Dirac measure at the center of the grid. Remarkably, for this particular example the
support of ν∗m for α = 1 coincides with the 13-point optimal quadrature-design D∗13. The optimal
measure for α = ntrc = 15 is supported by 29 points, but 21 of them carry 96, 75% of the mass.
Although the corresponding design Dsupp

21 is quite di�erent from D∗21, see Fig. 2-bottom-left, its
IMSE e�ciency is about 96.47% and a grid-restricted local descent yields a design Dext

21 with an
IMSE-e�ciency of 99.62%. The optimal measure for α = 100 is supported by 37 points, and the
design extraction procedure yields the same design Dext

21 as for α = 15. More generally, we observe
that for a given truncation level ntrc, the larger α, the more scattered the support of ν∗m.
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Figure 2: Optimal measures (ε = 1e-7 in (7.1)) for the heteroscedastic model with ntrc = 15 and
α = 0.08, 1, 15 and 100. A contour-plot of the variance x 7→ σ2(x) = Kerr(x, x) is also given
(top-left).

Figure 3 presents the optimal measures obtained for α = 22 and two di�erent values of ntrc. For
ntrc = α (τtrc ≈ 0.7648), ν∗m is supported by 52 points, among which 24 carry 78.96% of the mass.
The optimal measure for ntrc = 100 (τtrc ≈ 0.9711) is supported by 280 points, its exploitation for
the extraction of a design with size n ≈ 22 seems di�cult. This motivates the recommandation of
choosing ntrc ≈ α ≈ n to construct a design of size n.
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Figure 3: Optimal measures (ε = 1e-5 in (7.1)) for the heteroscedastic model with α = 22 and
ntrc = 22 (left), ntrc = 100 (right).

Figure 4 illustrates the behaviour of the design-extraction procedure (Algorithm 1) applied to
the optimal measure for the heteroscedastic model with ntrc = α = 22 (ν∗m has m = 52 support
points and is presented in Fig. 3-left). The evolution of ψk suggests the extraction of a design with
size n = 24: we have ψm−24−ψ0 ≈ 5.15e-4 and ψm−25−ψ0 ≈ 7.11e-3, and we can note a sudden
increase of ψk when k > m − 24 (i.e., ns < 24). The IMSE-e�ciency of Dsupp

24 is about 99.37%, a
quadrature-restricted local descent yields Dext

24 = D∗24.
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Figure 4: Design extraction for ν∗m obtained with ntrc = α = 22 (heteroscedastic model, ν∗m is
shown on Fig. 3-left): sequence {ψk} (left) and measure ν24 obtained after m− 24 = 28 iterations
of Algorithm 1 (right).

18



7.2 Quasi-Monte-Carlo quadrature

In order to illustrate the impact of the regularity of the quadrature on the optimal measures, µ
corresponds now to a quadrature consisting of the Nq = 1 089 �rst points of a low-discrepancy
Halton sequence in [0, 1]2, all points receiving identical weights 1/Nq.

Figure 5-left shows the optimal measure ν∗m obtained for the heteroscedastic model with ntrc =
α = 22. There are 48 support points and ν∗m presents some similarities with the measure presented
in Fig. 3-left, which was obtained with a regular square grid. However, ν∗m is now more irregular,
as a consequence of dispersion of quadrature points (grey crosses) in the Halton sequence. Note in
particular the presence of neighboring points with identical non-negligible weights in the rectangular
box on the top of the �gure, which may potentially confuse the design extraction.
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Figure 5: Optimal measure (ε = 1e-5 in (7.1)) for the heteroscedastic model with α = ntrc = 22
on a low-discrepancy Halton sequence (left); sequence {ψk} (middle); measure ν25 obtained after
m− 25 = 23 iterations of Algorithm 1 (right).

When applying Algorithm 1, the sequence {ψk} suggests the extraction of a design with size
n = 25. Table 1 gives the IMSE-e�ciencies obtained for Dsupp

n and Dext
n when the size n varies

from 22 to 25. For n = 23 (respectively, n = 24), Dext
n is an optimal (respectively, almost optimal)

quadrature-design (in the sense that we were not able to obtain a better design on the quadrature
points). For n = 25, the design-extraction procedure splits the cluster highlighted by a rectangle in
Fig. 5-left into two design points, the e�ciency of Dext

25 remaining reasonably high.

Table 1: IMSE-e�ciencies (%) of Dsupp
n and Dext

n obtained from ν∗m presented in Fig. 5-left.

n 22 23 24 25

Dsupp
n 97.38 98.14 97.55 97.15

Dext
n 99.94 100 100 (−9 10−4) 99.44
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7.3 Example with dimension d = 4

We take d = 4, with `1 = `2 = `3 = `4 = 0.35 in the K`i(·, ·). The measure µ corresponds
to a 9 × 9 × 9 × 9 square grid (midpoint rule), all points receiving the same weight 1/Nq, with
Nq = 94 = 6 561.

Figure 6 illustrates the results obtained for the heteroscastic model with α = ntrc = 31 (τtrc ≈
0.6658). The optimal measure ν∗m has 104 support points, among which 40 carry 94.74% of the
mass. The sequence {ψk} clearly suggests the extraction of a design of size n = 40. Remarkably
enough, Dsupp

40 = D∗40, but we must point out that such favourable situations are rather exceptional
(on this example, not all truncation level ntrc lead to similar results).
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Figure 6: Projection on {x1, x2} of the optimal measure (ε = 1e-6 in (7.1)) for the heteroscastic
model with α = ntrc = 31 (left), sequence {ψk} (middle) and projection on {x1, x2} of the measure
ν40 obtained after m− 40 = 64 iterations of Algorithm 1 (right).

7.4 Models with unknown parametric trend

We consider the same framework as Section 7.1 but now assume the presence of a parametric
trend, with g(x) = (g1(x), g2(x), g3(x))T = (1, x1, x2)T for x = (x1, x2) ∈ [0, 1]2 (p = 3). We take
Cov(θ) = A = Id3 when an informative prior on the trend-parameters is needed.

Figure 7-left illustrates the strong linear relationship that exists, in L2(X , µ), between the three
trend-functions gj and the eigenfunctions of the IMSE integral operator Tµ. This relationship can
be interpreted as a kind of redundancy of the trend-functions in the models (6.1) or (6.5).

For a given truncation level ntrc, the total number of regressors nreg in the BLM induced by
the initial and reduced kernels is nreg = ntrc + p, this corresponds to models of type (6.5). We
have nreg = ntrc for the model, of type (3.1), induced by the augmented kernel. The middle and
right parts of Fig. 7 aim at comparing the integrated variances of the error terms for the BLMs
de�ned by the initial and modi�ed kernels: initial kernel versus reduced kernel (middle), and initial
kernel versus augmented kernel (right). We observe that for the same number of regressors nreg,
the reduced and augmented kernels yield BLMs that are more accurate than the BLM induced by
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the initial kernel, in the sense that we have, for this particular example,

τ qerr[ntrc] 6 τerr[ntrc] and τ
full
err [ntrc + p] 6 τerr[ntrc],

where [ntrc] and [ntrc + p] indicate the number of eigenfunctions considered (we recall that τerr =∫
X Kerr(x, x)dµ(x)).
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Figure 7: Contributions of the �rst ntrc eigenfunctions ϕk to the trend-functions g1, g2 and g3 (left),
and values of τerr, τ

q
err and τ full

err as functions of the truncation level (middle and right).

Figure 8 gives a further illustration that, for the same number of regressors considered, the
BLM induced by the reduced kernel contains more information than the BLM induced by the initial
kernel. The optimal measures ν∗m for the heteroscedastic models are presented, on the left for the
initial kernel with ntrc = α = 22 (and therefore 25 regressors), on the right for the reduced kernel
with ntrc = 19 (22 regressors), both with α = 22 (no prior on θ is used). The two measures look
rather similar, and the contour plots of the variances x 7→ Kerr(x, x) and x 7→ Kq

err(x, x) also
present strong similitude (with τerr = 0.2352 and τ qerr = 0.2370). It thus appears that the BLM
induced by the initial kernel requires 25 regressors to carry similar information as the BLM induced
by the reduced kernel with 22 regressors only. Also, ν∗m is supported by 56 points for the initial
kernel, and has only 48 support points for the reduced kernel. Algorithm 1 applied to both measures
yields the same 24-point design Dext

24 , which coincides with D∗24.

8 Concluding discussion

We have shown that the convex relaxation method described by Fedorov (1996); Spöck and Pilz
(2010) can be e�ciently applied when considering the IMSE-adapted Karhunen-Loève expansion
of the RF. The obtained Bayesian A-optimality criterion Ψα(·) is closely related to the truncated-
IMSE criterion for RF interpolation models considered for instance in (Gauthier and Pronzato,
2014). A numerical implementation of the approach has been proposed, based on a quadrature
approximation of the IMSE with restriction to designs supported by quadrature points. E�cient
convex-programming algorithms can then be used to construct IMSE-optimal design measures, with
guaranteed convergence to the optimum.

A greedy exchange algorithm has been presented for the extraction of an exact designDn of given
size n from an optimal measure ν∗m, and the adaptation of ν

∗
m to n via the tuning of the parameters α

and ntrc that enter Ψα(·) has been discussed. We have observed that the heteroscedastic approximate
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Figure 8: Optimal measures for the heteroscedastic models (ε = 1e-5 in (7.1)) induced by the initial
kernel K(·, ·) with ntrc = α = 22 (left), and by the reduced kernel Kq(·, ·) with ntrc = 19 and α = 22
(right).

BLM, with σ2(x) = Kerr(x, x), often yields optimal measures that are more concentrated than the
ones obtained with the homoscedastic model, and are thus easier to exploit for the extraction of
exact designs of given size. In line with the numerical results presented in (Gauthier and Pronzato,
2015a), we also observed that when α and ntrc are such that the size n of the design Dn extracted
is close to ntrc, Dn inherits a high IMSE-e�ciency. Our numerical experiments indicate that it
is possible to modulate the size of the designs extracted by considering di�erent truncation levels
ntrc, and that values ntrc ≈ α ≈ n are recommended. Further developments might help to select
more precisely values of α and ntrc especially suited for the extraction of a design of size n. The
construction of other design-extraction procedures also deserves further investigations.

We have proposed two extensions to the direct approach of Spöck and Pilz (2010) for RF models
that include a linear parametric trend. One is based on kernel augmentation, and applies to the case
where an informative prior on the two �rst moments of the trend-parameters θ is available. The
other amounts to a kernel reduction de�ned from a linear continuous projection onto a subspace
of the trend-space, and is for the case when no such prior information on θ is available. They
permit in particular to bound the error induced by considering the truncated-IMSE instead of the
true IMSE, whereas the derivation of such error bounds seems much more di�cult with the initial
kernel. The numerical experiments carried out in Section 7.4 also point out that, for an equivalent
number of regressors, the modi�ed kernels generally lead to BLMs having smaller errors than the
BLMs induced by the initial kernel. Theorem 6.1 shows the equivalence between the predictions
induced by the initial model and those with a model based on the reduced kernel in absence of
informative prior on θ. This is a very general result, with potential consequences in other contexts
involving RF models.

Finally, only Bayesian A-optimality has been considered, due to its direct connection with the
truncated-IMSE for the initial RF model. Other choices are possible and deserve further investiga-
tions, see in particular Fedorov (1996); Spöck and Pilz (2010) for Bayesian D-optimality.
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A Proofs

Proof of Proposition 6.1. Consider the Cholesky decomposition K = CCT . For k ∈ I+, let φk =(
ϕk(x1), · · · , ϕk(xn)

)T
. Using developments similar to those used to obtain (3.6), we have

C − Ctrc =
∑

k 6∈Itrc
λk(
√
λkC

−1φk)
T
(
Id−C−1G

(
GTK−1G + A−1

)−1
GTC−T

)
(
√
λkC

−1φk).

From Gauthier and Pronzato (2014), we know that, for all k ∈ Itrc,

0 6 (
√
λkC

−1φk)
T (
√
λkC

−1φk) 6 1. (A.1)

Consider the matrix Q = C−1G
(
GTK−1G + A−1

)−1
GTC−T ; it satis�es Q = QT and

Q2 = Q−C−1G
(
GTK−1G + A−1

)−1
A−1

(
GTK−1G + A−1

)−1
GTC−T . (A.2)

The second matrix on the right-hand side of (A.2) is symmetric and non-negative de�nite. Therefore,
Q2 � Q (Loewner ordering), and similarly (Id−Q)2 � (Id−Q). The real matrix (Id−Q) is therefore
positive and contractant, which, combined with (A.1), concludes the proof.

Proof of Theorem 6.1. For x ∈X , let cTxy be a linear prediction of Yx for the model (6.1) with no
informative prior on θ. The MSE associated with this prediction is given by

s2(x) = E
(
(Yx − cTxy2)

)
=
(
(g(x)−GT cx)Tθ

)2
+K(x, x) + cTxKcx − 2cTxk(x).

The no-bias condition implies GT cx = g(x). The stationary condition for the Lagrangian (a nec-
essary and su�cient condition for the minimisation of s2(x) with respect to cx under the no-bias
constraint) is (

0 GT

G K

)(
λ
cx

)
=

(
g(x)
k(x)

)
. (A.3)

If we consider the model (6.12) and a prediction of the form (cqx)Ty, we obtain an equation of
the same type as (A.3), where cx, λ, K and k(x) are replaced by cqx, λ

q, Kq and kq(x) respectively.
Applying the no-bias condition, we �nally obtain

(
0 GT

G K−GBT

)(
λq

cqx

)
=

(
g(x)

k(x)−Gb(x)

)
, (A.4)

with BT =
(
b(x1), · · · ,b(xn)

)
. Therefore, if (λ, cx) satis�es (A.3), then cqx = cx and λq = λ +

BT cx − b(x) are solution of (A.4). The two optimal linear predictions (cx)Ty and (cqx)Ty thus
coincide and one can check that s2

q(x)− s2(x) = 0.
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