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Introduction

This work addresses the problem of computing designs of experiments for second-order Random Field (RF) interpolation models with known covariance that are optimal in terms of Integrated Integrated Mean-Squared Error (IMSE), see, e.g., [START_REF] Sacks | Design and analysis of computer experiments[END_REF], [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. The direct computation of IMSE-optimal designs for kernel-based models is often considered as a numerically challenging problem, see, e.g., Fang et al. (2010, Chap. 2), Santner et al. (2003, Chap. 6), in particular due to the presence of local minima.

The denition of an IMSE criterion for the leaning of a RF yields a particular Karhunen-Loève (KL) expansion of the considered eld. Following [START_REF] Fedorov | Design of spatial experiments: model tting and prediction[END_REF]; [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF], for a given truncation level, we can interpret the initial RF model as a Bayesian (or regularised) Linear Model (BLM) based on a subset of eigenfunctions of the KL expansion. The IMSE criterion for this exact BLM corresponds to the truncated-IMSE criterion considered by [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF]. 1 However, the exact BLM involves correlated errors, and in order to apply the classical machinery of approximate design theory, we introduce an approximate BLM involving uncorrelated errors.

Using continuous relaxation with design measures, the construction of an IMSE-optimal design is turned into a (convex) Bayesian A-optimal design problem, see [START_REF] Pilz | Bayesian Estimation and Experimental Design in Linear Regression Models[END_REF]; [START_REF] Chaloner | Optimal Bayesian experimental design for linear models[END_REF] and Pukelsheim (1993, Chap. 11). Many convex optimisation algorithms are available to solve this problem, which ensure fast and guaranteed convergence to the optimum, see, e.g., Pronzato and Pázman (2013, Chap. 9).

We present a careful analysis of the approach and propose a numerical implementation based on a quadrature approximation of the IMSE. In particular, we investigate how to eciently extract a design of given size n (the number of observations) from an optimal design measure, and how to construct an optimal measure adapted to the given n (notice that repeated observations at the same location are forbidden in an interpolation context).

For the sake of simplicity, we assume rst (Sections 2 to 4) that the mean structure of the RF is known (and equal to zero without any loss of generality). The case of RF models involving an unknown linear parametric trend is considered in Section 6. Section 2 introduces the main notions and notation used in this work. In Section 3 we dene the exact and approximate BLMs induced by the initial RF model and the IMSE criterion. In particular, we show the equivalence between the IMSE criterion of the exact BLM and the truncated-IMSE. We then consider two dierent choices for the variance structure of the observation noise in the approximate BLM: a homoscedastic model and a heteroscedastic model, both having the same integrated variance as the initial RF model. The Bayesian A-optimal design problem is introduced in Section 4. The numerical implementation of the approach is described in Section 5, assuming that a pointwise quadrature is used to approximate the integral of the Mean-Squared Error (MSE), and that the design space is restricted to quadrature points. The extraction of a design of given size n is also discussed. Section 6 describes how the convex relaxation approach can be applied to RF models with a linear parametric trend. We rst recall the direct approach of [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF]. Next, depending on the presence of an informative prior on the rst two moments of the trend-parameters, we propose two alternative ways for the construction of the exact BLM. When a prior is available, we consider the initial RF model with unknown trend as a RF model with known trend and augmented covariance kernel. In absence of prior, we consider a reduction of the initial kernel that brings orthogonality between the trend and the complementary centered RF, without any modication of the predictive properties of the model (see Theorem 6.1). Finally, some numerical experiments are carried out in Section 7, and Section 8 concludes.

2 General framework and notations

Random elds and related Hilbert structures

We consider a real RF (Z x ) x∈X indexed by X , where X can be any general set but corresponds to a compact subset of R d , d

1, in most applications. In what follows Z will refer to the RF (Z x ) x∈X . We assume that Z is centered, second-order, and dened on a probability space (Ω, F, P). We denote by L 2 (Ω, P) the Hilbert space of second-order real random variables (r.v.) on (Ω, F, P), where we identify r.v. that are equal P-almost surely. The inner product between two r.v. U and V of L 2 (Ω, P) is denoted by E (U V ).

Let K : X ×X → R be the covariance kernel of Z, i.e., for all x and y ∈ X , E (Z x Z y ) = K(x, y).

Also, let H be the Hilbert space (sometimes called Gaussian Hilbert space) associated with Z, i.e., the closed linear subspace of L 2 (Ω, P) spanned by the r.v. Z x , x ∈ X , endowed with the Hilbert structure induced by L 2 (Ω, P). We assume that H is separable. We denote by H the RKHS of real valued functions on X dened by the kernel K(•, •). The two Hilbert spaces H and H are isometric thanks to the relation, for all x and y ∈ X , (K x |K y ) H = K(x, y) = E(Z x Z y ), where (•|•) H is the inner product of H. We denote by I : H → H the isometry given by I (K x ) = Z x , where K x stands for the function t → K(x, t), t ∈ X .

Hilbert space embedding and integral operator

We suppose that X is a measurable space; we denote by A the associated σ-algebra and consider a σ-nite measure µ on X (this is the measure used to dene the IMSE criterion, see Section 2.4). We denote by L 2 (X , µ) the Hilbert space of real-valued functions on X that are square integrable with respect to µ. Notice that elements of L 2 (X , µ) are in fact equivalent classes of functions that coincide µ-almost everywhere; however, we shall assimilate elements of L 2 (X , µ) with functions on X when it will not be source of confusion.

We assume that the kernel K(•, •) is measurable on X ×X endowed with the product σ-algebra, and that the diagonal of K(•, •) is a measurable function on X . We also assume that the RKHS H is continuously included into L 2 (X , µ), that is, for any h ∈ H, we have h ∈ L 2 (X , µ) and

h 2 L 2 τ h 2 H , with τ = X K(x, x)dµ(x) < +∞;
one may refer for instance to [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF] for more precisions. We denote by H 0 the closed linear subspace of H dened by

H 0 = {h 0 ∈ H| h 0 2 L 2 = 0} and by H µ the orthogonal of H 0 in H (i.e., H µ = H ⊥ H 0 ).
We introduce the following linear operator

T µ on L 2 (X , µ), ∀f ∈ L 2 (X , µ), ∀x ∈ X , T µ [f ](x) = K x f L 2 = X f (t)K(x, t)dµ(t).
The operator T µ is compact, positive and self-adjoint, and T µ [f ] ∈ H µ for all f ∈ L 2 (X , µ). Let {λ k | k ∈ I + } be the set (at most countable) of all strictly positive eigenvalues of T µ . We denote by ϕ k ∈ L 2 (X , µ) their associated eigenfunctions, i.e., in L 2 (X , µ),

∀k ∈ I + , T µ [ ϕ k ] = λ k ϕ k , with λ k > 0 , chosen to be orthonormal in L 2 (X , µ). We also introduce their canonical extensions ϕ k ∈ H, ∀x ∈ X , ϕ k (x) = 1 λ k T µ [ ϕ k ](x) , k ∈ I + , (2.1) so that { √ λ k ϕ k | k ∈ I + }
forms an orthonormal basis of H µ for the Hilbert structure of H, see Gauthier and Pronzato (2014, Prop. 3.1). 

Hilbert space decomposition

∀x and y ∈ X , K µ (x, y) = k∈I + λ k ϕ k (x)ϕ k (y), and K 0 (•, •) = K(•, •) -K µ (•, •) is the covariance of P H 0 [Z x ] x∈X .
For all k ∈ I + , we introduce the r.v. ξ k = I √ λ k ϕ k , so that by construction {ξ k | k ∈ I + } is an orthonormal basis of H µ (see also Remark 2.1). We then have the following decomposition (or Karhunen-Loève expansion) in L 2 (Ω, P):

∀x ∈ X , P Hµ [Z x ] = k∈I + λ k ξ k ϕ k (x).
(2.3) Remark 2.1. If we assume that the realisations of the RF Z belong to L 2 (X , µ) with P-probability one, then the r.v. ξ k have the following representation:

ξ k = (1/ √ λ k ) X Z x ϕ k (x)dµ(x). However,
this assumption is stronger than those used in Section 2.2 and is not essential for our study.

IMSE and truncated-IMSE

Let H D be a closed linear subspace of H and denote by P H D the orthogonal projection of H onto H D . For x ∈ X , the r.v. P H D [Z x ] is the best linear prediction (unbiased and in terms of the MSE) of the r.v. Z x relatively to H D . This prediction is optimal in the Gaussian case and then corresponds to the conditional mean of Z x relatively to H D . The IMSE associated with H D is given by

IMSE(H D ) = X E (Z x -P H D [Z x ]) 2 dµ(x).
For I trc a subset of I + (truncation subset), we introduce

H trc = span {ξ k |k ∈ I trc } L 2 (Ω,P)
, the closure in L 2 (Ω, P) of the linear space spanned by the r.v. ξ k , k ∈ I trc . The truncated-IMSE, with truncation subset I trc , is dened by

IMSE trc (H D ) = X E P Htrc Z x -P H D [Z x ] 2 dµ(x).
(2.4)

More details concerning the truncated-IMSE can be found in [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF]; see also [START_REF] Harari | Optimal designs for Gaussian process models via spectral decomposition[END_REF]. We have in particular:

IMSE trc (H D ) IMSE(H D ) IMSE trc (H D ) + k ∈Itrc λ k , (2.5)
where k ∈ I trc stands for k

∈ I + \I trc . An n-point design D n = {x 1 , • • • , x n } (with n ∈ N * and x i ∈ X ) is canonically associated with the subspace H Dn = span(Z x 1 , • • • , Z xn ) of H. We shall use the notation IMSE(D n ) = IMSE(H Dn )
to refer to the IMSE associated with the design D n .

3 Spectral truncation and Bayesian linear models 3.1 Interpretation of the random eld model as a Bayesian linear model Consider a (nite) truncation subset I trc of I + (usually corresponding to the n trc largest eigenvalues of T µ ). From (2.2) and (2.3), we have, in L 2 (Ω, P),

∀x ∈ X , Z x = k∈Itrc β k ϕ k (x) + E x , (3.1) with β k = √ λ k ξ k and E x = k ∈Itrc √ λ k ξ k ϕ k (x) + P H 0 [Z x ].
The β k , k ∈ I trc , are therefore mutually orthogonal centered r.v. in L 2 (Ω, P) with variance λ k . Also, (E x ) x∈X is a centered RF with covariance given by ∀x and y ∈ X , K err (x, y) = K(x, y) -K trc (x, y),

(3.2)
where K trc (x, y) = k∈Itrc λ k ϕ k (x)ϕ k (y). In addition, for all x ∈ X , the β k are orthogonal to E x . According to (3.1), we can thus interpret the RF model Z as a Bayesian Linear Model (BLM) with functions ϕ k as regressors, k ∈ I trc , a given prior on the coecients β k , and observation errors E x . We shall refer to (3.1) as the exact BLM induced by Z and the truncation subset I trc .

With vector-matrix notation, we shall denote β the (column) random vector with components β k , and φ trc (x) the (column) vector with components ϕ k (x), k ∈ I trc , x ∈ X , so that (3.1) becomes

Z x = φ T trc (x)β + E x .
We shall also denote Λ trc = diag(λ k |k ∈ I trc ) the covariance matrix of the random vector β; we thus have in particular K trc (x, y) = φ T trc (x)Λ trc φ trc (y).

IMSE for the exact Bayesian linear model

Consider the exact BLM (3.1) for an n-point design D n = {x 1 , • • • , x n }. Dene the design matrix Φ trc , with i, k entry ϕ k (x i ), 1 i n and k ∈ I trc , and the covariance matrix K err of the observation errors (E x 1 , . . . , E xn ), with i, j entry K err (x i , x j ), see (3.2). The covariance matrix K of the vector of observations z = (Z x 1 , • • • , Z xn ) T is then given by K = Φ trc Λ trc Φ T trc + K err . For the sake of simplicity, we assume that the design D n is such that K err (and thus K) is invertible, but extension to singular matrices is possible through the use of generalised inverses.

We consider the following estimator of β:

β = Φ T trc K -1 err Φ trc + Λ -1 trc -1 Φ T trc K -1 err z,
which is solution of the regularised least-squares problem dened by the minimisation of

L 2 (β) = (z -Φ trc β) T K -1 err (z -Φ trc β) + (β -β 0 ) T Λ -1 trc (β -β 0 ), (3.3) 
with β 0 = E(β) = 0. Note that when Z is Gaussian, β is simply the posterior mean of β. The Mean-Squared prediction Error (MSE) at x ∈ X for the exact BLM is

MSE Kerr trc (x; D n ) = E φ T (x)(β -β) 2 = φ T trc (x) Φ T trc K -1 err Φ trc + Λ -1 trc -1 φ trc (x).
(3.4)

Remark 3.1. From the Sherman-Morrison-Woodbury matrix identity, we have

Φ T trc K -1 err Φ trc + Λ -1 trc -1 = Λ trc -Λ trc Φ T trc (Φ trc Λ trc Φ T trc + K err ) -1 Φ trc Λ trc (3.5) = Λ trc -Λ trc Φ T trc K -1 Φ trc Λ trc .
For x ∈ X , the prediction φ T trc (x) β can be written as

φ T trc (x) β = φ T trc (x)Λ trc Φ T trc (Φ trc Λ trc Φ T trc + K err ) -1 z.
It corresponds to the usual kriging predictor for a (centered) RF model with covariance kernel K trc (•, •) combined with centered observation errors with covariance K err (•, •). In the same way, we obtain for the MSE

MSE Kerr trc (x; D n ) = K trc (x, x) -φ T trc (x)Λ trc Φ T trc (Φ trc Λ trc Φ T trc + K err ) -1 Φ trc Λ trc φ trc (x),
which is, as expected, the usual (simple) kriging variance for a RF model with observation errors.

Integrating (3.4) with respect to µ and applying Tonelli's theorem, we obtain

IMSE Kerr trc (D n ) = X MSE Kerr trc (x; D n )dµ(x) = trace (Φ T trc K -1 err Φ trc + Λ -1 trc ) -1 X φ trc (x)φ T trc (x)dµ(x) = trace (Φ T trc K -1 err Φ trc + Λ -1 trc ) -1 , (3.6) 
where we have used the property that the eigenfunctions ϕ k are orthonormal in L 2 (X , µ). Using (3.5), we obtain that IMSE Kerr trc (D n ) given by (3.6) coincides with the truncated-IMSE (2.4) for the design D n , i.e., IMSE Kerr trc (D n ) = IMSE trc (D n ), which can be written as

IMSE trc (D n ) = trace Λ trc -Λ trc Φ T trc K -1 Φ trc Λ trc = trace Λ trc -trace K -1 Φ trc Λ 2 trc Φ T trc ,
see [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF]. Notice that although the model (3.1) is exact, it only gives access to the truncated version of IMSE(D n ).

Approximate Bayesian linear model

The main motivation for interpreting a RF model as a BLM is to be in a position to use the classical machinery of approximate-design theory for linear models. However, this cannot be applied directly to the exact model (3.1) where the observation errors are correlated. We therefore introduce an approximate linear model with uncorrelated errors and consider

∀x ∈ X , Z x = k∈Itrc β k ϕ k (x) + E x , (3.7)
where the β k and ϕ k are dened as in (3.1), and where the errors E x ∈ L 2 (Ω, P) are centered, orthogonal to the β k , k ∈ I trc , and such that, for x and y ∈ X ,

E E x E y = Σ(x, y) = σ 2 (x) if x = y, 0 otherwise.
In order to ensure that the two models (3.1) and (3.7) have the same integrated variance with respect to µ, we impose that the variance σ 2 (x) satises

τ err = X K err (x, x)dµ(x) = k ∈Itrc λ k = τ -τ trc = X σ 2 (x)dµ(x), (3.8) with τ trc = k∈Itrc λ k . For an n-point design D n = {x 1 , • • • , x n },
we denote by Σ the (diagonal) covariance matrix of the observation errors, with i, j entry Σ(x i , x j ). The covariance matrix K of the vector of observations z

= ( Z x 1 , • • • , Z xn ) T is thus K = Φ trc Λ trc Φ T trc + Σ.
As in Section 3.2, we assume for the sake of simplicity that Σ (and thus K) is invertible. The IMSE calculated with the approximate model (3.7) is then given by

IMSE Σ trc (D n ) = trace (Φ T trc Σ -1 Φ trc + Λ -1 trc ) -1 .
Homoscedastic errors with σ 2 (x) = σ 2 constant are considered in [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF], which gives (assuming the measure µ is nite) σ 2 = τ err /µ(X ) for any x ∈ X . However, even in the case when K(x, x) is constant, the function x ∈ X → K err (x, x) is generally strongly oscillating due to the form of the eigenfunctions that enter K trc (x, x), see Figs. 1 and 2 of Section 7.1. Choosing an heteroscedastic model with σ 2 (x) = K err (x, x) seems therefore more appropriate than σ 2 (x) = σ 2 . Note that it amounts to replacing K err by its diagonal in the developments of Section 3.2 and gives Var(

Z x ) = Var(Z x ).
σ 2 (•). We assume that x → σ 2 (x) is measurable on (X , A), with σ 2 (x) > ε > 0 for all x ∈ X (see Remark 4.1), and that K(x, x) is bounded on X by some constant C. This implies that

∀x ∈ X , |ϕ k (x)| = |(ϕ k |K x ) H | ≤ ϕ k H K x H = K(x, x)/λ k ≤ C/λ k ,
and ϕ k (x) is bounded on X . These assumptions ensure that the information matrix

M ν = X 1 σ 2 (x) φ trc (x)φ T trc (x) dν(x), (4.1) with k, l entry X [1/σ 2 (x)]ϕ k (x)ϕ l (x)d ν(x)
, is well dened for any measure ν in the set P A of probability measures on (X , A): M ν is bounded, symmetric and non-negative denite. When ν is the empirical measure ν n = (1/n) n i=1 δ x i associated with D n , where δ x i stands for the Dirac measure at x i , we obtain

M νn = (1/n) Φ T trc Σ -1 Φ trc . Although such empirical measures
are the only ones that can be implemented in the form of an exact design without replication, we shall consider relaxed optimisation problems involving general measures ν. Once a measure ν * optimal (or close enough to optimality) will be determined, its support will be used in Section 5.2

to generate an n-point design D n .

For any xed α ∈ R + , we dene the following functional Ψ α (•) on P A ,

∀ν ∈ P A , Ψ α (ν) = trace (αM ν + Λ -1 trc ) -1 , (4.2) so that Ψ n (ν n ) = IMSE Σ trc (D n ) for the empirical measure ν n .
The parameter α has a strong impact on the optimal measure that minimises Ψ α (•), as illustrated in Section 7. One can readily check that, for a xed ν ∈ P A , the function α ∈ R + → Ψ α (ν) is positive, decreasing, and satises

Ψ 0 (ν) = k∈Itrc λ k and lim α→+∞ Ψ α (ν) = 0.
For example, for the particular measure dν(x) = [σ 2 (x)/τ err ] dµ(x), with τ err = ττ trc and σ 2 (•) satisfying (3.8), we obtain M ν = Id/τ err and Ψ α (ν) = k∈Itrc (α/τ err + 1/λ k ) -1 .

The functional Ψ α (•) dened by (4.2) corresponds to a Bayesian A-optimality criterion, see [START_REF] Pilz | Bayesian Estimation and Experimental Design in Linear Regression Models[END_REF]; [START_REF] Chaloner | Optimal Bayesian experimental design for linear models[END_REF]; Pukelsheim (1993, Chap. 11), which is convex in ν ∈ P A and nonincreasing for Loewner ordering. In order to be able to address the minimisation of Ψ α (ν) with respect to ν ∈ P A , we assume additionally that the set {φ trc (x)φ T trc (x)/σ 2 (x)|x ∈ X } is compact. This is not too restrictive, and is satised in particular when X is nite, or is a compact subset of R d with σ(•) and K : X × X → R being continuous (so that the ϕ k (•) are continuous on X ), see the examples in Section 7.

Then, from classical results in optimum experimental design (approximate theory), there exists at least one probability measure ν * ∈ P A which minimises Ψ α (•) and has m 1 + n trc (n trc + 1)/2 support points in X (see, e.g., [START_REF] Winkler | Extreme points of moment sets[END_REF], Barvinok (2002, Chap. 3)); moreover, the optimal matrix M ν * is unique. The directional derivative of Ψ α (•) at ν in the direction ην is given by

F Ψα (ν, η) = lim γ→0 + Ψ α [(1 -γ)ν + γη] -Ψ α (ν) γ = -α trace (αM ν + Λ -1 trc ) -1 (M η -M ν )(αM ν + Λ -1 trc ) -1 , (4.3) 
and the convexity and dierentiability of Ψ α (•) imply that a measure ν * ∈ P is optimal if and only if F Ψα (ν * , η) 0 for any η ∈ P. This corresponds to the Equivalence Theorem for Bayesian A-optimal design stated below, see [START_REF] Pilz | Bayesian Estimation and Experimental Design in Linear Regression Models[END_REF].

Theorem 4.1. For any given α > 0, the measure ν * ∈ P A minimises Ψ α (•) if and only if, for all

x ∈ X , φ T trc (x)(αM ν * + Λ -1 trc ) -2 φ trc (x) σ 2 (x) trace M ν * (αM ν * + Λ -1 trc ) -2 . (4.4)
Equality is achieved in (4.4) ν * -almost everywhere (that is, for any support point of ν * ). The convexity and dierentiability of Ψ α (•) imply that, for any ν ∈ P A ,

Ψ α (ν) Ψ α (ν * ) -min x∈X F Ψα (ν, δ x ), (4.5)
which can be used to check distance from optimality. Many ecient convex optimisation algorithms are available for the construction of a sequence of measures ν (k) such that Ψ α (ν (k) ) converges to Ψ α (ν * ), see, e.g., Pronzato and Pázman (2013, Chap. 9). Remark 4.1. Assume that there exists x 0 ∈ X such that σ 2 (x 0 ) = 0; we distinguish two cases.

1. There exists k ∈ I trc such that ϕ k (x 0 ) = 0 (and therefore, K trc (x 0 , x 0 ) = 0). One should then include x 0 in the design since it allows observation of the exact value of φ T trc (x 0 )β.

2. K trc (x 0 , x 0 ) = 0. In that case, we can roughly say that there is nothing to learn in x 0 , and we may exclude x 0 from the search space. This can be achieved for instance by considering the pseudo-inverse (σ 2 (x)) † of σ 2 (x) in (4.1), with r † = 1/r if r = 0, and r † = 0 if r = 0.

Numerical approach

In this section we discuss the implementation of the method proposed in Sections 3 and 4, assuming that a pointwise quadrature is used to approximate the integral of the MSE and restricting the design space to quadrature points. A similar approach could be used for any design region formed by a nite set of points. We also consider the extraction of an n-point design from an optimal measure for Ψ α (•). The methods presented in this section can be straightforwardly applied to the framework of Section 6 involving RF models that include an unknown linear parametric trend.

5.1 Quadrature approximation and quadrature-restricted continuous design

Assume that the measure µ has the following form µ = Nq j=1 ω j δ s j ,

(5.1)

with N q quadrature points s j ∈ X receiving weights ω j > 0. We introduce the two N q ×N q matrices W = diag ω 1 , • • • , ω Nq and Q with i, j term Q i,j = K(s i , s j ), for 1 i, j N q ; W is thus the diagonal matrix of quadrature weights and Q is the covariance matrix for quadrature points.

Consider the spectral decomposition of the matrix QW in the Hilbert space R Nq endowed with the inner product (•|•) W , with, for x and y ∈ R Nq , (x|y) W = x T Wy, see [START_REF] Gauthier | Approche spectrale pour l'interpolation à noyaux et positivité conditionnelle[END_REF]Pronzato (2014, 2015a) for more details. We denote by λ 1 λ 2 • • • λ Nq 0 the eigenvalues of the matrix QW and by v 1 , . . . , v Nq the corresponding eigenvectors, i.e., QW = PΛP -1 with Λ = diag(λ 1 , . . . , λ Nq ) and P = (v 1 | • • • |v Nq ). Then, v 1 , . . . , v Nq forms an orthonormal basis of R Nq for the inner product (•|•) W , so that P T WP = Id Nq , the N q -dimensional identity matrix.

Let P A,µ ⊂ P A denote the subset of probability measures dominated by µ given by (5.1), i.e., of all measures ν = Nq j=1 p j δ s j , with p j 0 and Nq j=1 p j = 1. For a truncation set I trc , the matrix M ν given by (4.1) and associated with a measure ν ∈ P A,µ is then given by M ν = (P .,Itrc ) T Ω(P .,Itrc ),

(5.2)

where Ω = diag p 1 /σ 2 (s 1 ), • • • , p Nq /σ 2 (s Nq ) and P .,Itrc stands for the N q × n trc matrix consisting of the columns of P with index in I trc .

Design extraction

Suppose that an optimal design measure ν * m minimizing Ψ α (ν) given by (4.2) and ( 5.

2) has been determined, ν * m having support S * m = {s i 1 , • • • , s im }.
We must still dene a procedure for extracting an n-point design D n from ν * m , for a given n. Note that the issue diers from the usual rounding problem in approximate design theory, see, e.g., Fedorov (1972, p. 157); [START_REF] Pukelsheim | Ecient rounding of approximate designs[END_REF], since we request exactly one observation per point and, moreover, the scalar α and number n trc of regressors in the underlying linear model can be used as tuning parameters. First, note that the values of n and n trc cannot be chosen in total independence: indeed, for a given n, it seems in general illusory to predict the response of a model involving much more than n regressors. Taking n trc ≈ n thus seems reasonable. Second, since Ψ n (ν n ) = IMSE Σ trc (D n ) for the empirical measure ν n , see Section 4, choosing α ≈ n seems reasonable too. Optimal design measures ν * m for values of α and n trc close to the requested n tend to be constituted of n points, or n clusters of neighboring points, with n ≈ n, all points or clusters of points receiving similar weights. One may then proceed by trial an error, until n = n or is close enough to n, and merge points within eventual clusters.

Various approaches can be used to automatize this construction, e.g., aggregation of support points via minimum-spanning-tree clustering, branch-and-bound-type methods, etc. In what follows we describe a greedy merging strategy (Algorithm 1) which is rather straightforward to implement, has low complexity (of order O(m 3 )) and proved rather ecient on the numerical tests that we performed. A few examples are given in Section 7. If ν = ns j=1 p j δ s i j is the current design measure, supported by n s quadrature points s i j with i j ∈ {1, • • • , N q } and p j > 0 for all j with ns j=1 p j = 1, the algorithm considers all n s (n s -1)/2 possible measures ν [a→b] obtained by transferring the weight p a from s ia to s i b (ν [a→b] is thus supported by n s -1 points, s ia being removed from ν). The measure ν [a * →b * ] with smallest value of Ψ α (•) is then carried forward to the next iteration. The current measure ν after k iterations is such that Ψ α (ν) = ψ k and has mk support points, the sequence I 1 , . . . , I k contains the indices of the k quadrature points that have been removed from the support S * m of ν * m .

Algorithm 1 Greedy algorithm for design extraction Require: ν * m ∈ P A,µ (with m support-points S * m ) and Ψ α (•);

1: ν ← ν * m ; n s ← m; ψ 0 ← Ψ α (ν * m ); 2: while n s > 1 do 3: search for {a * , b * } = argmin Ψ α (ν [a→b] ), with a ∈ {1, • • • , n s } and b ∈ {1, • • • , n s }\{a}; 4: n s ← n s -1; ψ m-ns ← Ψ α (ν [a * →b * ] ); ν ← ν [a * →b * ] ; I m-ns ← i a * ; 5: end while 6: return {ψ k } (Ψ α values) and {I k } (points removed from S * m ).
The sequence {ψ k } is generally non-decreasing (due to the fact that ν * m is optimal for Ψ α (•)), and we can stop removing points when ψ k is signicantly larger than ψ 0 = Ψ α (ν * m ). Usually, this occurs for an abrupt increase of Ψ α , and the size n of the design extracted is then chosen equal to the number of support points just before the jump. We shall denote by D supp n this design, and by

D ext

n the best n-point design obtained by running a local descent algorithm, restricted to quadrature points and initialized at D supp n , see Gauthier and Pronzato (2015a). Section 7 will present some examples.

Remark 5.1. A method based on the aggregation of support points of ν * m via minimum-spanning- tree clustering has also been considered, with the metric ∆(x, x ) = K(x, x) + K(x , x ) -2K(x, x ) induced by K (the design points are given by the weighed barycentres of the clusters, with weights given by the p k ), see [START_REF] Gauthier | Optimal design for prediction in random eld models via covariance kernel expansions[END_REF]. For the examples we have treated, the designs obtained looked much similar to D ext n obtained with Algorithm 1. Notice that this approach requires the computation of canonical extensions (2.1), i.e., of summations over the N q quadrature points, since in general the measure obtained does not belong to P A,µ .

When X is a compact subset of R d , a continuous local minimisation of the IMSE with respect to D n ∈ X n (i.e., with respect to n × d variables), initialised at D ext n , can be performed at reasonable computational cost, using a standard optimisation algorithm (the canonical extensions (2.1) must be used here too). For most covariance kernels the optimal design points lie in the convex hull of X , and no constraint need to be taken into account if X is convex. However, the decrease of IMSE compared to D ext n is usually marginal when the set of quadrature points is dense enough, and we shall not consider this procedure any further in the paper.

6 Random eld models with unknown linear parametric trend

The approach described in previous sections can be extended to RF models that include an unknown linear parametric trend, as described in [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF]. Their method is detailed in Sections 6.1 and 6.2. When prior information on the trend parameters is available, we show in Section 6.3 how a rather straightforward kernel augmentation allows us to recast the problem as one involving a RF with known trend. In absence of informative prior on the trend parameters, a kernel reduction is proposed in Section 6.4 that permits to avoid confusion between the trend and RF behaviours.

IMSE for a random eld with unknown linear parametric trend

We still consider the framework and notation of Section 2, but now the RF is (Y

x ) x∈X such that, for all x ∈ X , Y x = g T (x)θ + Z x , (6.1) where g(x) = g 1 (x), • • • , g p (x)
T is a column vector of (known) real-valued functions on X and where θ = θ 1 , . . . , θ p T ∈ R p is an unknown vector, p ∈ N * . We denote by T the linear subspace spanned by the trend-functions {g 1 , • • • , g p }. We suppose that g j ∈ L 2 (X , µ) for all j ∈ {1, • • • , p} and, in view of Section 4, we also assume that the set {g(x)g T (x)/σ 2 (x)|x ∈ X } is compact. Following [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF], we consider a prior on the rst two moments of θ and assume that θ i ∈ L 2 (Ω, P) for all i ∈ {1, • • • , p} with E(θ) = θ 0 and Cov(θ) = A, (6.2) where θ 0 ∈ R p and A is a p × p positive-denite matrix. We also assume that the θ i are orthogonal to H. The case where no prior information on θ is available corresponds to replacing A -1 by the null matrix and will be considered into details in Section 6.4.

For the RF model (6.1) and design D n = {x 1 , • • • , x n }, the MSE at x ∈ X is given by (assuming that all matrix inverses are well-dened)

MSE(x; D

n ) = K(x, x) -k T (x)K -1 k(x) + g(x) -G T K -1 k(x) T G T K -1 G + A -1 -1 g(x) -G T K -1 k(x) , (6.3)
where G is the n × p design-matrix with i, j entry G i,j = g j (x i ), and where

k(x) = K x 1 (x), • • • , K xn (x) T .
This is the usual expression obtained in Bayesian kriging, see [START_REF] Omre | The Bayesian bridge between simple and universal kriging[END_REF]Halvorsen (1989), Santner et al. (2003, Chap. 4). The IMSE criterion is then given by 

IMSE(D n ) = X MSE(x; D n )dµ(x).
γ = F T K -1 err F + Γ -1 -1 F T K -1 err y + Γ -1 γ 0 . The MSE at x ∈ X is then MSE Kerr trc (x; D n ) = E f T (x)(γ -γ) 2 = f T (x) F T K -1 err F + Γ -1 -1 f (x).
(6.7)

By expanding (6.7), we also obtain

MSE Kerr trc (x; D n ) = K trc (x, x) -k T trc (x)K -1 k trc (x) + g(x) -G T K -1 k trc (x) T G T K -1 G + A -1 -1 g(x) -G T K -1 k trc (x) , (6.8)
where we have denoted k trc (x) = Φ trc Λ trc φ trc (x). Similarly to Section 3.2, MSE Kerr trc (x; D n ) corresponds to the MSE obtained from (6.3) through spectral truncation. Substituting a diagonal matrix for K err we get an approximated IMSE that can be used for convex design optimisation, see Sections 3.3 and 4.

Denote by M g the Gram matrix of the trend functions g

1 , • • • , g p in L 2 (X , µ), that is, in matrix notation, M g = X g(x)g T (x)dµ(x).
We assume that M g is invertible. The truncated IMSE is obtained by integrating (6.7) with respect to µ,

IMSE Kerr trc (D n ) = trace F T K -1 err F + Γ -1 -1 U , (6.9) where U is the Gram matrix of f (•) in L 2 (X , µ), i.e., U = X f (x)f T (x)dµ(x) = M g g φ T trc L 2 φ trc g T L 2
Id ntrc .

(6.10)

It is instructive to compare the IMSE (6.4) with the truncated-IMSE (6.9). For the initial RF model (6.1), after recombination we obtain IMSE(D n ) = τ + B -C -2D, where we have set

B = X g T (x) G T K -1 G + A -1 -1 g(x)dµ(x), C = X k T (x) K -1 -K -1 G G T K -1 G + A -1 -1 G T K -1 k(x)dµ(x), and D = X g T (x) G T K -1 G + A -1 -1 G T K -1 k(x)dµ(x).
In the same way, considering (6.8), we get

IMSE Kerr trc (D n ) = τ trc + B -C trc -2D trc , with C trc = X k T trc (x) K -1 -K -1 G G T K -1 G + A -1 -1 G T K -1 k trc (x)dµ(x), and D trc = X g T (x) G T K -1 G + A -1 -1 G T K -1 k trc (x)dµ(x).
We then obtain the following (the proof is given in Appendix A).

Proposition 6.1. For any truncation subset I trc , we have 0 C -C trc τ err = τ -k∈Itrc λ k .

On the other hand, one may note that D and D trc respectively involve terms of the form

X K(x, x i )g j (x)dµ(x) = T µ g j (x i ) = k∈I + λ k ϕ k g j L 2 ϕ k (x i ) and X K trc (x, x i )g j (x)dµ(x) = k∈Itrc λ k ϕ k g j L 2 ϕ k (x i ), for i ∈ {1, • • • , n} and j ∈ {1, • • • , p}.
The derivation of general error bounds on the dierence D -D trc seems therefore more complicated, which partly motivates the two following sections (see also Section 7.4 for examples).

Presence of a prior: equivalence with a model with known trend

In presence of an informative prior on θ, the model dened by (6.1) and (6.2) can be interpreted as a RF model with known trend. Indeed, for and x and y in X we have

E(Y x ) = g T (x)θ 0 and Cov(Y x , Y y ) = g T (x)Ag T (y) + K(x, y) = K full (x, y). (6.11)
We shall refer to the kernel K full (•, •) as the augmented kernel. Applying the Sherman-Morrison-Woodbury identity (assuming, for the sake of simplicity, that D n is such that K + GAG T is invertible), we can easily check that the two RF models (6.1) and (6.11) yield the same predictions.

We can then consider the integral operator

T full µ [f ](x) = X f (t)K full (x, t)dµ(x),
with f ∈ L 2 (X , µ) and x ∈ X , and apply the same approach as in Sections 3 and 4 for models without trend. In particular, bounds similar to (2.5) are available and straightforward calculation shows that

τ full = X K full (x, x)dµ(x) = τ + trace AM g τ.

Absence of informative prior: IMSE-adapted kernel reduction

Here we can take advantage of the non-uniqueness of the kernels associated with a given semi-Hilbert structure. Denote by p the orthogonal projection of L 2 (X , µ) onto T and dene q = id L 2p. For f ∈ L 2 (X , µ), we obtain, in matrix notation,

pf = g T M -1 g g f L 2 .
Assume, for the sake of simplicity, that the realisations of (Z x ) x∈X belongs to L 2 (X , µ) with Pprobability 1 (this assumption is not necessary, however, for the construction of the kernel K q (•, •) given in (6.13) and for Theorem 6.1). For x ∈ X , we can then dene

pZ x = g T (x)M -1 g X g(t)Z t dµ(t),
so that pZ x ∈ L 2 (Ω, P), E(pZ x ) = 0 and, for y ∈ X ,

E (pZ x )(pZ y ) = g T (x)M -1 g T µ [g] g T L 2 M -1 g g T (x) and E (pZ x )Z y = g T (x)M -1 g T µ [g](y).
Now, the model (6.1) can be written as Y x = g T (x)θ + pZ x + qZ x = g T (x)θ q + qZ x , (6.12) with θ q = θ + M -1 g X g(x)Z x dµ(x). Since no informative prior on θ is available, the prior on θ q is non-informative too (see Remark 6.2). The covariance kernel of (qZ x ) x∈X in (6.12) is given by [START_REF] Schaback | Native Hilbert spaces for radial basis functions I[END_REF].

K q (x, y) = E (qZ x )(qZ y ) = K(x, y) + g T (x)Sg(y) -b T (x)g(y) -g T (x)b(y), (6.13) with S = M -1 g T µ [g] g T L 2 M -1 g and b(x) = M -1 g T µ [g](x). Such a kernel K q (•, •) is sometimes called a reduction of the kernel K(•, •), see
Our motivation for introducing the model (6.12) is that we now have orthogonality in L 2 (X , µ) between the realisations of (qZ x ) x∈X and the trend subspace T . The property below shows that predictions are not modied when using (6.12) instead of (6.1), i.e., when considering the kernel

K q (•, •) instead of the kernel K(•, •).
Theorem 6.1. Assume that the design D n is such that the design matrix G has full rank p (such a design is said to be T -unisolvant). Then the two RF models (6.1) and (6.12) yield the same predictions and mean-squared prediction errors.

This result is a direct consequence of the non-uniqueness of the kernels associated with a given semi-Hilbert space, and of the uniqueness of the optimal prediction in semi-Hilbert spaces, see [START_REF] Duchon | Splines minimizing rotation-invariant semi-norms in Sobolev spaces[END_REF]; [START_REF] Gauthier | Approche spectrale pour l'interpolation à noyaux et positivité conditionnelle[END_REF]. A proof is given in Appendix A. Notice that if we denote by Y x the resulting optimal linear prediction, and by θ q the underlying estimator of θ q , then, by construction, the following orthogonality holds: X Y xg T (x) θ q g(x)dµ(x) = 0.

Remark 6.1. The substitution of the kernel K q (•, •) for K(•, •) can be related to the interpretation of the initial model (6.1) as an intrinsic random model, see [START_REF] Matheron | The intrinsic random functions and their applications[END_REF][START_REF] Matheron | La théorie des fonctions aléatoires intrinsèques généralisées[END_REF]. For a realvalued function f on X , let δ x be the evaluation functional at x ∈ X , that is δ x [f ] = f (x). Using a notation similar to Schaback (1999, Sect. 5), this kernel substitution amounts to replacing the evaluation functional δ x by the functional δ (x) , dened by

∀x ∈ X , f ∈ L 2 (X , µ), δ (x) [f ] = qf (x).
More precisely, for g ∈ L 2 (X , µ), let I g,µ denote the functional dened by I g,µ [f ] = (f |g) L 2 . Using vector-matrix notation, we then have, for x ∈ X , δ (x) = δ xg T (x)M -1 g I g,µ , and we can write

δ (x) [f ] = δ x [qf ] = ( t qδ x )[f ]. Notice that this kernel substitution is dened whenever T ⊂ L 2 (X , µ)
and the assumptions of Section 2.2 are veried. In particular, it covers the case of a general linear trend g T (x)θ in (6.1), whereas the theory of intrinsic random functions concerns translationinvariant kernels and only addresses the case of polynomial regression, see [START_REF] Matheron | La théorie des fonctions aléatoires intrinsèques généralisées[END_REF].

The integral operator associated with K q is

T q µ [f ](x) = X f (t)K q (x, t)dµ(x),
with f ∈ L 2 (X , µ) and x ∈ X . By construction, it satises T q µ [g j ] = 0 for all j ∈ {1, • • • , p}. Denote by {λ q k |k ∈ I q + } the set of all strictly positive eigenvalues of T q µ and let ϕ q k be their (canonically extended) associated eigenfunctions. We have

τ q = X K q (x, x)dµ(x) = τ -trace M -1 g T µ [g] g T L 2
τ.

(6.14)

For a truncation subset I q trc , using the same notations as in Section 6.2, the terms D q and D q trc now equal 0, and inequalities similar to (2.5) are available, with τ q err = k ∈I q trc λ q k quantifying the error due to spectral truncation.

Remark 6.2. Starting from the prior (6.2), we obtain E(θ q ) = θ 0 and Cov(θ q ) = A q = A + S.

When the prior is non-informative, that is, roughly speaking, when A -1 = 0, then the same holds for A q and the prior on θ q remains non-informative.

The situation would be dierent in presence of informative prior: in that case, orthogonality in L 2 (Ω, P) between the components of θ q and the r.v. qZ x , x ∈ X , is lost when using the model (6.12), and

E θ q (qZ x ) = b(x) -Sg(x) = M -1 g q T µ [g] (x).
The consequence on the IMSE calculation is that the matrix Γ q corresponding to Γ in (6.6) is no longer block diagonal, with the two o-diagonal blocks being not trivial to evaluate. Remark 6.3. Comparing with (6.10), we now have φ q trc g T L 2 = 0. In order to further reduce the computational cost when using the reduced kernel K q (•, •), one may consider regressors g that form an orthonormal basis of T for L 2 (X , µ), making U q equal to the identity matrix.

Numerical experiments

We consider a RF on X

= [0, 1] d , d ∈ N, with kernel K(x, y) = d i=1 K i (x i , y i ), where x = (x 1 , • • • , x d ) and K i (x i , y i ) = (1 + √ 3|x i -y i |)exp( √ 3|x i -y i |/ i ), i > 0 (Matérn 3/2).
We use d = 2 in Sections 7.1, 7.2 and 7.4, and d = 4 in Section 7.3.

In all Section 7 we consider measures µ that correspond to pointwise quadrature approximations of the uniform probability on [0, 1] d , and we apply the methodology described in Section 5. Optimal design measures ν * on the quadrature points are approximated by a vertex-exchange algorithm, see [START_REF] Böhning | Numerical estimation of a probability measure[END_REF][START_REF] Böhning | A vertex-exchange-method in D-optimal design theory[END_REF]). Quadrature points s j that cannot be support points of the optimal measure can be removed from the search space using the criterion in [START_REF] Pronzato | A delimitation of the support of optimal designs for Kiefer's φ p -class of criteria[END_REF]. The iterations are stopped when the directional derivative (4.3) for the current approximated solution ν satises min j∈{1,...,Nq} F Ψα ( ν, δ s j ) + 0, (7.1) which, by convexity, ensures that Ψ α ( ν) Ψ α (ν * ) + , see (4.5). With a slight abuse of terminology, we refer to the obtained measures as the optimal measures.

The IMSE-eciency of a design D n is measured by the ratio IMSE(D * n )/ IMSE(D n ), where D * n is the best n-point quadrature-design (i.e., a design only composed of quadrature-points) that we were able to obtain using the simulated-annealing algorithm presented in (Gauthier and Pronzato, 2015a). One should note that, although it is rather ecient, this global optimisation algorithm is much more time consuming than the convex-optimisation approach considered here. The model is without trend in Sections 7.1, 7.2 and 7.3; the presence of a linear parametric trend is considered in Section 7.4.

Regular grid approximation

Here µ is the discrete probability measure on X = [0, 1] 2 dened by a 33 × 33 regular square grid (midpoint rule), each grid-point receiving the same weight 1/N q , with N q = 33 2 = 1 089. We take 1 = 2 = 0.15.

Figure 1 shows the optimal measures for the heteroscedastic and homoscedastic models, respectively with σ 2 (x) = K err (x, x) (left) and σ 2 = τ err /µ(X ) (right), for α = n trc = 7 (so that τ trc ≈ 0.4484). The optimal measure for the heteroscedastic model is supported by 11 points, but 97.71% of the mass is supported by 7 points only. The design D supp 7,het obtained by Algorithm 1 corre- sponds to those 7 points, with an IMSE-eciency of 99.84%. A grid-restricted local descent starting from D supp 7,het converges to D * 7 . The optimal measure for the homoscedastic model is supported by 15 points, 7 of which (the same as above) carrying 79.39% of the total mass. The IMSE-eciency of D supp 7,hom is 99.59%; D ext 7,hom obtained by local descent coincides also with D * 7 .

As illustrated by this rst example, the optimal measures obtained with the heteroscedastic model have in general more support points than those obtained with the heteroscedastic model, which often complicates the extraction of a design with a given number of points n. Only the heteroscedastic model is used in the following. (σ 2 = τ err ≈ 0.5516)

Figure 1: Contour-plot of the variance x → σ 2 (x) = K err (x, x) (α = n trc = 7
) and optimal measure ν * m for Ψ α (•) (disks with surface proportional to the weights p k , = 1e-7 in (7.1)) for the heteroscedastic (left) and homoscedastic (right) models. The quadrature points are indicated by grey crosses, the IMSE-optimal 7-point quadrature-design is indicated triangles. Figure 3 presents the optimal measures obtained for α = 22 and two dierent values of n trc . For n trc = α (τ trc ≈ 0.7648), ν * m is supported by 52 points, among which 24 carry 78.96% of the mass. The optimal measure for n trc = 100 (τ trc ≈ 0.9711) is supported by 280 points, its exploitation for the extraction of a design with size n ≈ 22 seems dicult. This motivates the recommandation of choosing n trc ≈ α ≈ n to construct a design of size n. m has m = 52 support points and is presented in Fig. 3-left). The evolution of ψ k suggests the extraction of a design with size n = 24: we have ψ m-24ψ 0 ≈ 5.15e-4 and ψ m-25ψ 0 ≈ 7.11e-3, and we can note a sudden increase of ψ k when k > m -24 (i.e., n s < 24). 7.2 Quasi-Monte-Carlo quadrature

In order to illustrate the impact of the regularity of the quadrature on the optimal measures, µ corresponds now to a quadrature consisting of the N q = 1 089 rst points of a low-discrepancy Halton sequence in [0, 1] 2 , all points receiving identical weights 1/N q .

Figure 5-left shows the optimal measure ν * m obtained for the heteroscedastic model with n trc = α = 22. There are 48 support points and ν * m presents some similarities with the measure presented in Fig. 3-left, which was obtained with a regular square grid. However, ν * m is now more irregular, as a consequence of dispersion of quadrature points (grey crosses) in the Halton sequence. Note in particular the presence of neighboring points with identical non-negligible weights in the rectangular box on the top of the gure, which may potentially confuse the design extraction. When applying Algorithm 1, the sequence {ψ k } suggests the extraction of a design with size n = 25. Table 1 gives the IMSE-eciencies obtained for D supp n and D ext n when the size n varies from 22 to 25. For n = 23 (respectively, n = 24), D ext n is an optimal (respectively, almost optimal) quadrature-design (in the sense that we were not able to obtain a better design on the quadrature points). For n = 25, the design-extraction procedure splits the cluster highlighted by a rectangle in Fig. 5-left into two design points, the eciency of D ext 25 remaining reasonably high. We take d = 4, with 1 = 2 = 3 = 4 = 0.35 in the K i (•, •). The measure µ corresponds to a 9 × 9 × 9 × 9 square grid (midpoint rule), all points receiving the same weight 1/N q , with N q = 9 4 = 6 561. 

Models with unknown parametric trend

We consider the same framework as Section 7.1 but now assume the presence of a parametric trend, with g(x) = (g 1 (x), g 2 (x), g 3 (x)) T = (1, x 1 , x 2 ) T for x = (x 1 , x 2 ) ∈ [0, 1] 2 (p = 3). We take Cov(θ) = A = Id 3 when an informative prior on the trend-parameters is needed.

Figure 7-left illustrates the strong linear relationship that exists, in L 2 (X , µ), between the three trend-functions g j and the eigenfunctions of the IMSE integral operator T µ . This relationship can be interpreted as a kind of redundancy of the trend-functions in the models (6.1) or (6.5).

For a given truncation level n trc , the total number of regressors n reg in the BLM induced by the initial and reduced kernels is n reg = n trc + p, this corresponds to models of type (6.5). We have n reg = n trc for the model, of type (3.1), induced by the augmented kernel. The middle and right parts of Fig. 7 aim at comparing the integrated variances of the error terms for the BLMs dened by the initial and modied kernels: initial kernel versus reduced kernel (middle), and initial kernel versus augmented kernel (right). We observe that for the same number of regressors n reg , the reduced and augmented kernels yield BLMs that are more accurate than the BLM induced by the initial kernel, in the sense that we have, for this particular example,

τ q err [n trc ] τ err [n trc ] and τ full err [n trc + p] τ err [n trc ],
where [n trc ] and [n trc + p] indicate the number of eigenfunctions considered (we recall that τ err = X K err (x, x)dµ(x)). Figure 8 gives a further illustration that, for the same number of regressors considered, the BLM induced by the reduced kernel contains more information than the BLM induced by the initial kernel. The optimal measures ν * m for the heteroscedastic models are presented, on the left for the initial kernel with n trc = α = 22 (and therefore 25 regressors), on the right for the reduced kernel with n trc = 19 (22 regressors), both with α = 22 (no prior on θ is used). The two measures look rather similar, and the contour plots of the variances x → K err (x, x) and x → K q err (x, x) also present strong similitude (with τ err = 0.2352 and τ q err = 0.2370). It thus appears that the BLM induced by the initial kernel requires 25 regressors to carry similar information as the BLM induced by the reduced kernel with 22 regressors only. Also, ν * m is supported by 56 points for the initial kernel, and has only 48 support points for the reduced kernel. Algorithm 1 applied to both measures yields the same 24-point design D ext 24 , which coincides with D * 24 .

Concluding discussion

We have shown that the convex relaxation method described by [START_REF] Fedorov | Design of spatial experiments: model tting and prediction[END_REF]; [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF] can be eciently applied when considering the IMSE-adapted Karhunen-Loève expansion of the RF. The obtained Bayesian A-optimality criterion Ψ α (•) is closely related to the truncated-IMSE criterion for RF interpolation models considered for instance in [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF]. A numerical implementation of the approach has been proposed, based on a quadrature approximation of the IMSE with restriction to designs supported by quadrature points. Ecient convex-programming algorithms can then be used to construct IMSE-optimal design measures, with guaranteed convergence to the optimum.

A greedy exchange algorithm has been presented for the extraction of an exact design D n of given size n from an optimal measure ν * m , and the adaptation of ν * m to n via the tuning of the parameters α and n trc that enter Ψ α (•) has been discussed. We have observed that the heteroscedastic approximate BLM, with σ 2 (x) = K err (x, x), often yields optimal measures that are more concentrated than the ones obtained with the homoscedastic model, and are thus easier to exploit for the extraction of exact designs of given size. In line with the numerical results presented in (Gauthier and Pronzato, 2015a), we also observed that when α and n trc are such that the size n of the design D n extracted is close to n trc , D n inherits a high IMSE-eciency. Our numerical experiments indicate that it is possible to modulate the size of the designs extracted by considering dierent truncation levels n trc , and that values n trc ≈ α ≈ n are recommended. Further developments might help to select more precisely values of α and n trc especially suited for the extraction of a design of size n. The construction of other design-extraction procedures also deserves further investigations.

We have proposed two extensions to the direct approach of [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF] for RF models that include a linear parametric trend. One is based on kernel augmentation, and applies to the case where an informative prior on the two rst moments of the trend-parameters θ is available. The other amounts to a kernel reduction dened from a linear continuous projection onto a subspace of the trend-space, and is for the case when no such prior information on θ is available. They permit in particular to bound the error induced by considering the truncated-IMSE instead of the true IMSE, whereas the derivation of such error bounds seems much more dicult with the initial kernel. The numerical experiments carried out in Section 7.4 also point out that, for an equivalent number of regressors, the modied kernels generally lead to BLMs having smaller errors than the BLMs induced by the initial kernel. Theorem 6.1 shows the equivalence between the predictions induced by the initial model and those with a model based on the reduced kernel in absence of informative prior on θ. This is a very general result, with potential consequences in other contexts involving RF models.

Finally, only Bayesian A-optimality has been considered, due to its direct connection with the truncated-IMSE for the initial RF model. Other choices are possible and deserve further investigations, see in particular [START_REF] Fedorov | Design of spatial experiments: model tting and prediction[END_REF]; [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF] for Bayesian D-optimality.

  spectral approximation and induced exact BLM Consider the decomposition (3.1) for a truncation subset I trc . It yields the following exact model (with equality in L 2 (Ω, P)),Y x = f T (x)γ + E x , D n = {x 1 , • • • , x n }, denote by y the vector of observations (Y x 1 , • • • , Y xn )T and let F = (G, Φ trc ). The underlying regularised least-squares problem yields the estimator
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  Homoscedastic model, n trc = α = 7.

Figure 2 n

 2 Figure2shows the optimal measure ν * m for the heteroscedastic model, obtained for a xed

Figure 2 :

 2 Figure 2: Optimal measures ( = 1e-7 in (7.1)) for the heteroscedastic model with n trc = 15 and α = 0.08, 1, 15 and 100. A contour-plot of the variance x → σ 2 (x) = K err (x, x) is also given (top-left).

n

  trc = 100, α = 22.

Figure 3 :

 3 Figure 3: Optimal measures ( = 1e-5 in (7.1)) for the heteroscedastic model with α = 22 and n trc = 22 (left), n trc = 100 (right).

Figure 4

 4 Figure 4 illustrates the behaviour of the design-extraction procedure (Algorithm 1) applied to the optimal measure for the heteroscedastic model with n trc = α = 22 (ν *m has m = 52 support points and is presented in Fig.3-left). The evolution of ψ k suggests the extraction of a design with size n = 24: we have ψ m-24ψ 0 ≈ 5.15e-4 and ψ m-25ψ 0 ≈ 7.11e-3, and we can note a sudden increase of ψ k when k > m -24 (i.e., n s < 24). The IMSE-eciency of D supp

  The IMSE-eciency of D supp 24 is about 99.37%, a quadrature-restricted local descent yields D ext 24 =

Figure 4 :

 4 Figure 4: Design extraction for ν * m obtained with n trc = = 22 (heteroscedastic model, ν * m is shown on Fig. 3-left): sequence {ψ k } (left) and measure ν 24 obtained after m -24 = 28 iterations of Algorithm 1 (right).

Figure 5 :

 5 Figure 5: Optimal measure ( = 1e-5 in (7.1)) for the heteroscedastic model with α = n trc = 22 on a low-discrepancy Halton sequence (left); sequence {ψ k } (middle); measure ν 25 obtained after m -25 = 23 iterations of Algorithm 1 (right).

Figure 6

 6 illustrates the results obtained for the heteroscastic model with α = n trc = 31 (τ trc ≈ 0.6658). The optimal measure ν * m has 104 support points, among which 40 carry 94.74% of the mass. The sequence {ψ k } clearly suggests the extraction of a design of size n = 40. Remarkably enough, D supp 40 = D *40 , but we must point out that such favourable situations are rather exceptional (on this example, not all truncation level n trc lead to similar results).

Figure 6 :

 6 Figure 6: Projection on {x 1 , x 2 } of the optimal measure ( = 1e-6 in (7.1)) for the heteroscastic model with α = n trc = 31 (left), sequence {ψ k } (middle) and projection on {x 1 , x 2 } of the measure ν 40 obtained after m -40 = 64 iterations of Algorithm 1 (right).

Figure 7 :

 7 Figure7: Contributions of the rst n trc eigenfunctions ϕ k to the trend-functions g 1 , g 2 and g 3 (left), and values of τ err , τ q err and τ full err as functions of the truncation level (middle and right).

K

  q (•, •), n trc = 19, α = n reg = 22.

Figure 8 :

 8 Figure 8: Optimal measures for the heteroscedastic models ( = 1e-5 in (7.1)) induced by the initial kernel K(•, •) with n trc = α = 22 (left), and by the reduced kernel K q (•, •) with n trc = 19 and α = 22 (right).

  We denote by P Hµ and P H 0 the orthogonal projections of H onto H µ and H 0 respectively. The covariance kernel K µ (•, •) of the RF P Hµ [Z x ] x∈X is given by

	To the orthogonal decomposition H = H µ position	⊥ ⊕ H 0 of Section 2.2 corresponds the orthogonal decom-
	via the isometry I.	H = H µ	⊥ ⊕ H 0	(2.2)

Table 1 :

 1 IMSE-eciencies (%) of D supp

		n	and D ext n obtained from ν * m presented in Fig. 5-left.
	n D supp n	22 97.38 98.14 23	24 97.55	25 97.15
	D ext n	99.94	100	100 (-9 10 -4 ) 99.44

Truncated-IMSE and continuous-design relaxationWe consider a linear model of the form (3.7) with orthogonal observation errors having variance
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A Proofs

Proof of Proposition 6.1. Consider the Cholesky decomposition K = CC T . For k ∈ I + , let φ k = ϕ k (x 1 ), • • • , ϕ k (x n ) T . Using developments similar to those used to obtain (3.6), we have

From [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF], we know that, for all k ∈ I trc ,

The second matrix on the right-hand side of (A.2) is symmetric and non-negative denite. Therefore, Q 2 Q (Loewner ordering), and similarly (Id-Q) 2 (Id-Q). The real matrix (Id-Q) is therefore positive and contractant, which, combined with (A.1), concludes the proof.

Proof of Theorem 6.1. For x ∈ X , let c T

x y be a linear prediction of Y x for the model (6.1) with no informative prior on θ. The MSE associated with this prediction is given by

The no-bias condition implies G T c x = g(x). The stationary condition for the Lagrangian (a necessary and sucient condition for the minimisation of s 2 (x) with respect to c x under the no-bias constraint) is

If we consider the model (6.12) and a prediction of the form (c q x ) T y, we obtain an equation of the same type as (A.3), where c x , λ, K and k(x) are replaced by c q

x , λ q , K q and k q (x) respectively.

Applying the no-bias condition, we nally obtain

3), then c q x = c x and λ q = λ + B T c xb(x) are solution of (A.4). The two optimal linear predictions (c x ) T y and (c q x ) T y thus coincide and one can check that s 2 q (x)s 2 (x) = 0.