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Abstract. In this paper we propose a general MAP-estimation frame-
work for blind image deconvolution that allows the incorporation of pow-
erful priors regarding predicting the edges of the latent image, which is
known to be a crucial factor for the success of blind deblurring. This is
achieved in a principled, robust and unified manner through the use of
a global energy function that can take into account multiple constraints.
Based on this framework, we show how to successfully make use of a
particular prior of this type that is quite strong and also applicable to a
wide variety of cases. It relates to the strong structural regularity that is
exhibited by many scenes, and which affects the location and distribution
of the corresponding image edges. We validate the excellent performance
of our approach through an extensive set of experimental results and
comparisons to the state-of-the-art.

1 Introduction

The problem of blind image deconvolution has regained lately a lot of research
interest in the computer vision community [24, 40, 14, 4, 25, 12, 38, 26, 1, 11, 37,
27, 13, 39, 28, 10, 29, 34, 31, 22, 33, 21, 16]. By examining more closely the various
state of the art algorithms that have been proposed recently, it becomes clear
that there exist at least two elements that can play a crucial role for the success
of blind image deconvolution: edge prediction and the use of proper priors.

The first element relates to the ability of one to correctly predict part of
the true edges of the unknown deblurred image. The more of these edges can
be detected during the deconvolution process, the better for the quality of the
estimated results. Of course, the challenge is that this is often very difficult to
achieve due to the inherent blurriness associated with the provided input image.

The second element is that the good performance of the recent blind decon-
volution algorithms relies heavily on the successful use of various types of image
priors, which naturally serve the purpose of reducing the severe ill-posedness
of the above problem. To mention just a few characteristic examples, there has
been recently made use of priors related to the distributions of image gradients

⋆ Part of this work was done while the first author was an intern at Ecole des Ponts
ParisTech.
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obeyed by natural images [7], color priors [15], normalized sparsity priors [20],
compactness priors over the so-called motion density function of the camera [9],
discrete MRF image priors [19], patch priors [32] as well as smoothness priors
that aim to reduce ringing artifacts [30].

Fig. 1: Scenes very often exhibit important structural regularities.

In this paper we want to capitalize on the above two findings. In other words,
we wish to be able to utilize priors that are even more powerful, and which will
help us to estimate edges much more robustly during blind deconvolution. To do
that, in this paper we rely on an additional observation, which directly relates
to the fact that a large part of the images nowadays depict scenes that exhibit
strong geometric regularities with respect to the location and distribution of
the corresponding image edges. One of the many reasons that this happens,
for instance, is because a lot of these images display man-made objects or are
captured inside man-made environments (both indoor and outdoor). Actually,
one certain aspect of this phenomenon has been first noticed in an earlier work
by Coughlan and Yuille [6], where it has been experimentally shown to hold for
a large variety of scenes (not only urban but also rural ones).

The presence of such regularities suggests an opportunity for utilizing priors
that can significantly constrain (and thus hopefully improve) the estimation of
edges in this case. If we take a look at the images of Fig. 1, for instance,we
can immediately see that edge pixels do not appear isolated or in arbitrary
curves, but instead typically form line segments. Moreover, these segments are
not arbitrary either. Instead, many of them are collinear (i.e., can be grouped
into lines) and, furthermore, many of the resulting lines converge into vanishing
points.

One of the goals of this work is exactly to allow successfully taking advan-
tage of all such amount of scene-specific prior knowledge during the deblurring
process. More generally, our aim here is to propose a sound MAP-estimation
framework for blind deconvolution, based on which one would be able to incor-
porate in a principled, unified and robust manner multiple types of constraints
or priors, importantly including any available prior information regarding pre-
diction of image edges.

In blind deconvolution, the idea of exploiting domain-specific properties had
been previously used for the deblurring of text images [3]. More generally, us-
ing scene-specific prior knowledge for improving the performance of computer
vision algorithms is an idea that has already been applied with great success in
other contexts in the past. For instance, one characteristic example was in the
context of camera orientation estimation [5], while two more recent examples
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are the works of Furukawa et al . [8] on multi-view stereo reconstruction, where
significant improvements are shown through the use of a “Manhattan world”
assumption, and Barinova et al . [35] on horizon estimation with also excellent
results.

We conclude this section by briefly mentioning the main contributions of this
work, which are as follows:

– It introduces the idea of utilizing scene-specific edge priors for tackling the
blind image deblurring problem.

– It successfully makes use of one such prior (related to the strong regularities
that exist in many of the existing images with respect to the location and
distribution of their edges) for improving the performance of blind decon-
volution. This prior is generic enough, goes beyond the Manhattan world
assumption, and is applicable to a wide variety of cases.

– More generally, by building upon recent work [19] that shows the importance
of utilizing sparse discrete MRF image priors in this context, it proposes a
solid MAP-estimation framework that manages to formulate blind deconvo-
lution as optimization over a single unified energy function that can take
into account various types of constraints.

– Importantly, given the significance of correct edge prediction to blind decon-
volution, such a framework enables one to incorporate available prior edge
information (both low-level and high-level) into the deconvolution process
in a principled, sound, and robust manner.

2 Our blind deconvolution approach

In this section we describe the MAP-estimation framework that we propose for
blind image deconvolution. As usual, we are considering a model where the blurry
input image I is assumed to be the result of a convolution of a latent image x
with a blur kernel k plus some additive noise n, i.e.,

I = x⊗ k+ n, (1)

where the symbol ⊗ denotes the convolution operator.
In blind deconvolution, we need to recover both x and k using as only input

the image I. To that end, here we propose minimizing an energy function of the
following form:

E(k,x, e|I) = Edata(k,x|I) + Ekernel(k) + Eimg(x|e) + Eedge(e|x). (2)

This energy consists of 4 main terms, corresponding to a data term Edata(k,x|I),
a prior-related term Ekernel(k) concerning the kernel k, a prior-related term
Eimg(x|e) for the image x, and a prior-related term Eedge(e|x) concerning the
image edges of the latent image x (where e is an appropriate set of variables
used for specifying image edges).

The role of these terms is to properly constraint (in a soft manner) all the
different elements involved in blind deconvolution with the goal of ensuring that,
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in the end, convergence towards the correct kernel will take place. The last two
terms are of particular importance in this regard, since their role is to help
together for correctly predicting some of the main structural elements of x that
play a crucial role for obtaining high quality blur kernels. We next define each
of the above terms, and also explain their role in more detail.

2.1 Data term Edata(k, x|I)

This is a standard data term used in blind deconvolution, defined as

Edata(k,x|I) = ‖k⊗ x− I‖2. (3)

It essentially corresponds to a negative log-likelihood term for the case where
the noise n in equation (1) is assumed as white Gaussian.

2.2 Blur kernel prior term Ekernel(k)

For the blur kernel k we select a Laplacian prior to impose on it. This leads to
utilizing an l1-norm penalty term as Ekernel(k), i.e.,

Ekernel(k) = ρ · ‖k‖1. (4)

Such a term is known to be sparsity-inducing, leading to kernels with few non-
zero entries, which is an assumption that holds true in most of the cases encoun-
tered in practice. This is especially true for kernels due to camera shake, which
is the most common example. Of course, employing alternative priors for k (that
might be more appropriate for other cases) is also possible within the proposed
framework.

2.3 Image prior term Eimg(x|e)

For defining this term, we will draw upon recent work that shows the importance
for blind deconvolution of imposing a discrete piecewise-constant MRF prior on
image x (which inherently promotes sparsity). This, at first, means that the
elements of image x are assumed to take values from a discrete label set, i.e.,
x ∈ Ln, where Ln denotes the set of quantized images that contain a restricted
number of at most n intensities or colors (n is supposed to be small).

Under this assumption, Eimg(x|e) is then given by the following formula

Eimg(x|e) =
∑

(p,q)∈E

wpq(e)[xp 6= xq] + λ
∑

(p,q)∈E

(xp − xq)
2, (5)

where E denotes the set of pairs of pixels that are considered to be neighbors
in the MRF graph, and

[

·
]

equals 1 if the expression inside the brackets is true
and zero otherwise.

The first term in eq. (5) above corresponds to a weighted discrete Potts model
[2], which penalizes the assignment of different labels (i.e., colors/intensities) to
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neighboring image pixels. By definition, such a model promotes L0 sparsity and
its role here is to impose a piecewise-constant structure on image x. The idea
of applying such a prior term to blind image deconvolution has been introduced
recently in [19], where it was shown its importance for avoiding trivial blur
kernel solutions (such as the no-blur one) and for obtaining very high quality
blur kernels.

The associated weights wpq play an important role in this regard, as they
are used for determining the amount of penalty that should be assigned to an
intensity (or color) discontinuity across pixels p, q of image x. In this work,
given that the variables e should already be predicting which of the pixels of the
deblurred image x belong to image edges, we choose to define the weights wpq

in terms of these edge-related variables e. More specifically, we use the following
formula3 for setting these weights:

wpq(e) =

{

wedge, if p or q is edge pixel based on e

wnon−edge, otherwise,
(6)

where wedge and wnon−edge are 2 parameters that satisfy wedge ≪ wnon−edge.
The result of this is that label discontinuities in image x are penalized much less
if there is evidence (according to variables e) that there should actually exist
an edge in the deblurred image. In doing so, the goal is to allow the edges of
image x to be much better aligned with the true edges of the deconvolved image,
which, as mentioned already, is important for high quality kernel estimation. In
this manner we aim to be able to successfully transfer any edge-related prior
knowledge (as encoded by variables e) onto correctly estimating the structure of
the image x.

Last, concerning the term λ ·
∑

(p,q)∈E
(xp − xq)

2 also appearing in (5), its
role here is to provide just a very small amount of extra regularization by pe-
nalizing large magnitude discontinuities (this can contribute a very slight image
refinement in some cases). As a result, a small parameter λ, satisfying λ ≪ 1
(e.g ., λ = 10−3), should be used with it. We note that the role of this term is
minor, and that the important term in (5) is the Potts term.

2.4 Edge prior term Eedge(e|x)

This term serves the purpose of allowing us to encode any available prior knowl-
edge with regard to the edges of the latent image x. The rationale behind its
introduction is to help in the correct prediction of these edges, which is an impor-
tant factor for the success of blind deconvolution. Importantly, this permits us to
incorporate in a principled manner various types of such priors into our frame-
work (ranging rom low-level to higher-level ones), where the precise specification
and meaning of the corresponding variables e is to be updated accordingly in
each case, i.e., depending on the specific choice that has been made. In the next

3 Other ways of expressing wpq in terms of the variables e are also possible, but we
found the above simple definition to be effective enough.
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section, we describe one particular prior of this type that will be used, which is
applicable to a wide variety of cases and provides strong and very useful high-
level constraints.

3 Geometric parsing prior for blind deconvolution

Our motivation for introducing the scene-specific prior described in this section
comes from the well known observation that many of the images today depict
scenes exhibiting strong structural regularities. Here we wish to be able to suc-
cessfully take into account as many of these regularities as possible, imposing
at the same time assumptions that are as general as possible. To that end, we
are going to rely on a geometric image parsing prior similar to the one used in
recent work [35]. Such a prior is generic enough and has already been shown
to successfully apply to a wide variety of cases. Essentially, the main assump-
tions4 that we make about the depicted scenes, in this case, are that many of
the edge pixels appearing in image x are part of line segments, many of these
line segments can possibly be grouped into lines, and many of the resulting lines
can possibly be grouped into parallel line families. These parallel line families,
therefore, converge (in the image plane) into a set of vanishing points (including
the so-called zenith vanishing point as well as a set of horizontal vanishing points
that lie close to the horizon line).

As a result, the set of variables e = {s, l,h, z} used in this case consists of the
set of 2d line segments s = {si}, which represent the edge segments of image x,
the set of lines l = {li}, the set of horizontal vanishing points h = {hi}, as well as
the zenith vanishing point z. Deciding, therefore, if p is an edge pixel according
to these variables (as needed by the formula used for setting the weights in (6))
simply requires checking if p belongs to one of the segments in s, i.e.

p is edge pixel (according to e) ⇔ p ∈ ∪si . (7)

The corresponding prior Eedge(e|x) is then defined as

Eedge(e|x) =
∑

i
Epixel(pi|s,x) +

∑

i
Esegment(si|l) +

∑

i
Eline(li|h, z)

+
∑

i,j
Ehorizon(hi, hj |z) + Eprior(s, l,h).

(8)

The individual terms appearing in (8) are defined similarly to [35], and es-
sentially encode all the assumptions that we mentioned above regarding the
regularities of the depicted scenes. We next briefly describe each of these terms
(and we refer to [35] for a detailed explanation):

– Epixel(pi|s,x): this term encodes how well an edge pixel pi of image x is
explained by one of the edge segments included in set s

4 Note that these assumptions are more general than the so-called Manhattan world
model.
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Epixel(p|s,x) = Ep(s) ·
∑

q:(p,q)∈E
[xp 6= xq],

where Ep(s) is defined (for any pixel p) as

Ep(s)=min
(

θbg, min
i

θdist ·d(p, si)+θgrad ·dangle(p, si)
)

.

In the above, d(p, si) denotes the minimum distance from p to segment si,
and dangle(p, si) denotes the angular difference between the local edge direc-
tion at p and the direction of si. The role of the term

∑

q:(p,q)∈E
[xp 6=xq] is to

ensure that that only an edge pixel p of the discrete image x can contribute
(proportional to Ep(s)) to the Epixel term.

– Esegment(si|l): this terms aims at measuring how well segment si is explained
by one of the lines in l. It is defined as

Esegment(s|l)=min
(

µbg ·length(s), min
i
µdist ·darea(s, li)

)

,

where darea(s, li) measures the distance between segment s and line li as the
area of the figure between the line and the segment divided by the cosine of
the corresponding angle between the line and the segment.

– Eline(l|h, z): this encodes if the line l passes close to one of the vanishing
points h ∪ z as follows

Eline(l|h, z)=min
(

ηbg, min
i
(ηdist ·φ(l, hi), ηdist ·φ(l, z))

)

,

where φ(l, hi) measures the distance on the Gaussian sphere between the
projection of l and the projection of a vanishing point hi.

– Ehorizon(hi, hj |z): this term relates to measuring if the vanishing points in
h lie close to a line in the image plane as they should. It is defined in the
following manner

Ehorizon(hi, hj |z) = κhor · tanψ(hi − hj , L(z)),

where L(z) is the line connecting the zenith and the principal point of the
camera (assumed to lie at the center of image x), and ψ is the absolute angle
between hi − hj and a perpendicular to L(z).

– Eprior(s, l,h): this term corresponds to an MDL-like prior that penalizes the
number of lines segments |s| (taking also into account their length), the
number of lines |l| and the number of vanishing points |h|, aiming to favor
explanations of the image edges of x involving as few elements as possible

Eprior(s, l,h)=λline|l|+ λvp|h|+ λsegm
∑

i

length(si).

4 MAP-estimation inference

To perform blind image deconvolution, all we need is to optimize the energy
function specified in the previous section. To that end, we follow a block co-
ordinate descent approach by separately optimizing over k, x, and e. We next
describe the corresponding updates that result in such a process.
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4.1 Optimizing over the kernel k

If variables x and e are kept fixed, the updating of kernel k corresponds to
solving the following minimization task

min
k

‖x⊗ k− I‖2 + ρ‖k‖1 = ‖Mxk− I‖2 + ρ‖k‖1, (9)

where Mx denotes the matrix corresponding to a convolution by x.
To efficiently compute a solution to the above problem, we resort to applying

the Alternating Direction Method of Multipliers [36] in a manner similar to [19].
Essentially, this amounts to introducing a replicating variable together with a
decoupling quadratic term for decomposing the problem into 2 subproblems and
then applying alternating minimization between them.

4.2 Optimizing over the latent image

When k and e = {s, l,h, z} are kept fixed, optimization of (2) over x reduces to
the following problem

min
x∈Ln

Edata(k,x|I) + Eimg(x|e) +
∑

p

Epixel(p|s,x) =

‖k⊗ x− I‖2 + λ ·
∑

(p,q)∈E

(xp − xq)
2+

∑

(p,q)∈E

wpq(e) · [xp 6= xq] +
∑

p

∑

q:(p,q)∈E

Ep(s) · [xp 6= xq].

To again decouple the above optimization task into easy-to-handle subprob-
lems, we similarly introduce a replicating variable x′ together with a quadratic
penalty term β‖x′ −x‖2 = β

∑

p(x
′
p − xp)

2 (which penalizes deviations between
x and x′) [36], leading to the following objective function

min
x′∈Ln,x

‖k⊗ x− I‖2 + λ
∑

(p,q)∈E

(xp − xq)
2+

∑

(p,q)∈E

(

wpq(e) + Ep(s) + Eq(s)
)

[x′p 6= x′q] + β‖x′ − x‖2
(10)

Applying block coordinate descent to (10) with respect to x and x′ leads to the
2 subproblems described next.

Optimizing over x The subproblem with respect to x involves minimizing the
following least squares objective

min
x

‖k⊗ x− I‖2 + λ
∑

(p,q)∈E

(xp − xq)
2 + β‖x− x′‖2, (11)
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which amounts to solving the linear system shown below

(

MT
kMk + λ(MT

i Mi+MT
j Mj) + β

)

x=MT
k I+ βx′ ,

where Mk, Mi, Mj denote the convolution matrices for filters k, i = [1,−1] and
j = [1,−1]T .5

A solution is efficiently computed through the following frequency-domain
operations

x = F−1
( F(k) ◦ F(I) + βF(x′)

|F(k)|2+λ(|F(i)|2+|F(j)|2)+β

)

, (12)

where F−1() and F() denote inverse and forward FFTs.

Optimizing over x′ The subproblem with respect to x′ corresponds to mini-
mizing the energy of a discrete MRF Potts model

min
x′∈Ln

∑

p

Vp(x
′
p) +

∑

(p,q)∈E

Vpq(x
′
p, x

′
q),

that has unary potentials Vp(x
′
p)= β · (x′p−xp)

2, and Potts pairwise potentials

Vpq(x
′
p, x

′
q)=

(

wpq(e)+Ep(s)+Eq(s)
)

[x′p 6= x′q]. Several off-the-shelf state-of-the-

art optimizers exist for this task (in our experiments we have used the FastPD
algorithm due to its efficiency [18]).

4.3 Optimizing over the edge-related variables e

With k and x being fixed, minimization of (2) over e reduces to

min
e
Eedge(e|x) +

∑

(p,q)∈E

wpq(e)[xp 6= xq]. (13)

Here the additional term
∑

p,q wpq(e)[xp 6= xq] encourages the edge segments
determined by variables s to agree with the current edges of image x.

The above energy function (13) is of the same form as Eedge(e|x), with
the only difference being that the term

∑

pEpixel(p|s,x) =
∑

(p,q)∈E

(

Ep(s) +

Eq(s)
)

[xp 6= xq] is now replaced by
∑

(p,q)∈E

(

Ep(s) +Eq(s) +wpq(e)
)

[xp 6= xq].

Given that the weights wpq(e) depend only on the variables s (see (6)), and
not on {l,h, z}, the resulting objective function is of similar form to the energy
function used in [35], and can therefore be optimized using the same method,
which is highly efficient.

5 W.l.o.g. here we assume 4-connectivity for the edges E of the MRF graph, which is
what leads to the use of the filters i and j in this case.
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4.4 Multi-resolution inference

As is usually the case with blind deconvolution, optimization proceeds in a
coarse-to-fine fashion. This is done in order to avoid bad local minima and to
be able to deal with large kernels. We therefore use a multi-resolution image
pyamid, and iterate the updates described in §4.1-§4.3 at each pyramid level.
For efficiency and fast convergence, the variables x (§4.2), x′ (§4.2), e, k are
maintained throughout the whole process, and are upsampled/upscaled when
going from a coarser to a finer level in the pyramid. In practice, convergence
at each level is very fast, with typically 3 iterations per level being enough on
average.

Given the kernel k, the final deconvolved image can be computed by applying
(12) (using the final estimated image x′ and a small β), or by using a more
advanced non-blind deconvolution algorithm such as [38], [30].

5 Experimental results

We next test our method on a wide variety of cases and also provide comparisons
with the state of the art. We note that for all the experiments (paper and suppl.
material), we used uniform parameter settings for our method. More specifically,
we set wnon−edge = 5 ·102, wedge = 0.05 ·wnon−edge, λ = 10−3, n = 20, while all
parameters of energy Eedge were kept constant and set as in [35]. As already ex-
plained, λ should always be set to a small enough value (it is used only for adding
a minor amount of regularization). Furthermore, it is enough that wnon−edge is
an order of magnitude larger than wedge, while any reasonably small value of
n (e.g ., between 15 and 25) seems to suffice. In general, our method was quite
robust (i.e., not very sensitive) with respect to how its parameters are set. As a
result, we expect the above settings to work well for any other case.

We applied our framework to a wide variety of test examples, including
blurred images of scenes with structural regularities, as well as general scenes,
while using a variety of blurred kernels, and also comparing with the current
state-of-the-art. For the scenes with structural regularities, we made use of im-
ages from the publicly available “Eurasian cities” and “York Urban” datasets.
We first show results on kernel estimation, which is the most critical part in
blind deconvolution. To that end, we experimented with a wide range of chal-
lenging kernels, including ones with large sizes that introduce very significant
blur. Fig. 2 compares our method with several state-of-the-art blind deconvolu-
tion algorithms. Even visually, it is clear that our estimated kernels match the
ground truth much more closely (both for small and large kernel sizes). Fig. 8(a)
also shows the corresponding average SSD errors with respect to the correct blur
kernels, verifying the much superior performance of our method.

We next show results concerning the estimated deblurred images. Fig. 9 again
compares several state-of-the-art techniques (additional results are included in
the supplemental material due to lack of space). Thanks to its more accurate
blur kernel estimation, our method manages to recover much better images with
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input image true
kernel

[4] [20] [38] [19] ours

Fig. 2: Ground truth and estimated blur kernels by different deconvolution algorithms.

Fig. 3: More results by our method (input images [top], deblurred images [bottom]).
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more fine details as well as less ringing artifacts. We report in Fig. 8(a) the av-
erage PSNR and SSIM scores over all the test images (including the ones in the
supplementary material). We also visualize in Fig. 8(b) some of the correspond-
ing edge segments s (as estimated during the course of our method for two test
cases from Fig. 9). Fig. 3 contains additional deblurring results by our method
(with even more being included in the supplemental material for a variety of
scenes, both indoor and outdoor).

Note that [19], which is a method that also utilizes a discrete MRF image
prior, has been included in all of our comparisons above. This is for illustrating
the important gains coming from the incorporation of the geometric parsing
prior. Fig. 4 also shows an example of the sparse discrete images x′ ∈ Ln that
are estimated by [19] and our method. Notice, in our case, how much better
x′ can capture the true structure of the underlying latent image. To further
illustrate the importance of the geometric parsing prior, we also show in Fig. 5
a comparison when this prior (i.e., the term Eedge) is not used during blind
deconvolution (in which case wpq(e) is set to a constant value).

Blurry input image True latent image Our sparse discrete
image x′

Sparse discrete
image x′ by [19]

Fig. 4: Sparse discrete images x′ with our method and with method [19].

Blurry input images Results with the
geometric parsing prior

Results without the
geometric parsing prior

Fig. 5: Results with and without the geometric parsing prior.

Due to the fact that our edge-related prior is incorporated into our framework
in a robust and principled manner, our method is perfectly capable of handling
not just scenes with structural regularities but also general scenes. To demon-
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Cho [4]
Fergus [24]
Shan [29]
Levin [37]
Ours

Fig. 6: Left: Error ratio evaluation for the benchmark dataset [24] (evaluation scores
for other methods are taken from [23], [24]). Right: A few of our results for the dataset
in [24] (for each one we show: input & deblurred images, true & estimated kernels).

strate that, we also apply it to the benchmark datasets [24] and [17]. Figures 6,
7 contain quantitative evaluations that verify our method’s state-of-the-art per-
formance on these datasets. We also show in Fig. 6 a few indicative deblurring
results from dataset [24] (a full set of results can be found in supp. material).

Cho Xu Shan Fergus Krishnan Whyte(lsq) Whyte(Kri) Hirsch Ours

28.98 29.41 25.89 22.73 25.72 27.84 28.07 27.77 29.71

Fig. 7: Average PSNR values of deblurred images for various methods on dataset [17].

  [4] [26] [7] [28] Ours 

kernel SSD error 32.6 64.6 46.6 53.0 17.9 

image PSNR 22.5 21.1 22.9 24.1 26.78 

image SSIM 0.69 0.62 0.67 0.69 0.80 

(a) (b)

Fig. 8: In (a) the scores are computed using the best shifts for each of the estimated
blur kernels and latent images. In (b) we show a visualization of the line segments s

estimated during the course of our method for two of the test cases in Fig. 9.

6 Conclusions

We have proposed a sound MAP-estimation framework for blind image deconvo-
lution, which uses a unified energy function that takes into account various types
of constraints or priors, importantly including ones concerning the edges of the
latent image. We have been able to successfully use this framework to take ad-
vantage of a very powerful prior of this type that relates to the strong structural
regularities exhibited by many of the depicted scenes today. We have shown that
such an approach improves the performance of blind deblurring in a wide variety
of cases. Furthermore, due to the fact that the incorporation of the above prior
into our framework takes place in a principled and robust manner, our method
was also shown to be capable of handling even images that do not necessarily
fully satisfy the above prior assumptions. More generally, we believe that our
idea of utilizing scene-specific priors for improving blind deconvolution is one of
great practical value, which can motivate further research and the development
of new algorithms in this area.



14 Yipin Zhou and Nikos Komodakis

Input image Ours Xu and Jia [38]

Cho and Lee [4] Krishnan et al . [20] Komodakis and Paragios [19]

Input image Ours Xu and Jia [38]

Cho and Lee [4] Krishnan et al . [20] Komodakis and Paragios [19]

Input image Ours Xu and Jia [38]

Cho and Lee [4] Krishnan et al . [20] Komodakis and Paragios [19]

Fig. 9: Deblurred images (and corresponding close-ups) as estimated by different blind
deconvolution methods. Additional results are included in the supplemental material.
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