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1. Introduction
We are interested in problems where two hierarchically
structured datasets may be complementary for a learning
process. This case may arise in biological applications
where genomic and metagenomic analyses may be col-
lected for studying the genomic features of an organism
along with its environnement.

In this work, we propose a model to assess the relevant in-
teractions between the two datasets. We use a compressed
representation of the original data to cope with the high di-
mensionality of the problem. We show that the collection
of models, characterized through the hierarchical struc-
tures, forms a partially ordered set and take advantage of
this organization to define a greedy approach to solve the
problem more efficiently. Finally, we illustrate the behavior
of the resulting algorithm on numerical simulations.

2. Learning with complementary datasets
The proposed model relies on observations stemming
from two different views, G and M , which are gath-
ered into a training set S = {(xG

i ,x
M
i , yi)}Ni=1, where

(xG
i ,x

M
i , yi) ∈ RDG × RDM × R. We consider that the

variables of each view are organized into a tree structure.

2.1. Notations

We use the following notations and conventions. Bold low-
ercase letters will usually denote vectors and bold capital
letters will usually denote matrices. The symbol · is used
for the classical product, × for the cartesian product, ⊗ for
the Kronecker product and |S| for the cardinal of a set S.

The tree structure over G is of depth HG and is defined at
height k, with 0 ≤ k ≤ HG , by the Nk

G groups of vari-

ables Gk = {Gkg }
Nk

G
g=1. We denote xg

i ∈ RDk
g , the sam-

ple i restricted to the variables of G from group g ∈ Gk.

Similarly, the tree structure over M is defined at height
`, with 0 ≤ ` ≤ HM , by the N `

M groups of variables

M` = {M`
m}

N`
M

m=1 and xm
i ∈ RD`

m denotes the sample
i restricted to the variables of M from group m ∈M`.

We also introduceNk`
I = Nk

G ·N `
M , the number of possible

interactions and DI = DG ·DM , the number of variables
that interact, which remains the same whatever k and `.

2.2. Full representation

For a given height k of G and a given height ` of M , we
define the model

yi =
∑
g∈Gk

∑
m∈M`

xg
i Θ

k`
gm(xm

i )T + εi , (1)

where the matrix Θk`
gm ∈ RDk

g×D
`
m contains the coeffi-

cients of interactions between the variables of groups g and
m at heights k and ` and εi ∈ R is a residual error. 1

The dimension DI involved in Problem (1) to estimate
Θk`

gm, for all g ∈ Gk and m ∈M`, may be huge especially
for applications with an important number of variables such
as in biology with genomic and metagenomic data.

To reduce to Nk`
I � DI the dimension of the optimisa-

tion problem, we might compress the data at given levels
of the hierarchies by averaging the variables of each group
or using Hierarchical Multiple Factor Analysis (HMFA, Es-
cofier and Pagès, 2008; Lê et al., 2008).

Aside from the benefit of reducing the dimension of Prob-
lem (1), we will show in Section 3 that such a compact rep-
resentation will be convenient to explore the hierarchies.

1Note that in the absence of a regularization term to enforce
the hierarchical structure on Θk`

gm, all the models are equivalents
whatever k or ` here.
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2.3. Compact representations

Averaged variables on groups. A first simple manner
to compress the data is to consider averaged variables on
groups at a given level. For view G and group g ∈ Gk, and
for view M and group m ∈ M`, we can define x̃g ∈ RN

and x̃m ∈ RN as

x̃g =
1

Dk
g

∑
j∈Gk

g

xj , xj ⊆ xG , xj ∈ RN ,

x̃m =
1

D`
m

∑
j∈M`

m

xj , xj ⊆ xM , xj ∈ RN .

Hierarchical Multiple Factor Analysis. A more sophis-
ticated compression relies on HMFA which can be seen as
a reweighted Principal Component Analysis (PCA) on pre-
defined groups of variables defined into a hierarchy. This
compression will be detailed in a longer version.

2.4. Model

With a compact representation, Problem (1) turns to a clas-
sical linear model

yi =
∑
g∈Gk

∑
m∈M`

(x̃gi · x̃
m
i )︸ ︷︷ ︸

(ϕk`
gm)i

θk`gm + εi , (2)

with θk`gm ∈ R, which can be reformulated in a matrix form.

We denote by φk`
gm ∈ RN the vector whose ith row is

given in Equation (2) by (ϕk`
gm)i . We also define the matrix

Φk` ∈ RN×Nk`
I by

Φk` =
(
φk`

11 · · ·φ
k`
1N`

M
· · ·φk`

gm · · ·φ
k`
Nk

G1 · · ·φ
k`
Nk

GN`
M

)
,

and the vector θk` ∈ RNk`
I by

θk` =
(
θk`11 · · · θk`1N`

M
· · · θk`gm · · · θk`Nk

G1 · · · θ
k`
Nk

GN`
M

)T
.

We may finally write Problem (2) for heights k and ` as a
linear regression problem which reads

y = Φk`θk` + ε , (3)

where y ∈ RN and ε ∈ RN are respectively the re-
sponses y = (y1 · · · yi · · · yN )T and the residual errors
ε = (ε1 · · · εi · · · εN )T .

2.5. Partially Ordered Models

It worth noting that we resort to compressions that define
a structure of nested models shaped according to the hier-
archies. If we denote Hk`, the model obtained at heights k

and ` for k, ` ≥ 0, then Hk′`′ is defined as a richer decom-
position ofHk` for k′ > k and `′ > `.

For instance, with averaged groups of variables, we have

Hk` : yi =
∑
g∈Gk

x̃gi
∑

m∈M`

x̃mi θk`gm + εi ,

Hk`′ : yi =
∑
g∈Gk

x̃gi
∑

m∈M`

∑
m′∈M`′⊂M`

m

x̃m
′

i︸ ︷︷ ︸
x̃m
i

θk`
′

gm′ + εi .

We introduce the definition of nested models as follows.
Definition 1. LetHk` andHk′`′ being two models. Hk` ⊆
Hk′`′ if k ≤ k′ and ` ≤ `′.
Remark 1. The complexity of a model Hk` increases with
k and ` according to their respective number interactions.
For k′ > k and `′ > `,

• Hk′`′ will always be more complex thanHk` ;

• Hk`′ will be more complex thanHk′` iffNk`′

I > Nk′`
I .

Hence, the possible combinations of models form a par-
tial order set that can be organized into a Directed Acyclic
Graph (DAG) as pictured in Figures 1(a) and 1(b). This
nested collection of models might be convenient for warm
starting strategies or for model selection approaches for
wich a nested structure is mandatory, such as likelihood ra-
tio tests for instance. Regardless of these specific aspects,
we will show in the next section how to build on this DAG
structure to explore of the hierarchies efficiently.

3. Greed is Great
Algorithm 1 describes the greedy approach used to select
the appropriate heights k and ` of Problem (3) efficiently.
The two criterions CH• and CA involved to perform model
selection at different stages are explained below.

3.1. Exploring the hierarchies

To explore all the possible combinations induced by the
tree structures related to G and M , Problem (3) should be
solved HG · HM times with Nk`

I coefficients to estimate
for each association of heights k and `.

The resolution becomes more and more costly as heights
k and ` increase. To avoid a complete exploration of the
hierarchies, we build on the DAG structure presented in
Figure 1(b) to derive a strategy based on criterion of convex
trend for models of growing complexities (see Remark 1),
such as AIC or BIC.

Our approach consists to explore the DAG along a first
dimension chosen according to the depth of the hierar-
chies: k will be related to the inner loop in Algorithm 1
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Figure 1. (a) The set of possible models induced by both hierarchies with HG = 2 and HM = 3. (b) A DAG that describes the partial
order on the models. If a path exists betweenHk` andHk′`′ , that isHk` · · · → · · ·Hk′`′ , thenHk` ⊆ Hk′`′ . (c) and (d) Two examples
of exploration reached with the proposed greedy strategy. A unique optimal model is obtained in Example (c) but a set of candidate
models may be found as in Example (d). A rule to select the optimal model may be defined as described in Section 3.1.

Algorithm 1 Structured Hierarchical Active Set Algorithm
Inputs
S the training set
{Gk}HG

k=0 the structure on view G

{M`}HM

`=0 the structure on view M

P (·) P builds matrices Φk`

AS(·) AS computes coefficients θk`

R(·) R chooses betweenHk` andHk′`′

Outputs
Ĥ the optimal model

// Global initialization

Ĥ = H00, k̂ = 0, ˆ̀= 0

for k = 0 to HG do
for ` = 0 to HM do

// Initializations at heights k and `

Φk` = P (S,Gk,M`) ∈ RN×Nk`
I

Āk` = Gk ×M`, Ak` = {∅}

// Active Set procedure

while CA(Φk`,θk`,y) is not met do

[Hk`,,Ak`,θk`
† ] = AS(Φk`,θk`,y)

θk` = θk`
†

end while

// Early stopping criterion

if CH1
(Hk`) or CH2

(Hk`) is met then

[Ĥ, k̂, ˆ̀] = R(Hk`, Ĥ)

break on the outer loop

end if
end for

end for

if max(HG , HM ) = HG and ` will be related to the inner
loop otherwise.

Let k being the first dimension, ` being the second one 2

and k̂ and ˆ̀ being the heights of the current best model
according to the chosen criterion CH which should be of
convex shape for models of growing complexities. We stop
going deeper along the first dimension ` if

• The criterion increases along `

CH1 : CH(Hk`) > CH(Hk`−1) , or if

• The criterion increases along k, for k ≥ k̂

CH2
: CH(Hk`) > CH(Hk̂`) .

This strategy is illustrated on two examples in Figures 1(c)
and 1(d). One can notice on Figure 1(d) that two candi-
date models can emerge along the main dimension for non
nested models. In this case, the rule R(Hk`,Hk′`′) for se-
lecting the current best model may be defined according to
the targeted application. For instance, we may choose the
model that minimizes the MSE for prediction, the sparser
model in terms of interactions involved at the level of vari-
ables for interpretation issues or the model that minimizes
CH for a compromise between these two aspects.

3.2. Active set procedure

The procedure AS(·) in Algorithm 1 can be based either
on homotopy (Osborne et al., 2000; Efron et al., 2004) or
on pursuit (Mallat and Zhang, 1993) strategies. When there
are enough examples N compared to the number of inter-
actionsNk`

I , a classical stepwise regression procedure may
also be used.

2For the sake of clarity, we use this convention to describe the
strategy and Algorithm 1 in relation with the examples given in
Figures 1(c) and 1(d).
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(b) Hamming distance

Figure 2. Illustration of the behavior of Algorithm 1 in terms of variable selection considering FDP (a) and Hamming distance (b) for
different numbers of examples and different levels of noise.

The purpose ofCA is to stop adding variables involved into
a model Hk` according to the chosen strategy. It can be
based on optimality conditions, on the value of the mean
squared error or simply on the number of variables the user
wants to add at given levels k and ` of the hierarchies.

4. Numerical simulations

Figure 3. Examples of hierarchical structures on the matrices of
correlation of XG (red) and XM (green).

To illustrate our approach, we have simulated two Gaus-
sian hierarchies, one for each view, with 50 variables and
5 levels as illustrated on Figure 3. For fixed values of k
and `, we have generated compressed data, using averaged
groups of variables, according to Model (3) so that 10%

of the coefficients of θk` have a non zero value. The pro-
cess is repeated 100 times for each couple of parameters in
N = {50, 100, 300} ×mean(ε) = {0.25, 0.75, 1.25}.

For each run, we evaluate the quality of the variable se-
lection through an Hamming distance and a False Discov-
ery Proportion (FDP). For Ĥk`, the model given by Al-
gorithm 1, the Hamming distance counts the inconsistent
matchings between k̂ and ˆ̀ and the heights of the true
model so that its value can be 0 for a perfect matching,
1 when only one height is recovered or 2 when there is no
correspondance. The FDP consists to test the relevance of
the estimated interactions at heights k = HG and ` = HM .
More precisely, we compare the true model Hk` with Ĥk`

and extend the corresponding θk` and θ̂
k`

at the variable
levels. For all possible interactions {gm}, we then deter-
mine the following confusion matrix and hence the FDP:

θ̂HGHM
gm = 0 θ̂HGHM

gm 6= 0

θHGHM
gm = 0 True Negative False Positive

θHGHM
gm 6= 0 False Negative True Positive

The results given in Figure 2 show that Algorithm 1
behaves rather well when there are enough examples
(N ≥ 100) especially with a reasonable level of noise
(mean(ε) ≤ 0.75).
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