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Item response models for the longitudinal analysis of
health-related quality of life in cancer clinical trials

Antoine Barbieri?,1,2,3, Jean Peyhardi1,4,5, Thierry Conroy6,7,
Sophie Gourgou2, Christian Lavergne3,8 and Caroline Mollevi2,9,10

Abstract

Statistical research regarding health-related quality of life (HRQoL) is a major challenge to better
evaluate the impact of the treatments on their everyday life and to improve patients’ care. Among the
models that are used for the longitudinal analysis of HRQoL, we focused on the mixed models from
the item response theory to analyze directly the raw data from questionnaires. Using a recent classi-
fication of generalized linear models for categorical data, we discussed about a conceptual selection
of these models for the longitudinal analysis of HRQoL in cancer clinical trials. Through method-
ological and practical arguments, the adjacent and cumulative models seem particularly suitable for
this context. Specially in cancer clinical trials and for the comparison between two groups, the cu-
mulative models has the advantage of providing intuitive illustrations of results. To complete the
comparison studies already performed in literature, a simulation study based on random part of the
mixed models is then carried out to compare the linear mixed model classically used to the discussed
item response models. As expected, the sensitivity of item response models to detect random effect
with lower variance is better than the linear mixed model sensitivity. Finally, a longitudinal analysis
of HRQoL data from cancer clinical trial is carried out using an item response cumulative model.

Keywords: Item response theory; Mixed models; Ordinal categorical data; Longitudinal analysis;
Health-related quality of life.

1 Introduction

Endpoints refer to biological and clinical measures to assess the efficiency of new therapeutic strate-
gies. The overall survival endpoint is the gold standard to show a clinical benefit of these strategies and
treatments. Therapeutic treatments being more efficient and increasing the patients’ lifetime, the overall
survival endpoint may become insufficient to show a significant difference between two treatments. It is
then necessary to consider a longer follow-up or a larger cohort of patients to have a sufficient number
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of events and a good statistical power (Fiteni et al., 2014), both representing considerable costs. Thus, to
conclude to the benefit of a new treatment, other endpoints have emerged and the health-related quality
of life (HRQoL) is currently one of the most important. In cancer clinical trials, the patient-reported
outcomes are increasingly used to analyze a clinical benefit for medical decision-making (Fiteni et al.,
2014). The HRQoL endpoint may seem more pertinent to show the interest of a new therapy in some
cases such as the palliative or geriatric situations. However, there are conceptual and methodological
brakes underlying to the concept and the assessment of HRQoL. Indeed, HRQoL is a multidimensional
concept regarding the physical, psychological and social functions as well as symptoms associated with
the disease and treatments. Another conceptual brake is the subjectivity of its measurement. Indeed,
patients report their feelings about their HRQoL thanks to self-reported questionnaires. Both arguments
preclude the use of HRQoL as sole primary endpoint in clinical trials.

In oncology, HRQoL is assessed using a general questionnaire for a set of different cancers, and an
additional specific questionnaire associated with each type of cancer (Aaronson et al., 1993; Cella et al.,
1993). Each questionnaire decomposes the HRQoL to measure several under-concepts (dimensions of
HRQoL) which themselves comprise one or several items. The items are built on the Likert scales in
which the response variable is ordinal. Thus, considering several items for a given dimension, HRQoL
data are composed of multiple ordinal responses. Also, the questionnaires are filled by the subjects them-
selves, and collected at different times defined in the trial protocol (usually at inclusion, during treatment
and follow-up). These repeated measures are used to assess the evolution of the subject’s HRQoL over
time. In Europe, these questionnaires are developed and validated by the European organization for re-
search and treatment of cancer (EORTC). The standard questionnaire currently used in oncology is the
EORTC Quality of Life Questionnaire - Core 30 (EORTC QLQ-C30) (Aaronson et al., 1993), together
with the scoring procedure proposed by the EORTC (Fayers et al., 2001). The score is then calculated for
each dimension and for each subject, corresponding to the average of the item responses for a single di-
mension, and expressed on a scale ranging from 0 to 100. The interpretation is such that high functional
scores reflect good functional capacities and a good HRQoL level, and conversely, high symptomatic
scores represent strong symptoms and point out difficulties. The use of scoring procedures is common
in practice because the statistical methods for quantitative variables are more powerful and easier to im-
plement and interpret (Grilli and Rampichini, 2011). But, in a Likert scale, the gap which separates each
adjacent category of response ("not at all", "a little", "quite a bit" and "very much") may not be the same,
and the HRQoL score calculation does not take into account this characteristic. Another drawback in the
score use is that subjects could have different item outcomes and obtain the same score. In this situation,
the score does not make a distinction between these subjects (Gorter et al., 2015).

The longitudinal statistical models classically used in oncology are performed on the summary score
through using the linear mixed models (LMM) or time-to-event models(Anota et al., 2014). In the LMM,
the variable associated with the HRQoL score is considered as a Gaussian variable while it presents the
characteristics of an ordinal variable, being non-continuous and bounded. These models allow to take
into account the correlation introduced by repeated measurements on the same patient (collection of the
HRQoL questionnaires over time) and different covariates such as time, treatment group, age... However,
the use of the LMM for HRQoL analysis is scientifically questionable given the characteristics of the
score. Furthermore, many symptomatic dimensions are composed of only one item, the HRQoL score
has exactly the same properties than ordinal categorical data, and using the LMM is not appropriated.
Thus, if a ceiling or floor effect is observed, the categorical feature is even more marked when one
of the two extreme categories is over-represented. The second approach for the longitudinal analysis
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of HRQoL is based on the time-to-event models: the time-to-deterioration (TTD) and the time-until-
definitive-deterioration (TUDD) (Hamidou et al., 2011). Survival approaches are often used and thus
well-known in the oncology, and are appreciated for their easiness to interpret result and their good
understanding by clinicians. In these models, an event is classically defined by the (definitive or not)
deterioration of the HRQoL score between baseline and a follow-up time, given a minimally clinically
important difference (Anota et al., 2013). The lack of homogeneity of the methods used for the HRQoL
data analyses in different oncology clinical trials is also a real obstacle to the comparison of results.
Indeed, the LMM and TUDD approaches show results which may sometimes seem contradictory, and
with different interpretations, but they may also be complementary. An example can be taken comparing
two similar cancer clinical trials investigating the effect of bevacizumab. In the first trial (Chinot et al.,
2014), HRQoL analysis through TUDD showed that the bevacizumab group had a later deterioration of
HRQoL compared with patients in the standard group. Conversely, in the second trial (Gilbert et al.,
2014), HRQoL analysis using the LMM showed a worse HRQoL overtime in the bevacizumab group.

Interest in the HRQoL endpoint is growing rapidly in cancer clinical trials and it is essential to
use a suitable methodology to analyze HRQoL data, taking into account the data properties (repeated
measurements of the multiple ordinal responses). In our study, we first focused on the different and
most adapted models to analyze HRQoL from raw data, i.e. directly on the item outcomes. Studies
on psychometric properties from questionnaires such as the one used for HRQoL have been ongoing
for a long time (Edelen and Reeve, 2007; Jafari et al., 2012), known as the item response theory (IRT).
The IRT models link the individual’s item responses and the latent variable which represents the studied
HRQoL concept. They can be seen as generalized linear mixed models (GLMM) for ordinal responses
with a particular parameterization of the linear predictor. The interest for this kind of model to analyze
the data, including the longitudinal analyzes, is increasing (Titman et al., 2013; Hardouin et al., 2015;
Gorter et al., 2015; Santos et al., 2016). However, to our knowledge, there is no work that discusses
of the choice of one of the different IRT models over the others, and specially for HRQoL longitudinal
analysis. First, we propose in section 2 a conceptual selection of these models through practical and
methodological arguments. In this selection, we replace IRT models in the GLMM framework using the
new specification of generalized linear models (GLM) for categorical responses, proposed by Peyhardi
et al. (2015). Then, to complete the comparisons already done between the IRT models and the LMM on
their capacity to detect fixed effects, we focus in section 3 on the sensibility of these models to detect the
random effects through a simulation study. Finally, section 4 presents an application of the chosen IRT
model on real data from a multicenter randomized phase III clinical trial in first-line metastatic pancreatic
cancer patients (Conroy et al., 2011).

2 Conceptual selection of IRT models

This section concerns a conceptual selection of IRT models for the longitudinal analysis of HRQoL in
cancer clinical trials. HRQoL raw data are repeated measurements of ordinal multiple responses. The
GLMM for ordinal responses seem well suitable to analyze this kind of data. The use of random effects
takes into account the inter-patient variability and the correlation between the repeated measurements for
each single patient. The IRT models have been increasingly used to analyze health data deriving from
self-questionnaires made of polytomous responses (Hardouin et al., 2012; Anota et al., 2014; Barbieri
et al., 2015). These models turn out to be GLMM for polytomous data with a specific parameterization
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of the linear predictor taking into account the multiple outcomes. For ordinal responses, three families
of regression models are described: the families of adjacent models (Masters, 1982; Agresti, 2010),
cumulative models (Samejima, 1968; McCullagh, 1980), and sequential models (Tutz, 1990; Fahrmeir
and Tutz, 2001). Many IRT models are proposed for the analysis of this kind of data, often with no
explanation regarding the choice of one model over another.

In this section, we use the new specification of the GLM for categorical data proposed by Peyhardi
et al. (2015) to talk about the relevance of the models adopted in the context of the HRQoL longitudi-
nal analysis in cancer clinical trials. Each model is defined according to three components (r,F,Z): the
ratio of probabilities (r), the cumulative distribution function (F ), and the parameterization of the linear
predictor determined by the design matrix (Z). For the GLMM framework, we extended this new speci-
fication to the quadruplet (r,F,Z,U) with Z the design matrix of fixed effects and U the design matrix of
random effects. The relationship between these components is determined by R = F(Zβ +Uξ). Given
the linear predictor η = Zβ + Uξ and π(j)

iv = (π
(j)
iv0, . . . , π

(j)
iv,M−1) the truncated vector1 of conditional

probabilities with π(j)ivm = Pr
(
Y

(j)
iv = m|ξi

)
the conditional probability that subject i(i = 1, . . . , n) se-

lects the category m ∈ {0, . . . ,Mj} for item j(j = 1, . . . , J) at visit v(v = 1, . . . , V ) given individual
random effect, we defined:

• R =
{
rm

(
π
(j)
iv

)}
i,j,v,m

;

• F
{(

η
(j)
ivm

)
i,j,v,m

}
=
{
F
(
η
(j)
ivm

)}
i,j,v,m

where η =
(
η
(j)
ivm

)
i,j,v,m

.

After a presentation of the IRT parameterization used concerning the linear predictor, we compare
different polytomous IRT models on the basis of the link function (ratio of probabilities and the cumula-
tive distribution function (CdF)) using methodological and practical arguments.

2.1 The IRT parameterization of the linear predictor

The IRT probabilistic models emerged following the works of Georg Rasch (Rasch, 1960) on dichoto-
mous responses, and were then extended to ordinal responses. Considering the three families of adjacent,
cumulative and sequential models, there are three associated famous IRT models (Boeck and Wilson,
2004; Bacci et al., 2014), respectively the graded response model (Samejima, 1968), the (generalized)
partial credit model (Masters, 1982; Muraki, 1992), and the sequential model (Tutz, 1990). These models
link the individual’s item responses to the unidimensional latent variable which represents a concept not
directly measurable. In oncology framework, the concept is HRQoL relatively to one specific HRQoL
dimension.

From the IRT, the specific parameterization of the linear predictor η(j)im is built into two parts: the
individual part and the item part. The best-known way is to consider the following decomposition:

η
(j)
im = αj (θi − δjm) , (1)

where θi is associated with an unidimensional random variable (currently assuming to be standard normal
for identifiability) representing the latent value for the subject i, δjm and αj being the item parameters.

1This truncated vector is sufficient to characterize the categorical distribution since π
(j)
ivM = 1−

∑M−1
c=0 π

(j)
ivc ;
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Generally called difficulty parameter, δjm is the intercept (or threshold) associated with the item j for
the category m ∈ {1, . . . ,Mj}. The parameter αj is called the discrimination parameter of item j, and
represents the sensitivity of each response probability according to the value of the latent trait. Indeed,
the more the discrimination parameter value is high, the more the item allows well discriminating two
individuals with a close latent trait value. However, the predictor is no longer linear for IRT models using
discrimination parameters because it includes a product of parameters. Thus, these models do not belong
to the class of GLMM (Liu and Hedeker, 2006).

In oncology, HRQoL analysis is carried out using IRT models which do not include the discrimi-
nation parameters (fixed to one for all items). Thus, these IRT models are within the class of GLMM.
Concerning the longitudinal analysis, several studies proposed to extend some IRT models using the lin-
ear decomposition of the latent variable θ with fixed and random effects (Hardouin et al., 2012; Verhagen
and Fox, 2013; Huber et al., 2013):

θiv = x′ivβ + u′vξi, (2)

with the vector β is associated with the fixed effects, the vector ξi with the subject-specific random effects
and the index v the current visit. In the equation (2), θiv is thus the estimation of latent process at the
visit v.

2.2 The probability ratio: structure of the models

The linear predictor is not directly related to the response probability but to a particular transformation
ratio. The choice of the ratio is related to the nature of response from the ordering assumption among
categories. Thus, reference ratio (Peyhardi et al., 2015) for nominal response is excluded in this work
because the HRQoL responses are ordinal. Let’s consider the simple situation from GLM with one item
with (M + 1) response categories. The three model families for ordinal data are distinguished by the
choice of the ratio of probabilities r (π) = (r0 (π) , . . . , rM−1 (π)). Each model is summarized by M
equations {rm (π) = F (η?m)}m=0,...,M−1 with η?m = δm−θ, highlighting the decomposition of the link
function which is determined through the ratio of probabilities and the CdF. Indeed, we may distinguish
different ratios of probabilities for these different families, respectively, for the cumulative models,

rm (π) = π0 + . . .+ πm, m = 0, . . . ,M − 1; (3)

for the adjacent models,

rm (π) =
πm

πm + πm+1
, m = 0, . . . ,M − 1; (4)

and, for the sequential models,

rm (π) =
πm

πm + . . .+ πM
, m = 0, . . . ,M − 1.

In the IRT, adjacent and cumulative models are usually presented given the reverse permutation
(Samejima, 1968; Masters, 1982; Bacci et al., 2014). This permutation is defined as the reversal of
category order (McCullagh, 1980). Assuming that the considered CdF is symmetric (i.e. the corre-
sponding probability density function is symmetric about the y-axis), these models are invariant under
this permutation (Peyhardi et al., 2015). For our application context, this is as an advantage for result
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interpretation. A lower item-response category reflects a lower level of the symptomatic dimensions
whereas it represents a higher level of capacity for the functional dimensions. The reverse permutation
for the functional dimensions makes it easier and intuitive for clinicians to present their results. This
allows the homogenization of the result interpretation as it is done in the scoring procedure proposed
by the EORTC (for functional dimensions, the score scale is reversed compared with the item responses
categories order) (Fayers et al., 2001). However, sequential models correspond to process ordering and
reversing the process may change its nature. These models are not reversible (i.e. no invariant under the
reverse permutation). Thus, sequential models will not be used and only the adjacent and cumulative
models which correspond to scale ordering as used for HRQoL measurements, will be consider.

The cumulative models also have additional properties (McCullagh, 1980), including that they are
invariant when successive categories are gathered. Thus, if one category is not observed, it can be com-
bined with its successive categories without changing the model. Another advantage of the cumulative
models is their interpretation through a continuous latent variable. Indeed, the continuous latent variable
Ỹ underlying the model exists and a direct link with the response variable Y through the thresholds
presumed to be strictly increasing (−∞ = δ0 < δ1 < . . . < δM < δM+1 = +∞) is such as:

{Y = m} if
{
δm < Ỹ ≤ δm+1

}
, m = 0, . . . ,M ,

where Ỹ = θ + ε and ε is the error term distributed following the CdF. Here, the latent variable Ỹ
represents HRQoL and its interpretation is then equivalent to the interpretation of the response variable
using a LMM.

However, an advantage of the adjacent models is that there is no constraint affecting the model
estimation. Nonetheless, the cumulative models have to respect constraints, which can make difficult the
model estimation, particularly in the case of non-proportional design of linear predictor (Peyhardi et al.,
2015). For the proportional design, a common slope (θ) is considered for all categories, else the slope is
dependent of the category (θm). Let the simple parameterization of the linear predictor ηm = θm − δm
for m ∈ {1, . . . ,M} where θm and δm are the slope and the intercept associated with the category m,
respectively. Considering proportional design (θ = θ1 = . . . = θM ), the cumulative models refer to the
principle of thresholds (McCullagh, 1980; Hedeker and Gibbons, 1994) with the constraint they have to
be strictly increasing such as −∞ < δ1 < . . . < δM < +∞. Considering the non-odd proportional
models, the constraint then becomes −∞ < ηM < . . . < η1 < +∞ which is more difficult to verify.
For the longitudinal analysis of HRQoL data in oncology, the proportional design is considered and to
verify the constraint only on the threshold is easier.

Table 1 summarizes some characteristics of these three families of models which are important for
the longitudinal analysis of HRQoL in cancer clinical trials. In this context, a proportional design of
the linear predictor is preferred. Under this parameterization, there is few difficulties to respect the
cumulative models constraints and to estimate them. The adjacent models seem more flexible than
cumulative models because they are always define for all linear predictor. But, their interpretation of the
results using the cumulative model is more intuitive than adjacent models.

2.3 The cumulative distribution function

The latest component discussed in the IRT model selection is the CdF. Each model probability can be
defined with any CdF. As commonly seen in the IRT models, and thank to the reversibility property, the
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Table 1: Summary of the characteristics for the three model families

Models
Characteristics Adjacent Cumulative Sequential
Reversibility yes yes no
Interpretation using the latent variable no yes yes
Always defined yes yes(no1) yes
1: for some non proportional design models

adjacent and cumulative models are used in descending order. For the cumulative model, the probabilities
are defined from the equation (3) and given the F as:

π0 = 1− F (η1)
πm = F (ηm)− F (ηm+1) , m = 1,M − 1
πM = F (ηM )

. (5)

Then, general expression of the sequential model whatever the CdF used is such that

πm = F (ηm)
m−1∏
k=1

{1− F (ηk)} ,

where m = 1, . . . ,M and
∏0
k=1{.} = 1 (Fahrmeir and Tutz, 2001).

Such general equations have never been presented for adjacent models, only described with the lo-
gistic CdF (Masters, 1982; Muraki, 1992; Fahrmeir and Tutz, 2001; Agresti, 2010; Hardouin et al., 2012;
Anota et al., 2014). However, the different response probabilities can be presented from the adjacent
ratio and according to a general CdF (F ):

π0 =
1

1 +
∑M

m=1

∏m
k=1

(
F (ηk)

1−F (ηk)

)
πm =

∏m
k=1

(
F (ηk)

1−F (ηk)

)
1 +

∑M
m=1

∏m
k=1

(
F (ηk)

1−F (ηk)

) , m = 1, . . . ,M

(6)

The CdF choice is especially used to best fit the data. Let’s four CdF from two different kinds:
the most commonly used symmetric distributions, the logistic and Gaussian distributions, and the two
asymmetric distributions, the Gumbel min and Gumbel max distributions. The two later distributions
are respectively defined by F (η) = exp(−exp(−η)) for the Gumbel max distribution and by F (η) =
1− exp(−exp(η)) for the Gumbel min distribution.

Figure 1a shows different slopes depending on the particular CdF. The CdF allows to take into ac-
count the influence of linear predictor (η) change on the response probability evolution. In general IRT
parameterization (equation 1), the slope adjustment is managed by the discrimination parameter. De-
pending on different discrimination parameter values, Figure 1b presents the CdF logistic according to
the individual latent variable. This item parameter has the task of fitting the CdF for each considered
item to distinguish more the different response variable.
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(a) CdF (b) CdF adjustment

Figure 1: Relationship between the CdF and the IRT parameterization for dichotomous items where F (η) =
F (αj(θ − δj)). Figure 1a presents the different CdF for one item j given αj = 1 and δj = 0. Figure 1b presents
the logistic CdF adjustment for three items (j = 1, 2, 3) with different αj and δj = 0, given the linear predictor
defined in equation (1).

In the literature, the cumulative model is presented according to the use of several of the previously
mentioned CdF (Samejima, 1968; Fahrmeir and Tutz, 2001; Liu and Hedeker, 2006), while the adjacent
models are most often presented with the logistic CdF. However, for both, we recommend the use of a
symmetric CdF. As seen in Figure 2b, the IRT parametrization is a subtle and effective way to take into
account the multiple item outcome characteristics in GLMM for categorical responses. In the context of
the HRQoL in clinical trial, the HRQoL dimension considers a small set of items which are correlated
and measure an unique latent variable. The discrimination parameter is routinely not use in this kind of
analysis.

Relatively to the literature, Table 2 shows the specification of the famous polytomous IRT models
following the different components. For IRT models being within the class of GLMM, we proposed
to define them with the four components (r,F,Zq,Ur). The kind of considered location item parameters
can be indicated by the index q where q = 1 for including only difficulty parameters. Let q = 2 for
considering the rating scale model (Andrich, 1978) parameterization where the difficulty parameters are
common for all items and one shift parameter is considered for each item. Regarding the random part,
the number of random effects can be then indicate by the index r. For the classical IRT parametrization
presented in Table 2, only one random effect (r = 1) is taken into account : the capacity parameter θ. For
IRT models including discrimination parameters for each item, we proposed to replace the components
Z and U by a component specifying that the predictor is no longer linear (nl), such as (r,F,nl).
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Table 2: Specification of the famous IRT model following the components : (r,F,Zp,Ur) for the GLMM and
(r,F,nl) for IRT model with no longer linear predictor. Index p denotes the number of kind of item parameters
considered in the IRT model and r the number of random effect.

IRT models η
(j)
im (r,F,Zp,Ur)

Rating scale model θi − (δm + τj) (adjacent,logistic,Z2,U1)
Partial credit model θi − δjm (adjacent,logistic,Z1,U1)
Sequential Rasch model θi − δjm (sequential,logistic,Z1,U1)
Graded response model αj (θi − δjm) (cumulative,logistic,nl)
Generalized partial credit model αj (θi − δjm) (adjacent,logistic,nl)

3 Simulation study

In the previous section, we focused on the use of the mixed models for ordinal data analysis and their
relevance in the HRQoL analysis in oncology was discussed. Some comparisons studies exist between
these different approaches (Blanchin et al., 2011; Anota et al., 2014; Barbieri et al., 2015), mainly on
the fixed part of the mixed models to identify the trend of latent trait. Anota et al. (2014) had shown an
equivalent capacity to detect a fixed effect for the LMM and for one of the IRT models. Indeed, even
if the LMM take into account the HRQoL score, which is a summary variable, this approach is at least
equivalent to the IRT models in terms of power.

In this simulation study, the adjacent and cumulative models with the same parameterization of the
linear predictor and the logistic CdF were used (as usually in the IRT models). The aim of the following
section is to reinforce these comparisons between the LMM and the IRT models on the random part
of the mixed models. The datasets were simulated from an IRT model (adjacent and cumulative mod-
els). Regarding the parameterization, two subject-specific random effects ξi0 and ξi1 were considered,
respectively associated with the intercept and the slope. Of course, the usefulness of the random effect
introduction in the model is strongly associated with the observed data. HRQoL is a subjective endpoint,
and the individual random effect ξi0 is thus entirely justified. Indeed, it is easy to imagine that each
patient has a different level of HRQoL at baseline. The random slope is more questionable, indeed, the
assumption that the specific HRQoL evolution of one single patient diverges from the average evolu-
tion for the whole population, is less obvious than the previous one. In this section, the capacity of the
mixed models to detect the slope random effect was thus studied. No group effect was considered in this
simulation study.

Design

We want to study the capacity of each model to detect the random effect ξi1 associated with time (random
slope). The two subject-specific random effects are considered independent where ξi0 ∼ N (0, σ20) and
ξi1 ∼ N (0, σ21). The following model choice study is performed on the basis of the Bayesian information
criteria (BIC) where two models were considered:M2 with the two random effects (r,F,Z1, U2) andM1

excluding the random slope (r,F,Z1, U1). For the IRT models, the linear decomposition of the latent trait
θiv only took into account the time as a fixed effect. The two considered models with proportional design
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are:
M2 : θiv = (tv − t0)β1 + ξi0 + (tv − t0) ξi1
M1 : θiv = (tv − t0)β1 + ξi0

(7)

In order to best reflect the EORTC QLQ-C30 questionnaire, the most frequent HRQoL dimension
with two items (j = 1, 2) comprising four response categories (m ∈ {0, . . . ,M} withM = 3), was used
to design the simulation study. A sample size of three hundred subjects (i = 1, . . . , n with n = 300)
and eight follow-up time (v = 0, . . . , 7), as for the trial presented in the previous section, were consid-
ered. The datasets were simulated from a multinomial distribution. The different response probabilities{
π
(j)
ivm = Pr

(
Y

(j)
iv = m|θiv, δj

)}
concerning the subject i for item j were determined by equation (6)

for the adjacent model and by equation (5) for the cumulative model, given:

• the item parameters (δj1, δj2, δj3)j=1,2;

• the latent trait (θiv) deduced in accordance with equation (7);

• the logistic CdF,

F
(
η
(j)
ivm

)
=

exp
(
η
(j)
ivm

)
1 + exp

(
η
(j)
ivm

) ,
where η(j)ivm = θiv − δjm.

The values of the parameters used were deduced from the pain symptom data of the clinical trial pre-
sented in the previous section. We considered two kinds of difficulty parameters: near δne = (δne1 , δne2 )

and far δfa = (δfa1 , δfa2 ). These parameter values were chosen in order to illustrate several scenarios
described in Table 3. The different scenarios were due with the different associations between the model
used to simulate the data, (adjacent,logistic,Z1, Ur)r=1,2 or (cumulative,logistic,Z1, Ur)r=1,2, and the
different considered values of the difficulty parameters. Table 3 shows the simulated responses expected
at baseline (t = 0). The responses simulated across time depended of the considered coefficient β1. Each
scenario was simulated N = 500 times.

Table 3: Values of difficulty parameters used to simulate the data and expected responses at t0 under each studied
scenarios.

Difficulty parameters
Models δne1 = (−1.6, 1, 1.45) δfa1 = (−2.1, 1, 2.75)

(r, F, Z1, Ur)r=1,2 δne2 = (−0.8, 1.15, 1.9) δfa2 = (−1.25, 1.4, 3.3)

(adjacent,logistic,Z1, Ur)r=1,2 balanced responses focus on center categories (1 and 2)
(cumulative,logistic,Z1, Ur)r=1,2 focus on extreme categories (0,1 and 3) balanced responses

Concerning the LMM, the scoring procedure proposed by the EORTC was considered (Fayers et al.,
2001), and the score associated with a symptomatic dimension was first calculated using the simulated
data. Let the two simulated ordinal outcomes y(1)iv and y(2)iv concerning the individual i at the visit v, the
related score was:

Siv =

(∑J=2
j=1 y

(j)
iv

2

)
100

M
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Similarly to the parameterization in equation (7), we took into account the related choice model with:

M2 : Siv = β
l

0 + (tv − t0)β
l

1 + ξi0 + (tv − t0) ξi1 + εiv

M1 : Siv = β
l

0 + (tv − t0)β
l

1 + ξi0 + εiv

where β
l

0 is the fixed parameter associated with the intercept, the ξ
l

are the random effects normally
distributed with the mean equals to zero and εiv ∼ N (0, σ2ε) the error term.

Results

Table 4 shows the capacity of the three models (adjacent model, cumulative model and LMM) to detect
the random slope given different scenarios (Table 1). When we simulated the data underM2 according
to the random effect variances estimated from real data, each model detected the random slope (ξi1) in
100% of cases whatever the different situations. On the contrary, underM1, the simulated modelM1

was correctly chosen in most cases. For all simulations underM1, the cumulative model seemed to detect
the random slope although it was not included in the simulation step. Moreover, the IRT model which
was not use to simulate the data, wrongly detected this random effect given a negative value of β1 and the
difficulty parameter coefficients δne. This could be explained by the fact that the difficulty parameters
were not uniformly separated around zero and also because they were too close. Indeed, given β1 < 0,
the probabilities to observe the upper categories were very small over time and under-represented in
comparison with the lower categories (as illustrated in Figure 2a). In the specific case where β1 = −0.3,
the IRT model which did not simulate the data could not explain the different outcomes only with the
fixed effect and the random intercept, and it compensated the lack of information with the random slope.
We then could expect symmetric results from β1 (positive values) considering the opposite sign of the
difficulty parameters because of the reversibility property of the IRT models.

On the contrary, the LMM was stable and thus allowed making the good choice of model whatever
the β1 values and the IRT model used to simulate the data. Concerning the IRT models where only
one model out of the two detected the random effect ξi1, the most suitable model seemed the one not
detecting this random effect.

The capacity of the different models to detect the random slope when its variance value changes,
is presented in Table 5. All models were sensitive to the signal-to-noise ratio. Indeed, the more β1
increased, the less the random effect provided information. This was well characterized as the capacity
to detect the random effect for greater variances when the signal was strong. In this case, the signal
provided the essential information explaining the different responses. In the model comparison, the
LMM was less sensitive than the IRT models. Indeed, the LMM detected the random slope for a greater
variance of this one whatever the β1 value. This result was expected because the LMM is based on the
HRQoL score which is a summary variable with less information than the raw data. Thus, the IRT models
are more sensitive in all cases. Comparing the two IRT models, there is a tendency for the random slope
model to be preferred under the cumulative model regardless of whether it is the true model model or
not. On the contrary, in the specific case where β1 = −0.3, the IRT model used to simulate the data was
less efficient than the other IRT model which detected a random slope to remedy the lack of information.
This was coherent with our previous results shown in Table 4. Finally, the more β1 was close to zero, the
more the models detected the random slope for a low variance.
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Table 4: Frequency (on N = 500 datasets) of the M1 selection according to the BIC, given tv =
(0, 1, 2, 4, 6, 8, 10, 12) and σ2

0 = 1.5. For r = 1, 2, the (adjacent,logistic,Z1, Ur) models and the
(cumulative,logistic,Z1, Ur) models are denoted respectively by AM and CM. For the random component, U1

if σ2
1 = 0 and U2 if σ2

1 > 0.

Simulated Scenarios
Model AM using δne CM using δfa CM using δne AM using δfa

σ21 β1 LMM AM CM LMM AM CM LMM AM CM LMM AM CM
0.2 −0.3 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.3 0 0 0 0 0 0 0 0 0 0 0 0
0 −0.5 97.67 99.29 56.49 100 94.63 92.98 100 61.33 95.71 100 99.66 89.54
0 −0.3 99.00 100 33.04 100 88.63 93.30 100 36.33 94.91 100 100 83.33
0 −0.2 100 99.62 49.28 100 94.56 93.81 100 71.67 95.77 100 99.64 79.02
0 −0.1 98.67 95.65 94.78 100 98.65 89.62 100 98.98 90.41 100 100 88.10
0 0.0 95.60 100 94.55 99.00 99.66 91.75 99.00 99.66 89.71 97.00 99.66 94.42
0 0.1 83.00 100 94.78 93.33 100 92.63 97.00 100 90.91 87.33 100 94.69
0 0.3 98.33 99.64 90.61 100 99.64 89.05 100 100 93.67 100 99.65 93.78
0 0.5 100 100 94.29 100 99.32 94.71 100 100 97.61 100 100 97.19

Table 5: Frequency (on N = 500 datasets) of the M2 selection according to the BIC, given
tv = (0, 1, 2, 4, 6, 8, 10, 12) and σ2

0 = 1.5. For the (adjacent,logistic,Z1, Ur) models and the
(cumulative,logistic,Z1, Ur) models are denoted respectively by AM and CM. For the random component, U1

if σ2
1 = 0 and U2 if σ2

1 > 0.

Simulated Scenarios
Model AM using δne CM using δfa CM using δne AM using δfa

β1 σ21 LMM AM CM LMM AM CM LMM AM CM LMM AM CM
0.01 0 2.33 24.92 0 5.03 6.94 0 2.69 3.70 0.33 6.44 24.75
0.02 0 21.40 54.67 0 37.58 44.11 0 17.73 18.12 0 50.00 77.00
0.03 0 61.00 90.97 0 75.67 80.00 0 41.33 45.58 0 86.33 98.33

1 0.05 0 97.67 99.66 0 100 100 0.33 89.00 90.00 0 99.33 100
0.2 39.33 100 100 40.67 100 100 10.67 100 100 57.67 100 100
0.5 100 100 100 100 100 100 100 100 100 100 100 100

0.002 16.67 6.33 21.40 0 2.03 3.97 0 3.06 3.94 11.00 11.04 15.25
0.005 72.33 86.33 92.67 30.67 55.33 59.00 0 32.33 46.00 85.67 87.33 91.67

0.3 0.008 97.67 100 100 86.00 97.3 98.00 4.00 76.33 88.33 99.33 99.67 100
0.01 100 100 100 96.33 99.67 99.33 17.33 94.00 97.00 100 100 100
0.02 100 100 100 100 100 100 96.67 100 100 100 100 100
0.002 0.67 4.36 61.43 0 54.00 5.09 0 93.33 1.82 0 2.07 18.57

−0.3 0.005 5.67 62.33 79.00 0 95.67 40.40 0 99.67 33.22 0 56.00 48.33
0.008 23.67 96.33 97.33 0 100 86.67 0 100 82.67 1.67 96.33 86.33

4 Application to HRQoL data

In this section, we performed a longitudinal analysis of the HRQoL data from a multicenter random-
ized phase III clinical trial in first-line metastatic pancreatic cancer patients: PRODIGE4/ACCORD11
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(Conroy et al., 2011). Three hundred and forty-two patients were randomly assigned to Folfirinox (exper-
imental arm) versus Gemcitabine (control arm) regimens. The detailed inclusion and exclusion criteria,
the study design and protocol, the treatment, the compliance to the questionnaires, and the HRQoL anal-
yses have previously been published (Conroy et al., 2011; Gourgou-Bourgade et al., 2012; Barbieri et al.,
2015). The patients filled the EORTC QLQ-C30 questionnaire themselves at different follow-up times
defined in the protocol: at baseline, day 15, day 30, and at months 2, 4, 6, 8, and 10. The different mea-
suring times reflected the longitudinal aspect of the HRQoL and allowed the assessment of the change of
HRQoL for each dimension.

Analyses were performed using the SAS software (version 9.3) (Institute, 2011; Boeck and Wilson,
2004). For all previous arguments, the cumulative models are preferred for the longitudinal analysis of
the HRQoL. There, we considered the (cumulative,logistic,Z1, U2) model with to analyze the data. In
HRQoL study in oncology, the analysis is carried out for each HRQoL dimension. Given one HRQoL
dimension with few correlated items, the discrimination parameters could be considered equals to one
for each item. The distinction between the multiple-item responses is only achieved though difficulty
parameters (thresholds) (Anota et al., 2014; Barbieri et al., 2015). For the HRQoL longitudinal analysis
with the subject i (i = 1, . . . , 342), the visit v (v = 1, . . . , 8), the item j with Mj response categories,
the (cumulative,logistic,Z1, U2) model is defined by:

Pr
(
Y

(j)
iv ≥ m|θi

)
=

exp
(
η
(j)
ivm

)
1 + exp

(
η
(j)
ivm

) , (8)

with the following linear predictor is considered in the analyses:
η
(j)
ivm =θiv − δjm
θiv =giβ1 + (tv − t0)β2 + gi (tv − t0)β3

+ ξi0 + (tv − t0) ξi1

(9)

where:

• δjm is the difficulty parameter (threshold) associated with the category m of item j;

• tv is the date of the visit v, and t0 is the date of baseline;

• gi = 1 if the patient i belongs the experimental group (Folfirinox), gi = 0 if the patient i belongs
the control group (Gemcitabine);

• β1 is the effect difference at baseline between Folfirinox and Gemcitabine groups;

• β2 is the slope (evolution) of health-related quality-of-life perception for the Gemcitabine group;

• β2+β3 is the slope (evolution) of health-related quality-of-life perception for the Folfirinox group;

• ξi0 and ξi1 are respectively the subject-specific random effects associated with the intercept and
the slope such as (ξi0, ξi1)

′ ∼ N (0,Σ), Σ being the unstructured covariance matrix.
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These HRQoL data have been already analyzed with different approaches. Gourgou-Bourgade et al.
(2012) have presented the results using time-to-event models. They concluded for a better HRQoL in the
Folfirinox arm than the Gemcitabine arm. Then, Barbieri et al. (2015) have presented the results through
the LMM and the partial credit model extended for the longitudinal analysis (adjacent,logistic,Z1, U2).
The conclusions of both mixed models are similar.

For the (cumulative,logistic,Z1, U2) model, Table 6 shows the estimations of fixed parameters, their
standard deviation and the associated P-value of the Wald test. Concerning the functional dimension,
we performed a reverse permutation on the functional scales for an intuitive interpretation. This allows
to consider that an increase of the latent trait θ is associated with an increase of the functional capacity
(improvement of HRQoL) or increase of the symptoms (deterioration of HRQoL). For all HRQoL di-
mensions, there should be no difference at baseline (β1 = 0) in a randomized clinical trial. However, we
observed a significantly difference concerning the diarrhea symptom between the two groups at baseline
(p = 0.007∗∗). It referred to a difference between the two arms at day 15, day 30 (during treatment
period) but no necessarily at baseline. Then, the perception of diarrhea symptom remained higher in the
Folfirinox arm over time. This result is expected because the Folfirinox is more toxic than Gemcitabine
and is known to cause more diarrhea symptom.

Regarding the others dimensions, the HRQoL changed over time for several dimensions (emotional
functioning, pain, insomnia, constipation and appetite loss) returning a significant improvement in terms
of HRQoL perception. Only the pain showed a significantly different evolution between the two arms
(p = 0.04). Indeed, the patients receiving the Folfirinox had a perception of pain which decreased
significantly more over time than the patients receiving the Gemcitabine.

Its interpretability and intuitive illustration is one of the many advantages of the cumulative models.
The constraints on the item parameter in these models allow an interpretation through the latent variable
(e.g. comparing the proportions of the response categories for one specific item over time or between
different groups during a fixed time). Figure 2 presents the evolution concerning the probability of
response either over time (Figure 2a) or between group (Figure 2b). This example is illustrated through
the first item of the pain symptom of the clinical trial previously presented. The probability (πm) for a
patient to response the category m corresponds to the area under the curve delimited by the horizontal
lines. For both groups, Figure 2a shows that the probability to choose the categories 2 or 3 decreased
over time while the probability to choose the category 0 increased. At baseline, the response proportion
for the categories 0, 1, 2 and 3 were respectively π0 = 0.10, π1 = 0.62, π2 = 0.22 and π3 = 0.06
for each group. Then, the evolution of the proportions showed a decrease of the level of pain between
the baseline and the 4-month visit, and, finally, a decrease of the latent trait over time. Likewise, Figure
2b shows the different response proportions between the two groups at four months. In the control
group, the proportions were π0 = 0.29, π1 = 0.61, π2 = 0.08 and π3 = 0.02 for the categories 0,
1, 2 and 3. In the experimental group, they were π0 = 0.47, π1 = 0.48, π2 = 0.04 and π3 = 0.01.
The probability to response category 3 was the lowest whatever the group, but was even less likely for
patients in experimental group than in control group. In contrary, the probability to response category
0 was more likely in experimental group than in control group. The observed gab corresponded to
the difference between the two linear predictors associated with each group only four months after the
baseline. One of the interests of this illustration concerns the clinical interpretation. The IRT models
thus offer a complete analysis: the general analysis of a HRQoL dimension and the specific analysis for
each item (Edelen and Reeve, 2007).
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Table 6: Estimations of fixed effect parameters (βp)p=1,2,3 of the (cumulative,logistic,Z1, U2) model. All HRQoL
dimensions of the EORTC QLQ-C30 are considered.

HRQoL
Dimensions Coefficient Standard error Pvalue
Global Health Status
β2 0.098 0.070 0.166
β3 0.130 0.085 0.128

Physical functioning
β2 -0.150 0.077 0.051
β3 0.122 0.098 0.212

Role functioning
β2 -0.011 0.081 0.892
β3 0.157 0.103 0.131

Emotional functioning
β2 0.335 0.070 < .001∗∗∗

β3 0.001 0.086 0.992
Cognitive functioning
β2 -0.002 0.054 0.972
β3 0.088 0.067 0.189

Social functioning
β2 0.010 0.073 0.888
β3 0.116 0.093 0.211

Fatigue
β2 -0.087 0.085 0.308
β3 -0.033 0.107 0.761

Nausea and vomiting
β2 -0.052 0.060 0.393
β3 -0.069 0.072 0.336

Pain
β2 -0.330 0.076 < .001∗∗∗

β3 -0.188 0.092 0.040∗

Dyspnea
β2 -0.060 0.075 0.420
β3 -0.093 0.088 0.295

Insomnia
β2 -0.359 0.080 < .001∗∗∗

β3 0.046 0.083 0.627
Appetite loss
β2 -0.354 0.072 < .001∗∗∗

β3 -0.026 0.080 0.747
Constipation
β2 -0.325 0.077 < .001∗∗∗

β3 0.003 0.083 0.974
Diarrhea
β1 0.739 0.272 0.007∗∗

β2 0.018 0.067 0.792
β3 -0.026 0.076 0.786

Financial difficulties
β2 -0.522 0.282 0.066
β3 0.302 0.208 0.146
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(a) Pain evolution (b) Outcomes at t4

Figure 2: Interpretation of the (cumulative,logistic,Z1, U2) model through its underlying latent variable con-
cerning the pain symptom (including the items 9 and 19). The estimated difficulty parameter for the item 9 are
δ9,1 = −2.1, δ9,2 = 1 and δ9,3 = 2.75, and for the item 19 : δ19,1 = −1.28, δ19,2 = 1.40 and δ19,3 = 3.34.
Figure 2a: the different HRQoL evolution of the latent variable and response variable (Y (j))j=9,19 between the
two groups. Figure 2b: the different proportions (πm) of different response categories of Y (9) between the two
groups four month after the Baseline (t4).

5 Discussion

We have explored the suitable mixed models for the longitudinal analysis of the HRQoL in oncology.
This data coming from questionnaires through Likert scales, we focused on regression models for ordinal
data. These models have been specified with three components, the linear predictor parameterization, the
ratio of probabilities and the CdF (Peyhardi et al., 2015). In oncology, the analysis being performed on
multiple-item measurements associated with one HRQoL dimension (Fayers et al., 2001), the specific
IRT parameterization of the linear predictor is thus used. The item parameters allow to distinguish the
outcomes from different items which measure an unique unidimensional latent variable. This latent
variable was decomposed linearly to take into account the different covariates in the fixed part of the
model and to incorporate subject-specific random effects. The analysis with IRT models is the richer
because they are based on raw data (Gorter et al., 2015). The analysis can be made on one specific item
through the item parameters or on the whole HRQoL dimension (Edelen and Reeve, 2007). Indeed, these
models take into consideration all available information from the data, it is why the use of this kind of
model is more and more studied (Gorter et al., 2015).

Then, concerning the choice of the model family, the cumulative and adjacent models are preferred.
From the ratios of probabilities which characterize them and the symmetric CdF, the practical property of
the invariant seems important to interpret the results. The cumulative models also assume an underlying
continuous latent variable that is associated with a linear mixed regression model (McCullagh, 1980;
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Hedeker and Gibbons, 1994). This allows a better interpretation and illustration of the results such as
the easy analysis of the evolution of the response proportions of the different categories over time or
between groups, given one item. The adjacent models show the advantage not to have any constraint
for the model estimation. These models can thus be preferred when the regression is performed on the
item part of the linear predictor, given non-proportional design. Finally, the choice of the CdF essentially
depends on the observed data and properties which interest the users. These IRT models are reversible
only if the CdF is symmetric. Thu, the use a commonly symmetric CdF is preferred (the logistic and the
Gaussian distributions). From the conceptual IRT model selection, the cumulative model seems the most
suitable given its advantages for the longitudinal analysis of HRQoL in cancer clinical trials.

The simulation study showed that the IRT model capacity to detect the random effect was better than
the LMM currently used. This result seems natural because the LMM is based on the study of a summary
variable with less information. Thus, the variability from data is also reduced. Of course, the usefulness
of the random effect introduction in the model is strongly associated with the observed data. Moreover,
the more the difficulty parameters were distinct and the influence of covariates was stronger, the less
the random effect provided information. All these results confirmed that the IRT models allow a more
detailed analysis to interpret the results from a specific dimension or item. Whatever the IRT model used
to generate the data, the LMM remained competitive through these simulations. However, the IRT model
that did not generate data, seemed more sensitive to the random slope than the other IRT model used to
simulate the dataset. Indeed, in some cases, it tended to detect the random slope while it did not exist.
In case where one of the two models detects the random slope, the use of the model not detecting the
effect as it is, seems the most appropriated concerning a data-driven choice. However, we recommend to
use only one kind of model (with same components discussed previously) allowing to make the results
comparable across HRQoL dimensions.

An aspect that remains to be discussed is the multidimensional aspect of HRQoL. Nowadays in on-
cology, the different dimensions are analyzed independently of one another, and this causes the problem
of multiple tests. An approach to consider the all HRQoL dimensions would be the use of structural
equation modeling. This would allow to show the influence of each HRQoL dimension through some
factors to explain the global HRQoL and potential structural links between the latent variables.
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