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Abstract

Statistical researches regarding health-related quality of life is a major challenge to better evaluate
the impact of the treatments on their everyday life and to improve patients’ care. In the literature, the
mixed models based on the item response theory (IRT) are proposed to analyze directly HRQoL data
from the questionnaires given to the patients. First, we use a recent classification of regression models
for categorical data to discuss about a selection of IRT models for the longitudinal analysis of health-
related quality of life in cancer clinical trials. Through methodological and practical arguments and
an illustration on real data, the adjacent and cumulative models seem particularly suitable for this
specific application. Then, a simulation study is carried out to compare the linear mixed model
classically used to the most suitable proposed models. These simulations are a complement of other
works concerning the comparison between classical test theory models and IRT models. This study
is performed on the random part of mixed models and shows the IRT models are more precise. In
opposite to the linear mixed model currently used, the IRT models are sensitive to the model used to
generate the data. Between two IRT models used on the data, we recommend to consider that which
does not take into account the random effect. If both considered the random effect, the choice of
model depends to preference of user following the arguments of the first part of this work.

Keywords: Health-related quality of life; Item response theory; Mixed models; Ordinal categorical
data; Longitudinal analysis.

1 Introduction

Endpoints refer to biological and clinical measures to assess the efficiency of new therapeutic strate-
gies. The overall survival endpoint is the gold standard to show a clinical benefit of these strategies and
treatments. Therapeutic treatments being more efficient and increasing the patients’ lifetime, the overall
survival endpoint may become insufficient to show a significant difference between two treatments. It is
then necessary to consider a longer follow-up or a larger cohort of patients to have a sufficient number of
events and a good statistical power[15], both representing considerable costs. Thus, to conclude to the
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benefit of a new treatment, other endpoints have emerged and the health-related quality of life (HRQoL)
is currently one of the most important. In cancer clinical trials, the patient-reported outcomes are in-
creasingly used to analyze a clinical benefit for medical decision-making[15]. The HRQoL endpoint
may seem more pertinent to show the interest of a new therapy in some cases such as the palliative or
geriatric situations. However, there are conceptual and methodological brakes underlying to the concept
and the assessment of HRQoL. First of all, HRQoL is a multidimensional concept regarding the physi-
cal, psychological and social functions as well as symptoms associated with the disease and treatments.
Another conceptual brake is the subjectivity of its measurement. Indeed, patients report their feelings
about their HRQoL thanks to self-reported questionnaires. Both arguments preclude the use of HRQoL
as sole primary endpoint in clinical trials.

In oncology, HRQoL is assessed using a general questionnaire for a set of different cancers, and
an additional specific questionnaire associated with each type of cancer[1, 9]. Each questionnaire de-
composes the HRQoL to measure several under-concepts (dimensions of HRQoL) which themselves
comprise one or several items. The items are built on the Likert scales in which the response cate-
gories are ordinal categorical. Thus, considering several items for a given dimension, HRQoL data are
composed of multiple ordinal responses. Also, the questionnaires are filled by the subjects themselves,
and collected at different times defined in the trial protocol (usually at inclusion, during treatment and
follow-up). These repeated measures are used to assess the evolution of the subject’s HRQoL over time.
In Europe, these questionnaires are developed and validated by the European organization for research
and treatment of cancer (EORTC). The standard questionnaire currently used in oncology is the EORTC
Quality of Life Questionnaire - Core 30 (EORTC QLQ-C30) [1], together with the scoring procedure
proposed by the EORTC[14]. The score is then calculated for each dimension and for each subject, cor-
responding to the average of the item responses for a single dimension, and expressed on a scale ranging
from 0 to 100. The interpretation is such that high functional scores reflect good functional capacities
and a good HRQoL level, and conversely, high symptomatic scores represent strong symptoms and point
out difficulties. The use of scoring procedures is common in practice because the statistical methods
for quantitative variables are more powerful and easier to implement and interpret [19]. But, in a Likert
scale, the gap which separates each adjacent category of response ("not at all", "a little", "quite a bit"
and "very much") may not be the same, and the HRQoL score calculation does not take into account this
characteristic.

The longitudinal statistical models classically used in oncology are performed on the summary score
through using the linear mixed models (LMM) or time-to-event models[3]. In the LMM, the variable as-
sociated with the HRQoL score is considered as a Gaussian variable while it presents the characteristics
of an ordinal variable, being non-continuous and bounded. These models allow taking into account the
correlation introduced by repeated measurements on the same patient (collection of the HRQoL question-
naires over time) and different covariates such as time, treatment group, age... However, the use of the
LMM for HRQoL analysis is scientifically questionable, due to obvious violations in their key Gaussian
homoscedastic distributional assumption. Also, the LMM do not consider the bounded characteristic of
the HRQoL score, ranged between 0 and 100. Moreover, many symptomatic dimensions are composed
of only one item, the HRQoL score has exactly the same properties than ordinal categorical data, and
using the LMM is not appropriated. Thus, if a ceiling or floor effect is observed, the categorical feature
is even more marked when one of the two extreme categories is over-represented. The second approach
for the longitudinal analysis of HRQoL is based on the time-to-event models: the time-to-deterioration
(TTD) and the time-until-definitive-deterioration (TUDD) [20]. Survival approaches are often used and
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thus well-known in the oncologic field, and are appreciated for their easiness to interpret result and their
good understanding by clinicians. In these models, an event is classically defined by the (definitive or not)
deterioration of the HRQoL score between baseline and a follow-up time, given a minimally clinically
important difference [4]. The lack of homogeneity of the methods used for the HRQoL data analyses in
different oncology clinical trials is also a real obstacle to the comparison of results. Indeed, the LMM
and TUDD approaches show results which may sometimes seem contradictory, and with different inter-
pretations, but they may also be complementary. An example can be taken comparing two similar cancer
clinical trials investigating the effect of bevacizumab. In the first trial [10], HRQoL analysis through
TUDD showed that the bevacizumab group had a later deterioration of HRQoL compared with patients
in the standard group. Conversely, in the second trial [16], HRQoL analysis using the LMM showed a
worse HRQoL overtime in the bevacizumab group.

Interest in the HRQoL endpoint is growing rapidly in cancer clinical trials and the standardization
of its analysis has become an important challenge to make robust hypotheses for the design of future
trials. It is essential to find a suitable methodology to analyze HRQoL data, taking into account the
data properties (repeated measurements of the ordinal multiple responses). In our study, we first focused
on the different and most adapted models to analyze HRQoL from raw data, i.e. directly on the item
responses. Studies on psychometric properties from questionnaires such as the one used for HRQoL
have been ongoing for a long time [12, 26], known as the item response theory (IRT). The IRT models
link the individual’s item responses and the latent variable which represents the studied HRQoL concept.
They are generalized linear mixed models (GLMM) for ordinal data with a particular parameterization
of the linear predictor. The interest for this kind of model to analyze the data, including the longitudinal
analyzes, is growing [34, 22, 17]. However, to our knowledge, there is no work that discusses of the
choice of one of the different IRT models over the others for HRQoL longitudinal analysis. We propose in
section 2 a selection of these models, through the clinical expectations and practical and methodological
arguments. This section is illustrated though the use of a multicenter randomized phase III clinical trial
in first-line metastatic pancreatic cancer patients. Section 3 then presents a simulation study to compare
the models described in section 2 and the classical LMM. As some comparison simulations have already
been performed between the IRT models and the LMM on their capacity to detect fixed effects, we focus
in section 3 on the sensibility of these models to detect the random effects.

2 Mixed models for the analysis of HRQoL raw data

HRQoL raw data are repeated measurements of ordinal multiple responses. The GLMM for ordinal
categorical data seem well suitable to analyze this kind of data. The use of random effects takes into
account the inter-patient variability and the correlation between the repeated measurements for each
single patient. Recently, the IRT models have been increasingly used to analyze data deriving from
self-questionnaires made of polytomous responses [21, 3]. These models are GLMM for ordinal data
with a specific parameterization of the linear predictor due to the taking into account of the multiple
responses. For ordinal data, three families of regression models are described: the families of adjacent
models [28, 2], cumulative models [33, 29], and sequential models [35, 13]. Each model can be defined
by the choice of three components, the ratio of probabilities, the cumulative distribution function (CdF),
and the parameterization of the linear predictor [31]. Concerning HRQoL longitudinal analysis, we focus
in this section on the mixed regression models for ordinal data with parameterization from the IRT. Many
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IRT models are proposed for the analysis of this kind of data, often with no explanation regarding the
choice of one model over another. After a presentation of the IRT parameterization used concerning the
linear predictor, we compare different polytomous IRT models on the basis of the link function (ratio of
probabilities and the cumulative distribution function) using methodological and practical arguments.

2.1 The IRT parameterization of the linear predictor

The IRT probabilistic models emerged following the works of Georg Rasch [32] on dichotomous re-
sponses, and were then extended to polytomous ordinal responses [33, 28, 35]. These models link the
individual’s item responses to the latent variable which represents a concept not directly measurable. In
our case, the concept is HRQoL, and more precisely one specific HRQoL dimension. However, general
IRT models presented in the literature do not consider covariates and are not appropriate for longitudinal
analyses, even if it now begins to be explored [27, 36, 3, 17]. Considering the three families of adjacent,
cumulative and sequential models, there are three associated famous IRT models [8, 5], respectively the
(generalized) partial credit model [28, 30], the graded response model [33], and the sequential model
[35].

Let π(j)im = Pr
(
Yij = m|η(j)im

)
denote the probability to response the category m ∈ {0, . . . ,Mj} for

the subject i at the item j given the linear predictor η(j)im . The IRT is based on the assumption that a con-
cept exists but it cannot be directly measured. It is assumed that the item or the set of several associated
items measures one unidimensional latent concept θ, which represents one HRQoL dimension. From the
IRT, the specific parameterization of the linear predictor η(j)im is built into two parts: the individual part
and the item part. The best-known way is to consider the following decomposition:

η
(j)
im = αj (θi − δjm) , (1)

where θi is associated with an unidimensional variable representing the latent value for the subject i, δjm
and αj being the item parameters. Generally called "difficulty parameter", δjm is the intercept associated
with the item j for the category m ∈ {1, . . . ,Mj}. The parameter αj is called the "discrimination
parameter" of item j, and represents the sensitivity of each probability of response according to the
value of the latent trait. In HRQoL study in oncology, the analysis is carried out for each HRQoL
dimension. Given one HRQoL dimension, the discrimination parameters could be considered equals to
one for each item associated with this HRQoL dimension. This corresponds to the following constraint
parameterization:

η
(j)
im = θi − δjm. (2)

These IRT models with no discrimination parameters take into account the multiple-item responses and
the categorical data. Concerning the longitudinal analysis, several studies proposed to extend some IRT
models using the linear decomposition of the latent variable θ with fixed and random effects [21, 36, 24]:

θiv = Xivβ + Uvξi, (3)

with β associated with the fixed effects, ξi with the subject-specific random effects and the index v the
current visit. In the equation (3), the latent variable θ is thus not considered as random effect but as a
linear combination of mixed effects. For the whole parameterization presented in this study, the slope
θ is common for all response categories. Given the common parameterization of the linear predictor,

4



each specific model is defined by its link function which relates the linear predictor and the probability
of response. It is characterized by the two remaining components, the ratio of probabilities (r) and the
CdF (F ).

2.2 The probability ratio: structure of the models

The linear predictor is not directly related to the response probability but to a particular transformation
ratio previously mentioned [31].

Concerning the structure of the models, the GLMM for ordinal data are considered, and thus the
ordinal assumption among categories excluded the family of reference models defined for nominal
responses, which is not presented. Let’s consider the simple situation with one item with (M + 1)
response categories and πm the probability to choose the particular category m ∈ {0, . . . ,M − 1}.
π = (π0, . . . , πM−1) is the truncated vector of probabilities of responses. The three model families for
ordinal data are distinguished by the choice of the ratio of probabilities r (π) = (r0 (π) , . . . , rM−1 (π)).
Each model is summarized by M equations {rm (π) = F (η?m)}m=0,...,M−1 with η?m = δm − θ, high-
lighting the decomposition of the link function into the ratio of probabilities and the CdF. Indeed, we
may distinguish different ratios of probabilities for these different families, respectively, for the adjacent
models,

rm (π) =
πm

πm + πm+1
, m = 0, . . . ,M − 1; (4)

for the cumulative models,

rm (π) = π0 + . . .+ πm, m = 0, . . . ,M − 1; (5)

and, for the sequential models,

rm (π) =
πm

πm + . . .+ πM
, m = 0, . . . ,M − 1.

In the literature, the ratios of adjacent and cumulative families for the IRT models are usually pre-
sented given the reverse permutation [33, 28, 5]. This permutation is defined as the reversal of category
order [29]. Assuming that the considered CdF is symmetric, these models are invariant under this permu-
tation [31]. In practice, this can be seen as an advantage for result interpretation. A lower item-response
category reflects a lower level of the symptomatic dimensions whereas it represents a higher level of
capacity for the functional dimensions. The reverse permutation for the functional dimensions makes it
easier and intuitive for clinicians to present their results. This allows the homogenization of the result
interpretation as it is done in the scoring procedure proposed by the EORTC (for functional dimensions,
the score scale is reversed compared with the item responses categories order) [14]. Even if the sequen-
tial model seems suitable for HRQoL data, we preferred considering the adjacent and cumulative models
given this practical argument with the reverse permutation. The choice of the F component is discussed
in a general way in the next subsection. Based on this previous argument, the adjacent and cumulative
models are thus preferred for the HRQoL raw data analysis.

The cumulative models also have additional properties, including that they are invariant when suc-
cessive categories are gathered [29]. Thus, if one category is not observed, it can be combined with its
successive categories without changing the model.
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Table 1: Summary of the characteristics for the three model families

Models
Adjacent Cumulative Sequential

Reversibility yes yes no
Interpretation using the latent variable no yes yes
Always defined yes yes(no1) yes
1: for some non odd proportional models

A first comparison between the two families of models can be carried out depending on the linear
predictor parameterization used. Indeed, we differentiated the odd proportional models from the others.
For the odd proportional models, a common slope (θ) is considered for all categories, else the slope
is dependent of the category (θm). An advantage of the adjacent models is that there is no constraint
affecting the model estimation. Nonetheless, the cumulative models have to respect constraints, which
can make difficult the model estimation, particularly in the case of non-odd proportional models [31].
Let the simple parameterization of the linear predictor ηm = θm − δm for m ∈ {1, . . . ,M} where
θm and δm are the slope and the intercept associated with the category m, respectively. Considering
the odd proportional models (θ = θ1 = . . . = θM ), the cumulative models refer to the principle of
thresholds [29, 23] with the constraint they have to be strictly increasing such as −∞ < δ1 < . . . <
δM < +∞. Considering the non-odd proportional models, the constraint then becomes −∞ < ηM <
. . . < η1 < +∞ which is more difficult to verify. In practice, for the longitudinal analysis of HRQoL
data in oncology, odd proportional models are considered which makes them more easily accessible and
understood. An advantage of the cumulative models is their interpretation through a continuous latent
variable [29]. Indeed, the continuous latent variable Ỹ underlying the model exists and allows a direct
link with the response variable Y , given the thresholds presumed to be strictly increasing (−∞ = δ0 <
δ1 < . . . < δM < δM+1 = +∞):

Pr (Y = m|θ, δ) = Pr
(
δm < Ỹ ≤ δm+1

)
, m = 0, . . . ,M.

where Ỹ = θ + ε and ε is the error term distributed following the CdF. Here, the latent variable Ỹ
represents HRQoL and its interpretation is then equivalent to the interpretation of the response variable
using a LMM. The cumulative models also allow the comparison of the proportions of the response
categories for one specific item over time, or between different groups during a given time.

Table 1 summarizes some properties of these three families of models which are important for the
analysis of HRQoL in clinical trials in oncology. In the HRQoL longitudinal analysis, odd proportional
models are preferred. Under this parameterization, there is no difficulty to respect the cumulative models
constraints and to estimate them. The adjacent models seem more flexible statistically but the interpreta-
tion of the results using the cumulative model is more intuitive. The sequential models is not taken into
account in the next sections because they are not invariant under the reverse permutation. The adjacent
and cumulative models, which both seem the most suitable for the longitudinal analysis of HRQoL, are
then considered in the next sections.
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2.3 The cumulative distribution function

The aim of the following section is to present the choice of model essentially based on the selection of
the CdF (F ), for the adjacent and cumulative model families. This choice is especially used to best fit
the data [31]. We considered four CdF from two different kinds: the most commonly used symmetric
distributions, the Logistic and Gaussian distributions (respectively associated with the logit link and the
probit link functions), and the two well-known asymmetric distributions, the Gumbel min and Gumbel
max distributions. The two later distributions are respectively defined by F (u) = exp(−exp(−u)) for
the Gumbel max distribution and by F (u) = 1− exp(−exp(u)) for the Gumbel min distribution. In the
literature, the cumulative model is presented according to the use of several of the previously mentioned
CdF [33, 13, 27], while the adjacent models are most often presented with the Logistic CdF. There is also
equivalence between the adjacent models with Logistic CdF and the multinomial logit model for nominal
data [2], which may question taking into account the ordinal characteristics of these models [31].

The choice of F with the adjacent and cumulative models was carried out through real data. A
multicenter randomized phase III clinical trial [11], in first-line metastatic pancreatic cancer patients,
PRODIGE4/ACCORD11, was used to illustrate the CdF selection. Three hundred and forty-two pa-
tients were randomly assigned to FOLFIRINOX (experimental arm) versus Gemcitabine (control arm)
regimens. The detailed inclusion and exclusion criteria, the study design and protocol, the treatment, the
compliance to the questionnaires, and the HRQoL analyses have previously been published [11, 18]. The
patients filled the EORTC QLQ-C30 questionnaire themselves at different follow-up times defined in the
protocol: at baseline, day 15, day 30, and at months 2, 4, 6, 8, and 10. The different measuring times
reflected the longitudinal aspect of the HRQoL and allowed the assessment of the change of HRQoL for
each dimension. The six following HRQoL dimensions were taken into account to represent all possible
configurations concerning the number of items for each dimension: the global health status (QL2) which
comprises two items with seven response categories; the physical functioning (PF2) with five items with
four response categories; the cognitive functioning (CF) and the pain symptom (PA) with two items with
four response categories; the fatigue (FA) and the diarrhea symptoms (DI) with respectively three and
one items, all with four response categories. These HRQoL dimensions were analyzed independently.
An exhaustive analysis of all HRQoL dimensions was previous published [6].

As mentioned previously, the adjacent models have always been presented using the Logistic CdF
[28, 30, 13, 2, 21, 3]. But, the different response probabilities can be presented from the adjacent ratio
and according to a general CdF (F ). As commonly seen in the IRT models, and because of the reverse
permutation property, the adjacent model is used in descending order. Let’s Fm = F (ηm) whatever
m ∈ {1, . . . ,M}, the response probabilities for the adjacent model are deduced as:

π0 =
1

1 +
∑M

m=1

∏m
k=1

(
Fk

1−Fk

)
πm =

∏m
k=1

(
Fk

1−Fk

)
1 +

∑M
m=1

∏m
k=1

(
Fk

1−Fk

) , m = 1, . . . ,M

(6)
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For the cumulative model, the probabilities are defined from the equation (5) and given the CdF F as:
π0 = 1− F (η1)
πm = F (ηm)− F (ηm+1) , m = 1,M − 1
πM = F (ηM )

(7)

Regarding the HRQoL longitudinal analysis with the individual i, the visit v, the item j and its number
of response categories Mj , the following linear predictor is considered in the analyses:{

η
(j)
ivm = θiv − δjm, m = 1, . . . ,Mj

θiv = (tv − t0)β1 + xi (tv − t0)β2 + ξi0 + (tv − t0) ξi1
(8)

where:

• tv is the date of the visit v, and t0 is the date of baseline

• xi = 1 if the patient i belongs the experimental group, xi = 0 if the patient i belongs the control
group

• β1 is the slope (HRQoL evolution) associated with the control group

• β1 + β2 is the slope (HRQoL evolution) associated with the experimental group

• ξi0 and ξi1 are respectively the subject-specific random effects associated with the intercept and
the slope such as (ξi0, ξi1)

′ ∼ N (0,Σ), Σ being the unstructured covariance matrix

The fixed effect associated with the treatment arm is not considered (group effect at the baseline (t0))
because there should be no difference at baseline in a randomized clinical trial.

Given the use of the same linear predictor parameterization (equation (8)), the most suitable model
choice was based on the likelihood value. Analyses were performed using the SAS software (version 9.3)
[25, 8]. Table 2 shows the different values of −2` (` representing the log-likelihood) according to the
model and CdF used. Of course, the choice of F depends on the data analyzed. Concerning the fatigue
and pain symptoms, the cumulative model with a Logistic CdF was chosen, while the Gumbel max
CdF was selected for the physical functioning (adjacent model) and the global health status (cumulative
model). The cumulative models with a Gaussian CdF and Gumbel min CdF were respectively preferred
for the analysis of the cognitive functioning and the diarrhea symptom. Moreover, in most cases, the
cumulative model was preferred to the adjacent model.

Of note, whatever the choice of CdF, the HRQoL evolution was similar. The different CdF allowed
testing different slopes of F in function of theta. The results also showed that there were some diffi-
culties to estimate the model when the Gumbel distributions were used, and particularly for the Gumbel
min CdF. However, the reverse permutation property for the advantage of the intuitive interpretation in
practice was due to the symmetric CdF. Thus, the Logistic or the Gaussian CdF was preferred.

The constraints on the item parameter in the cumulative models allow an interpretation through the
latent variable (e.g. comparing the proportions of the response categories for one specific item over
time or between different groups during a fixed time). Figure 1 illustrates the evolution concerning the
probability of response either over time (Figure 1a) or between group (Figure 1b). This example is based
on the first item of the pain symptom of the clinical trial previously presented. The probability (πm) for
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Table 2: The estimated −2` associated with adjacent and cumulative models with different cumulative distri-
bution functions F . Six HRQoL dimensions are used: Global health status (QL2), physical functioning (PF2),
Cognitive functioning (CF), Fatigue (FA), Pain symptom (PA) and Diarrhea symptom (DI). The reported results
are. For the empty boxes, the model did not converge.

Family CdF HRQoL dimensions
of models F QL2 PF2 CF FA PA DI

Logistic 6633.2 9319.2 3826.5 6930.0 5008.8 2238.2
Adjacent Gaussian 6651.4 9315.7 3823.5 6948.4 5012.0 2237.8
Models Gumbel min - 9400.5 3834.5 - 5014.6 2239.8

Gumbel Max 6643.2 9299.4 3819.7 6927.0 5015.6 2239.2
Logistic 6558.1 9323.5 3818.0 6913.4 4998.0 2220.5

Cumulative Gaussian 6628.0 9331.1 3812.5 6947.0 5009.4 2227.8
Models Gumbel min 6642.2 9500.6 3835.4 6990.0 5004.9 2216.5

Gumbel Max 6553.9 9309.8 3821.0 6924.9 5031.9 2246.8

a patient to response the category m corresponds to the area under the curve delimited by the vertical
lines. For the control group, Figure 1a shows that the probability for a patient to choose the categories
2 or 3 decreased over time while the probability to choose the category 0 increased. At baseline, the
response proportion for the categories 0, 1, 2 and 3 were respectively π0 = 0.10, π1 = 0.62, π2 = 0.22
and π3 = 0.06 while after four months they were π0 = 0.29, π1 = 0.61, π2 = 0.08 and π3 = 0.02,
respectively. The evolution of the proportions showed a decrease of the level of pain between the baseline
and the 4-month visit, and, finally, a decrease of the latent trait over time. Likewise, Figure 1b shows
the different response proportions between the two groups at four months. In the control group, the
proportions were π0 = 0.29, π1 = 0.61, π2 = 0.08 and π3 = 0.02 for the categories 0, 1, 2 and 3,
respectively, and π0 = 0.47, π1 = 0.48, π2 = 0.04 and π3 = 0.01, respectively, in the experimental
group. The probability to response category 3 was the lowest whatever the group, but was even less likely
for patients in experimental group than in control group. Contrarily, the probability to response category
0 was more likely in experimental group than in control group. The lag observed between the different
borders corresponded to the difference between the two linear predictors associated with each group for
a fixed time. One of the interests of this illustration concerns the clinical interpretation. The IRT models
thus offer a complete analysis: the general analysis of a HRQoL dimension and the specific analysis of a
specific item [12].

3 Study of simulations

In the previous section, we focused on the use of the mixed models for ordinal data analysis and their
relevance in the HRQoL analysis in oncology was discussed. Some comparisons studies exist between
these different approaches [7, 3], mainly on the fixed part of the mixed models. Anota et Al.[3] had shown
an equivalent capacity to detect a fixed effect for the LMM and for one of the IRT models. Indeed, even
if the LMM take into account the HRQoL score, which is a summary variable, this approach is at least
equivalent to the IRT models in terms of power.

In our study, the adjacent and cumulative models with the same parameterization of the linear pre-
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(a) Evolution over time (b) Difference between groups

Figure 1: Interpretation of the cumulative model (with Logistic CdF) through its underlying latent variable for
the first item concerning the pain symptom. The associated estimates are β1 = −0.33, β2 = −0.19, δ1 = −2.1,
δ2 = 1 and δ3 = 2.75. ηm(t), is the fixed part of the linear predictor given the category m ∈ {0, 1, 2, 3} where
t = tv − t0. (a): the different proportions of different responses (πm) between two visits (t0 and t4) in the control
group. (b): the different proportions of different responses (πm) between the two groups for one given visit (t4).

dictor and the Logistic CdF were used (as usually in the IRT models). As presented by Peyhardi et al.
[31] concerning the model for categorical data, the two IRT models can be defined by three components
(r;F ;Z) such as (adjacent; logistic; proportional) and (cumulative; logistic; proportional) for the
adjacent and the cumulative models, respectively.

The aim of the following section is to reinforce our study adding a comparison, using a simulation
study, between the LMM and the IRT models on the random part of the mixed models. The datasets were
simulated from an IRT model (adjacent and cumulative models). Regarding the parameterization, two
subject-specific random effects ξi0 and ξi1 were considered, respectively associated with the intercept
and the slope (equation (8)). Of course, the usefulness of the random effect introduction in the model is
strongly associated with the observed data. As mentioned earlier, HRQoL is a subjective endpoint, and
the individual random effect ξi0 is thus entirely justified. Indeed, it is easy to imagine that each patient has
a different level of HRQoL at baseline. The random slope is more questionable, indeed, the assumption
that the specific HRQoL evolution of one single patient diverges from the average evolution for the whole
population, is less obvious than the previous one. In this section, the capacity of the mixed models to
detect the slope random effect was thus studied. No group effect was considered in this simulation study.

3.1 Design

The aim of the following simulations is to study the capacity of each model to detect the random effect ξi1
associated with time (random slope). The two subject-specific random effects are considered independent
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Table 3: Values of difficulty parameters used to simulate the data and expected responses at t0 under each studied
scenarios.

Difficulty parameters
Models δne1 = (−1.6, 1, 1.45) δfa1 = (−2.1, 1, 2.75)

(r, F, Z) δne2 = (−0.8, 1.15, 1.9) δfa2 = (−1.25, 1.4, 3.3)

(adjacent, logistic, proportional) balanced responses focus on center categories (1 and 2)
(cumulative, logistic, proportional) focus on extreme categories (0,1 and 3) balanced responses

where ξi0 ∼ N (0, σ20) and ξi1 ∼ N (0, σ21). The following model choice study is performed on the basis
of the Bayesian information criteria (BIC) where two models were considered:M1 with the two random
effects (ξ0, ξ1) andM0 excluding the random slope (ξ1). For the IRT models, the linear decomposition
of the latent trait θiv only took into account the time as a fixed effect. The two considered models are:

M1 : θiv = (tv − t0)β1 + ξi0 + (tv − t0) ξi1
M0 : θiv = (tv − t0)β1 + ξi0

(9)

The most frequent HRQoL dimension with two items (j = 1, 2) comprising four response categories
(m ∈ {0, . . . ,M}withM = 3), was used to design the simulation study. A sample size of three hundred
subjects (i = 1, . . . , n with n = 300) and eight follow-up time (v = 0, . . . , 7), as for the trial presented
in the previous section, were considered. The datasets were simulated from a multinomial distribution.
The different response probabilities

{
π
(j)
ivm = Pr

(
Y

(j)
iv = m|θiv, δj

)}
concerning the subject i for item

j were determined by equation (6) for the adjacent model and by equation (7) for the cumulative model,
given:

• the item parameters (δj1, δj2, δj3)j=1,2;

• the latent trait (θiv) deduced in accordance with equation (9);

• the Logistic CdF,

F
(
η
(j)
ivm

)
=

exp
(
η
(j)
ivm

)
1 + exp

(
η
(j)
ivm

) ,
where η(j)ivm = θiv − δjm.

The values of the parameters used were deduced from the pain symptom data of the clinical trial pre-
sented in the previous section. We considered two kinds of difficulty parameters: near δne = (δne1 , δne2 )

and far δfa = (δfa1 , δfa2 ). These parameter values were chosen in order to illustrate several scenarios
described in Table 3. The different scenarios are due with the different associations between the model
used to simulate the data, (adjacent, logistic, proportional) or (cumulative, logistic, proportional),
and the different values of the difficulty parameters considered. Table 3 shows the simulated responses
expected at baseline (t = 0). The responses simulated across time depended of the considered coefficient
β1. Each scenario was simulated N = 500 times.

Concerning the LMM, the scoring procedure proposed by the EORTC was considered [14], and the
score associated with a symptomatic dimension was first calculated using the simulated data. Let the
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two simulated ordinal outcomes Y (1)
iv and Y (2)

iv concerning the individual i at the visit v, the related score
was:

Siv =

(∑J=2
j=1 Y

(j)
iv

2

)
100

M

Similarly to the parameterization in equation (9), we took into account the related choice model with:

M1 : Siv = β
l

0 + (tv − t0)β
l

1 + ξ
l

i0 + (tv − t0) ξ
l

i1 + εiv

M0 : Siv = β
l

0 + (tv − t0)β
l

1 + ξ
l

i0 + εiv

where β0 is the fixed parameter associated with the intercept, the ξ are the random effects normally
distributed with the mean equals to zero and εiv ∼ N (0, σ2ε) the error term.

3.2 Results

Table 4 shows the capacity of the three models (adjacent model, cumulative model and LMM) to detect
the random slope given different scenarios (Table 1). When we simulated the data under M1 (with a
random slope) according to the random effect variances estimated from real data, each model detected
the random slope (ξi1) in 100% of cases whatever the different situations. On the contrary, underM0, the
simulated modelM0 was correctly chosen in most cases. For all simulations underM0, the cumulative
model seemed less suitable than the others because it seemed to detect the random slope although it was
not included in the simulation step. Moreover, the IRT model, which was not use to simulate the data,
wrongly detected this random effect given a negative value of β1 and the difficulty parameter coefficients
δne. This could be explained by the fact that the difficulty parameters were not uniformly separated
around zero and also because they were too close. Indeed, given β1 < 0, the probabilities to observe
the upper categories were very small over time and under-represented in comparison with the lower
categories (as illustrated in Figure 1a). In the specific case where β1 = −0.3, the IRT model which did
not simulate the data could not explain the different outcomes only with the fixed effect and the random
intercept, and it compensated the lack of information with the random slope. We then could expect
symmetric results from β1 (positive values) considering the opposite sign of the difficulty parameters
because of the reverse permutation property of the IRT models.

On the contrary, the LMM was stable and thus allowed making the good choice of model whatever
the β1 values and the IRT model used to simulate the data. Concerning the IRT models and in the case
where there was only one model out of the two detecting the random effect ξi1, the most suitable model
seemed the one not detecting this random effect.

The capacity of the different models to detect the random slope when its variance value changes,
is presented in Table 5. All models were sensitive to the signal-to-noise ratio. Indeed, the more β1
increased, the less the random effect provided information. This was well characterized as the capacity
to detect the random effect for greater variances when the signal was strong. In this case, the signal
provided the essential information explaining the different responses. In the model comparison, the
LMM was less sensitive than the IRT models. Indeed, the LMM detected the random slope for a greater
variance of this one whatever the β1 value. This result was expected because the LMM is based on
the HRQoL score which is a summary variable with less information than the raw data. Thus, the IRT
models are more sensitive in all cases. Comparing the two IRT models, the cumulative model had a

12



Table 4: Frequency (on N = 500 datasets) of the M0 selection according to the BIC, given
tv = (0, 1, 2, 4, 6, 8, 10, 12) and σ2

0 = 1.5. The (adjacent,logistic,proportional) model and the (cumula-
tive,logistic,proportional) model denoted respectively by AM and CM.

Scenarios
AM using δne CM using δfa CM using δne AM using δfa

σ21 β1 LMM AM CM LMM AM CM LMM AM CM LMM AM CM
0.2 −0.3 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.3 0 0 0 0 0 0 0 0 0 0 0 0
0 −0.5 97.67 99.29 56.49 100 94.63 92.98 100 61.33 95.71 100 99.66 89.54
0 −0.3 99.00 100 33.04 100 88.63 93.30 100 36.33 94.91 100 100 83.33
0 −0.2 100 99.62 49.28 100 94.56 93.81 100 71.67 95.77 100 99.64 79.02
0 −0.1 98.67 95.65 94.78 100 98.65 89.62 100 98.98 90.41 100 100 88.10
0 0.0 95.60 100 94.55 99.00 99.66 91.75 99.00 99.66 89.71 97.00 99.66 94.42
0 0.1 83.00 100 94.78 93.33 100 92.63 97.00 100 90.91 87.33 100 94.69
0 0.3 98.33 99.64 90.61 100 99.64 89.05 100 100 93.67 100 99.65 93.78
0 0.5 100 100 94.29 100 99.32 94.71 100 100 97.61 100 100 97.19

Table 5: Frequency (on N = 500 datasets) of the M1 selection according to the BIC, given
tv = (0, 1, 2, 4, 6, 8, 10, 12) and σ2

0 = 1.5. The (adjacent,logistic,proportional) model and the (cumula-
tive,logistic,proportional) model denoted respectively by AM and CM.

Scenarios
AM using δne CM using δfa CM using δne AM using δfa

β1 σ21 LMM AM CM LMM AM CM LMM AM CM LMM AM CM
0.01 0 2.33 24.92 0 5.03 6.94 0 2.69 3.70 0.33 6.44 24.75
0.02 0 21.40 54.67 0 37.58 44.11 0 17.73 18.12 0 50.00 77.00
0.03 0 61.00 90.97 0 75.67 80.00 0 41.33 45.58 0 86.33 98.33

1 0.05 0 97.67 99.66 0 100 100 0.33 89.00 90.00 0 99.33 100
0.2 39.33 100 100 40.67 100 100 10.67 100 100 57.67 100 100
0.5 100 100 100 100 100 100 100 100 100 100 100 100

0.002 16.67 6.33 21.40 0 2.03 3.97 0 3.06 3.94 11.00 11.04 15.25
0.005 72.33 86.33 92.67 30.67 55.33 59.00 0 32.33 46.00 85.67 87.33 91.67

0.3 0.008 97.67 100 100 86.00 97.3 98.00 4.00 76.33 88.33 99.33 99.67 100
0.01 100 100 100 96.33 99.67 99.33 17.33 94.00 97.00 100 100 100
0.02 100 100 100 100 100 100 96.67 100 100 100 100 100
0.002 0.67 4.36 61.43 0 54.00 5.09 0 93.33 1.82 0 2.07 18.57

−0.3 0.005 5.67 62.33 79.00 0 95.67 40.40 0 99.67 33.22 0 56.00 48.33
0.008 23.67 96.33 97.33 0 100 86.67 0 100 82.67 1.67 96.33 86.33

better capacity than the adjacent model to detect the presence of the random slope. On the contrary, in
the specific case where β1 = −0.3, the IRT model used to simulate the data was less efficient than the
other IRT model which detected a random slope to remedy the lack of information. This was coherent
with our previous results shown in Table 4. Finally, the more β1 was close to zero, the more the models
detected the random slope for a low variance.
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From the simulation results, we can propose a last argument in order to choose the best model. In
case where only one of the two models detects the random slope, the model that does not detect the
random effect should be preferred. This model is the most suitable to fit the data.

4 Discussion

We have explored the suitable mixed models for the longitudinal analysis of the HRQoL in oncology.
This data coming from questionnaires through Likert scales, we focused on regression models for ordinal
data. These models can be specified with three components, the linear predictor parameterization, the
ratio of probabilities and the CdF [31]. In oncology, the analysis being performed on multiple-item
measurements associated with one HRQoL dimension [14], the specific IRT parameterization of the
linear predictor is thus used. The item parameters allow to distinguish the outcomes from different items
which measure an unique unidimensional latent variable. This latent variable was decomposed linearly to
take into account the different covariates in the fixed part of the model and to incorporate subject-specific
random effects. The analysis with IRT models is the richer because they are based on raw data while
LMM is based on summary variable commonly used [17]. The analysis can be made on one specific
item through the item parameters or on the studied HRQoL dimension [12]. Indeed, these models take
into consideration all available information from the data, it is why the use of this kind of model is more
and more studied [17].

Then, concerning the choice of the model family, the cumulative and adjacent models are preferred.
From the ratios of probabilities which characterize them and the symmetric CdF, the practical property
of the reversibility seems important to interpret the results with clinicians in oncology. The cumulative
models also assume an underlying continuous latent variable that is associated with a linear mixed re-
gression model [29, 23]. This allows a better interpretation of the results such as the easy analysis of
the evolution of the response proportions of the different categories over time or between groups, given
one item. The adjacent models show the advantage not to have any constraint for the model estimation.
Finally, the choice of the CdF essentially depends on the observed data and no specific rule exists yet.
We here showed an example on clinical trial data where the model choice was performed thank to the
likelihood. For the longitudinal analysis of HRQoL in oncology, we thus avoided the use of commonly
symmetric CdF: the Logistic and the Gaussian distributions. We can precise that whatever CdF was used,
there was a similar influence from the different factors.

The simulation study showed that the IRT model capacity to detect the random effect was better
than the LMM currently used. This result seems natural because the LMM is based on the study of a
summary variable with less information. Thus, the variability from data is also reduced. Of course, the
usefulness of the random effect introduction in the model is strongly associated with the observed data.
Moreover, the more the difficulty parameters were distinct and the influence of covariates was stronger,
the less the random effect provided information. All these results confirmed that the IRT models allow
a more detailed analysis to interpret the results from a specific dimension or item. Whatever the IRT
model used to generate the data, the LMM remained competitive through these simulations. However,
the IRT model, that did not generate data, seemed more sensitive to the random slope than the other IRT
model used to simulate the dataset. Indeed, in some cases, it tended to detect the random slope while it
did not exist. In case where one of the two models detects the random slope, we recommend the use of
the model not detecting the effect as it is the most suitable to fit the data. On the opposite, if both models
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are identically sensitive to its presence, we suggest using the IRT model following the previous practical
and methodological arguments.

An aspect that remains to be discussed is the multidimensional aspect of HRQoL. Nowadays in on-
cology, the different dimensions are analyzed independently of one another, and this causes the problem
of multiple tests. It is possible to imagine an unidimentional latent trait for two or several HRQoL dimen-
sions. Indeed, the discrimination parameters could be considered as equal between items from the same
dimension. We can thus think that this parameter can be associated with the dimension and no to with
item. Finally, this allows to consider a set of HRQoL dimensions to assess a common concept like such
as the symptomatic status concerning all symptomatic dimensions. Another approach to consider the all
HRQoL dimensions would be the use of structural equation modeling. This would allow to summarize
the information through some factors to explain the evolution of the global HRQoL and the potential
structural link between the latent variables.
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