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SHAPELY MONADS AND ANALYTIC FUNCTORS

RICHARD GARNER AND TOM HIRSCHOWITZ

ABSTRACT. In this paper, we give precise mathematical form to the idea of
a structure whose data and axioms are faithfully represented by a graphical
calculus; some prominent examples are operads, polycategories, properads,
and PROPs. Building on the established presentation of such structures
as algebras for monads on presheaf categories, we describe a characteristic
property of the associated monads—the shapeliness of the title—which says
that “any two operations of the same shape agree”.

An important part of this work is the study of analytic functors between
presheaf categories, which are a common generalisation of Joyal’s analytic
endofunctors on sets and of the parametric right adjoint functors on presheaf
categories introduced by Diers and studied by Carboni—-Johnstone, Leinster
and Weber. Our shapely monads will be found among the analytic endo-
functors, and may be characterised as the submonads of a universal analytic
monad with “exactly one operation of each shape”.

In fact, shapeliness also gives a way to define the data and axioms of a
structure directly from its graphical calculus, by generating a free shapely
monad on the basic operations of the calculus. In this paper we do this for some
of the examples listed above; in future work, we intend to use this to obtain
canonical notions of denotational model for graphical calculi such as Milner’s
bigraphs, Lafont’s interaction nets, or Girard’s multiplicative proof nets.

1. INTRODUCTION

In mathematics and computer science, we often encounter structures which
are faithfully encoded by a graphical calculus of the following sort. The basic
data of the structure are depicted as certain diagrams; the basic operations of
the structure act by glueing together these diagrams along certain parts of their
boundaries; and the axioms of the structure are just those necessary to ensure
that “every two ways of glueing a compound diagram together agree”.

Commonly, such calculi depict structures wherein “functions”, “arrows” or
“processes” are wired together along input or output “ports”. For instance,
we have multicategories [24], whose arrows have many inputs but only one
output; polycategories [34], whose arrows have multiple inputs and outputs, with
composition subject to a linear wiring discipline; and coloured properads [36] and
PROPs [28], which are like polycategories but allow for non-linear wirings.

Mathematical structures such as these are important in algebraic topology and
homological algebra—encoding, for example, operations arising on infinite loop
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2 R. GARNER AND T. HIRSCHOWITZ

spaces [30] or on Hochschild cochains [31]—but also in logic and computer science.
For example, polycategories encode the underlying semantics of a linear sequent
calculus [25], while PROPs have recently been used as an algebraic foundation for
notions of computational network such as signal flow graphs [3] and Bayesian
networks [10]. Other kinds of graphical structures arising in computer science
include proof nets [12, §2], interaction nets [23] and bigraphs [15].

There is an established approach to describing structures of the above kind
using monads on presheaf categories. The presheaf category captures the essential
topology of the underlying graphical calculus, while the monad encodes both the
wiring operations of the structure and the axioms that they obey; the algebras
for the monad are the instances of the structure. One aspect which this approach
does not account for is that the axioms should be determined by the requirement
that “every two ways of wiring a compound diagram together agree”. The
first main contribution of this paper is to rectify this: we explain the observed
form of the axioms as a property of the associated monad—which we term
shapeliness—stating that “every two operations of the same shape coincide”.

In fact, shapeliness gives not just a way of characterising the monads encoding
graphical structures, but also a systematic way of generating them. For a given
graphical calculus, it is typically easy to find a presheaf category encoding the
basic diagram-shapes of the calculus, and an endofunctor thereon encoding the
basic wiring operations; we then obtain the desired monad as the free shapely
monad on the given endofunctor. The algebras for this monad can be seen as
denotational models of the graphical calculus in question; and though we do not
do this here, one can envisage this being used to attach workable denotational
semantics to, for example, interaction nets; the syntactic part of bigraphs; or
MLL proof nets without units.

Formalising the notion of shapely monad turns out to be a delicate task. In
the end, we will define a monad on PE = [¢°P, Set] to be shapely just when it
is a submonad of a universal shapely monad U with “exactly one operation of
each shape”. We will find U by seeking a terminal object in a suitable monoidal
category of endofunctors of Z2%’; once found, terminality will automatically
endow this object with a monad structure, so giving the desired U.

This leaves the problem of choosing a suitable monoidal category of endo-
functors. An obvious but wrong choice would be the whole functor category
(P€, PE): with this choice, U would be the monad constant at 1, and a general
monad would be shapely just when it took values in subobjects of 1. This is
manifestly not what we want; the problem is that terminality in the full functor
category encodes the property of having “exactly one operation of each shape”
for what are overly crude notions of “operation” and “operation shape”.

Refining these notions, as we shall do, means looking for a terminal object in
some smaller category of endofunctors of #?%. Choosing this category turns out
to be an interesting design problem: some natural candidates have a terminal
object, but are not closed under composition, while others are closed under
composition, but fail to have a terminal object. Our eventual solution will
triangulate between these failures, but we make no claims to its definitiveness; in



SHAPELY MONADS AND ANALYTIC FUNCTORS 3

fact, we consider the value of our work to lie as much in the exploration of the
problem’s design space as in the particular solution we adopt.

The technical foundation of our approach will be a theory of analytic functors
between presheaf categories, and the second main contribution of this paper
is to develop such a theory. Analytic endofunctors of Set were introduced by
Joyal in [17] as a categorical foundation for enumerative combinatorics; their
importance for computer science has been recognised in work such as [1, 9, 13].
An endofunctor F' of Set is analytic in Joyal’s sense when it can be written in
the form:

FX =% er X%a,

for an I-indexed family of natural numbers «; and subgroups G; < &,,; the
quotients are by the permutation actions of GG; on the factors of X“:.

Various authors have considered various ways of extending Joyal’s notion to
arbitrary presheaf categories, as, for example, in [1, 9]. However, it turns out
that these prior notions are not appropriate to our needs, since the notions of
analyticity they describe are not general enough to capture the functors and
monads of interest (see Remark 4.5 below). Instead, guided by our applications,
we choose to call a functor F': P — P€ analytic if it takes the form:

(1.1) FX(c) = Zz‘elc @9(@¢,X)/Gi

for some family of presheaves a; € &% and subgroups G; < Aut(a;) of the
automorphism group of each «;. Just as in the case studied in [17], these
generalised analytic functors have a strongly combinatorial flavour; moreover, all
of the monads derived from graphical calculi that we will consider turn out to be
analytic in this sense.

It is therefore reasonable that we should look for a universal shapely monad
among analytic endofunctors of a presheaf category. While we do not succeed
in doing this in full generality, our attempts to do so lead us to develop various
results of independent interest, including the following:

(i) We give a combinatorial representation of the category of finitary analytic
functors and transformations %€ — £ 2 (Proposition 4.17) and show that
this category always has a terminal object (Proposition 4.21).

(ii) We show that analytic functors between presheaf categories need not be
closed under composition (Proposition 4.24); this is by contrast to analytic
endofunctors of Set, which are composition-closed.

(iii) We introduce a condition on analytic functors which we call cellularity, that
is sufficient to ensure that they do compose (Proposition 5.16).

(iv) We see that, unfortunately, the introduction of cellularity also destroys the
terminal object among finitary analytic endofunctors (Proposition 5.21).

This last, negative, result delineates the boundary of our knowledge in the
general case; but a small adaptation allows us to obtain positive results in the
specific cases necessary to talk about PROPs, properads and polycategories. As we
recall, each of these notions may be encoded by a monad on a suitable presheaf
category of polygraphs (Definitions 2.5 and 2.11). What we further show is that:
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e For endofunctors of the category of polygraphs, the notion of cellularity
can be augmented with simple ad hoc conditions to obtain a class of an-
alytic functors which is composition-closed and admits a terminal object
(Propositions 6.2 and 6.4).

e In this context, therefore, there exists a universal shapely monad, and
moreover, we may describe concretely the free shapely monad on any shapely
endofunctor (Proposition 6.13).

e The monads for polycategories, properads and PROPs are the free shapely
monads on the endofunctors encoding their basic wiring operations (Theo-
rems 6.15 and 6.16).

We conclude this introduction with a brief overview of the rest of the paper.
We start in Section 2 by developing some motivating examples of graphical calculi
and the algebraic structures they describe. These graphical calculi include that
for symmetric monoidal categories introduced in [18] (but see also [32]); the
associated algebraic structures include the polycategories of [33], the (coloured)
properads of [36], and the PROPs of [28]. We then explain how these algebraic
structures can be described as the algebras for a monad on a presheaf category.

In Section 3, we begin our pursuit of the notion of universal shapely monad.
We do not immediately consider the analytic functors discussed above, but rather
the narrower class of familially representable or familial functors, introduced by
Diers [6] and studied by Johnstone, Leinster and Weber [5, 38, 27]; these are
precisely the analytic functors whose expression (1.1) involves only trivial groups
G;. We recall basic aspects of the theory of familial functors, including closure
under composition, but show that there is typically no terminal object among
familial endofunctors, and hence no universal shapely monad among them.

In Section 4, we attempt to fix up the lack of a terminal object among familial
endofunctors by passing to the more general analytic functors. As is visible from
(i) and (ii) above, we succeed in doing this, but only at the cost of breaking
the composability of familial endofunctors. Section 5 attempts to fix this new
problem by introducing the more restricted class of cellular analytic functors; as
in (iii) and (iv) above, this does indeed resolve the problem of composability but
at the same time reintroduces the problem of the existence of a terminal object.

At this point, in Section 6, we declare ourselves unable to find a further refine-
ment of the notion of cellularity that, in full generality, fixes both composability
and existence of a terminal object. However, in the presheaf categories relevant
to the motivating examples of Section 2, we are able to impose an additional ad
hoc condition on top of cellularity which is sufficient to ensure that the cellular
functors in this class both compose and admit a terminal object: using this, we
finally obtain the desired notion of shapely monad, and are able to exhibit the
monads encoding the graphical structures of interest as free shapely monads on
the basic wiring operations of the structure.

2. MOTIVATING EXAMPLES

2.1. Some examples of graphical calculi. Before developing our general theory of
shapeliness, we describe some of the examples of monads derived from graphical
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calculi that our theory is intended to capture. The graphical calculi which we
consider will involve diagrams built out of labelled boxes

Y
£,

with a finite number of “input” wires (positioned above the box) and “output”
wires (positioned below). There are various interpretations we could give to such
a box, for example:

(2.1)

(i) As a derivation in a linear sequent calculus of Ay,..., A, By, ..., Buy;
(ii) As a linear map A; ® --- ® A,, = B; ® - -+ ® By, between k-vector spaces;
(iii) As a program in the typed A-calculus of type Ay x -+ x A,, — By X+ X By,.
Each of these interpretations will be associated to a different graphical calculus;
the difference between them is in the rules governing how boxes can be plugged
together to form larger diagrams. For example:
(i) Given proofs f of C,DF E,F,Z,1,J and g of A, B, Z F G, H in the linear
sequent calculus, we can cut along the proposition Z to obtain a proof of
A B,C,DF E,F,G,H,I,J. Thus, in the corresponding graphical calculus,
we can plug together the boxes representing f and g to obtain a diagram:

A B C D

E F G H I J .

(ii) Given k-linear maps f: A B—C,g: E - FeGand h: CQF®G — K,
we can consider the k-linear map A ® F ® B — K which sends a ® e ® b to
h(f(a ®b) ® g(e)). Thus, in the corresponding graphical calculus, we can
plug together the boxes representing f, g and h to obtain a diagram:

A E B
| —=
L L |
¢/ B c
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(iii) Given programs f: A — B and g: Bx A — C, there is a composite program
Aa.g(f(a),a): A — C; thus, in the corresponding graphical calculus, we
can plug together the boxes for f and g to obtain a diagram:

A

B

C.

With a little further thought, we can derive from the intended interpretations
of the boxes a description of the associated wiring discipline:

(i) In the linear sequent calculus, we can only cut along a single formula, so
that in the corresponding graphical calculus, we can only plug two boxes
together along a single wire (output to input);

(ii) In the case of linear maps between vector spaces, we can compose maps
together over multiple tensor components, so that we can now plug multiple
outputs of one box into multiple inputs of a second. We can also form
the tensor product of two maps, corresponding to composing two boxes by
placing them alongside each other.

(iii) In the case of programs, we have the possibility of duplicating or discarding
values; thus the corresponding graphical calculus will augment the rules
from (ii) by allowing wires to split and terminate as they go down the page.

There are other possibilities; for example, intermediate between (i) and (ii) we
have (ii)” which allows for plugging multiple inputs as in (ii) but does not allow
for placing boxes alongside each other.

2.2. Algebraic structures from graphical calculi. In general, the purpose of graph-
ical calculi is to provide a denotation system for elements in a semantic structure.
For example, the graphical calculus in (ii) can be used to describe compound
morphisms in the category of k-vector spaces, but more generally, in any sym-
metric monoidal category [20]; it is essentially the calculus of string diagrams
in [18]. However, the calculus in (iii), with its more permissive wiring discipline,
cannot be interpreted into k-vector spaces as there is no k-linear correlate to the
operation of splitting or terminating wires.

There is a particularly canonical class of semantic structures into which a
given graphical calculus can be interpreted; the structures in this class are built
out of families of sets representing the wires and boxes of the graphical calculus,
together with operations on those sets encoding the wiring discipline. For the
graphical calculus in (i) above, these structures are the polycategories of [33].
These were explicitly introduced as semantic models for a two-sided propositional
sequent calculus; although originally this was the classical Genzten calculus,
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it later became clear [25] that they encode precisely the sequent calculus of
multiplicative linear logic.

Definition 2.1. A small (symmetric) polycategory € comprises a set ob(%) of
objects; sets € (A; B) of morphisms for each pair of lists A = (41,...,A,) and
B = (By,...,B,,) of objects; and the following further data:

e Identity morphisms id4 € € (A; A) for each object A.
e Composition operations giving for each f € ¢ (A; B) and g € ¥(C; D) and
indices 4, j with B; = C}, a morphism
g ;% f € (g(c<j7A, C>j;B<iaD,B>i) ;
here we use comma to denote concatenation of lists, and write C_; for the
list (C1,...,Cj-1), and so on.

e FExchange operations giving for each f € €(A; B) and permutations ¢ € &,
(the symmetric group on n letters) and 1) € &, an element

V- f-p€C(Ay; By-1)
where A, denotes the list (A, ..., Ayp)) and likewise for By-1.
These data are required to satisfy the axioms of Definition 2.2 below.

If € is a polycategory, then we think of elements of ob(%) as wire-labels, and
elements of ¢’ (A; B) as boxes of the form (2.1). The operations of a polycategory
now correspond to the elementary wiring operations on such boxes. The identity
morphisms can be depicted as bare wires; composition g jo; f as the plugging of

the 7th output of f into the jth input of g, as on the left below; and exchange as
the rearrangement of input or output wires, as on the right below.

Cr---Cyy Ay -+ Ay Cipa---Cy

Ay Az Ay
\/

(2.2)

MK

g
/ \ By By B3 By

By---B,_, Dy --- Dy Biyy---Bm

[Note that the identities of a polycategory involve only a single object rather
than a list. A geometric explanation for this is that all the graphs occurring
in polycategorical composition are connected, whereas the identity on a list of
objects would be an unconnected graph.]

In terms of the graphical calculus, the axioms for a polycategory can be seen
simply as asserting that various ways of wiring together a diagram of boxes
coincide. We now give these axioms in full, mainly to show how unpalatable
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they are when presented algebraically, and without any real expectation that the
reader should work through the details.
Definition 2.2. The axioms for a polycategory € are:

e The unit axioms:
fio1ida, = f =1idp; 105 f
for all f € ¥(A; B) and valid indices ¢, j.

e The associativity axiom:
(2.3) (h ook g) 70i [ = h o, (g joi f)

for all f € €(A;B), g€ ¢(C;D) and h € ¢(E; F) and all indices 4, j, k, ¢
with B; = Cj and Dy, = Fy. Here, j=j+/¢—1and k =k +i— 1.

e The left interchange axiom:

(h k2095 9) ky0i f =0 (W k00 f) 5,95 9) -

for all f € €(A;B), g € €(C;D) and h € ¢(E; F) and all indices i, j
and k1 < kg such that B; = Ej, and D; = Ey,. Here, kg = ko +n -1
where n is the length of the list A, and 1 is the permutation for which
(B<i7D<j7F7D>j7B>i)w = (D<j7B<i7F7B>i7D>j)'

e The right interchange axiom:

9 j%i; (hroiy f) = (hror, (9504 f)) ¢ -

for all f € ¥(A;B), g € €(C;D) and h € ¢(E; F) and all indices i; <
io and j, k such that B;, = C; and B;, = E. Here, 1 = i +m — 1
where m is the length of the list D, and ¢ is the permutation for which
(E<k7 C<j7 A, C>j7 E>k)<p = <C<j7 E_.,A E.,, C>j)'

e The action axioms:

idm - f-idy = f and  (Y2th1) - f - (p1p2) = Y2 - (Y1 f-1) - 2
for all f € ¥(A; B) and suitable permutations o1, 2, 11 and 9.

e The equivariance of composition axiom:

(Y2 g-92) joi (V1 f 1) =¥ (9 pu()Oy1(s) F) - @
for all f € €(A; B), g € €(C; D), and suitable permutations ¢1, p2, 11 and
9. Here, ¢ is determined by (C<<p2(j)7 A, C.pyi)e = ((Cops)ss Aprs (Ciy)ss)
and v by <B<w;1(i)>DvB>w;1(i))1Z*1 = ((B¢;1)<i7D¢;1a (B¢;1)>i>-

In a similar way, we can associate algebraic structures to the other graphical
calculi described above; since these calculi extend (i) with more permissive
wiring disciplines, the associated structures extend polycategories with more
permissive composition operations. For the calculi with wiring disclipines (ii)’, (ii)
and (iii), the structures obtained are, respectively (coloured) properads [36],
(coloured) PROPs [28], and (many-sorted) Lawvere theories [26]. We now sketch
the definitions for (ii)’ and (ii), leaving (iii) as an exercise to the reader.
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Definition 2.3. A coloured properad € is given by the same data as for a polycat-
egory, except for the operation of composition, which is generalised as follows.
Given morphisms f € ¥(A; B) and g € ¥(C; D), and non-empty sequences of
indices I = {i,...,i+k} and J = {j,...,j + k} such that B;;; = Cj;, for each
0 < ¢ < k, there is a composite morphism

(2.4) gjor f €6(C<j,A,Csjip; B<i, D,Bsiy) .

These data satisfy axioms identical in form to Definition 2.2.

A coloured PROP ¥ is a coloured properad augmented with a morphism
0 € €( ;) (representing the empty string diagram) and an operation which to
morphisms f € ¢ (A; B) and g € €(C; D), associates a morphism

(2.5) gooz f€FC(A,C;B,D),
(representing f and g placed alongside each other), all subject to suitable axioms.

Of course, for each of these algebraic structures there is an associated notion
of structure-preserving map giving the morphisms of a category:

Definition 2.4. If ¥ and 2 are polycategories, then a polyfunctor F: € — 2
comprises an assignation on objects F': ob(%) — ob(Z) and assignations

¢(A;B) - 92(FA;FB)
f=Ff

on morphisms (where FA = (FAy,...,FA,) and similarly for F'B), such that
for all suitable A, f, g,14,j,% and ¢ we have

F(ida) =idpa, F(gjoif)=Fgjo; Ff and F(y-f-p)=v¢-Ff ¢.

We write Polycat for the category of small polycategories and polyfunctors. In a
similar manner we have categories Properad and Prop of properads and PROPs.

2.3. Monads from graphical calculi. We now explain how the algebraic structures
of the preceding section can be represented as algebras for suitable monads on a
presheaf category. The presheaf category in question encodes the objects and
morphisms of a polycategory, properad or PROP:

Definition 2.5. Let P be the category with object-set {x} + N x N and non-
identity maps o7"", ..., o0, """, .. T s x = (n,m) (we omit superscripts
in the sequel for readability). A presheaf X € 2P is called a polygraph', with
elements of X (%) being called vertices, and elements of X (n, m) edges. We write
S1y...y8p and t1,...,t, for X(01),...,X(0,) and X(11),...,X(7m), and call
the images of e € X (n, m) under these maps its sources and targets respectively.

There are forgetful functors from Polycat, Properad or Prop to &P sending
a polycategory, properad, or PROP to its underlying polygraph of objects and
morphisms, and these functors are monadic, so allowing us to identify the
structures at issue with algebras for the induced monad on &?P. In fact, we may
describe these monads explicitly; we now do this in detail for polycategories, and
indicate how this should be adapted in the other cases.

LOur usage follows [2]; note that these polygraphs are completely unrelated to those of [4].
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The key observation is that objects of &P can be seen as combinatorial
representations of wiring diagrams of the kind drawn above. For instance,
the diagram (2.1) for a box with n inputs and m outputs corresponds to the
representable presheaf y(, .,y = P(, (n,m)), while the diagram in (2.2) for a
composite g jo; f corresponds to a pushout

Y‘ri
Ys = Y(n,m)
(26) ycjl iu
r
Y(p.g) ~o 7 Y(pa) 3% Y(nm)

in ZP. Writing A = y(;, 4) j®i Y(n,m), the further composite h yof (g jo; f) in the
associativity axiom (2.3) corresponds to the pushout in &P as to the left in:

Y7y v

Yx Y(p,q) A

Y Y*
}’ae yT,L'
YOEJ/ JV / }/7& A’j \/
" Y(r,s) Y(p.a)

Y(r,s) 7 Y(r,s) £®k A Y(n,m) >

which is isomorphic to the polygraph representing (h sof g) j0; f, since both are
colimits for the diagram above right. Iteratively taking pushouts of the preceding
kind yields the following class of polygraphs describing the compound wiring
operations of a polycategory; eventually, in Section 6.3 below, we will be able to
generate all of these shapes from those for the basic wiring operations, but for
the moment we give a more hands-on construction.

Definition 2.6. A finite polygraph is one with finitely many vertices and edges. An
(n,m)-labelling of a finite polygraph is given by choices of vertices ¢1, ..., ¢, and
ri,...,Tm, called the leaqves and roots respectively. An isomorphism of labelled
polygraphs is one respecting the labellings. Let £ (n, m) be a set of isomorphism-
class representatives of (n,m)-labelled finite polygraphs; we write | X| for the
underlying polygraph of X € .Z(n,m) and X and rX for the labellings. Now:

(a) Let id € Z(1,1) be y, labelled in the unique possible way;

(b) Given X € Z(n,m), Y € Z(p,q) and indices 1 < ¢ < mand 1 < j < p,
let Y jo; X € Z(n+p—1,m+ q— 1) be such that there is a pushout of
underlying polygraphs

X
Yo — | X]|

(2.7) zfi J{u

Y[ —= Y jo; X]|
with the labelling of the leaves and roots given respectively by:

Y Y X X Y Y
vl vl wly el vl ol
Y Y X

X X X
and  ury .. UT g, U e UT g UTG e, Uy,
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(c) Forany X € Z(n,m), p € S, and ¢ € Sy, let ¥ - X - ¢ € Z(n,m) be | X|
labelled by £(1), - - €pn) and Ty-1(1), -y Ty=1(m)-

(d) For each n,m € N, let (n,m) € Z(n,m) be y(, ) labelled by ys,...,Yq,
and yry, ..., Y7,

Now let .7 (n,m) C £ (n,m) be the subsets obtained by closing the elements

(n,m) in (d) under the operations in (a)—(c).?

As noted above, the labelled polygraphs in the sets .7 (n, m) represent the com-
pound wiring operations of a polycategory; following [21, 22], we may characterise
them in a direct combinatorial manner.

Definition 2.7. For any polygraph X, we write G x for the undirected multigraph
obtained as follows: the nodes are the disjoint union of the sets of edges and
of vertices of X, and there is an arc v ~ e for each way that v is a source or a
target of e. A polygraph X is called a polycategorical tree if it has finitely many
edges and vertices, and moreover:

e Each vertex of X is a source of at most one edge;

e Each vertex of X is a target of at most one edge;

e Gy is acyclic (in particular without multiple edges) and connected (in
particular non-empty).

A labelled polycategorical tree is a polycategorical tree equipped with an (n,m)-
labelling for which ¢4, ..., £, enumerate the inputs, i.e., the vertices which are
not the targets of any edge, and r1,...,r, enumerate outputs, i.e., the vertices
which are not the source of any edge.

Lemma 2.8. .7 (n,m) is the set of isomorphism-class representatives of (n,m)-
labelled polycategorical trees.

Proof. Each (n,m) is a labelled polycategorical tree, and labelled polycategorical
trees are closed under (a)—(c) above. Thus, (n, m)-labelled polycategorical trees
contain all of 7 (n, m). Conversely, we may show that any labelled polycategorical
tree T is in .7 (n,m) by induction on the number of edges in 7. If T' contains
no edge, then it must be id € 7 (1,1). If |[T| = e, then T' € 7 (n,m) by (c)-(d).
Otherwise, by acyclicity and finiteness, we may find an edge e whose sources are
not targets of any edge. Removing e from T, together with any isolated vertices
that this creates, leaves us with a positive number of connected components
Ty,...,T, which all contain at least one edge. By acyclicity, e is linked to each
T; through exactly one vertex. If p = 1, then T is a composite of 77 and e.
Otherwise, let 7" denote T with 7}, and any consequent isolated vertices removed;
by the inductive hypothesis, 7" is in 7 (n/,m’), where n’ and m’ respectively
denote the numbers of inputs and outputs of 7", and T is a composite of T, and
T’. This completes the proof. O

2Note that implicit in these definitions are the assumptions that the elements id and (n,m)
of (a) and (d) are the chosen representatives of their isomorphism-classes, and that relabelling
a representative X € Z(n,m) as in (c) yields another such; we are clearly at liberty to make
these assumptions.
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The labelled polycategorical trees may now be used to provide a concrete
description of the left adjoint Fp to U: Polycat — £P. Given Lemma 2.8,
the proof of the following result is straightforward, if tedious; the reader may
reconstruct it by suitably adapting [29, Proposition 1.9.2] or [21, §2.2.7].

Proposition 2.9. The free polycategory FpX on a polygraph X € &P has object

set X () and morphism sets (FpX)(v1,...,Un;W1,...,Wy) given by
(2.8) Z {f:|T| = X in 2P : f({T) = v, andf(r;fp):wj} .
TeT (n,m)

The identity morphism in (FpX)(v;v) is the pair (id € Z(1,1),v: y. — X); the
composite (S, f) joi (T, g) is given by (S jo; T, f j8; g), where f j8; g is the unique
map out of the pushout (2.7) induced by f and g; and the exchange operation is
defined by ¢ - (T, f)-p=(V-T- ¢, f).

We may proceed in a similar manner to obtain explicit descriptions of the
monads for properads and for PROPs on Z?P. In the case of properads, we
generalise the labelled polycategorical trees to labelled properadic graphs, by
modifying clause (b) of Definition 2.7 so as to allow for pushouts of the form

X X
(i sty

)
Ya by ——— [X]|

@(""’zﬂ% lu

We may now modify Lemma 2.8 to characterise the properadic graphs by requiring
Gx to be acyclic as a directed graph, though still connected as an undirected
graph. With this modification, Proposition 2.9 carries through, to give an explicit
description of the monad for properads on &ZP.

PRrOPs may almost be treated in the same way. We can augment Definition 2.6
suitably to obtain the class ¢ of graphs for PROPs, and then modify Lemma 2.8
to obtain a combinatorial characterisation of these graphs; in this case Gx need
only be acyclic as a directed graph, as in [18]. However, the formula for the
morphism sets of the free PROP is not quite given by the obvious adaptation
of (2.8). This is essentially because the axioms for a PROP are susceptible to the
well-known Eckmann—Hilton argument [7]; among other things, this implies that
for any PROP % and any f,g € €(; ), we have g gog f = f oz g:

S 9 - 9 S

Since the shape of the composition just depicted is encoded by the graph for
PROPs R = (0,0) z#5 (0,0) € 4(0,0) with underlying presheaf | R| = y(q o) +Y(0,0),
the formula for the free PROP FpX on a polygraph X must differ from (2.8)
in identifying, among other things, the pair of elements (f,g): |R| — X and
(g, f): |R| - X in (FpX)(; ) for any f,g € X(; ). This is an instance of a
more general phenomenon: each graph for PROPs T' € ¢(n,m) may admit a
non-trivial group & of label-preserving automorphisms (permuting unlabelled
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isomorphic connected components), and the construction of the free PROP must
quotient out by the action of these automorphisms.

Proposition 2.10. The free PROP FpX on X € 2P has object set X (%) and

morphism sets (FpX)(v1,...,0p;w1,...,Wwy) given by
S AT = X in PP f(U]) = v, f(r]) = w;}/e,
Te9 (n,m)

with remaining structure defined analogously to Proposition 2.9 above.

2.4. An alternative presentation. There is another way of presenting polycate-
gories, properads and PROPs as the algebras for a monad on a presheaf category.
Though it is further away from the graphical intuition, it is quite a common
approach in mathematical practice, and still fits into the general framework
we will develop; it therefore seems to be worth describing here. The idea is to
incorporate the exchange operations into the underlying presheaf:

Definition 2.11. Let P; be the category obtained from P by adjoining arrows
Eopt (n,m) — (n,m) for each ¢ € &, and 1) € &, subject to the equations:

Eidn,idm = 1d(nm) o101 © Epapo = Eprga,ian
Spap © i = O(i) Ep © Ty(j) = Tj -

A presheaf X € PP; is called a symmetric polygraph.

Like before, there are monadic forgetful functors from Polycat, Properad and
Prop to &?P;. In the case of polycategories, the left adjoint can now be described
using labelled symmetric polycategorical trees. Let Zs(n,m) and F5(n, m) be
defined exactly like £ (n,m) and .7 (n, m) in Definition 2.6 but working over the
category &Ps of symmetric polygraphs. Since each symmetric polygraph y(, m)
has free action by &,, x &;7, the same will be true of the underlying symmetric
polygraph of any T € Z;(n,m); in fact, these T’s are precisely the images® of
the non-symmetric trees in .7 (n, m) under the free functor P — ZP;. Just as
we saw when considering graphs for PROPs in the previous section, symmetric
labelled trees T' € J5(n, m) may admit non-trivial groups & of label-preserving
automorphisms, and the construction of the free polycategory must quotient out
by these in the same way.

Proposition 2.12. The free polycategory Fp, X on X € PP, has object set X (x)

and morphism sets (Fp,X)(v1,...,0n;W1,...,Wy) given by
S AT = X in PP f(U]) = vi, f(r]) = w;i}e,
T€Ts(n,m)

with remaining structure defined analogously to Proposition 2.9 above.

Exactly the same considerations apply to the cases of properads and PROPs;
note that, in the properadic case, the description of the free properad monad so
obtained is that of [22].

3Though note that non-isomorphic elements of .7 (n, m) may become isomorphic in Zi(n, m).
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3. FAMILIAL FUNCTORS AND SHAPELINESS

Now that we have described various “graphically specified” structures as
algebras for monads on presheaf categories, we begin our attempts to obtain
these monads via a notion of shapeliness. As in the introduction, our approach
will be to seek on the appropriate presheaf category a universal shapely monad U
with “exactly one operation of each shape”, and to generate the monad encoding
the given structure as a suitable submonad of U. In this section, we look for
U as a terminal object among familially representable, or more shortly familial,
endofunctors—ones which pointwise are coproducts of representables. While this
turns out not quite to work, the techniques we develop will be crucial to our
subsequent efforts.

3.1. Linear operations and familial functors. The key concept underlying the
notion of familial functor is that of a linear operation.

Definition 3.1. Given a functor F': &/ — % and objects A € & and B € %, an
F-operation of input arity A at stage B is a map t: B — FA. An F-operation ¢
is linear if it is initial in its connected component of the comma category B | F.

An operation t: B — TA of a monad T on &/ corresponds to a family of
interpretation functions [t]: </ (A, X) — &/ (B, X), one for each T-algebra (X, z);
maps of B | T account for reindexing such T-operations so as to act only on part
of their input arity, so that linearity expresses the idea of an operation which
“consumes all its input arity”.

Lemma 3.2. An operation t: B — F'A is linear if and only if for every square of
the following form, there is a unique h: A — A" with Fh.t = u; it then follows
also that fh = g.

B FA
(3.1) { ,.,Fh"ﬂ J(Ff
FAZY, par
Proof. This is [6, Proposition 0]. O

Now a familial functor is one whose operations are all reindexings of linear
ones. In giving the definition, we say that Y covers X if there is a map Y — X.

Definition 3.3. A functor F': & — % is familial at stage B € 9 if each operation
in B | F' is covered by a linear one; a transformation a: F = G is familial at
stage B if ' and G are so, and the induced functor B | F' — B | GG preserves
linear operations. We write simply familial to mean “familial at every stage”.

Familial functors were introduced by Diers [6]; his terminology is that familial
functors are those “having a left multiadjoint”. Our name is a shortening of the
term “familially representable” used—for the special case # = Set—in [16].

Lemma 3.4. A functor F: of — % is familial at stage B € & if and only if the
functor B(B,F-): o — Set is a (possibly large) coproduct of representables.
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Proof. F is familial at stage B just when B | I’ is a coproduct of categories
with initial objects. This is to say that there is an I-indexed family of elements
{t; € B(B,FA;):icI}suchthat any f € B(B, FA) factors as f = Ffot; for
a unique i € I and f: A; — A; or equally, that (B, F-) 2 Y. o/ (4;, ). O

3.2. Pointwise familiality. We will be interested in familial endofunctors of
presheaf categories; later, we will need more general familial functors with
codomain a presheaf category. The most relevant kind of familiality for these is:

Definition 3.5. A functor F': &/ — &% or transformation a: F = G: &f — PE€
is pointwise familial if it is familial at all representable stages y. € #%; while F
is called small if y. | F' has a mere set of connected components for each ¢ € €.
We write FAM,, (7, #%) for the category of small pointwise familial functors
and pointwise familial transformations.

By Lemma 3.4, F: o/ — 2% is (small) pointwise familial just when each
functor (F-)c € [«7, Set] can be expressed as

(3.2) (Fo)e = ) tes. < (Bt )

for some set Sc and family of objects (Et € o )ies.. So, for example, the “free
polycategory” endofunctor on the category &P of polygraphs as in Proposition 2.9
is pointwise familial, but the corresponding endofunctor on the category &P, of
symmetric polygraphs is not so, as it involves not just coproducts of representables
but also quotients by group actions. We will be able to handle the latter example
when we consider analytic functors in the following section.

We now explain how (3.2) allows us to give a compact represention for pointwise
familial functors. Such a functor F' is determined to within isomorphism by the
sets Sc and objects (Et € & )ecs. as in (3.2), as ¢ ranges over ob(%), together
with information about how these transform under each (F-)f: (F-)d — (F—)c.
More precisely, (F—-)f may be identified with a transformation

(3.3) Yoiesa @ (Et,=) = > cq. (Bu,~) ;

and, by the Yoneda lemma, to specify this is equally to specify a function
Sf: Sd— Sec, together with a family of maps (E(Sf(t)) = E(t) € &)icsq-

Functoriality in f of the maps (3.3) tell us that these data determine, firstly,
a presheaf S € #%; and secondly, a functor E: el S — HPE. Here el S is the
category of elements of the presheaf S, whose object-set is given by Y .., Sc and
whose maps from s € Xc tot € Xd are maps f € €(c,d) with s = (Sf)(¢t).

In fact, giving S and E of this form is equivalent to giving a small point-
wise familial functor &/ — Z%; this can be made precise by constructing an
equivalence between FAM (o7, %) and the following category, which is the
“@-Fam(<7)” of [37, Definition 2.10].

Definition 3.6. For any <7 and small %, the category ely / o/ has as objects, pairs
of a presheaf S € 2% and a functor E: el S — 7, and as maps (S, E) — (T, D),
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pairs of a presheaf map p: S — T and a natural isomorphism ¢ of the form:

oS — 2 LT

(3.4) \é/

A little care is necessary in order to extract the pair (S, E) from a small point-
wise familial F. Observe first that choosing an isomorphism (3.2) is equivalent
to choosing a linear operation in each connected component of y. | F. Having
done so, Sc can be taken to be the set of these chosen linear operations, and
(Et € o )iese to be the family of input arities of these operations. Henceforth,
we assume that each F' € FAM (<7, %) is equipped with such choices of linear
operation; for any t € y. | F, we write ¢ for the chosen linear operation which
covers it. In light of the preceding discussion, it is now natural to define:

Definition 3.7. The spectrum [6, Definition 3] of a small pointwise familial
F: of — PE is the presheaf Sp € PE given by:

Sp(e)={t€y. | F:t=t} and Sp(f:d—>c):tr—>ﬂ\/;c.
The canonical diagram of F is the functor Dp: el Sp — P€ | F with:

Ye Ye L Yd

Dp(t) = Jt and  Dp(f:tyy —1t) = ty}l Jt
Fu

FA FA'—=FA,

where the lower right map is uniquely induced by linearity of t/}\/} The ex-
ponent [38, Definition 7.1] of F is the functor Er: el Sp — & obtained by
composing the canonical diagram with the second projection my: € | F — <.

As elements of Sg(c) are in bijection with connected components of y. | F,
the presheaf Sr is equally the colimit of F'; smallness is just what is needed to
ensure this colimit exists. In particular, smallness is vacuous when either o7 is
small or &7 has a terminal object, and in the latter case, we may take Sp = F1.

Proposition 3.8. The assignation F' — (S, Er) is the action on objects of an
equivalence of categories between FAMy (o7, P€) and ely || o .

Proof. This is a generalisation of [37, Theorem 2.18|, and we argue largely as
there. First let a: F'= G in FAM (o7, % ). To give the transformation « is
to give transformations a.: (F—)c = (G—)c naturally in ¢; since by Lemma 3.4
the functor (F—)c is a coproduct of representables, giving each a. is equivalent
to giving the G-linear operation aa.t: y. — G A obtained by acting « on each
chosen F-linear operation t: y. — F'A. But a4.t factorises as on the left in:

el Sy — el Sy

@
EF\j;/EG

pt)=ant I ant

qa %,

(3.5)
GA
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using the chosen linear operations of G, and linearity of 4.t is equivalent to each
¢ being invertible: indeed, linear operations are closed under isomorphism in
ye 4 G, and any morphism between linear operations is invertible. Thus, to give
the pointwise familial « is equally to specify for each chosen linear t €y, | F' a
chosen linear p(t) € y. | G together with an isomorphism ¢;: Eg(p(t)) — Er(t).
All this must be done naturally in ¢ so that to give « is equally to give a pair
(p, ) as right above with ¢ invertible.

This defines FAM (%7, 2%¢) — ely // &/ on morphisms and simultaneously
shows that it is fully faithful (functoriality follows from uniqueness in Lemma 3.2).
It remains to prove essential surjectivity. Given S € P% and E: elS — &,
define a functor I': &/ — % by taking (F'-)c = Y, .4 (Et,~) and taking
(F-)(f: d — ¢) to be the unique natural transformation rendering commutative
each diagram:

(Bt —ZE (B, )

LJ’ (F)f lL

F,
Yoiese @ (Bt,~) ——— > cga @ (Bu,-) .

By Lemma 3.4, F' is pointwise familial, and is moreover small since the coproduct
defining (F'—)c is so; now by choosing the linear operations in y. | F' to be those
Y1 Ye — FEt picking out the pairs (¢, 1g;), we have a bijection S — Sr sending
t to -y, which, since Er(v;) = Et, commutes strictly with the functors to «7. O

3.3. Composition of familial functors. In seeking a universal shapely monad
among the class of familial endofunctors, we must consider both composability
and existence of a terminal object; we start with composability. The following
lemma gives the properties of linear operations necessary to establish our results.

Lemma 3.9. Let F': &7 — A and G: B8 — € be functors.

(i) If s: C — GB is G-linear and t: B — F A is F-linear, then the composite
Gt.s: C — GB — GFA is GF-linear.

(ii) The full subcategory Lin(# | F) C B | F on the linear operations is closed
under pointwise colimits (ones created by the projection B | F — B x of ).

Proof. A short calculation using Lemma 3.2. ([l

Now, in order to show that the composite of F': & — % and G: & — € is
familial at stage C, we should like to take the linear operations of the composite
to be of the form Gt.s for s and t as in (i) above. In order for this to work, we
need to be able to cover any operation C — GF X by some operation of this
form. This suggests that, if GF is to be familial at stage C, then the input arity
of each G-linear operation at stage C' should be a stage of familiality for F', as in
the following definition.

Definition 3.10. Given &/’ C & and %' C % full replete subcategories, we say
that F': o — A is (', B')-familial if it is familial at each stage B € %’ and
each linear t € B | F has input arity in .&/’. A transformation o: F' = G between
such functors is (&', B')-familial if it is familial at every stage B € #'.
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In this terminology, a familial functor F': & — £ is equally (&, %)-familial,
while a pointwise familial functor &/ — % is equally an (&7, y%)-familial one.
The next result improves in very mild ways on [6, p. 985] and [38, Corollary 5.15].

Proposition 3.11. If F: &/ — % and G: B — € are (', B')- and (#',€")-
familial, then their composite is (', €")-familial, and has as linear operations
at stage C € €' precisely the composites Gt.s: C — GB — GFA of G- and
F-linear operations. The correspondingly familial transformations between these
functors are likewise composable; in particular, there is a 2-category FAM of
categories, familial functors and familial transformations.

Proof. Because all linear coverings of an operation are isomorphic and <7’ is
replete, to show that GF is (&', ¢”")-familial it suffices to show that any s: C' —
GFX with C € ¢’ is covered in C' | GF by some linear operation with input
arity in «/’. But we have successive factorisations

C B
GB—CL . GFX FA—"T L px

with B € %' and A € &/’ by applying familiality of G to s and of F' to t.

By Lemma 3.9(i), the composite Gt.§ is GF-linear so that f: Gt.§ — s is the

required cover. That all linear operations have this shape follows by Lemma 3.2.
Stability under composition follows from the previous points and naturality. [

Since we are really interested in pointwise familial functors between presheaf
categories, we should like to know that these, too, are closed under composition.
The key to showing this is the following result.

Proposition 3.12. Let </ be cocomplete. For any functor F: of — 9B or trans-
formation o: F = G, the full subcategory %' C 9B whose objects are those stages
B € # at which F (respectively o) is familial is closed in % under colimits.

Proof. Suppose given F': of — A, a diagram D: . — 9 such that F is familial
at each DI € £, and a colimiting cocone (pr: DI — V)¢ »; we must show that
F is also familial at V. So let t: V — F A, and consider the diagram of linear
operations D;: & — % | F defined by:

DI pr-2L,py

D) = i | DU I=T) = g |
Fu

FA; FA]—f>FAJ

where the map uy is the unique one induced by linearity of tpr. Since & is
cocomplete, the diagram D; admits a pointwise colimit u: V' — FW which
by Lemma 3.9(ii) is itself linear. There is a cocone D; = At with components
(pr1,q1): tpr — t where the maps gy are, again, induced by linearity of tpr, and
this now induces a map v — ¢ in V | F providing the desired linear cover of
t. This shows F' is familial at V', and also that ¢t € V' | F is linear just when
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its cocone (p,q): Dy = At is colimiting; this last fact entails the part of the
proposition concerned with transformations c. ]

As every presheaf is a colimit of representables, we immediately conclude from
the preceding two results that:

Corollary 3.13. If &/ is cocomplete, then each pointwise familial functor or
transformation in FAMy (o7, P€) is familial; whence there is a 2-category FAMp¢
of presheaf categories and pointwise familial functors and transformations.

In the next section, size considerations will force us to bound the input arities
of the pointwise familial functors we consider. As we would still like such functors
to compose, we introduce the relevant notions and prove composability here.

Definition 3.14. We write #% C &% for the full, replete subcategory of finitely
presentable presheaves: those expressible as a finite colimit of representables. A
pointwise familial functor € — P9 is called finitary if it is (F€,yP)-familial.

The modifier “finitary” typically refers to a functor which preserves filtered
colimits; that our usage agrees with this follows from Lemma 3.4 and the fact
that a representable %€ (A,—): % — Set is finitary just when A is in F%.

To see that finitary pointwise familial functors and transformations compose,
we appeal to Proposition 3.11 and the following result:

Proposition 3.15. The pointwise familial F: € — PP is finitary if and only
if it is (F€, F D)-familial; whence there is a 2-category FAMy, of presheaf cate-
gories, finitary pointwise familial functors and pointwise familial transformations.

Proof. For the non-trivial direction, let t: B — F A with B € # 2. On expressing
B as a finite colimit of representables, the proof of Proposition 3.12 yields a cover
of t by a linear operation u: B — F'A obtained as a finite colimit in & | F of
linear operations of the form y;, — FA;. By assumption, each Ay is in F# %,
whence A = colimy Ay is too. O

3.4. Universal familial endofunctors. We now have all the ingredients we require
for our first attempt at constructing a universal shapely monad U on &% . As
anticipated in the previous section, a naive attempt to construct it as a terminal
object in the monoidal category FAMy (€, #€) fails for size reasons.

Proposition 3.16. If € # 0 and the category </ has a proper class of non-
isomorphic objects, then FAMp (o7, 2€) has no terminal object; in particular,
if € # 0 then FAMp (€, 2€) has no terminal object.

Proof. By Proposition 3.8, it suffices to show that ely / &7 has no terminal object.
Suppose that (S, F) were terminal; fixing some ¢ € ¢, we would then have for
each A € &/ a unique map

1t
ely, — 24 LelS

N2
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where AA is the constant functor at A. Note that t4 € Sc satisfies Fty = A;
since there are a proper class of non-isomorphic A’s, there must be a proper class
of distinct ¢ 4’s, contradicting the fact that Sc is a set. O

What permits the above negative argument is the fact that a pointwise familial
functor may have linear operations of arbitrarily large input arity; this suggests
restricting attention to the finitary pointwise familial functors whose linear input
arities lie in the essentially small* .Z%. We first note that:

Lemma 3.17. Precomposition with the inclusion J: F€ — PE induces an
equivalence between the categories FAMy (P€, D) and FAMy(F €, P D).

Proof. Precomposing the equivalence FAM(# €, %) — ely || € of Propo-
sition 3.8 by (-) o J: FAM (€, Z9) — FAM(F €, ¥ P) evidently yields
another equivalence; whence, by two-out-of-three, (—) o J is an equivalence. [

Unfortunately, even with the finitariness restriction we are still unable to
construct a strictly terminal familial endofunctor:

Proposition 3.18. If € # 0 and &7 is essentially small, then FAMy (o7, Z€)
always has a weakly terminal object, but has a terminal object if and only if <7 has
no non-identity automorphisms; consequently, if € # 0, then FAM} (2€, 2C)
has a weakly terminal object, but not a terminal object.

Proof. By Proposition 3.8 we may prove the stated properties for the equivalent
category ely /) of; but as & ~ &/’ with &/’ small and now ely | o ~ely || &,
we may assume without loss of generality that o is itself small. We construct a
weakly terminal (S, F) in ely / o7 as follows. The presheaf S € #% has:

Sc = {functors F': €/c — o } and S(fid—c¢): F—~ F(fo-),
while E': el S — </ is given by E(F: € /c — o/) = F(1.) on objects, and by:

f:F(fo-)—=F > F(f: f—1.): Ff - F1,

on morphisms. To see weak terminality of (.5, E), consider some other (7', D) in
ely J of. We define p: T — S in € by sending ¢t € Tc to the element
p(t): €/c=-ely. AT L o

of Sc. Naturality of p in ¢ follows because el(t) oel(yy) = el(toyys) = el(t - f) for
allt € T(¢) and f: ¢ — ¢ in €. Furthermore, from the equality p(¢)(1.) = Dt,
we deduce Foelp=D: elT — o and so (p,1p): (T, D) — (S, E) in ely | <.

Now let &7 have no non-identity automorphisms; replacing it by its (equivalent)
skeleton, we may assume that in fact it has no non-identity isomorphisms, and so
that each map (3.4) of ely / <7 has ¢ an identity. In this case, we claim the weakly
terminal (S, E') given above is terminal. Indeed, if (¢,1p): (T, D) — (S, E) is
any map in ely / &7, then for each t € Tc, the functor ¢(t): € /c — &/ satisfies
a(t)(Le) = Dt = p(t)(1,); but then q(t)(k) = a(th)(1a) = p(th)(1a) = p(t)(h) for
all h: d — ¢, whence ¢ = p as required.

4 category is essentially small if it is equivalent to a small category.



SHAPELY MONADS AND ANALYTIC FUNCTORS 21

Next let <7 admit the non-identity automorphism a € &/ (A, A), and assume
that there is a terminal object (T, D) in ely /) o; we derive a contradiction. By
terminality of (T, D), there is for any ¢ € € a unique pair as on the left in

1 elp
elyCLelT elyc—>elT

N N

where here AA is the constant functor at A. But now the triangle on the right
also describes a morphism (y., AA) — (7T, D); so we must have p.Aa = ¢ and
so, by invertibility of ¢, that Aa = ida ,, contradicting a # id 4.

For the final claim, note that we have FAM, (2%, #€) ~ FAM(F €, Z€)
by Lemma 3.17; now if 4 # 0, then the essentially small .#% certainly contains
non-identity automorphisms—for instance, the switch map y.+y. — y.+y.—and
so FAM} (€, #%) has a weakly terminal object, but no terminal object. [J

4. ANALYTIC FUNCTORS AND SHAPELINESS

The underlying reason that there is no terminal object among finitary familial
endofunctors of a presheaf category is that linear operations cannot be fixed by
automorphisms of their input arities; this means that such automorphisms may
be propagated up to the level of familial functors, so obstructing the existence of
a terminal object. The next step in our pursuit of a universal shapely monad
will attempt to resolve this problem by introducing analytic functors, whose
generating operations can be fixed by input arity automorphisms.

4.1. Generic operations and analytic functors. The fundamental step in moving
from familial to analytic functors is to generalise from linear to generic operations.
In what follows, we write ©x for the automorphism group of any object X € €.

Definition 4.1. An object X € ¥ is Galois if for each Y € €, the composition
action makes € (X,Y) into a connected & x-set. An operation t: B — F A of a
functor F': of — A is generic if it is Galois in its connected component of B | F.

(Our nomenclature draws on one of the basic examples of a Galois object: if
k C K is a Galois field extension, and & is the category of intermediate field
extensions, then K is Galois in &/°P.)

An object X is Galois when it admits a map to every other object (weak
initiality) and, for any pair of maps f, f': X = Y, there is an automorphism
o € &x with f' = fo (transitivity); thus, Galois objects are initial “up to a group
of automorphisms”. In these terms, a generic F-operation can be understood as
one which, like a linear operation, consumes all of its input arity, but which may
now be invariant under certain automorphisms of that arity.

The next result identifies our generic operations with those of [38, Defini-
tion 5.2], which when o/ = % = Set and B = 1 are equally those of [17].
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Lemma 4.2. An operation t: B — F A is generic if and only if for every square
of the following form there exists some £: A — Y with F0.t = u and hl = k:

B—Y5FY

(4.1) tl Fi ) th

FAL* pg

Proof. We claim that X is Galois if and only if it is weakly initial and every
diagram as in the solid part of

Y
s
VA

can be completed to a commuting diagram as displayed. Indeed, if X is Galois
then in the situation of (4.2), weak initiality gives a map k: X — Y, and
transitivity gives some o € Autx such that f = gko, so that we may take h = ko.
Conversely, if X satisfies the displayed condition, then taking ¥ = Z = X
and f = 1x shows that each g € € (X, X) is split epimorphic; whence each
g € (X, X) is invertible; whereupon taking ¥ = X in (4.2) gives transitivity.
Now the condition on ¢ above says that any cospan t — v <— v in B | F' can
be completed to a commuting triangle, which thus says that ¢ is Galois in its
connected component, as desired. ]

(4.2)

n,
/
7 f
X —

Corollary 4.3. Any map h: u —t in B | F with generic codomain is a split epi-
morphism; in particular, any map between gemeric operations is an isomorphism.

Proof. Take k=14 in (4.1). O

Replacing linear operations with generic ones in the definition of familial
functor yields the notion of analytic functor.

Definition 4.4. A functor F': &/ — A is analytic at stage B € £ if each operation
in B | F'is covered by a generic one; a transformation a: F' = G is analytic at
stage B if F and G are so, and the induced functor B | F' — B | G preserves
generic operations. We write simply analytic to mean “analytic at every stage”.

Remark 4.5. Analytic endofunctors of Set and weakly cartesian transformations
were introduced by Joyal in [17]; by [38, Theorems 10.10 & 10.11], they are
precisely the filtered-colimit preserving analytic endofunctors and transformations
of Set in our sense. However, as noted in the introduction, there are other possible
ways to extend Joyal’s notion of analyticity to general presheaf categories; two
which exist in the literature are the quotient containers of [1], and the generalised
species of [9] (also studied in [8]). Neither of these generalisations are adequate
for our purposes, since neither have familial functors as a special case.

Just as familial functors are obtained from coproducts of representables, so
analytic functors arise from coproducts of near-representables in the sense of [35]:
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Definition 4.6. Let A € & and G < & 4. A coinvariant for G is a joint coequaliser
q: A — Ajq for the set of morphisms {o: A — A | 0 € G}; dually, an invariant
for G is a joint equaliser 1: A\G »— A for the maps in G. A functor F: o/ — Set
is near-representable if ' = o/(A,~) g for some A € & and G < G4 = G4 ).

Lemma 4.7. A functor F: o/ — 9B is analytic at stage B € A if and only if the
functor B(B, F-): o/ — Set is a (possibly large) coproduct of near-representables.

Proof. This will follow as in Lemma 3.4 once we have proved that: F' € [«7, Set]
is near-representable just when el F' contains a Galois object. For any (z, A)
inelF, let G = &, 4 < G4y; now x:yqs — F coequalises y,: ya — ya for
each ¢ € GG, and so descends to a map Z: ya q— FoIt suffices to show that
Z is an isomorphism just when (z, A) is Galois. Surjectivity of & corresponds
to weak initiality of (z, A); injectivity requires that, for any f, f': A = B with
z(f) = z(f") =y, we have f' = fo for some o € G, or in other words, that for
any f,f": (x,A) = (y,B) in el F, there is some o: (x,A) — (z, A) in G with
f' = fo: which is transitivity of (z, A). O

4.2. Pointwise analyticity. As before, when we consider endofunctors of presheaf
categories, or more generally functors into a presheaf category, the most appro-
priate kind of analyticity is pointwise:

Definition 4.8. A functor F': &/ — &% or transformation a: F = G: o — P€
is pointwise analytic if it is analytic at all representable stages; F' is called small
if y. | F has a mere set of connected components for each ¢ € ¥. We write
AN, (o, ) for the category of small pointwise analytic functors and pointwise
analytic transformations.

In particular, by Lemma 4.7, a functor F: o — £?% is small pointwise
analytic just when each (F—)c is a small coproduct of near-representables; so, for
example, comparing with the formula of Proposition 2.12, we find—as promised
above—that the “free polycategory” endofunctor on the category of symmetric
polygraphs is pointwise analytic, though it is not pointwise familial.

As in the familial case, a small pointwise analytic F' is determined by the
near-representable summands of each (F—)c and how these transform under maps
(F-)f: (F-)d — (F-)c. We wish to give a representation of these data analogous
to Definition 3.7; the new aspect is that, in encoding a near-representable
summand &/ (A,-) g, we must record not just the arity A but also the group G
of automorphisms which fix it. We do this using the notion of orbit category.

Definition 4.9. The orbit category O(<7) of a category o/ has as objects, pairs
(A,G) where A € &/ and G < Sy, and as morphisms [f]: (A,G) — (B, H),
equivalence classes of maps f: A — B in & with the property that

(4.3) for all 7 € H, there exists 0 € G with 7f = fo,

where [f] = [f'] when there exists o € G with f' = fo. We write J: & — 0()
for the full embedding sending A to (A4, 1).

Intuitively, we regard the generating operations of F' € ANy (o7, %) as hav-
ing input arities drawn not from ./ but from &'(<); we will make this precise by
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equating such functors F' with pointwise familial ones F' € FAM(0( ), ).
First we describe the passage between functors with domains &7 and (7).

Proposition 4.10. 0(<7) admits all group invariants, and for any category B
admitting group invariants, composition with J induces an equivalence

(4.4) INVAR(6(7), B) 2205 CAT(o, 2)

with domain the category of invariant-preserving functors and transformations.

Proof. The statement says that (<) is the free completion of &/ under group
invariants, and by [19, Theorem 5.35], this completion may be found as the full
subcategory of [/, Set|°P obtained by closing the representables under group
invariants. So it suffices to identify (<) with this full subcategory. Direct
calculation using the Yoneda lemma shows that maps in (&) from (A, G) to
(B, H) are in bijection with maps &/ (B,~),/g — @/ (A,~) ¢ in [/, Set]; so there is
a fully faithful K: 0'(</) — [«/, Set]°P? with K (A, G) = &/ (A,~) /. By definition,
each &/(A,~) /¢ in the image of K lies in the closure of the representables in
[<7, Set]°P under group invariants, and so it suffices to show that this subcategory
in fact has all group invariants—which is [35, Proposition 2.2]. O

Explicitly, if #Z admits group invariants and H: &/ — %, then the invariant-
preserving extension H': 0(/) — 2 is defined by H'(A,G) = HAHG  where
here HG = {Ho : 0 € G} < 6Gpya. In particular, if F': &/ — 2 is any functor
between categories, then applying this construction to JF': &7 — O(%) yields an
invariant-preserving O(F): O0(a/) — O(%) given by O(F)(A,G) = (FA, FG).

We will now show that, when & = 2%, the equivalence (4.4) restricts back to
one between pointwise analytic functors out of & and pointwise familial ones out
of 0(</). However, under this equivalence, pointwise analytic transformations
correspond not to familial ones but to near-familial ones in the following sense:

Definition 4.11. A morphism [f]: (A,G) — (B, H) in (/) is called vertical if
the underlying map f: A — B is invertible in /. For any F': (&) — %, an
operation t in B | I is called near-linear if it is covered by a linear operation
via a map which is vertical in 0(&7). If F,G: 0(&/) — £ are familial at stage
B, then a transformation «: F = G is near-familial at stage B if it preserves
near-linear operations.

We now give our equivalence result, after a preparatory lemma: in the statement
of the lemma, we call an object of an orbit category &'(%7) near-initial if it admits
a vertical map from an initial object.

Lemma 4.12. (i) </ has a Galois object if and only if O(<7) has an initial one.
F: of — B preserves Galois objects if and only if O(F): O(H) — O(A)
preserves near-initial objects.

(ii) Let B admit group invariants and let F': o/ — % have invariant-preserving
extension F': O(o/) — AB. We have B | F' = 0(B | F) naturally in F.

Proof. For (i), A € &/ is Galois just when each @7 (A, B) is a connected & 4-set,
which is equivalent to the existence of a unique [up]: (A,&64) — (B,1) in 0()
for each B € «7. Now, [upg] factors through each [1]: (B,H) — (B, 1), for, by
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definition of a Galois object, any h € H yields an automorphism g € &4 such
that upg = hup. So A is Galois just when (A,S4) is initial in (/). The
second claim is immediate on observing that (A, G) € €(</) is near-initial if and
only if (A,S&4) € O(&7) is initial, if and only if A € & is Galois.

For (i), an object of B | F' comprises (A4, G) € 0(</) and u: B — FA\'C in
AB. Now, to give u is equally to give a map t: B — F' A satisfying Fo.t =t for all
o € (. This condition says that each o € G lies in &; < & 4, and so an object of
B | F'is equally a pair (t € B | F, G < &;). Arguing similarly on morphisms,
we conclude that B | F/ = ¢(B | F); naturality in F' is straightforward. O

Proposition 4.13. Let % admit group invariants. Under the equivalence (4.4),

functors and transformations of — 9B which are analytic at stage B correspond

to functors and transformations O(<) — P which are familial, respectively

near-familial at stage B. When B = P%€, the equivalence (4.4) restricts to one
—)oJ

(4.5) NFAM,(6(7), 7€) “°Ls ANy (o7, 2)

with as domain the category of small pointwise familial functors and pointwise

near-familial transformations O (/) — PE€ .

Proof. Let F: o/ — 2 have invariant-preserving extension F': 0(</) — A.
Because any object (A, G) of /(<) admits a morphism to (A, 1), and because all
morphisms of &/(&/) have an underlying morphism in <7, &'(-) preserves connected
components. So, by Lemma 4.12, each B | F' is a coproduct of categories with
Galois objects just when each ¢ (B | F) =2 B | F' is a coproduct of categories
with initial objects. Moreover, if a: F' = G is a transformation between functors
analytic at stage B, with invariant-preserving extension o/: F’ = G’, then by
Lemma 4.12, each functor B | a: B | F' — B | G preserves Galois objects just
when each (B | a) = B | o preserves near-initial objects. This proves the first
claim.

Now suppose that Z = P%. It is immediate that smallness is preserved
under the preceding equivalences, and so the only additional point to verify is
that NFAM(0(«/), #€¢) C INVAR(O (&), #€¢). But it G: O(o) — P€
is pointwise familial, then each (G-)c: 0(%/) — Set, being a coproduct of
representables, preserves connected limits and in particular group invariants;
whence G preserves group invariants, as limits in &% are pointwise. O

Using this result, we may now give the promised analytic analogue of Defini-
tion 3.7, describing each small pointwise analytic F': &/ — Z% in terms of the
near-representable summands of each (F-)c.

Definition 4.14. Let F': &/ — P% be small pointwise analytic. The spectrum
Sp € € and exponent Ep: el Sp — O(4f) of F are the spectrum and exponent
of the small pointwise familial F': 0(</) — P€ corresponding to F under (4.5).

Remark 4.15. Let us unpack this definition. Given F' € ANy (o7, #E€), we
choose like before a generic operation in each connected component of y. | F,
and write ¢ for the chosen generic cover of ¢t € y. | F. The spectrum of F is now
exactly as in Definition 3.7, while the exponent Er: el Sp — (<) is given on
objects by Ep(t:y. — TA) = (A, &;), where &, is the automorphism group of
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t €yc ) T, or equally the set of all ¢ € &4 such that (T'o)(t) =t. To define Er
on a map f:tyy —t of el Sp, we form the square

Yf
Ye *Yd

t’=t7fl lt

, Fug
FA'—— FA

whose lower edge is any map induced by weak initiality of tf%c iny. | F, and
take Ep(f) = [uf]: (A',6y) — (A, S;). Note that the mapping f — uy is only
functorial “up to automorphism groups”, so that EFr may not exist as a functor
el S F — o .

Just as in the familial case, a small pointwise analytic &/ — % can be
recovered from its spectrum and exponent. We express this in terms of an
equivalence between ANy (o7, #%) and the following category:

Definition 4.16. For any ./ and small ¢, the category ely /, 0(<7) has as objects,
pairs (S € Z%, E: elS — 0(&)), and as maps (S, E) — (T, D), pairs of a
presheaf map p: S — T and a pointwise vertical transformation ¢ of the form:

s — " a7

(4.6) N E
o).

Proposition 4.17. The assignation F — (Sg, EF) is the action on objects of an
equivalence of categories between ANy (o, P€) and ely [, O().

Proof. By Proposition 4.13, it suffices to show that F’ + (Sgs, Ep/) underlies an
equivalence of categories NFAMy(0(o7), €) — ely [, O(</). This is almost
exactly as in Proposition 3.8, with the only difference arising on morphisms. By
definition, a transformation o’: F' = G’ between pointwise familial functors
F'.G": 0() — P€ is near-familial just when each triangle as to the left of (3.5)
has oy vertical, rather than invertible: this accounts for the differing 2-cell data
between (3.4) and (4.6). O

4.3. Universal analytic endofunctors. Now in seeking a universal shapely monad
among analytic endofunctors, we must as before consider both composability and
existence of a terminal object. This time we deal with terminality first. As in
Proposition 3.16, there is a size obstruction to constructing a terminal object of
the category ANy (€, #€), and so we must impose size restrictions.

Definition 4.18. If &7/ C &/ and %' C % are full replete subcategories, we say
that F': & — A is (', #')-analytic it is analytic at each B € %', and each
generic t € B | F has input arity in .&/’. A transformation a: F' = G between
such functors is (&', B')-analytic if it is analytic at every stage B € &'.

Definition 4.19. A pointwise analytic F': ¢ — PP is called finitary if it
is (F¢,y?)-analytic. We write AN (PE€, D) for the category of finitary
pointwise analytic functors and pointwise analytic transformations.
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This restriction is in fact enough: ANy (P€, #%)—and more generally,
ANgt(@@, PE)—does have a terminal object. To see this, we first argue
as in Lemma 3.17 to establish an equivalence between ANy (%, #%) and
AN (F D, PE); the claim will now follow once we show more generally that
AN (&7, #%€) has a terminal object whenever & is essentially small. The key
to proving this is the following lemma, in it we write [.#, O(47)], for the category
of functors .# — 0'(<7) and pointwise vertical transformations, where .# is any
small category.

Lemma 4.20. Each connected component of [.%,0(<7)], has an initial object.

Proof. Let (T,G): .# — O(<) be given on objects by I — (T1,G;) and on
morphisms by f +— [T f]: (TI,Gr) — (T'J,G ). Note that the family of subgroups
(Gr < &771)1e.s satisfies the condition that

(x) forall f: I — J and o € G, there exists 7 € Gy with TfoT =0 o Tf.

Call a family of subgroups H = (H; < &11)re.s suitable if it satisfies (x) with
Hj; and Hj in place of G; and G ;. We claim that, if H® is a suitable family of
subgroups for each x € X, then the family of subgroups \/, H* = (\/, Hf)rc.s is
again suitable (here the join \/, HY is taken in the lattice of subgroups of &ry).
Indeed, if f: I — J in .# and 0 € \/, HY, then 0 = 01 - - - 0, for some o; € HJ';
now by suitability of each H", there are elements 7; € H;* with T'f.7; = 0;. T f
for each 4, and so 7 =11 --- 7, € \/, Hf is an element with T'f.7 = 0. T f.

It follows that there is a largest suitable family of subgroups given by:

G = \/{H : H is a suitable family of subgroups} .

By suitability, [T'f]: (TI,Gy) — (TJ,G ) is well-defined for each f: I — J; as
G < Gy, this assignation is functorial in f and so we obtain (T,G): % — 0(<)
and a vertical transformation ¢: (T, G) — (T, G) with components &; = [177].
We claim that (T,G) is in fact initial in its connected component.

First we show that any pair of vertical transformations a, 8: (T, G) = (S, H)
are equal. Each component «; or 85 is an equivalence class of maps T1 — S1,
and so we may consider the family of subgroups

(Kr={a"'b|acarbepBr)<6Gri)res -

We claim this family is suitable: for then K; < Gy so that a=b € Gy for all
a € ay and b € By, whence ay = B as required. For suitability, it suffices to
show that, if (a,b) € ay x Sy and f: I — J, then there exists (¢,d) € ay X fr
with Tf.c™'d = a~'b.Tf. For any ¢ € a; we have by naturality of a that
[a.Tf] = [Sf.c]; but then a.Tf = Sf.(co) for some o € Gy, and so on replacing
¢ by co € aj we may take it that in fact a.Tf = Sf.c. Similarly, we can find
d € Br such that b.Tf = Sf.d, and now T'f.c 'd = a~'b.Tf as required.

To show initiality of (T, G) in its connected component, it now suffices to show
that, for all cospans a: (T,G) — (S,H) < (R,K): § in [, 0(&/)], there is
some map v: (T, é) — (R, K). To this end, consider the family of subgroups

(L[ = <a_1bc_1d ’ a,d € oy, b,C € ,3]) < GT])[Ej .
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Repeating the above argument shows this family is suitable, and so L; < Gy for
all I € .#. Now, choosing any a € ay and b € 37, we have for each I € .7 a well-
defined map ~; = [b~1a]: (T1, C:}]) — (RI,Ky). Indeed, if 0 € Ky then bo €
and so 7 = a"'bob~la € L1 < G satisfies b~ 'a.7 = ob~'a as required. Clearly
Br-y1 = aj for each I; since each fr is vertical, hence monic in & (&), we conclude
by naturality of « that v: (T, G) — (R, K) is also natural as required. O

Using this, we are finally able to prove:

Proposition 4.21. If < is essentially small, then the category ANy (o7, P€) has
a terminal object; in particular, any ANy (P D, P€) has a terminal object.

Proof. 1t suffices by Proposition 4.17 to show that the equivalent category
ely [y O(</) has a terminal object, and as before, we may assume without
loss of generality that <7 is in fact small. For any ¢ € €, we know by Lemma 4.20
that each connected component of [¢'/c, 0(<7)], has an initial object; make
a choice of such, and for each F' € [€/c, O()]y, write F for the chosen ini-

tial object in its connected component, and u: F — F for the unique vertical
transformation. The required terminal (S, E) € ely /, 0(</) now has:

—_—

Sc={Fec[€/c,0())y:F=F} and S(f:d—c):F—F(fo-),
and has E: el S — 0(4/) given by E(F,c) = F(1.) on objects, and

P

f(F(for),d) = (Fe) = F(fo)(la) —% F(fo-)(l) = Ff ~L F1,

on morphisms. To see terminality of (S, E), let (T, D) be another object of
ely Jly O(<f). To define a map f: T — S, we form for each ¢ € T'c the composite

(4.7) Ft:%/c:elyciﬂslTiﬁ(d)
and now define p(t) = F, € Sc. For any f:d— ¢, we have

p(t) f=Foelf=Foelf=F;f=pt-f),
so that p is natural in ¢. Moreover, we have a pointwise vertical transformation

AT — " L as

NE G
o(sf)

whose component at t € Tc is the map uy,: E(p(t)) = Fy(1.) = Fy(1.) = Dt. So
we have a map (p,¢): (T, D) — (S, E) and to conclude the proof, we must show
that any (q,¢): (T, D) — (S, E) is equal to (p, ). For each t € Tc, consider the
composite functor

Gi: € /c=cely, U/ LN R O(A) .

P

By naturality of ¢, this functor sends f: d — ¢ to q(t)(fo-)(14) € O(H),
and there is now a vertical transformation £: Gy = ¢(t): €/c — O(</) with
component

Go(f) = a(t)(f o ) (1) —% q(8)(f o )(1a) = q(t)(f)
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at f:d— c € € /c. Since ¢(t) is a (chosen) initial object in its connected compo-
nent of (¢ /c, 0()],, the map £: Gy = ¢(t) must be a split epimorphism; since
every map of [¢'/c, O(</)], is (pointwise monomorphic and hence) monomorphic,
¢ is thus invertible, so that Gy = ¢(t). Since the composite vertical transformation

elqt

C/c e el S
4.8 ot
(48) Ft=D.$¢I/E
O()

exhibits G; (the upper composite) as connected to F; in [¢'/c, O(<)],, this
determines ¢(t) uniquely as being F; = p(t); since this holds for all ¢ € el T', we
conclude that p = q. Moreover, as Gy = ¢(t) is initial in its connected component
of [€/c,O()]y, the 2-cell in (4.8) must be equal to ¢.elt: Gy = Fy; as this

holds for all ¢t € el T', we have ¢ = 1 as required. O

Remark 4.22. For any small category %, we may view the terminal object U
of ANy (P€, P€) as an object in AN (P€, #€). By Proposition 4.13 and
by near-familiality, any F' € ANy (P€, #€) which admits a map to U must
itself be finitary, so that the map F' — U is unique if it exists. In other words,
U is a subterminal object in AN (P€, P€); it follows that we can identify
AN (P76, P€) with the slice category ANy (2%, Z€)/U. We will revisit
this point in Remark 6.3 below.

4.4. Composition of analytic functors. The passage from familial to analytic
functors has thus fixed the problem we had previously, namely the lack of a
terminal object among such functors. However, we are not in the clear yet,
as we must still show that pointwise analytic functors compose. By modifying
Lemma 3.9(i) to use Lemma 4.2 in place of Lemma 3.2 we may show that generic
morphisms compose; now arguing as in Proposition 3.11 yields:

Proposition 4.23. If F: &/ — % and G: B — € are (', B')- and (#',¢")-
analytic, then their composite is (', €")-analytic, and has as generic operations
at stage C' € €' precisely the composites Gt.s: C — GB — GFA of G- and
F-generic operations. The correspondingly analytic transformations between
these functors are likewise composable; in particular, there is a 2-category AN of
categories, analytic functors and analytic transformations.

However, this does not imply that pointwise analytic functors between presheaf
categories are composable, since we do not know that pointwise analytic functors
are necessarily analytic. In fact, this is not true, by virtue of:

Proposition 4.24. Pointwise analytic functors between presheaf categories are not
closed under composition.

Proof. Consider the following two functors:
F': Set — Set? G: Set? — Set
X = (X? = X?/6y) (A= B)— AxpA.

G is representable at W = (2 — 1), and so pointwise analytic; F is pointwise
analytic with spectrum 1 € Set? and exponent el 1 = 2 — ¢(Set) picking out the

(4.9)
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arrow (2,83) — (2,1). The composite GF': Set — Set sends a set X to
X2 X X2/, X% ={(a,b,c,d) € X*: (a,b) = (¢,d) or (a,b) = (d,c)} .

Now, no operation (a,a,a,a): 1 — GFX can be generic, because the square left
below has no filler GFX — GF{0,1}; while if a # b € X, then no (a, b, a,b) or
(a,b,b,a): 1 - GFX can be generic because the square below right has no filler
in either direction.

(0717071) (a7b7b7a)

15 GF{0,1} 1 -2 GFX
(a,a,a,a)l J/GF! (a,b,a,b)J{ JGF!
GFX -9 aF1 oFx M g

So G'F is not pointwise analytic, as there are no generic operationsin 1 | GF. [
Corollary 4.25. ANy (PC, P€) need not be monoidal under composition.

Proof. If F and G are as in the preceding proof, then Fm; and AG lie in
AN‘gt(Setz, Set?). But if their composite AGF1; were pointwise analytic, then
so too would be m (AGFm)A = GF. O

Remark 4.26. The preceding argument does not rule out the possibility that the
composition-powers of the terminal finitary analytic endofunctor U of a presheaf
category happen to be again analytic—which would allow for the construction
of a monad structure on U. However, at least for the presheaf categories of our
examples, the preceding argument may be adapted to show that this is not so.

5. CELLULAR FUNCTORS AND SHAPELINESS

We have now failed to construct a universal shapely monad on a presheaf
category #%¥ in two different ways: there was no universal familial monad due to
the lack of a terminal familial endofunctor, while there was no universal analytic
monad due to the failure of pointwise analytic functors to be composition-closed.

Our next attempt to produce a universal shapely monad will focus on a special
class of pointwise analytic functors, which we term cellular, that are closed under
composition. This is achieved by way of an additional condition which allows
their pointwise analyticity to be built up to analyticity at more complex stages,
so that Proposition 4.23 can then be applied.

Building up this analyticity will require an analogue of Proposition 3.12, which
showed that the stages of familiality of a functor &/ — % are closed under
colimits. The reason this does not carry over unchanged to the analytic setting
is that the analogue of Lemma 3.9(ii) fails to hold, as the following explicit
counterexample shows.

Proposition 5.1. The generic operations of a functor F: o/ — % need not be
closed under pointwise colimits in B | F.

Proof. Consider the pointwise analytic functor F: Set — Set? from (4.9). By
examination of its spectrum, this admits generic operations t: yo — F2 and
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u:y; — F2 fitting into a span

Yo — VY1
o]
yi t U
UJ F2——F2
V4

2

in Set? | F. We claim that the pushout u 4+ u: y; +yo Y1 — F2 of this span
is not generic; in fact, we claim that there are no generic operations at all in
Y1 +yo ¥1 4 F. Indeed, the functor G in (4.9) is representable at y; +, y1, and so
1] GF =2 y1 4y, y1 | F; but since by the proof of Proposition 4.24, the former
category contains no generic operations, neither does the latter. O

In light of this negative result, our first objective in this section will be to
describe certain good colimit types under which generic operations are closed, and
to show that for these colimit types, we do have an analogue of Proposition 3.12.
We then introduce the notion of cellular functor, this being a pointwise analytic
functor whose generic operations have input arities that can be constructed from
representables using only these good colimit types. With this in place, it is
then reasonably straightforward to show that cellular functors are closed under
composition.

5.1. Arrow-genericity and arrow-analyticity. By the same argument as for linear
operations, generic operations are closed under coproducts in & | F, and at
first this may appear to be all that we can salvage from Proposition 3.12 in the
analytic case. But in fact, there is a class of morphisms in & | F' along which
generic operations are closed under pushout; we now introduce this class.

Definition 5.2. Let F': &/ — . We say that a map (b,a): t; — to in B | F as
below is arrow-generic if t; and ty are generic for F and (t1,t2): b — F2(a) is
generic for the functor F?: o/? — 22,

314b>B2

(5.1) tll Jtz

FA, F pa,

Just as with linear and generic operations, there is a characterisation of
arrow-genericity as a diagonal filling property:

Lemma 5.3. Let t1,t2 be F-generic operations. A map (b,a): t; — to in B | F
is arrow-generic just when for every commuting diagram as below (with hj = ka),
there exists ¢ as shown with h =k and Fl.to = u and fa = j.

By — y
(5.2) tIJ »tT/ th

FA; - FA T FZz
a
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It follows that the class of arrow-generic maps in B | F contains the isomorphisms
and is composition-closed.

Proof. First assume the condition in the statement. We must show that for any
cube as below left, there are diagonal fillers j1: A1 — Y7 and jo: Ay — Y5 with
hij; = k; and F'j;.t; = u; and jsa = yji1. Applying genericity of ¢; to the front
face yields the required ji; now the left and back faces give the solid part of
a diagram as in (5.2) with the composite yj; as its diagonal, and applying the
stated condition to this yields a filler jo for the back face satisfying the required
equations.

By—" L FY, . By—% L FY
b
/ ‘ w /F'y / ub /F{l
B — 5 FY; Fho B — Y FY Fh
to to
Fhy F1
h Fa, 2 Ry, ul P . Fz
Fa a
1

Suppose conversely that (b,a): t; — to is arrow-generic. Given a diagram as in
the solid part of (5.2), we apply arrow-genericity to the cube above right to obtain
fillers for the front and back faces making everything commute. The front filler
is necessarily j, and so the back filler is the £: Ay — Y required for (5.2). O

As mentioned above, the reason for introducing arrow-generic maps is that
generic operations in & | F are closed under pushout along them; we show this
in the next section, but first let us introduce the associated notion of analyticity.

Definition 5.4. A functor F': & — 2 is arrow-analytic at stage b € B(B, Bg) if
F is analytic at stages By, By € # and F? is analytic at stage b € %?; we define
arrow-analyticity of a transformation a: F' = G correspondingly.

It should not yet be clear whether arrow-analyticity is a property that will be
fulfilled in examples of interest. We will see that this is the case in Lemma 5.19
below, where we characterise arrow-generic morphisms t; — to in terms of an
easily-satisfied relation between the automorphism groups of ¢t; € By | F and
ty € By | F. Combining this with the following lemma will allow us to find many
examples of arrow-analytic functors and transformations.

Lemma 5.5. A functor F: of — A is arrow-analytic at b € AB(By, Ba) if and
only if it is analytic at By, Bo € A and every (b,a): t1 — to in B | F between
generic operations is arrow-generic. A transformation a: F = G between two
such functors is arrow-analytic at b if and only if it is analytic at By, Bs € A.
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Proof. If F is analytic at stages By, By € %, then every square as to the front of
the diagram below left can be factorised through the back faces as displayed:

. B—2 B b
i tg/ By —— By
Fa s s
I P R R
t
N\ . a\ FY| —— FY) .
FX{ ——— FXy

Here, u;: t1 — t1 and ug: ty — to are generic covers obtained from analyticity
at By and Bs, and a is induced by applying Lemma 4.2 to the generic ¢;. Now
if the hypotheses in the statement hold, then (#1,3) is F2-generic and so each
(t1,t2) in b | F? admits a generic cover, as required for F? to be analytic at b.
Suppose conversely that F? is analytic at b, and consider a square as right above
with generic sides; we must show that it is arrow-generic. So construct covers

(t~17 ZQ)

in b | F?, where (t,t;) is an F2-generic cover, and where (f1,%3) is obtained as
above left using analyticity of F at By, Bs. Since ¢; and s; are both F-generic
operations at stage Bjp, viu; is invertible by Corollary 4.3 and so up is a split
monomorphism; similarly wus is split monic. On the other hand, since (1, t2) is
F2-generic, the map (u1,us) must—by Corollary 4.3 again—be a pointwise split
epimorphism: whence u1, uz,v; and vy are invertible, so that (s1, s2), like (¢1, t2),
is arrow-generic as required. It follows that, if F' is arrow-analytic at b, then
the generic operations in b | F? are precisely the squares with generic sides; the
statement about arrow-analytic transformations follows directly from this. [

(1)1,’[)2)

(1,2) (t1,t2) —— (s1,52)

In the sequel, we will make use of this characterisation of arrow-analyticity
without further comment. We conclude this section by recording the analogue of
Definitions 3.10 and 4.18 for arrow-analytic functors:

Definition 5.6. If .# C &/? and ¢ C %? are full replete subcategories, we say
that F': & — A is (S, _F)-arrow-analytic if it is arrow-analytic at each b € _#,
and each arrow-generic (t1,t3) € b} F? as in (5.1) has its input arity a in .. A
transformation a: F' = G between such functors is (&, ¢ )-arrow-analytic if it
is arrow-analytic at every stage b € ¢.

Proposition 5.7. If F': o/ — % and G: B — € are (S, 7)- and (_F , X )-arrow-
analytic, then their composite is (&, % )-arrow-analytic, and correspondingly for
the transformations between such functors.

Proof. Direct from the definitions and Proposition 4.23. O

5.2. Building up stages of analyticity. We are now ready to see what the purpose
of arrow-genericity and arrow-analyticity really is. We begin with a lemma which
provides an analytic analogue of Lemma 3.9(ii) above.
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Lemma 5.8. Let F': o — % and consider a pointwise pushout square in B | F
as below. If s1, s9 and t1 are generic and (d,c) is arrow-generic, then te is also
generic and (b,a) is also arrow-generic.

(9,f)
s1—— 1

(5.3) (d,C)J J(b,a)
(m,n)

Sg —— 19

Proof. We will show that every diagram as in the solid part of (5.2) admits a
dashed filler; since t; is generic, this immediately implies that ¢5 is generic, and
so by Lemma 5.3 that (b, a) is arrow-generic. To prove the claim, observe that
the stated filling condition can be described as a left lifting property: it says that,
for each h: Y — Z in &7, each square in & | F as left below has a diagonal filler.

(ub,5) (ubg.j f)
t —— lpy 51— lpy
A A
(5.4) (b,a)J Wi J(Lh) (dw)l (zﬁm,efq J(l,h)
/
to —— Fh 59— Fh
(u,k) (um,kn)

Pasting the given square with the pushout (5.3) gives a square as right above;
since (d, ¢) is arrow-generic, we induce a filler for this square as indicated and so
by the universal property of pushout the required filler (u, ¢) as left above. O

In fact, we can do better than this: the characterisation of arrow-generic
maps by a left lifting property allows us to show that they are also closed under
transfinite composition [14, Definition 2.1.1]. As we do not need this further fact,
we leave its verification to the interested reader.

We now use the preceding lemma to give the promised analytic analogue of
Proposition 3.12; we reiterate that, in light of Proposition 5.1, the assumption of
arrow-analyticity of b in part (ii) cannot be dropped.

Proposition 5.9. Let o7 be cocomplete and let F': of — AB.

(i) If F is analytic at B, then it is arrow-analytic at 1g; if F is arrow-analytic
at composable maps b and c, then it is also arrow-analytic at cb.

(i) For any pushout as below in B, if F is analytic at By, By and C1 and
arrow-analytic at b, then it is also analytic at Cy and arrow-analytic at c.

Bchl

(5.5) bl J
f2
B2 — 02
The analogous results hold for natural transformations a: F = G: of — 2.

Again, we could add an additional clause to this proposition showing closure
of stages of arrow-analyticity under transfinite composition, but we refrain from
doing so as we have no use for it in what follows.
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Proof. Let F be analytic at B. Any map (1p,a): t1 — t2 between generic
operations in % | F' is a map in B | F, so that f is invertible by Corollary 4.3
and (1p, f) is arrow-generic by Lemma 5.3. This shows that B is arrow-analytic
at 1 by Lemma 5.5. Suppose next that F' is arrow-analytic at b: By — By and
c: Bo — Bj3. Given a square as below left with ¢; and t3 generic, let e: t9 — t3c
be a generic cover in By | F' and let d be induced by genericity as centre below;
this yields a factorisation of the left square as to the far right.

B1 L)Bg B1 Lb)FAQ B1 b B2 = B3
b
tll lts tll /Fd/ lFe tll tzi Jts
Fa g Fd Fe
FA14>FA3 FA1?>FA3 FAl FA2 FA3
a

By arrow-analyticity at b and ¢, both small squares are arrow-generic, whence
also their composite by Lemma 5.3; this shows that B is arrow-analytic at cb
as required for (i). Now suppose the hypotheses of (ii). We first show that F' is
analytic at Cy. Let z: Co — F'Z, and consider the left cube in:

Bl#cl , Blf%cl
b
Y oo e ol
By ——————— (9 u1 By ——————— (% u1
(5.6) "o i A
to FA; 9 — FY] t2 P FA; — FY
Fa a
e o v g
FAy —— FZ FAy —— FY,
Fm Fg2

The front, left and right faces arise from generic covers m: to — zfo, a: t1 — t2b
and n: u; — zc¢, while the map g1 across the back face is obtained as in (i) using
genericity of ¢1. Since the top face is a pushout, and &7 is cocomplete, the back
and left faces admit a pushout in & | F' which may be taken to be as right above.
Since t; and t9 are generic and F' is arrow-analytic at b, the map (b, a): t; — to
is arrow-generic; since u; is also generic, we conclude by Lemma 5.8 that us is
generic and (¢, y): u; — ugy is arrow-generic.

Now taking w: Yo — Z to be the unique map with wy = n and wgs = m, we
see that w: ug — 2z provides a generic cover of z in Cy | F, so that F' is analytic
at Cy as required. For arrow-analyticity at ¢, suppose that (¢,n): uy — z is a
map between generic operations in £ | F. We may complete this to a cube
as left above and form the generic pushout ug as to the right. Now since z is
generic, the induced map ug — z in Cy | F' is invertible by Corollary 4.3. So the
left cube above is also a pushout; as (b,a): t; — to is arrow-generic, so too is
(¢,n): up — z by Lemma 5.8. O

5.3. Cellular analytic functors. By using Proposition 5.9, we can now build up
the analyticity of a pointwise analytic functor between presheaf categories to
analyticity at more complex stages by assuming suitable instances of arrow-
analyticity. In order to specify what these more complex stages are, we borrow
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some ideas from algebraic topology, in particular the theory of cell complexes in
model categories; see [14, §2.1.2], for example.

Definition 5.10. Let I be a class of maps in a category ¢ with an initial object. A
map f: X — Y is called a finite relative I-complex if either it is an isomorphism,
or it can be written as a finite composite

(5.7) X=X x> Iux,=v

where each f; is a pushout of a map in I. An object Y € € is called a finite
I-complex if the unique map 0 — Y is a finite relative I-complex. We write
Cx(I) C € for the full subcategory on the finite I-complexes, and Cx?(I) C € for
the full subcategory on the relative finite /-complexes between finite /-complexes.

The modifier “finite” here comes from the fact that in (5.7) we allow only
finite compositions; the general notion of cell complex in topology also allows
for transfinite ones, and everything that follows could be adapted to this greater
generality; however, like before, we refrain from giving this as we will not need it.

Definition 5.11. Let % be a small category. A bordage on % is a filtered family
@=IycliCc---cl,In=1of maps in #%€ such that:

(i) Each g € I,,+1 has representable codomain and domain a finite I,,-complex;
(ii) Each representable object of 2% is a finite I-complex.

Note that condition (i) for a bordage ensures that each map in I has domain a
finite I-complex and, as such, is an object of Cx2(I); this is something which need
not be true for a general class of maps I. Condition (ii) is much less important
than (i) and will only play a role in Proposition 5.16 below.

Examples 5.12. (i) Any presheaf category &% has a bordage given by I =
Iy ={0 —y.:ce %} The finite I-complexes are the finite coproducts of
representables, and the finite relative I-complexes are coproduct injections
with complement a finite I-complex.

(ii) Let 2 be the arrow category f: 0 — 1. The presheaf category &2 has a
bordage given by I = {0 — yo} and I \ I1 = {yf: yo — y1}. The finite
I-complexes are all finitely presentable presheaves, and the finite relative
I-complexes are the monomorphisms with cofinite image.

(iii) Let ¢ be the category s,t: 0 = 1. The presheaf category &% has a bordage
given by It = {0 — yo} and I\ I1 = {{ys,y¢): Yo + Yo — y1}, whose finite
I-complexes and finite relative I-complexes are as in (ii).

(iv) Changing I\ I; in the preceding example to be {y;: yo — y1} yields another
bordage on &9 whose finite I-complexes are now finite forests whose edges
are all directed towards the roots. Changing I'\ I to be {ys: yo — y1} yields
finite forests with edges directed away from the roots, while taking I \ I; to
be {ys,y:} yields finite forests whose edges may be oriented arbitrarily.

We will see further examples of bordages when we revisit the motivating
examples of polycategories, properads and PROPs in Section 6 below.
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Definition 5.13. Let I be a bordage on #%. A pointwise analytic F': &7 — PE€
is I-cellular if any square as below with b € I and t1,to generic is arrow-generic.

S L> Ye
(58) tll ltz
FA, -F pa,

We will see in the following section that the cellularity condition is very easy
to check in practice. Note that cellularity almost says that F' is arrow-analytic
at b: S — y. for each b € I, except that we do not assume that F' is analytic at
the domain object S. In fact, this is true by virtue of:

Proposition 5.14. Let I be a bordage on € and let o/ be a cocomplete category.
Any I-cellular F: of — P€ is analytic at all B € Cx(I) and arrow-analytic at
all b € Cx*(I). The same holds for pointwise analytic transformations a: F = G
between I-cellular functors.

Proof. Let F' be I-cellular. We prove by induction on n that F' is analytic at
every B € Cx(I,,) and b € Cx*(I,,). For the base case n = 0, every B € Cx(Ip) is
initial: thus B | F = &/, and so as & has an initial object, F' is analytic at B.
Since any b € Cx%(Iy) is invertible, F' is analytic at b by Proposition 5.9.

Now assume the result for n. Each map b: S — vy, in I,,4+1 has domain in
Cx(I,), and so F' is analytic at S; thus I-cellularity implies that F' is arrow-
analytic at every b € I,11. Applying Proposition 5.9 finitely many times shows
that, if f: X — Y is a finite relative I,,1-cell complex for which F' is analytic at
X, then F' is also analytic at Y and arrow-analytic at f. Taking X to be initial
and using the base case, shows that F' is analytic at every B € Cx(I,41); while
taking X to be an arbitrary finite I,,+1-complex shows that F' is arrow-analytic at
every b € Cx?(I,,11). The case of transformations is similar, and so omitted. [J

The preceding proposition shows us that the pointwise analyticity of functors
F: P€ - P9 and G: 9 — HP& is stable under composition if there is a
bordage I on % such that F is I-cellular and the input arities of GG’s generic
operations are I-cell complexes. However, G F' need not then satisfy any cellularity
conditions allowing it to compose further; the following definition ensures this.

Definition 5.15. Let I and J be bordages on #% and & %. A pointwise analytic
functor F': € — PP is called (I, J)-cellular if every square (5.8) with b € J
and t1,ty generic is arrow-generic and has a a finite relative I-complex. We write
CELL((¥¢,1),(2,J)) for the category of (I, J)-cellular functors and pointwise
analytic transformations.

Proposition 5.16. Let I and J be bordages on PE and PP . A functor F: PE€ —
PP is (I,J)-cellular if and only if it is (Cx*(I), Cx*(J))-arrow-analytic. In par-
ticular, there is a 2-category CELL of presheaf categories equipped with bordages,
cellular analytic functors, and pointwise analytic transformations.

Proof. By condition (ii) for a bordage, each representable in Z% is a finite
J-complex, whence any (Cx%(I),Cx%(J))-arrow-analytic functor is pointwise
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analytic. By condition (i), we have J C Cx%(J), and so any (Cx?(I),Cx2(J))-
arrow-analytic functor is (I, J)-cellular. This proves the “if” direction. For the
“only if”, if F'is (I, J)-cellular, then it is certainly J-cellular, and so arrow-analytic
at each b € Cx?(.J); it remains to show that each square (5.1) with b € Cx2(J)
and t1,ty generic has a € Cx%(I). Let K denote the collection of all arrows
b € Cx*(J) for which each square (5.1) with t1, ¢, generic has a a finite relative
I-complex. By assumption J C K, and by examining the proof of Proposition 5.9
we see that K is stable under pushouts along maps into J-complexes and closed
under composition, and so must comprise all of Cx*(JJ). So each (5.1) with
b € Cx*(J) and t1,ty generic has a a relative finite I-complex, and it remains
to show that the domain and codomain of a are in fact finite /-complexes. But
whenever B € Cx(J) and t: B — F'A is generic, the following square has top
edge in Cx?(J) and generic sides:

O—!>B

|

FO—L5 FA
and so has bottom map a finite relative I-complex; whence A € Cx([) as
required. The existence of the 2-category CELL now follows from this together
with Proposition 5.7. g

5.4. A combinatorial characterisation of arrow-genericity. We now know that
cellular pointwise analytic functors are closed under composition; what we have
not yet seen is that there are any cellular functors. In this section, we give a
result which will allow us to verify that a given pointwise analytic functor is
indeed cellular. The key concept required is that of a minimal extension.

Definition 5.17. Let f: A — B and let 0 € & 4. An extension of o along f is
some 7 € &g for which 7f = fo. An extension is called minimal if whenever
g: B — C satisfies gfo = gf, also g7 = g; equivalently, if f, fo: A = B admit a
coequaliser ¢, then 7 is minimal just when g7 = gq.

The name is motivated by the case of f: A — B an injection in Set; for such
an f, any 0 € &4 has a unique minimal extension 7 € &g with

o(x) ifxelm(f);
T otherwise.

(5.9) r(z) = {

So 7 is minimal among extensions of ¢ in that it permutes the smallest possible
part of B. This intuition works for monomorphisms in any presheaf category:

Proposition 5.18. If f: A — B is monic in PE€ then each 0 € &4 admits at
most one minimal extension along f; this extension exists just when

(5.10) z ¢ f(A) and zh € f(A) — zh e f(AV)

for all x € Be and h: d — ¢, and is then given componentwise as in (5.9).
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Proof. If q coequalises f and fo, then 7 € &p is a minimal extension of o just
when g7 = 7, just when g.7. = 7. for all ¢, just when each 7. is a minimal
extension of o, (as colimits in % are pointwise). So any minimal extension of
o must be given componentwise by (5.9), with (5.10) being just what is needed
to ensure naturality of this definition in c. ]

We now use the notion of minimal extension to give a combinatorial character-
isation of arrow-generic morphisms. As in Remark 4.15, we use &;, and &y, to
denote the automorphism groups of t; € By | F and to € By | F.

Lemma 5.19. Let &7 have coequalisers and F: o/ — AB. A map (b,a): t; — to
between generic operations in B | F is arrow-generic if and only if each o € Gy,
admits a minimal extension T € Sy, along a: Ay — As.

Proof. We use the alternate characterisation of arrow-genericity of Lemma 5.3.
For the “if” direction, suppose given a diagram as in the solid part of (5.2).
As to is generic, there exists a map g: Ao — Y with hg = k and Fg.ts = u;
now both ga and j are maps t; — wb in By | F' and so by genericity of ¢;
there is some 0 € &, with j = gao. By the assumption on a, there is some
minimal 7 € &, with 7a = ao; letting ¢ = g7, we have fa = gra = gac = j and
Flty = Fqg.Fr.to = Fg.ts = u. Now kao = hgao = hj = ka, whence kT = k by
minimality of 7, and so hf{ = hgt = k7 = k as required for ¢ to be a filler.

For the “only if” direction, let (b,a): t; — t2 be arrow-generic and let o € Gy;
we must find a minimal extension 7 € &, along a. Let q: A2 — @ be a
coequaliser of a and ao, and consider the diagram

B —" B, " ,FA,
to /7(
/
FA o FAy—— FQ .

The solid part clearly commutes, and so we induce a map 7 as displayed making
everything commute. Since ts is generic, 7 is invertible by Corollary 4.3; since
F1.ty = ta, we have 7 € &4,. Moreover, Ta = ao, so T is an extension of o; while
qT = ¢ so that 7 is minimal. O

This result allows us to check in a concrete fashion the (I, J)-cellularity of a
pointwise analytic F': € — £ %. For this, it suffices to check (I, J,)-cellularity
for each n. This is trivial for n = 0 since Jy = &; so suppose now that we have
verified it up to n. To check (I, J,41)-cellularity, we must show that, for any
b: S = ygin Jyi1\ Jp, each square (5.1) with generic sides is arrow-generic with
a a finite relative I-complex. We can do this using the previous result so long as
we can compute all such squares (5.1).

Now, as F is (I, J,)-cellular, it is by Proposition 5.14 analytic at the finite
Jp-complex S. Thus, each square (5.1) is obtained from a generic to: yg — F As—
which we can classify by pointwise analyticity of F—upon forming a generic
cover a: t; — tob in S | F', which can be calculated explicitly by applying the
algorithm of Proposition 5.9 to some presentation of S as a finite J,-complex.
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Example 5.20. Let J be the bordage of Examples 5.12(ii) on &2, let I be any
bordage on #%, and let F': 22¢ — £72 be pointwise analytic. Recalling that
J1 = {0 — yo}, the condition for F' to be (I, Jy)-cellular is that, for each generic
t: yo — F A, the induced square

O—|>y0
! t
Fa
FO—— FA

with generic sides is arrow-generic with a a finite relative I-complex. Arrow-
genericity is trivial in this case, and so the condition is simply that A is a
finite I-complex. Now, since Jy \ Ji = {ys: yo — yi}, we see that F will be
(I,J2) = (1, J)-cellular when, for each generic t2: yo — F B, the induced square

Yf
Yo—Y1
t1 to
FA-L, FB

with generic sides is arrow-generic and has a a finite relative J-complex. Let
us see what this says relative to an explicit presentation of F' as a pointwise
coproduct of near-representables:

Here, the map « is determined by a function h: U — V together with natural
transformations oy : Z€(Bu,-)/q, = ZC(Anu,~)/H,,—Which, as in the proof
of Proposition 4.10, correspond to maps [ay]: (Apu, Hhy) — (Bu, Gy) in O(PF)
(note that this is really just an explicit description of the exponent of F'). In
these terms, the necessary conditions for F' to be (I, J)-cellular are that: each
A, should be a finite I-complex; each a,: Ap, — By should be a finite relative
I-complex; and each o € Hp,, should have a minimal extension 7 € G, along a,,.

5.5. Universal cellular functors. We have now achieved what we set out to
do in this section, by exhibiting a class of pointwise analytic functors which
is closed under composition. Our broader objective, recall, is to construct a
universal shapely monad as a terminal object among a suitable class of composable
endofunctors; and so it remains to check the existence of a terminal object among
cellular functors. Unfortunately, we have:

Proposition 5.21. CELL((¢,1),(2,J)) need not admit a terminal object.

Proof. Let € = 2 = 2 and let both I and J be the bordage {0 — yo,yo — y1} of
Examples 5.12(ii). Consider the endofunctor F': &2 — &2 sending f: A — B
to f x f: Ax A — B x B; this is pointwise analytic, with explicit presentation

PAys+ys, -
F o= 22y 4295 5900 + 0,1

To see that F is (I, I)-cellular, we observe that yo + yp is a finite /-complex
(= finitely presentable presheaf), that ys +y; is a relative finite I-complex (=
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monomorphism with cofinite image), and that the minimal extension condition is
trivially satisfied: this verifies the three conditions of Example 5.20, as required.

In the terminology of Definition 4.14, F' has spectrum Sp = 1 € ##2—so that
el Sp = 2—and exponent Ep: 2 — 0(2?2) picking out the arrow

vy +vyrl: (yo+v0,1) = (y1 +y1,1)

of 0(22). 1t follows using Proposition 4.17 that for each G € AN (272, 22),
pointwise analytic transformations a.: F' = G correspond bijectively with squares

7
Yo Y1

(5.11) t{ th
G(ys+ys)
G(yo +yo) ——— G(y1 +y1)

in #2 with generic sides. We claim that whenever G is (I, I)-cellular, there are al-
ways two distinct such squares, so that G cannot be terminal in CELL((2, I), (2, I)).
Since G was arbitrary, this concludes the proof. Now, if G is (I, I)-cellular, then
any square as displayed above must be arrow-generic; by Lemma 5.19, this means
that each 0 € &;; admits a minimal extension 7 € &, along yy +yy. Using
Proposition 5.18, we see that the switch isomorphism o12: yg + Yo — Yo + Yo
has no minimal extension along ys +yy, and so we must have &;, = 1. Since
lyr +yrl: (Yo +y0,64) = (y1 +y1,64,) in 0(22), it follows that &, = 1 too;
whence the square

Yf
Yo Y1

Go’lz.tll J(Galg.tg
Glystyy)

G(yo +yo) ——— G(y1 +y1)

is a second, distinct instance of (5.11). This proves the claim. O

6. SHAPELINESS IN CONTEXT

We have now failed for a third time to exhibit a notion of universal shapely
monad: the imposition of cellularity, which fixed the failure of general analytic
functors to compose, did so at the cost of destroying the terminal object existing
among them. At this point, we prefer to leave for future work the problem
of finding a general notion of shapeliness, and concentrate instead on giving a
solution for the particular motivating examples from Section 2.

For these examples, the notion of cellularity turns out to be almost sufficient:
some simple ad hoc additional conditions will be enough to obtain the desired
universal shapely monad U. With this in place, we can define a general shapely
monad to be any pointwise analytic submonad of U, and then provide an inductive
construction of the free shapely monad on a generating set of operations. Finally,
we apply this construction to our motivating examples, and thereby realise the
main goal of this paper by exhibiting the monads for polycategories, properads
and PROPs as free shapely monads on the basic wiring operations.
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6.1. Universal shapely monads on (symmetric) polygraphs. Our first goal is to
construct universal shapely monads on the presheaf categories of polygraphs
and symmetric polygraphs from Section 2 which are suitable for analysing
polycategories, properads and PROPs. We will find these universal monads among
the class of cellular analytic endofunctors of the previous section; but in order to
neutralise the counterargument of Proposition 5.21, we must further restrict the
functors under consideration. We build on the observation that the monads in
our examples act trivially on the set of objects of a (symmetric) polygraph.

Definition 6.1. An endofunctor F' of either &P or &P is called framed if
FX (%)= A x X(x) for some fixed set A.

Of course, “acting trivially” on objects is only the special case A = 1 of this
definition. The reason for allowing the more general definition is to ensure that
any pointwise analytic functor admitting a pointwise analytic transformation to
a framed one is itself framed; see Remark 6.3 below.

Since framed functors are clearly stable under composition, we have for any
bordage I on &P or &Ps; a monoidal category of framed (I, I)-cellular endo-
functors. In both the symmetric and non-symmetric cases, we are free to choose
I in any way which ensures that the monads for polycategories, properads and
PROPs are all in fact (I, I)-cellular; we now describe suitable such choices, and
check by hand that corresponding monoidal categories of framed (I, I)-cellular
endofunctors have a terminal object—so giving the desired universal shapely
monads. Let us begin with the case of &P. The bordage Ip we take has
(Ip)1 = {0 — y,} and Ip \ (Ip); the set of the following maps for all n,m € N:

<y017--~7y0'n>: y*+"'+y*_>Y(n,m) and <yT1a‘~'umi>: y*+"'+}/*_>y(n,m) .

We now show that there is a universal framed (Ip, Ip)-cellular endofunctor.
We make use of the sets £ (n,m) of (n,m)-labelled finite polygraphs from
Definition 2.6 above. We will call X € Z(n,m) well-labelled if the maps

<€‘f{,...,€,)f>:y*+---—|—y*%\X| and (r‘lx,... 7“X>:y*+---+y*—>|X]

r'm

are both relative finite Ip-complexes; and, extending the notation of Proposi-
tion 2.12, we write Sx for the set of label-preserving automorphisms of | X|.

Proposition 6.2. The monoidal category of framed (Ip, Ip)-cellular endofunctors
of #P has a terminal object Up, which thus underlies a monad on &P, the
universal shapely monad. The spectrum S € &P of Up may be taken to be:

S(x)={u} and Sn,m)={X € ZL(n,m): X is well-labelled} ,
and the exponent E: el S — O(PP) to have E(u) =y, and

E(X)=(X|,6x), E(Ji:u—>X):[€;-X], E(Tj:u—>X):[r3X] )

Proof. By Proposition 4.17, we have ANy (2P, #P) ~ elp , O(FP); if we
define (elp /, O(Z2P))" C elp Jl, O(PP) to be the full subcategory corresponding
under this equivalence to the full subcategory of framed (Ip, Ip)-cellular endo-
functors, then it suffices to show that (S, E) as defined above is terminal in this
category.
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First, let us call a functor P/x = 1 — O(ZP) acceptable if it picks out the
object (yx, 1), and a functor P/(n,m) — O(Z?P) acceptable if it takes the form

o1 - (Tn> /7'1 o Tm (y*,l)---(y*,l) (y*al)'”(y*7 1)
\ /
(6.1) X"x j% - N"]& }%

with (X, ¢,r) a well-labelled polygraph. By an argument like Example 5.20 above,
a pointwise analytic F': PP — ZP is framed (Ip, Ip)-cellular just when, for each
element t € Sp(x) of its spectrum, the composite

F.:P/z =ely, LA LN O(ZP)

is acceptable. Noting that this F} is the same as (4.7) appearing in the proof of
Proposition 4.21, we thus continue by emulating the rest of that proof.

Recall the key Lemma 4.20 stating that, for each x € P, the connected
component of any F € [P/z, 0(ZP)], contains an initial object F. We claim
that, if F' is acceptable, then so too is F. This is trivial when z = *, while if
x = (n,m), then F is obtained from F' as in (6.1) simply by changing its value
at id(p g, from (X,G) to (X,6x). So the analogue of Lemma 4.20 holds for
acceptable functors; it follows that we can define a terminal object (S, E’) for
(elp Jy O(2P)) by taking

(6.2) S'(z)={F ¢e[P/x,0(PP)|,: I =F is acceptable } ,

with the remaining data defined exactly as in Proposition 4.21 above. All that
remains is to identify this (S’, E’) with the (S, E) in the statement. Once again,
this is trivial at stage x, while at stage (n, m), any acceptable F' by definition has
the form (6.1); but the further requirement that F = F means that G = Sy, so
that F' determines and is determined by the well-labelled polygraph (X, ¢,r). O

Remark 6.3. Asin Remark 4.22, if we view the terminal framed cellular endofunc-
tor of ZP as an object U € AN (P, #P), then any pointwise analytic F' which
admits a map to U in this category must itself be framed (Ip, Ip)-cellular. So U is
subterminal in AN (2P, #P), and the slice category ANy (2P, #P)/U may
be identified with the monoidal category of framed (Ip, Ip)-cellular endofunctors.

The case of the presheaf category &?Ps of symmetric polygraphs is very similar:
the maps in the bordage Ip, are identical in form to those of Ip—though now
living on a different category—and we now obtain:

Proposition 6.4. The monoidal category of framed (Ip,, Ip,)-cellular endofunctors
of #Ps has a terminal object Up,, which thus underlies a monad on ZPs, the
universal shapely monad. The spectrum S € ZPs of Up, may be taken to be:

S(x) ={u} and S(n,m)={X € ZL(n,m): X is well-labelled} ,

with symmetric actions on S(n,m) given by X — - X - ¢ as in Definition 2.6(c);
the exponent E: el S — O(PPs) now has E(u) =y, E(X) = (|X|,6x) and

E(U,-:u—>X):[€;-X], E(Tj:u—>X):[7“;X], E(§¢,¢:1/)'X-ap—>X):[1‘X|].



44 R. GARNER AND T. HIRSCHOWITZ

6.2. Free shapely monads. Now that we have universal shapely monads on the
presheaf categories of polygraphs and symmetric polygraphs, we are finally in a
position to define more general shapely monads. It will be convenient to abstract
away from the particularities of our examples as follows.

Definition 6.5. Let U € AN(X€, P€) be subterminal. We write ANy for
the full subcategory of ANy (P€, P€) on the U-analytic endofunctors: those
admitting a map to U. We call U nice if ANy is closed in CAT (%, %) under
the composition monoidal structure, and in this case we write MNDy for the
category of U-analytic monads: monoids in ANy .

Clearly, the subterminal U in ANy (Z€, #€) becomes terminal in ANy;
when U is nice, this terminal object has a unique monoid structure making it into
a terminal object U in MNDy;. The universal shapely monads of Propositions 6.2
and 6.4 arise in this way from the nice subterminal objects Up and Up, in the
categories of pointwise analytic endofunctors of &P and &?P;; here “Up-analytic”
means “framed (Ip, Ip)-cellular” and likewise for P;.

Definition 6.6. Let U € AN (P€, P€) be subterminal. A U-analytic endo-
functor F' is shapely if the unique pointwise analytic F' — U is pointwise monic. If
U is nice, then a U-analytic monad is called shapely if its underlying endofunctor
is so. We write SHy C ANy and SHMy € MNDy for the full subcategories on
the shapely endofunctors and monads.

By the free shapely monad on a shapely endofunctor F';, we mean the value
at I’ of a left adjoint to the forgetful functor SHMy — SHy. To construct free
shapely monads we will first need to analyse more closely the structure of shapely
endofunctors. The following two results are the key to doing so.

Proposition 6.7. For any o/ and € (with € small), the category ANy (o, PE)
admits a factorisation system (pointwise epi, pointwise mono).

Here, and subsequently, the term “factorisation system” refers to an orthogonal
factorisation system in the sense of Freyd—Kelly[11].

Proof. First we show that pointwise epimorphic and pointwise monomorphic
transformations are orthogonal in ANy (o7, Z%): this says that any square

F—25@G

in ANy (o7, #€) with a pointwise epimorphic and S pointwise monomorphic
admits a unique diagonal filler € as displayed. As pointwise epimorphic and
monomorphic transformations are orthogonal in CAT (<7, %), there is certainly
a unique transformation €: G = H; we must show it is pointwise analytic. For
each ¢ € ¥ we have the factorisation

yeld =  ylGXE5y 1 mXhy K.
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Now since 3 is pointwise monomorphic, y. | 8 is fully faithful and so reflects
generic operations; since y. | § preserves them, we conclude that y. | € preserves
generics, whence ¢ is pointwise analytic as required.

It remains to show that any §: G = K in AN, (2%, P€) has a pointwise
(epi, mono) factorisation. Let § = fe: G = H = K be such a factorisation
in CAT(«7, #%); we must show that H,  and € are pointwise analytic. We
argue as before to see that each y. | € preserves generics, but since ¢ is pointwise
epimorphic, y. | € is also surjective on objects; whence each t € y. | H has
a generic cover obtained by lifting along y. | €, taking a generic cover there,
and then applying the generic-preserving y. | €. This shows that H and ¢ are
pointwise analytic. Moreover, as genericity is stable under isomorphism, each
generic operation in y. | H is the image of a generic operation in y. | G. Since
Ye | 0 preserves generics, so does y. | 3, and so (3 is also pointwise analytic. [

Proposition 6.8. The (pointwise epi, pointwise mono) factorisation system on
ANy (o, PE) corresponds under Proposition 4.17 to the factorisation system
(&, M) on ely [, O() for which & and # comprise those maps (p,p) as
in (4.6) for which p is epimorphic, respectively p is monic and ¢ is invertible.

Proof. We begin by showing that (&, .#) is a factorisation system on ely /, 0(<).
First, any map (p,¢): (S, E) — (T, D) therein admits the (&, .#)-factorisation

(S, E) 2L (R, E.el m) 2 (T, D)

where p =me: S — R — T is a (pointwise epi, pointwise mono) factorisation in
PE. It remains to show that any square

(s, B) L% (1, D)

(hﬂ)l (jf)// J(k,n)
1’¢

(V.C) — (W, B)
(9:7)

with f epimorphic, ¢ monomorphic, and ~ invertible, admits a unique diagonal
filler (4, ) as indicated. By the orthogonality of epimorphic and monomorphic
maps in %, there is a unique j: T'— V such that jf = h and gj = k. But
as v is invertible, the unique § making the lower triangle commute is given by
ko (y~tel §); a short calculation shows that the top triangle then also commutes.

So (&,.#) is a factorisation system, and to complete the proof, it suffices
to show that under the equivalence ANy (o7, P€) — ely /), O(4) of Proposi-
tion 4.17, pointwise epimorphic maps correspond to maps in &’; it then follows by
orthogonality that pointwise monomorphic maps correspond to ones in .#. Now,
a: F'= G in AN (o7, P€) is pointwise epimorphic just when each functor

(6.3) Yedarye L F =y |G

is surjective on objects. On the other hand, the c-component of the induced
transformation S, : Sp = S on spectra can be identified with the action on
connected components of (6.3), so that « corresponds to a map in & just when
each (6.3) is surjective on connected components. This is certainly so if it is
surjective on objects; it remains to show that, conversely, if (6.3) is surjective on
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connected components, then it is surjective on objects. By our assumption, for
each t: y. — GA, we can find a generic operation s: y. — F B such that apg.s is
in the connected component of t. Since « is pointwise generic, ap.s is generic in
ye | G, and so admits amap f: ag.s — t. This says that t = Gf.ag.s = aa.Ff.s
so that ¢ is the image under (6.3) of F'f.s, as required. O

Corollary 6.9. Let U € AN (P€, PE) be subterminal. The category SHy
of shapely U-analytic functors is equivalent to the poset of subfunctors of U’s
spectrum Sy € PE; in particular, SHy is a complete preorder, whose joins are

given by unions of subfunctors of U € CAT(PE, PE).

Proof. By the preceding result, the shapely U-analytic endofunctors correspond
under Proposition 4.17 to the .Z-subobjects of (Sy, Ey) in elg [y O(P€). Any
such subobject has a unique representative of the form (p,1): (S, Ey.elp) —
(Su, Ey) for p: S < Sy a subfunctor inclusion. This proves the first claim;
the stated form of joins in SHy follows by transporting across the equivalence
ely JJy O(PC) ~ AN (P C, PE). O
Example 6.10. Consider the subterminal Up € AN (2P, #P) which classifies
framed (Ip, Ip)-cellular endofunctors. By Proposition 6.2, the spectrum S of Up
has S(x) = {u} and S(n,m) the set of well-labelled elements in .Z(n,m). We
will say that a subpresheaf of S is non-degenerate if it contains u € S(x). Clearly,
a non-degenerate subpresheaf is given by selecting arbitrary subsets .% (n, m) of
well-labelled elements from each £ (n, m); the corresponding shapely endofunctor
F: PP — ZP—which we also call non-degenerate—satisfies F'/A(x) = A(x) and

FA(n7m) = ZXe,fi(n,m) ‘@P(‘X‘PA)/GX .
We may express this subsequently by saying that the non-degenerate F' contains
the well-labelled polygraphs in each % (n, m). For example, the identity endo-
functor of &P contains precisely each of the well-labelled polygraphs (n,m) of
Definition 2.6(d).

Returning to the general situation, when U is a nice subterminal object of
AN (PC, PE€), the composition monoidal structure on ANy induces by way
of Proposition 6.7 the following binary operation on SHy;.

Definition 6.11. Let U € AN (2%, €) be nice. For any F,G € SHy, we let
F -G € SHy be the pointwise monic image of the unique u: FFG — U in ANy:

AN

FG——F—U.

The following lemma describes the basic properties of this operation.

Lemma 6.12. Let U € AN(P€, P€) be nice. The assignation F,G — F -G
defines a monotone map SHy x SHy — SHy which satisfies:

Fid~F id-G=G and (F-G)-H<F-(G-H).

Moreover, each (-) - G: SHy — SHy preserves joins, and if U is finitary, then
each F - (-) preserves directed joins.
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Proof. Monotonicity and the first two displayed equations are obvious. For the
third, consider the hexagon left below in AN (2€, #€); the indicated arrows
are pointwise epimorphic or pointwise monomorphic, whence by orthogonality
there is a filler as displayed:

FGH Y FG
(F-G)H F(G-H)  (V,F)G >i(F - Q)
! ! " . {
(F-G) H-————— SF(GH) (V)G — = 5 \(F-G)

Next we show that (-) - G preserves joins of shapely functors. Let \/, F; be
any such join; since it is computed as a union of subfunctors of U, the induced
transformation ¥;F; — \/; F; in CAT(X¢, #%) is epimorphic, whence also its
precomposition 3; F;G — (\/; F;)G. Thus in the hexagon right above, each edge
is pointwise epi or mono as indicated, so that by orthogonality we induce an
isomorphism (\/, F;) - G = \/,(F; - G) as indicated.

Suppose now that U is finitary; by Remark 4.22, any F' € SHy is then also
finitary. Now any directed join \/, G; in SHy, being a union of subfunctors of
U, may be computed as the colimit in CAT (€, €) of the filtered diagram
of subfunctor inclusions. Because any F' € SHy is finitary, it will preserve
this colimit, so that the induced map ¥;FG; — F(V,; G;) in CAT(X€, PEF) is
pointwise epimorphic. The argument of the previous paragraph now carries over
mutatis mutandis to show that F' - (\/, G;) = \/,(F - G;) as required. O

Proposition 6.13. Let U € ANy (P€, P€) be finitary and nice. The forgetful
SHM; — SHy is a reflective inclusion of preorders, whose image comprises those
F € SHy withid < F and F - F < F. The left adjoint, giving the free shapely
monad on F € SHy is defined by:
F > F=\,en(idVv F)"
where here F'0 =id and F"t! = F . F™,
Proof. The only non-trivial point is the verification that F is indeed a reflection
of F into SHMy. First, we have id = (idV F)" < F and F - F < F, since
F-F\/dvF)" - F=\/(dvF)" (dvF)™<\/(dvF)®™m <
n n,m n,m
where the first two equalities use cocontinuity of (-) - F' ‘and directed cocontinuity
of each (id vV F')™ - (-) (noting that the join defining F' is indeed directed) and
the third inequality uses repeatedly (F'-G)-H < F - (G- H). So F € SHMy;
moreover, if G € SHMy; satisfies F' < G, then since id < G we have (idV F) < G;
furthermore, if (id V F')™ < G, then
(idv F)®) = (idVF)-(idVF)"<G-G<G

so that by induction on n we have (id vV F))™ < G for all n and so, finally, that
F < @G. This proves that F is a reflection of F' into SHM/; as desired. O
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6.3. Polycategories, properads and PROPs. We are now ready to apply the
preceding theory to our motivating examples. We concentrate on exhibiting the
“free polycategory” monads on &P and &P as free shapely monads, but also
indicate how this extends to the cases of properads and PROPs.

We begin in the non-symmetric case &P by describing a non-degenerate
shapely endofunctor ¥p which encodes the basic polycategorical wiring operations;
for this, it suffices by Example 6.10 to describe which well-labelled polygraphs
>p will contain. We make use of the operations on polygraphs of Definition 2.6
above. The elements id € £ (1,1) and (n,m) € £(n,m) in parts (a) and (d) of
this definition are well-labelled, and that the operations () je; (-) and ¢ - (—) - ¢
of parts (b) and (c) preserve well-labelledness; so it makes sense to give:

Definition 6.14. Let Yp be the non-degenerate shapely Up-analytic endofunctor
of #P which contains the following well-labelled polygraphs:
(i) id € 2(1,1);
(ii) ¢ - (n,m) - ¢ for each n,m and permutations ¢ € &,, and ¢ € &,;,;
(iii) (p,q) j® (n,m) € L(n+p—1,m+q—1) for all n,m,p, ¢ and all suitable
indices 1, J.

Theorem 6.15. The free shapely monad on the shapely Up-analytic endofunctor
Yp is the “free polycategory” monad on P; similarly, the monads for properads
and PROPs are free shapely monads on &P.

Proof. Since ¥p contains each of the shapes (n,m), we have by Example 6.10
that id C Xp; so by the formula of Proposition 6.13, the free shapely monad
on Yp is given by \/, (X¥p)™. To compute this, we first calculate for any non-
degenerate shapely Up-analytic endofunctor F' the composite ¥p - F'. Since F
is non-degenerate, it is by Example 6.10 specified by families of well-labelled
polygraphs Z(n,m) C £ (n,m); Xp - F' is then also non-degenerate, and so it
will suffice to determine the well-labelled polygraphs which it contains. These
polygraphs correspond to generic operations of ¥p - F' at stage y(,, ), and by
Definition 6.11 and Proposition 6.8, such operations are precisely the images of
the generic operations of ¥pF at stage y(; n,) under the unique pointwise analytic
YpF — Up; so it will suffice to compute these.

Now, by Proposition 4.23, any generic operation v: y(, ., — XpF'A is the
composite of a ¥p-generic operation s: y(, ,,) — XpB and an F-generic operation
t: B — FA. The first possibility is that

v = Y1) — Splys) 0, YpF(yx)
where s corresponds to id € Z(1,1). This v is sent by ¥pF — Up to a well-
labelled polygraph X € Z(1,1) with |X| =y, which clearly forces X =id. The
next possibility is that

s Sh(t
v = Yam) — 2P (Y(nm)) RN NG,

where s corresponds to ¢ - (n,m) - ¢ € £ (n,m), and t corresponds to some well-
labelled X € .%(n,m). The composite v is sent by XpF — Up to a well-labelled
Y € Z(n,m) with underlying polygraph |X|; to calculate the leaf labellings
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é%/, ..., 0¥ we apply (4.7) and Remark 4.15, which tell us that they arise by

PN Y
taking generic covers as to the left in:

Yo,
Yx Y%
Yo; 5 J Js
Yo Y, Vo,
- * (n,m) Zp(y%’(i))
v.yali lv EP(Y*) S EP(y(n,m))
SpF(€)) N
YpF(ys) ——— EpF(|X]) EP(t-yaV,(i))J sz(t)
e P )

EPF(y*) E—— ZPF(’X‘) .

But from the given forms of s and ¢, we have generic covers as to the right, and

so must have that £ = ¢% .. The same argument shows that Y = rX_, ., and
Lol R S )
so we conclude that in fact Y =1 - X - . The final possibility is that

Zp(t)
U= Yintp-timtg-1) — B (V) 1% Yinm) —— ZpFA

where s corresponds to (p,q) j®; (n,m) € L(n+p—1,m+q—1). As for the

F-generic ¢, note that the map ys;: yx = y(p,q) is a relative finite Ip-complex;

whence by virtue of the pushout (2.6) and Proposition 5.9, t must arise from a

pointwise pushout in &P | F of the form:

yTi
Y« — = Y(n,m)

> 7

Y(p.q) *Y(p,q) 1% Y(n,m) [T
0
¢

gy Py —— F|X|

- e

FlY| ——  FA

X
Fri

to

where tg is the unique F-generic operation at stage y., and t; and to are F-
generic operations corresponding to well-labelled polygraphs X € .%#(n,m) and
Y € Z(p,q). Since the bottom face is a pushout, we conclude that the generic v
must correspond to a well-labelled polygraph Z € £(n+p—1,m+ ¢ — 1) with
|Z| =Y je; X|; now a similar calculation to before shows that the labellings of
Z are such that, in fact, we have Z =Y ;o; X.

In sum, we have now shown that, for any non-trivial shapely Up-analytic
endofunctor F' containing the well-labelled polygraphs .% (n, m), the well-labelled
polygraphs contained in the shapely composite Xp - F' are given by:

(i) id € Z(1,1);

(i) - X -p e Z(n,m)for all X € #(n,m), ¢ € &, and ¢ € Spy;
(iii) Y X €e Z(n+p—1,m+q—1) forall X € F(n,m), Y € .F(p,q) and
suitable indices 1, j.

Consequently, the well-labelled polygraphs contained in the free shapely monad
V,,(£p)™ are those obtained by closing the (n,m)’s under the operations (a)-
(c) of Definition 2.6, and by definition, these are precisely the finite labelled
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polycategorical trees 7 (n,m). It follows from Example 6.10 that the free shapely
monad T" on Yp is given by TX (x) = X (%) and

TX(n,m) = ZTG?(n,m) ‘@P(|T‘7X)/6T = ZTGY(n,m) ZP(IT|, X)

where the second equality follows from the observation that a labelled polycate-
gorical tree has mo non-trivial label-preserving automorphisms. Comparing this
with the formula of Proposition 2.9 gives the result.

Adapting this result to the cases of properads and PROPs is almost trivial in our
framework; all we need to do is to replace the closure operations of Definition 2.6
which defined the class of polycategorical trees with the corresponding closure
operations defining the properadic graphs or the graphs for PROPs. Thus, for
example, the monad for properads on the category &P arises as the free shapely
monad on the shapely endofunctor specified by the well-labelled polygraphs

id, Y- (n,m)-¢p and (p,q)re;(n,m) .

The case of PROPs proceeds similarly. O

The argument just given for the free polycategory monad on &P applies
equally well to the free polycategory monad on &Ps. By adapting Example 6.10,
we see that the non-trivial shapely endofunctors of &?P; are specified by giving
subsets .Zs(n,m) C Zs(n, m) of well-labelled finite symmetric trees; so we can
define a shapely endofunctor ¥p, by requiring it to contain id € Z;(1,1) and
each (p,q) jo; (n,m) € Ls(n+p—1,m+q—1). Now following the precise same
argument as in Theorem 6.15 gives:

Theorem 6.16. The free shapely monad on the shapely Up, -analytic endofunctor
Yp, is the “free polycategory” monad on PPs; similarly, the monads for properads
and PROPs are free shapely monads on &Ps.
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