
HAL Id: hal-01246364
https://hal.science/hal-01246364v1

Submitted on 18 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trusted Execution Environment: What It is, and What
It is Not

Mohamed Sabt, Mohammed Achemlal, Abdelmadjid Bouabdallah

To cite this version:
Mohamed Sabt, Mohammed Achemlal, Abdelmadjid Bouabdallah. Trusted Execution Environment:
What It is, and What It is Not. 14th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, Aug 2015, Helsinki, Finland. �10.1109/Trustcom.2015.357�. �hal-
01246364�

https://hal.science/hal-01246364v1
https://hal.archives-ouvertes.fr


Trusted Execution Environment:

What It Is, and What It Is Not

Mohamed Sabt∗‡, Mohammed Achemlal∗† and Abdelmadjid Bouabdallah‡

∗Orange Labs, 42 rue des coutures, 14066 Caen, France

{mohamed.sabt, mohammed.achemlal}@orange.com
†Greyc ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen, France

‡Sorbonne universités, Université de technologie de Compiègne,

Heudiasyc, Centre de recherche Royallieu, 60203 Compiègne, France

{mohamed.sabt, madjid.bouabdallah}@hds.utc.fr

Abstract—Nowadays, there is a trend to design complex, yet
secure systems. In this context, the Trusted Execution Environ-
ment (TEE) was designed to enrich the previously defined trusted
platforms. TEE is commonly known as an isolated processing
environment in which applications can be securely executed
irrespective of the rest of the system. However, TEE still lacks a
precise definition as well as representative building blocks that
systematize its design. Existing definitions of TEE are largely
inconsistent and unspecific, which leads to confusion in the use
of the term and its differentiation from related concepts, such as
secure execution environment (SEE). In this paper, we propose
a precise definition of TEE and analyze its core properties.
Furthermore, we discuss important concepts related to TEE,
such as trust and formal verification. We give a short survey
on the existing academic and industrial ARM TrustZone-based
TEE, and compare them using our proposed definition. Finally,
we discuss some known attacks on deployed TEE as well as its
wide use to guarantee security in diverse applications.

I. INTRODUCTION

User requirements for security are increasingly becoming

demanding. New challenges arise, since modern systems are

becoming more and more complex, open and connected. Tra-

ditional security technologies can no longer meet the security

requirements of such architectures. This explains the recent

trend to integrate trusted computing concepts into different

systems, such as embedded systems [1].

Trusted Computing was defined to help systems to achieve

secure computation, privacy and data protection. Originally,

trusted computing relies on a separate hardware module that

offers a functional interface for platform security. The trusted

platform module (TPM) [2] allows a system to provide evi-

dence of its integrity and to protect cryptographic keys inside

a tamper-evident hardware module. The main shortcoming of

the TPM is that it does not provide an isolated execution

environment for third-party, thereby reducing its functionality

to a predefined set of APIs. A new approach to address trusted

computing is to allow the execution of arbitrary code within a

confined environment that provides tamper-resistant execution

to its applications. In the literature, many names exist to

this environment. Examples are closed-box VM [3], operator

virtual machine (OVM) [4], TrustZone software (TZSW) [5],

and trusted language runtime [6]. In this paper, we are going

to refer to this environment using the term coined by Glob-

alPlatform in [7], that is trusted execution environment (TEE).

A TEE is a secure, integrity-protected processing envi-

ronment, consisting of memory and storage capabilities [8].

For marketing purposes, the term TEE is heavily used in

advertisements of chip vendors and platform providers [9],

[10]. The first deployed system with TEE appeared almost a

decade ago demonstrated by a joint venture of Orange, Trusted

Logic and STMicroelectronics [11]. Nevertheless, no common

and precise understanding for this term has been established

so far, and no framework has been proposed to evaluate and

compare TEE solutions. To underline this observation, we cite,

in a chronological order, four definitions of TEE demonstrating

the inconsistent use and understanding of the term:

1) Ben Pfaff, Terra, 2003 [3] The TEE is a “dedicated

closed virtual machine that is isolated from the rest of

the platform. Through hardware memory protection and

cryptographic protection of storage, its contents are pro-

tected from observation and tampering by unauthorized

parties.”

2) OMTP, Advanced Trusted Environment, 2009 [12] “The

TEE resists against a set of defined threats and satisfies

a number of requirements related to isolation properties,

lifecycle management, secure storage, cryptographic

keys and protection of applications code.”

3) GlobalPlatform, TEE System Architecture, 2011 [7] “The

TEE is an execution environment that runs alongside

but isolated from the device main operating system. It

protects its assets against general software attacks. It

can be implemented using multiple technologies, and

its level of security varies accordingly.”

4) Jonathan M. McCune, Trustworthy Execution on Mo-

bile Devices, 2013 [13] “The set of features intended

to enable trusted execution are the following: isolated

execution, secure storage, remote attestation, secure pro-

visioning and trusted path.”

All definitions somehow mention isolated execution and

secure storage. In these two points there appears to be some

consent. However, definitions (1) and (3) are less explicit

about secure storage. Definition (1) specifically states crypto-



graphic protection as the only means to achieve secure storage,

whereas definition (3) tries to capture secure storage in a

generic way as a ‘protection of assets’. In addition, defini-

tion (1) describes isolation as the protection of the integrity

and confidentiality of the TEE runtime states. Regarding the

required security level, definitions largely differ from each

others. Definitions (1) and (4) do not specify a threat model for

the TEE. Definition (3) vaguely includes all software attacks

in the threat model, while definition (2) clearly specifies the

threats against which the TEE must resist. Definition (1)

describes the TEE as a ‘dedicated closed virtual machine’,

while the other definitions do not provide any detail about

the nature of the execution environment. Some definitions

are concerned by particular properties. For instance, definition

(2) and McCune’s definition (4) involve content management

by indicating that TEE should remotely manage and update

its data in a secure way (secure provisioning). Furthermore,

the McCune’s definition is specific to the context of human-

interface devices, and therefore it includes the requirement of

interaction between the TEE and end-users (trusted path).

We argue that existing definitions of TEE fail to capture the

core aspects of this term in a clear and unambiguous manner

and are even contradictory in some parts. To address this issue,

in this paper, we propose a new refined definition of TEE

considering its core aspects and the ‘separation kernel’ trusted

model (Section II). Thereby, we differentiate TEE from some

related concepts. In Section III, we present the building blocks

that capture the TEE design, followed by Section IV, in which

we review the principal formal methods used in the context of

TEE. Section V gives a brief survey on the existing industrial

and academic TEE, and compares them using our proposed

definition. In Section VI, we discuss some known attacks on

deployed TEE, and classify the research propositions defined

in the literature that rely on TEE to guarantee security. We

end with a brief summary.

II. TRUSTED EXECUTION ENVIRONMENT

In this section, we first describe the model of ‘separation

kernel’, which is a fundamental concept related to the dual-

execution-environment approach [14], and thus to the TEE.

We then present a new refined and comprehensive definition,

as well as analyze its core aspects. Finally, we distinguish the

TEE from some related terms: secure execution environment

(SEE) and dynamic root of trust measurement (DRTM).

A. Prerequisite: Separation Kernel

The separation kernel is a foundation component of the

TEE. It is the element that assures the property of isolated

execution. The separation kernel, firstly introduced in [15], is

a security kernel [16] used to simulate a distributed system.

Its main design purpose is to enable the coexistence of

different systems requiring different levels of security on the

same platform. Basically, it divides the system into several

partitions, and guarantees a strong isolation between them,

except for the carefully controlled interface for inter-partition

communication.

The security requirements for separation kernels are

described in the Separation Kernel Protection Profile

(SKPP) [17]. The SKPP defines separation kernel as “hardware

and/or firmware and/or software mechanisms whose primary

function is to establish, isolate and control information flow

between [...] those partitions.”. Unlike traditional security

kernels, such as operating systems, micro-kernels and hyper-

visors, the separation kernel is quite simple, providing both

time and space partitioning.

The security requirements are composed of four main

security policies:

• Data (spatial) separation. Data within one partition can-

not be read or modified by other partitions;

• Sanitization (temporal separation). Shared resources can-

not be used to leak information into other partitions;

• Control of information flow. Communication between

partitions cannot occur unless explicitly permitted;

• Fault isolation. Security breach in one partition cannot

spread to other partitions.

B. Definition

Trusted Execution Environment (TEE) is a tamper-

resistant processing environment that runs on a separation

kernel. It guarantees the authenticity of the executed code, the

integrity of the runtime states (e.g. CPU registers, memory

and sensitive I/O), and the confidentiality of its code, data

and runtime states stored on a persistent memory. In addition,

it shall be able to provide remote attestation that proves its

trustworthiness for third-parties. The content of TEE is not

static; it can be securely updated. The TEE resists against

all software attacks as well as the physical attacks performed

on the main memory of the system. Attacks performed by

exploiting backdoor security flaws are not possible.

C. Discussion

We define TEE as an execution environment which protects

both its runtime states and stored assets, hence the need

for isolation and secure storage. Unlike dedicated hardware

coprocessors, TEE is able to easily manage its content by

installing or updating its code and data. In addition, it must

define mechanisms to securely attest its trustworthiness to

third-parties. The threat model includes all software attacks

and the physical attacks performed on the main memory and

its non-volatile memory by a powerful adversary.

We argue that our definition is more general and includes

all the previously presented definitions of TEE. Secure exe-

cution, openness and trust are its main parts. Conceptually,

our definition means that no untrusted code should be able

to cause, enable, or prevent any event in the TEE. Events

include not only the execution of instructions, but also traps,

exceptions and interruptions. ‘Trust’ is discussed further in the

next subsection.

D. How Trust Can Be Measured

As mentioned in the above definition, and as its name

indicates, the concept of trust is crucial to the TEE. Thus,



a direct comparison between two systems in terms of TEE

is only possible if trust can be quantified. The main problem

is that trust is a subjective property, hence non-measurable.

In English, trust is the “belief in honesty and goodness of a

person or thing.”. A belief is hard to capture in a quantified

way. The notion of trust is more subtle in the field of computer

systems. In the real world, an entity is trusted if it has behaved

and/will behave as expected. In the computing world, trust

follows the same assumption.

In computing, trust is either static or dynamic. A static

trust is a trust based on a comprehensive evaluation against

a specific set of security requirements. The Common Criteria

(CC) [18] are an international standard that provides assurance

measures for the security evaluation. The CC specify seven

evaluation assurance levels (EAL1–EAL7), where levels with

higher numbers include all requirements of the preceding

levels. In static trust, the trustworthiness of a system is

measured only once and before its deployment. Dynamic trust

is quite different. It is based on the state of the running system,

and thus it varies accordingly. A system continuously changes

its “trust status”. In dynamic trust, the trustworthiness of a

system is constantly measured throughout its lifecycle.

The concept of dynamic trust is based on the existence of a

secure and reliable means that provides evidence of the trust

status of a given system. Trust, in this context, can be defined

as an expectation that the system state is as it is considered to

be: secure. This definition requires a trusted entity called Root

of Trust (RoT) to provide trustworthy evidence regarding the

state of a system. The role of RoT is divided into two parts.

First is the trusted measurement and second is the function

that computes the trust score. The trustworthiness of the sys-

tem, namely the generated score, depends on the reliability of

the trust measurement. If a malicious entity can influence the

trust measurement, then the generated score of trustworthiness

is of no value. Therefore, RoT is necessarily a tamper-resistant

hardware module. RoT, sometimes called trust anchor, can

be implemented using various technologies. This depends on

the hardware platform that is used to guarantee the isolation

properties in the separation kernel. For instance, TrustZone-

based systems [19] rely on secureROM or eFuse technology

as trust anchor. PUF, Physically Unclonable Function, is a

promising RoT technology for TEE [20].

Trust in TEE is a hybrid trust; it is both static and semi-

dynamic. Before deployment, a TEE must be certified by

thoroughly verifying its security level in accordance of a

protection profile, a document that contains a predefined set

of security requirements. For instance, GlobalPlatform defines

a protection profile that conforms to EAL2 [21]. In addition,

during each boot, the RoT assures that the loaded TEE is

the one certified by the platform provider. Strictly speaking,

RoT protects the integrity of the TEE code. Once running, the

integrity is protected by the underlying separation kernel. The

trust in TEE is considered semi-dynamic because the TEE is

not supposed to change its trust level while running because

it is protected by the separation kernel. In this model of trust,

the trust measurements are integrity measurements, and the

trust score is a boolean that indicates the integrity state of the

code. The TEE is trusted when its trust score is true, untrusted

otherwise. The quality of the trust score depends on the defined

measurements for integrity.

To evaluate the actual trust, as a first step, we define a trust

function f(TEE, protection profile, RoT, measurements) as

a function that returns the trust level of a given TEE depending

on three parameters: the certificating protection profile, the

reliability of RoT, and the integrity measurements. The precise

definition of this function is beyond the scope of this paper.

E. Related Concepts

In this section, we highlight the conceptual differences

between TEE and the related terms SEE and DRTM.

Secure Execution Environment (SEE) is a prerequisite for

TEE, but it does not consider trust aspects. SEE is a process-

ing environment that guarantees the following properties: (1)

authenticity: the code under execution should not have been

changed; (2) integrity: runtime states should not have been

tampered with; and (3) confidentiality: code, data and runtime

states should not have been observable by unauthorized ap-

plications, or even by the main OS of the system. In contrast

to TEE, the design of SEE does not involve RoT to assert

the integrity and authenticity of the loaded code. Moreover, it

does not define secure mechanisms to update its applications

and confidential data. In fact, in our definition, TEE is an open

SEE that guarantees trust.

Dynamic Root of Trust Measurement (DRTM) is a group

of techniques that enables some pieces of code to be executed

in an isolated environment, without trusting the previously

loaded software. This technology has been used to securely

execute critical software applications. Unlike TEE, the trusted

computing base (TCB) of DRTM is not limited to the code

running in the isolated environment, but it also includes a

small part of the main OS. Moreover, DRTM does not provide

secure storage or include trusted mechanisms, such as remote

attestation and integrity measurement, in its core design.

In contrast to the TEE definition stated above, the isolated

execution environment needs to use the main memory as its

runtime memory, and hence is vulnerable to attacks on main

memory. TEE is supposed to resist against physical attacks on

main memory by executing its code in a protected memory. It

is worth noting that DRTM does not allow concurrency. All

software is frozen until the end of the isolated environment

execution. Therefore, DRTM is not suitable for systems which

execute non-secure applications with real-time constraints.

III. TEE BUILDING BLOCKS

To capture the core design aspects of TEE, we propose the

following definitions which are illustrated in the figure 1.

• Secure Boot assures that only code of a certain property

can be loaded. If a modification is detected, the bootstrap

process is interrupted. An example implementation of secure

boot, as proposed by Arbaugh et al., is to verify the integrity

of a succeeding component according to a given reference

value [22]. Generally speaking, the design of secure boot



Fig. 1. An Overview of TEE Building Blocks

consists of various stages, and therefore, a chain of trust is

established. This chain can be represented by the recurrence:

I0 = True;

Ii+1 = Ii ∧ Vi(Li+1)

where Ii denotes the integrity of layer i and Vi is the

corresponding verification function. The verification function

performs cryptographic hash of the ith layer, and compares the

result to the reference value. We note that without the integrity

of the initial boot code, represented by the I0, any further

integrity verification becomes pointless. Thus, the initial boot

code is protected by a tamper-evident hardware module.

• Secure Scheduling assures a “balanced” and “efficient”

coordination between the TEE and the rest of the system.

Indeed, it should assure that the tasks running in the TEE

do not affect the responsiveness of the main OS. Thus,

the scheduler is often designed preemptive. Furthermore, the

scheduler should take real-time constraints into consideration.

Authors in [23] propose a secure scheduler that enhances the

responsiveness of the main OS without compromising the real-

time performance of the system.

• Inter-Environment Communication defines an interface

allowing TEE to communicate with the rest of the system.

Despite its numerous benefits, it introduces new threats: (1)

message overload attacks [24]; (2) user and control data cor-

ruption attacks [25]; (3) memory faults caused by shared pages

being removed; and (4) unbound waits caused by the non-

cooperation of the untrusted part of system. There exist vari-

ous methods and implementations of inter-environment com-

munication. However, each mechanism should satisfy three

key attributes: reliability (memory/time isolation), minimum

overhead (unnecessary data copies and context switches), and

protection of communication structures. In the literature, we

identify three models of communication: (1) GlobalPlatform

TEE Client API [26]; (2) secure RPC (Remote Procedure

Call) of Trusted Language Runtime [6]; and (3) real-time

RPC of SafeG [27]. Secure inter-environment communication

is proposed in [28].

• Secure Storage is storage where confidentiality, integrity

and freshness (i.e., to protect against replay attacks and to

enforce state continuity [29]) of stored data are guaranteed,

and where only authorized entities can access the data [30]. A

common way to implement secure storage is sealed storage.

Sealed storage is based on three components: (1) integrity-

protected secret key that can be accessed only by the TEE; (2)

cryptographic mechanisms, such as authenticated encryption

algorithms; and (3) data rollback protection mechanism, such

as replay-protected memory blocks (RPMB) (see [31]).

• Trusted I/O Path protects authenticity, and optionally con-

fidentiality, of communication between TEE and peripherals

(e.g., keyboard or sensors) [32]. Thus, input and output data

are protected from being sniffed or tampered with by malicious

applications. To be more precise, trusted I/O path protects

against four classes of attacks: screen-capture attack, key

logging attack, overlaying attack, and phishing attack. Trusted

path to user-interface devices enables broader functionality

within TEE. It allows a human user to directly interact with

applications running inside TEE. Examples of trusted user-

interface can be found in [33]–[35].

IV. FORMAL METHODS

The design of TEE, or any piece of software, consists of

two aspects: requirements specification and implementation. A

TEE is said to be correct if its implementation is verified to

satisfy all the defined requirements. Formal methods, which

are mathematically based languages and techniques, are used

to prove correctness. Although formal methods do not neces-

sarily guarantee correctness, they provide insights which prove

useful in constructing better systems.

There are two goals for formal methods: specification

and verification. Formal specifications aim at describing the

requirements of a system in a syntax-based language. They

are a necessary condition to perform proof-based verification

on implementation. A set of formal specifications, combined

with a formal language produce a formal model. In literature,

there are several formal models for separation kernel. The most



TEE
Author

laboratory/company
License TCB Size Supported Normal World Supported Hardware Platform

ObC Nokia Close 10kB Symbian OS 300 MHz OMAP 2420

<t-base Trustonic Close Unknown Android Samsung Exynos platforms

Andix OS TU Graz University of Technology Open-source Unknown Linux iMX53 QSB

TLK NVidia Open-source 128kB Android Tegra SoCs

TLR Microsoft Close 152.7 KLOC .NET CLR Tegra 250 Dev Kit

SafeG Nagoya University Open-source 1.96 kB TOPPERS/ASP PB 1176 JZF-S board

TABLE I
AN OVERVIEW OF THE COMPARED TEES

widely used formal specifications for separation kernel are

those proposed by Greve, Wilding and Vanfleet (GWV) [36].

Concerning formal languages, the mainly used are Z notation,

B method [37], HOL4 (a variation of High Order Logic) [38],

and ACL2 (A Computational Logic for Applicative Common

Lisp) [39]. Formal verification is used to analyze the formal

model for the desired properties. Two general approaches to

formal verification exist in practice today. The first, model

checking, is a technique in which systems are modeled as

finite state systems. The second, theorem proving, proves that

a system satisfies the specifications by deductive reasoning.

Although proofs can be constructed by hand, machine-assisted

theorem provers are used in most cases. Theorem proving is

used more often than model checking because it can efficiently

deal with complex properties.

We illustrate with two formally verified separation kernels.

INTEGRITY-178B [40] is a separation kernel of Green Hills

Software that is certified EAL6+. It uses GWV as formal

specifications, ACL2 as formal language, theorem proving

as formal verification method, and ACL2 theorem prover.

SeL4 [41] is developed by NICTA and was formally verified

for security critical domain. It uses information flow security

as formal specifications, HOL as formal language, theorem

proving as formal verification method, and Isabelle/HOL the-

orem prover.

Formal methods play an important role in computing the

‘trust level’ defined by the trust function (II-D), since the

protection profile could be defined using formal specifications

and proved using formal verification. This could highly im-

prove the trust level. However, formal methods are not a silver

bullet. The trust function has other parameters and they could

negatively impact the global trust level, even though formal

methods are employed. For the best of our knowledge, there

is no TEE that is formally verified. We believe that formal

characterization of TEE specifications will be regarded as a

considerable contribution. The most difficult part will be to

include all the components and building blocks in a single

model, despite their heterogeneity. Any formal model must at

least comprise the underlying separation kernel, the root of

trust and the secure execution environment.

V. ARM TRUSTZONE-BASED TEE

ARM TrustZone technology can be seen as a special kind

of virtualization with hardware support for memory, I/O and

interrupt virtualization [42]. This virtualization enables ARM

core to provide an abstraction of two virtual cores (VCPUs):

secure VCPU and non-secure VCPU. The monitor is seen

as a minimal hypervisor whose main role is the control of

information flow between the two virtual cores.

A short survey on the existing TrustZone-based TEE solu-

tions in both the academic and industrial worlds is presented.

A. Industrial TEEs

Established companies have invested to define their own

TEE and integrate them in their devices. Some companies

have published their architecture, while some have preferred

secrecy over openness. Companies which open their TEE

include Nokia and Samsung. Nokia, currently Microsoft in-

tegrate their TEE called ObC [43] into Nokia Lumia devices.

Samsung define TZ-RKP [44] that is deployed on the latest

Samsung Galaxy series. Closed-architecture TEEs include <t-

base of Trustonic [9], SecuriTEE of Solacia [10], and QSEE

of Qualcomm. Sierraware [45] propose two versions of TEE:

open-source TEE that is called SierraTEE and a licensed TEE.

Trusted Foundation and Mobiore, defined by Trust Logic and

G&D respectively, are disappearing from the market because

the two companies joined their efforts and formed Trustonic.

We also consider as industrial TEEs those which are defined

by companies, but there is no public information about their

deployment on commercial devices. STMicroelectronics, in

collaboration with Linaro make their TEE called OP-TEE

available on GitHub [46]. Nvidia proposes an open-source

implementation of TEE called TLK.

B. Academic TEEs

In the academic world, many prototypes of TEE exist. We

only mention seven of them: (1) Genode TEE defined by Gen-

ode Labs [35]; (2) Open TEE defined by Intel Collaborative

Research Institute for Secure Computing [47]; (3) Andix OS

defined at TU Graz University of Technology; (4) ARMithril

defined at North Carolina State University; (5) SafeG defined

at Nagoya University [48]; (6) ViMoExpress defined by Elec-

tronics and Telecommunication Research Institute [49]; and

(7) TLR defined by Microsoft Research [6].

C. Comparative Study

We compare six TEE solutions using our proposed building

blocks. An overview of these TEEs are presented in table I. We

decided to compare only these TEEs because they represent

well the wide spectrum of the different solutions. We do not



TEE Provisioning Secure storage Secure UI Inter-world communication

ObC

Open provisioning, which means
that the content management
does not need the approval of
any trusted-party.

Sealing storage using AES-EAX
authenticated encryption. The root
key is derived from a one-time
programmable (e-Fuse) persistent
on-chip key.

Defined Proprietary interface

<t-base

Owner-centric provisioning
model in which an application
to be installed on TEE needs to
be encrypted using a key derived
from the platform secret key.

Sealing storage which is not
based on file systems. Instead,
the unit of storage is an object.
Objects are organized into a
tree-like structure. Containers are
protected by the secret key of
their parent.

Defined
GlobalPlatform TEE
Client API

Andix OS Not defined Sealing storage Not defined
GlobalPlatform TEE
Client API

TLK Not defined Sealing storage Not defined Proprietary interface

TLR Not defined
Sealing storage with mechanisms
to protect against rollback attack.

Not defined .NET Remoting

SafeG Not defined Unknown Defined Secure RPC

TABLE II
A COMPARISON STUDY OF THE SIX REPRESENTATIVE TEE SOLUTIONS

include secure boot in our comparison criteria, since Non-

disclosure agreements (NDA) prevent authors from providing

details about their secure boot.

As illustrated in table II, only the two TEE widely de-

ployed, namely ObC and <t-base, provide secure provisioning.

Trustonic attempts to control the content management of its

TEE, while ObC opens their TEE for any party to install secure

applications. Similarly, due to its high complexity, secure UI is

not defined for all TEE. Concerning secure storage, it is often

accomplished using sealing storage with AES encryption.

Our comparative table shows that there is no clear standard

for inter-environment communication. The use of proprietary

interface is common.

VI. ATTACKS AND APPLICATIONS

We first discuss the attacks conducted on TEE deployed

on mobile devices. We then provide a classification of the

proposed applications that rely on TEE to guarantee security.

A. Attacks

TEE has been heavily promoted as the silver bullet solution

that provides secure processing in mobiles and embedded

systems. However, far from speculative bubbles and market-

ing claims, security experts have not put TEE to the test,

especially because of non-disclosure agreement (NDA). The

attack surface of TrustZone-based TEE is: software exceptions

(e.g. SMC call), hardware exceptions (e.g. interrupts), shared

memory interface, peripherals, and TEE-specific calls. The

threat model includes a powerful attacker who is able to

execute an arbitrary code in the kernel privileges.

To the best of our knowledge, three attacks have been

published against QSEE or a manufacturer-customized version

of QSEE. QSEE is an enticing target for attackers, since

Qualcomm controls the majority of the market of Android

devices. In addition, it is easier to exploit security flaws, as

the memory layout of QSEE is known. In fact, the QSEE

resides unencrypted on eMMC flash and loaded at known

physical address. Disassemblers are used to gain insight into

QSEE implementation. In [50], authors present an exploit that

is caused by code added by HTC. The exploit enables the

execution of an arbitrary code within TrustZone in the secure

region of the memory. D. Rosenberg unlocks the bootloader

of Motorola Android phones using two different exploits. The

first exploit is about overwriting part of the secure region of

the memory with certain values [51]. This is used to bypass the

check of the function that unlocks the bootloader. The exploit

works only on Qualcomm-based Motorola Android phones.

The second exploit affects all Android phones that utilize

Qualcomm Snapdragon SoC [52]. By issuing specially crafted

SMC requests, an attacker can execute an arbitrary code inside

the QSEE. This vulnerability may be used to compromise any

applications relying on TEE for security.

Besides exploiting SMC calls, the shared memory can

be manipulated to find vulnerabilities. In [53], a module

intercepting exchanged data between the normal world and

the secure world is implemented. This module is integrated

inside the kernel driver which interacts with the TEE. The

targeted TEE by this attack is MobiCore and its goal is to

better understand the internal workings of MobiCore trustlets.

B. Applications

The use of TEE paves the way for offering services requir-

ing a high level of security in a complex and connected system.

Most of TEE applications defined in the literature are designed

for smartphones. It is used to provide a wide range of secure

services: ticketing [54], [55], privacy-friendly public transport

ticketing [56], online transaction confirmation [57], privacy-

friendly online prepaid mobile payment [58], [59], media

content protection [60], [61], authentication to access cloud

storage services [62], [63], two factor authentication [64], [65],

and trusted sensors [66].

TEE is also used to implement TPM (Trusted Platform

Module) on a software-only basis, without the need for ad-

ditional special purpose hardware [67]–[69]. There is a trend



to use TEE to secure various embedded system platforms, such

as sensors and Internet of Things [70].

TEE was used recently to provide self-protection to auto-

nomic systems. Azab et.al perform real-time protection for

kernels of mobile devices [44], while authors of [71] pro-

pose introspection mechanisms for operating systems using

TrustZone-based trusted execution environment.

VII. RELATED WORK

This paper could be considered as a survey on the domain of

trusted execution environment. Our approach is distinguished

from existing surveys. The closest work to ours are [8], [72].

In [8], authors discuss trust computing in mobile devices. They

focus on existing technologies and fail to provide a theoretical

framework for TEE. Arfaoui et al. [72] present TEE uniquely

according to GlobalPlatform standards.

The particularity of our work is that we present a refined

definition of TEE. Its core properties are clearly defined.

Other important related topics are discussed, such as formal

verification, known attacks, and a classification of the proposed

applications in the literature using TEE to guarantee security.

VIII. CONCLUSION

TEE has practical interests and can be used to construct

complex systems. Thus, we believe that deeper understanding

of TEE is required in order to design better and more trust-

worthy systems.

In this paper, we proposed a refined definition of TEE to

contribute in establishing a common understanding of this

term in the context of trusted computing. Furthermore, we

examined the building blocks of TEE explicitly differentiating

it conceptually from the classical notions of SEE and DRTM.

Moreover, we discussed how trust can be measured as well as

formal verification for TEE. Finally, we discussed TrustZone-

based TEE, by providing a short survey using our proposed

definition, presenting the known attacks and classifying the

proposed applications of TEE in the literature.

Many challenges exist. Our future work will focus on

providing a formal definition for TEE, as well as explicitly

defining the trust function in order to compute the trust level

for the different TEE platforms.

REFERENCES

[1] N. Anciaux, L. Bouganim, B. Nquyen, I. S. Popa, P. Pucheral, and
P. Bonnet, Trusted cells: a sea change for personal data services, ser.
ITU Technical Report Series. IT-Universitetet i København, 2012.

[2] “Trusted platform module (tpm) specifications.” [Online]. Available:
https://www.trustedcomputinggroup.org/specs/TPM

[3] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra:
a virtual machine-based platform for trusted computing,” SIGOPS Oper.

Syst. Rev., vol. 37, no. 5, pp. 193–206, Oct. 2003.
[4] “Secure payment via mobiles,” Card Technology Today, vol. 17, no. 3,

p. 5, 2005.
[5] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, “Implementing

embedded security on dual-virtual-cpu systems,” IEEE Des. Test, vol. 24,
no. 6, pp. 582–591, Nov. 2007.

[6] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,” SIGARCH

Comput. Archit. News, vol. 42, no. 1, pp. 67–80, Feb. 2014.
[7] GlobalPlatform, “TEE system architecture,” 2011. [Online]. Available:

http://www.globalplatform.org/specificationsdevice.asp

[8] N. Asokan, J. E. Ekberg, K. Kostiainen, A. Rajan, C. Rozas, A. R.
Sadeghi, S. Schulz, and C. Wachsmann, “Mobile trusted computing,”
Proceedings of the IEEE, vol. 102, no. 8, pp. 1189–1206, Aug. 2014.

[9] “Trustonic,” 2014. [Online]. Available: https://www.trustonic.com/

[10] Solacia, “SecuriTEE.” [Online]. Available: http://www.sola-cia.com/en/
securiTee/product.asp

[11] “STMicroelectronics, orange, and trusted logic to demonstrate secure
mobile phone and payment application,” 2005. [Online]. Available: http:
//phys.org/news3041.html

[12] OMTP limited, “Advanced trusted environment: omtp tr1 v1.1,” 2009.

[13] A. Vasudevan, J. M. McCune, and J. Newsome, Trustworthy execution

on mobile devices. Springer Publishing Company, Incorporated, 2013.

[14] M. Sabt, M. Achemlal, and A. Bouabdallah, “The dual-execution-
environment approach: analysis and comparative evaluation,” in ICT Sys-

tems Security and Privacy Protection, ser. IFIP Advances in Information
and Communication Technology. Springer International Publishing,
2015, vol. 455, pp. 557–570.

[15] J. M. Rushby, “Design and verification of secure systems,” SIGOPS

Oper. Syst. Rev., vol. 15, no. 5, pp. 12–21, Dec. 1981.

[16] J. Ames, Stanley R., M. Gasser, and R. R. Schell, “Security kernel
design and implementation: an introduction,” Computer, vol. 16, no. 7,
pp. 14–22, Jul. 1983.

[17] “U.S. government protection profile for separation kernels in environ-
ments requiring high robustness,” National Security Agency, Tech. Rep.,
Jun. 2007, version 1.03. [Online]. Available: https://www.niap-ccevs.org/
pp/pp skpp hr v1.03.pdf

[18] “The common criteria,” 2014. [Online]. Available: https:
//www.commoncriteriaportal.org/

[19] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, “Implementing
embedded security on dual-virtual-cpu systems,” IEEE Des. Test, vol. 24,
no. 6, pp. 582–591, Nov. 2007.

[20] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng, “Providing toot of trust
for arm trustzone using sram pufs,” IACR Cryptology ePrint Archive, vol.
2014, p. 464, 2014.

[21] GlobalPlatform Device Committee, “Tee protection profile,” 2014,
version 1.2. [Online]. Available: http://www.globalplatform.org/
specificationsdevice.asp

[22] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable
bootstrap architecture,” in Proceedings of the 1997 IEEE Symposium

on Security and Privacy, ser. SP ’97. Washington, DC, USA: IEEE
Computer Society, 1997, pp. 65–71.

[23] D. Sangorrı́n, S. Honda, and H. Takada, “Integrated scheduling for a
reliable dual-os monitor,” IPSJ Transactions on Advanced Computing

Systems (ACS), vol. 5, no. 2, pp. 99–110, mar 2012.

[24] J. Regehr and U. Duongsaa, “Preventing interrupt overload,” SIGPLAN

Not., vol. 40, no. 7, pp. 50–58, Jun. 2005.

[25] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in Proceedings of the 14th Conference

on USENIX Security Symposium - Volume 14, ser. SSYM’05. Berkeley,
CA, USA: USENIX Association, 2005, pp. 12–12.

[26] GlobalPlatform Device Technology, “Tee client api specification,”
2010, version 1.0. [Online]. Available: http://www.globalplatform.org/
specificationsdevice.asp

[27] D. Sangorrı́n, S. Honda, and H. Takada, “Reliable and efficient dual-os
communications for real-time embedded virtualization,” Information and

Media Technologies, vol. 8, no. 1, pp. 1–17, 2013.

[28] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: secure
channel between rich execution environment and trusted execution envi-
ronment,” in Proceedings of 2015 Annual Network and Distributed System

Security Symposium (NDSS’15), February 2015.

[29] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune,
“memoir: practical state continuity for protected modules,” in Proceedings

of the 2011 IEEE Symposium on Security and Privacy, ser. SP ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 379–394.

[30] H. Löhr, A. R. Sadeghi, and M. Winandy, “Patterns for secure boot
and secure storage in computer systems,” in Proceedings of the 2010

International Conference on Availability, Reliability, and Security, ser.
ARES ’10. IEEE Computer Society, Feb. 2010, pp. 569–573.

[31] V. Tsai, “emmc v4.41 and v4.5. architecture for high speed functions and
features,” 2010. [Online]. Available: http://www.jedec.org/sites/default/
files/Victor Tsai.pdf

[32] “Trusted computer system evaluation criteria,” U.S. Department of
Defense, Tech. Rep. DoD 5200.28-STD, Dec. 1985.



[33] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li,
“Building trusted path on untrusted device drivers for mobile devices,”
in Proceedings of 5th Asia-Pacific Workshop on Systems, ser. APSys ’14.
New York, NY, USA: ACM, 2014, pp. 8:1–8:7.

[34] D. Liu and L. P. Cox, “Veriui: attested login for mobile devices,” in
Proceedings of the 15th Workshop on Mobile Computing Systems and

Applications, ser. HotMobile ’14. New York, NY, USA: ACM, 2014,
pp. 7:1–7:6.

[35] GENODE Operating System Framework, “An exploration of arm
trustZone technology,” 2014. [Online]. Available: http://genode.org/
documentation/articles/trustzone

[36] D. Greve, M. Wilding, and M. Vanfleet, “A separation kernel formal
security policy,” in Fourth International Workshop on the ACL2 Prover

and Its Applications (ACL2-2003), 2003.

[37] K. Kawamorita, R. Kasahara, Y. Mochizuki, and K. Noguchi, “Applica-
tion of formal methods for designing a separation kernel for embedded
systems,” vol. 4, no. 8, pp. 1076–1084, 2010.

[38] “HOL4,” 2014. [Online]. Available: http://hol.sourceforge.net/

[39] “ACL2,” 2015. [Online]. Available: http://www.cs.utexas.edu/users/
moore/acl2/

[40] R. J. Richards, “Modeling and security analysis of a commercial real-
time operating system kernel,” in Design and Verification of Microproces-

sor Systems for High-Assurance Applications, D. S. Hardin, Ed. Springer
US, 2010, pp. 301–322.

[41] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “Sel4: from general purpose to a proof
of information flow enforcement,” in Proceedings of the 2013 IEEE

Symposium on Security and Privacy, ser. SP ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 415–429.

[42] ARMLtd, “Arm security technology - building a secure system using
trustzone technology,” 2009.

[43] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board cre-
dentials with open provisioning,” in Proceedings of the 4th International

Symposium on Information, Computer, and Communications Security, ser.
ASIACCS ’09. New York, NY, USA: ACM, 2009, pp. 104–115.

[44] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 90–102.

[45] SierraWare, “Sierratee for arm trustzone.” [Online]. Available: http://
www.sierraware.com/open-source-ARM-TrustZone.html

[46] P. Brand, “Op-tee.” [Online]. Available: https://github.com/OP-TEE

[47] “Open-tee.” [Online]. Available: https://github.com/Open-TEE

[48] D. Sangorı́n, S. Honda, and H. Takada, “Dual operating system ar-
chitecture for real-time embedded systems,” in Proceedings of the 6th

International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT), 2010, pp. 6–15.

[49] S.-C. Oh, K. Koh, C.-Y. Kim, K. Kim, and S. Kim, “Acceleration of
dual os virtualization in embedded systems,” in 2012 7th International

Conference on Computing and Convergence Technology (ICCCT), Dec
2012, pp. 1098–1101.

[50] N. Keltner and C. Holmes, “Here be dragons: vulnerabilities in trust-
zone,” 2014. [Online]. Available: http://atredispartners.blogspot.jp/2014/
08/here-be-dragons-vulnerabilities-in.html

[51] D. Rosenberg, “Unlocking the motorola bootloader,” 2013.
[Online]. Available: http://blog.azimuthsecurity.com/2013/04/
unlocking-motorola-bootloader.html

[52] ——, “Reflections on trusting trustzone,” Presented at Black Hat 2014.

[53] S. Blog, “A software level analysis of trustzone os and
trustlets in samsung galaxy phone,” 2013. [Online]. Available:
http://www.sensepost.com/blog/9114.html

[54] W. H. W. Hussin, P. Coulton, and R. Edwards, “Mobile ticketing system
employing trustzone technology,” in Proceedings of the International

Conference on Mobile Business, ser. ICMB ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 651–654.

[55] W. H. Wan Hussin, R. Edwards, and P. Coulton, “E-pass using drm in
symbian V8 os and trustzone: securing vital data on mobile devices,”
in Proceedings of the International Conference on Mobile Business, ser.
ICMB ’06. Washington, DC, USA: IEEE Computer Society, 2006.

[56] S. Tamrakar, J.-E. Ekberg, and N. Asokan, “Identity verification schemes
for public transport ticketing with nfc phones,” in Proceedings of the Sixth

ACM Workshop on Scalable Trusted Computing, ser. STC ’11. New York,
NY, USA: ACM, 2011, pp. 37–48.

[57] L. Li, D. Huang, Z. Shen, and S. Bouzefrane, “A cloud based dual-root
trust model for secure mobile online transactions,” in WCNC’13, 2013,
pp. 4404–4409.

[58] M. Pirker and D. Slamanig, “A framework for privacy-preserving mobile
payment on security enhanced arm trustzone platforms,” in Proceedings

of the 2012 IEEE 11th International Conference on Trust, Security

and Privacy in Computing and Communications, ser. TRUSTCOM ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 1155–1160.

[59] M. Pirker, D. Slamanig, and J. Winter, “practical privacy preserving
cloud resource-payment for constrained clients,” in Proceedings of the

12th International Conference on Privacy Enhancing Technologies, ser.
PETS’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 201–220.

[60] R. Tögl, J. Winter, and M. Pirker, “A path towards ubiquitous protection
of media,” in Proceedings Workshop on Web Applications and Secure

Hardware, ser. CEUR Workshop Proceedings, vol. 1011. Technical
University of Aachen, 2013, pp. 32–38.

[61] Z. Ahmad, L. Francis, T. Ahmed, C. Lobodzinski, D. Audsin, and
P. Jiang, “enhancing the security of mobile applications by using tee
and (u)sim,” in Proceedings of the 2013 IEEE 10th International Con-

ference on Ubiquitous Intelligence & Computing and 2013 IEEE 10th

International Conference on Autonomic & Trusted Computing, ser. UIC-
ATC ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
575–582.

[62] Y. Kim, J. Shin, C. Park, and W. Park, “Dfcloud: a tpm-based secure
data access control method of cloud storage in mobile devices,” in
Proceedings of the 2012 IEEE 4th International Conference on Cloud

Computing Technology and Science (CloudCom), ser. CLOUDCOM ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 551–556.

[63] J.-E. Ekberg, A. Afanasyeva, and N. Asokan, “Authenticated encryption
primitives for size-constrained trusted computing,” in Proceedings of the

5th International Conference on Trust and Trustworthy Computing, ser.
TRUST’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 1–18.

[64] R. van Rijswijk-Deij and E. Poll, “Using trusted execution environments
in two-factor authentication: comparing approaches,” in Open Identity

Summit 2013, OID 2013. Springer, 2013, pp. 20–31.
[65] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. C̆apkun,

“smartphones as practical and secure location verification tokens for
payments,” in The Network and Distributed System Security Symposium

(NDSS), 2014.
[66] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for

trusted sensors,” in Proceedings of the 10th International Conference on

Mobile Systems, Applications, and Services, ser. MobiSys ’12. New
York, NY, USA: ACM, 2012, pp. 365–378.

[67] K. Dietrich and J. Winter, “Implementation aspects of mobile and
embedded trusted computing,” in Proceedings of the 2nd International

Conference on Trusted Computing, ser. Trust ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 29–44.

[68] J. Winter, “Trusted computing building blocks for embedded linux-based
arm trustzone platforms,” in Proceedings of the 3rd ACM Workshop on

Scalable Trusted Computing, ser. STC ’08. New York, NY, USA: ACM,
2008.

[69] S. Thom, J. Cox, D. Linsley, M. Nystrom, H. Raj, D. Robinson,
S. Saroiu, R. Spiger, and A. Wolman, “Firmware-based trusted platform
module for arm processor architectures and trustzone security exten-
sions,” January 2013, uS Patent App. 13/193,945. [Online]. Available:
http://www.google.com/patents/US20130031374

[70] J. González and P. Bonnet, “Towards an open framework leveraging a
trusted execution environment,” in Cyberspace Safety and Security, ser.
Lecture Notes in Computer Science. Springer International Publishing,
2013, vol. 8300, pp. 458–467.

[71] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: enforcing kernel code
integrity on the trustzone architecture,” in Proceedings of the 3rd IEEE

Mobile Security Technologies Workshop (MoST), May 2014.
[72] G. Arfaoui, S. Gharout, and J. Traoré, “Trusted execution environments:

A look under the hood,” in Mobile Cloud Computing, Services, and

Engineering (MobileCloud), 2014 2nd IEEE International Conference on,
April 2014, pp. 259–266.


