
HAL Id: hal-01246361
https://hal.science/hal-01246361

Submitted on 18 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Integrating Trusted Execution Environment
into Embedded Autonomic Systems

Mohamed Sabt, Mohammed Achemlal, Abdelmadjid Bouabdallah

To cite this version:
Mohamed Sabt, Mohammed Achemlal, Abdelmadjid Bouabdallah. Towards Integrating Trusted Ex-
ecution Environment into Embedded Autonomic Systems. 12th IEEE International Conference on
Autonomic Computing, Jul 2015, Grenoble, France. �10.1109/ICAC.2015.27�. �hal-01246361�

https://hal.science/hal-01246361
https://hal.archives-ouvertes.fr


Towards Integrating Trusted Execution

Environment into Embedded Autonomic Systems

Mohamed Sabt∗‡, Mohammed Achemlal∗† and Abdelmadjid Bouabdallah‡

∗Orange Labs, 42 rue des coutures, 14066 Caen, France

{mohamed.sabt, mohammed.achemlal}@orange.com
†Greyc ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen, France

‡Sorbonne universités, Université de technologie de Compiègne,

Heudiasyc, Centre de recherche Royallieu, 60203 Compiègne, France

{mohamed.sabt, madjid.bouabdallah}@hds.utc.fr

Abstract—Nowadays, there is a trend to integrate trusted
computing concepts into autonomic systems. In this context,
the Trusted Execution Environment (TEE) was designed to
enrich the previously defined trusted platforms. TEE is com-
monly known as an isolated processing environment in which
applications can be securely executed irrespective of the rest of
the system. In this work, we propose an architecture in which
embedded autonomic systems rely on the properties of TEE to
guarantee both their self-protection and self-healing.

Keywords-TEE; self-protection; trusted autonomic system;

I. INTRODUCTION

An embedded autonomic system is designed to be trust-

worthy in order to avoid failure despite the hostile conditions

of their deployment environments. Trustworthiness is an

important aspect of self-protection, which is one of the

main properties of autonomic computing. It means that an

autonomic system must protect itself from malicious attacks

from both system user and malicious parties. However,

self-protection alone does not ensure trustworthiness. This

explains the recent trend to integrate trusted computing con-

cepts into embedded autonomic systems. Cloud computing

is also concerned by this trend.

Trusted Computing was defined to help systems to achieve

security, privacy and data protection. Originally, trusted

computing relies on a separate hardware module, such as

the trusted platform module (TPM), that offers a functional

interface for platform security. The main shortcoming of the

TPM is that it does not provide an isolated execution en-

vironment for third-party, thereby reducing its functionality

to a predefined set of APIs. A new approach to address

trusted computing is to allow the execution of arbitrary code

within a confined environment that provides tamper-resistant

execution to its applications. We are going to refer to this

environment using the term coined by GlobalPlatform in [1],

that is trusted execution environment (TEE).

Very often, embedded autonomic systems include mod-

ules that provide the properties of self-protection and self-

healing. Such modules are themselves vulnerable, and hence

need to be protected. In this work, we propose to shield

these modules inside a trusted execution environment. The

protection is achieved by securing the embedded system

kernel using two independent mechanisms: introspection,

and “trap and emulate”. An outline of the architecture is

presented in Section III, preceded by a concise definition of

TEE in Section II.

II. TRUSTED EXECUTION ENVIRONMENT

Trusted Execution Environment (TEE) is a tamper-

resistant processing environment that runs on a separa-

tion kernel following the dual-execution-environment ap-

proach [2]. It guarantees the authenticity of the executed

code, the integrity of the runtime states (e.g. CPU registers,

memory and sensitive I/O), and the confidentiality of its

code and data stored on a persistent memory. In addition,

it shall be able to provide remote attestation that proves

its trustworthiness for third-parties. The content of TEE is

not static; it can be securely updated. The TEE shall resist

against all software attacks as well as the physical attacks

performed on the main memory of the system.

The building blocks are the following: secure boot, secure

scheduling, inter-environment communication, secure stor-

age, trusted I/O, secure provisioning and secure attestation.

III. ARCHITECTURE

Some embedded systems are designed to be reliable, in

the sense that they should keep on working without human

intervention. With the advent of autonomic computing, reli-

ability is achieved by self-protection and self-healing. Self-

healing allows systems to recover from an internal problem,

while self-protection prevents systems from being corrupted.

A conceptual architecture of autonomic systems is pro-

posed in [3]. Rather than being dispersed throughout the sys-

tem software, authors propose to collect all self-management

components in one single entity. This entity is called au-

tonomic manager. Autonomic manager accomplishes four

tasks: (1) monitor: collecting information about the running

system; (2) analysis: studying the collected data in order

to diagnose the actual state of the system; (3) decision:



Figure 1. An Overview of our Architecture

adopting the strategies to be taken according to the reached

conclusions of the data analysis; and (4) execution: car-

rying out the decisions that were taken during the previ-

ous task. The autonomic manager runs a permanent loop

of monitoring-analysis-deciding-execution. This loop allows

embedded systems to protect and to fix themselves.

The security of the autonomic manager is of crucial

importance. It is must be particularly protected and strongly

isolated from the rest of the system. The reliability depends

on the proper functioning of the autonomic manager. For

instance, if the collected data are tampered with or the

analysis module is corrupted, then the decided strategies will

not be correctly taken.

We propose to shield the autonomic manager inside a

trusted execution environment. The proposed architecture is

depicted in figure 1. In our architecture, autonomic manager,

which runs inside TEE, provides two security mechanisms:

introspection, and trap and emulate. These mechanisms are

triggered by two types of exceptions:

• Software Interrupt Exceptions that are inserted inside

the kernel code and triggered before the execution of certain

system instructions;

• Periodic Exceptions that are triggered by a secure timer

that is managed by the TEE to guarantee the execution of

autonomic manager after a certain amount of time.

Security mechanisms based on trap and emulate aim

at depriving the kernel from executing privileged functions,

such as memory management. They force the kernel to route

through the autonomic manager for inspection and approval

before executing certain instructions. This is achieved using

software interrupt exceptions, that we call autonomic events.

Self-protection is guaranteed by such security mechanisms.

Indeed, even a malicious kernel cannot harm the rest of

the system, since the TEE must approve the execution of

the critical functions. For instance, malicious attacks cannot

inject code to the kernel because any write instruction to the

memory must be inspected by the autonomic manager whose

protection of kernel integrity is one of its roles. Regarding

the second security mechanism, namely introspection, it

aims at constantly monitoring the integrity state of the loaded

kernel and react if problems are detected. For instance, the

TEE might force the system to halt running if the integrity

of the kernel code is not valid. Introspection is achieved

using periodic exceptions, and it allows embedded systems

to perform self-healing. In this work, we do not define the

exact mechanisms for introspection or trap and emulate.

Architectures with similar goals have been proposed.

Azab et.al perform real-time protection for kernels of mobile

devices using TrustZone-based TEE [4]. It is worth noting

that self-protection of systems using TEE is not limited to

embedded systems. Lacoste et al. are working on using TEE

in order to protect their framework of mobile cloud security

management [5].

IV. CONCLUSION

In this work, we gave a brief definition of TEE and

demonstrated how TEE can be used to design better and

more trustworthy autonomic systems.

Our main goal is to show that TEE has practical interest

and can be used to construct complex systems. However,

the lack of formal definition for TEE hinders the adoption

of such technology. For instance, some might question the

trustworthiness of TEE because of the absence of proper

definition and precise architecture of TEE. Future work will

focus on defining a framework that computes the ‘trust

level’ for different TEE platforms. We believe that such

framework should increase the trust given to TEE, and

therefore encourage its integration in more systems.

REFERENCES

[1] GlobalPlatform, “TEE System Architecture,” 2011. [Online].
Available: www.globalplatform.org/specificationsdevice.asp

[2] M. Sabt, M. Achemlal, and A. Bouabdallah, “The Dual-
Execution-Environment Approach: Analysis and Comparative
Evaluation,” in ICT Systems Security and Privacy Protection,
ser. IFIP Advances in Information and Communication Tech-
nology. Springer Berlin Heidelberg, 2015, to be published.

[3] F. Duan, X. Li, Y. Liu, and Y. Fang, “Towards Autonomic
Computing: A New Self-Management Method,” in Artificial
Intelligence and Computational Intelligence, ser. Lecture Notes
in Computer Science, H. Deng, D. Miao, J. Lei, and F. Wang,
Eds. Springer Berlin Heidelberg, 2011, vol. 7002, pp. 292–
299.

[4] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World,”
in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New
York, NY, USA: ACM, 2014, pp. 90–102.

[5] M. Lacoste, A. Wailly, A. Tabourin, L. Habermacher, X. L.
Guillou, and J.-P. Wary, “Flying over Mobile Clouds with
Security Planes: Select Your Class of SLA for End-to-End
Security,” in Proceedings of the 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing, ser. UCC
’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp. 50–59.


