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Numerical approximation of some time optimal control
problems

Marius Tucsnak1, Julie Valein1 and Chi-Ting Wu1
∗

Abstract

In this work we study the numerical approximation
of the solutions of a class of abstract parabolic time op-
timal control problems. Our main results assert that,
provided that the target is a closed ball centered at the
origin and of positive radius, the optimal time and the
optimal controls of the approximate time optimal prob-
lems converge to the optimal time and to the optimal
controls of the original problem. In order to prove our
main theorem, we provide a nonsmooth data error esti-
mate for abstract parabolic systems.

Keywords. distributed parameter systems, optimal
control, numerical approximation

1. Introduction

Time optimal control of infinite dimensional sys-
tems is a subject of growing interest, motivated by
numerous applications in domains such as guidance
of complex systems or temperature regulation in large
buildings. In recent year, using new tools from infi-
nite dimensional systems theory, the literature devoted
to this topic grew in a considerable manner (see [1]-[11]
and references therein). The specific case of time opti-
mal control for systems governed by parabolic PDE’s
has numerous applications, from which we quote opti-
mization of building thermal storage (see, for instance
[7] and references therein).

The aim of this paper is to study the approximation
of the solutions of time optimal control problems for
a class of infinite dimensional linear systems by pro-
jecting the original problem on an appropriate family
of finite dimensional spaces. This is a delicate question
since, as shown in the above mentioned references, time
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optimal controls are usually highly oscillating functions
(due to the bang-bang property). As far as we know,
the only papers having already investigated this issue
are [15] and [16], which investigated finite elements ap-
proximation for systems governed by the heat equation.

To be more precise, letX andU be real Hilbert
spaces, and letA0 : D(A0) → X be a strictly positive
operator with compact resolvents. It is known that−A0

generates an exponentially stable analytic semigroup,
denoted byT. For γ > 0 we denote byXγ the space
D(Aγ

0), endowed with the graph norm. Forγ < 0, Xγ
stands for the dual ofX−γ with respect to the pivot space
X. We also introduce an operatorB∈ L (U,X−α) with
0 6 α 6

1
2, calledcontrol operator. In this paper we

consider time optimal control problems for the follow-
ing system,

ż(t)+A0z(t) = Bu(t) (t ≥ 0), (1)

z(0) = z0 (z0 ∈ X), (2)

whereu∈ L∞([0,∞[;U). Using the notation in [12], the
solution of (1)-(2) writes :

z(t) = Ttz0+Φtu,

where

Φtu=
∫ t

0
Tt−σ Bu(σ)dσ .

Given ε > 0, denote byB̄(0,ε) the closed ball cen-
tered in zero and of radiusε in X. We consider the
time optimal control problem which consists in deter-
mining the smallestτ∗0 > 0 such that there existsu with
‖u‖L∞([0,τ ];U) 6 1 and where the solutionzof (1)-(2) sat-
isfiesz(τ)∈ B̄(0,ε). The corresponding optimal control
is denoted byu∗0.

Denote

Uad= {u∈ L∞([0,∞[;U) | ‖u‖L∞([0,∞[;U) 6 1}.

We callu∈Uad an admissible control if there exists
τ > 0 such thatTτz0+Φτu∈ B̄(0,ε). It is well-known
that the above optimal timeτ∗0 and optimal controlu∗0



exist and that, under additional assumptions, they are
unique.

Let (Vh)h>0 be a family of finite dimensional sub-
spaces ofX1

2
and letUh = B∗Vh. These spaces are

normed spaces endowed with the restriction of the norm
of X1

2
(resp.U). We denotePh (resp.Qh) the orthogonal

projector fromX ontoVh (resp. U ontoUh). For each
h> 0, we consider the following system:

żh(t)+Ahzh(t) = Bhuh(t) (t ≥ 0), (3)

zh(0) = Phz0, (4)

where(Ah)h>0 is defined by

〈Ahϕ,ψ〉 = < A
1
2
0 ϕ,A

1
2
0 ψ >, (5)

for everyϕ,ψ ∈ Vh. Moreover,Bh ∈ L (U,Vh) is de-
fined by:

〈Bhu,ϕ〉 = 〈u,B∗ϕ〉U , (6)

for every ϕ ∈ Vh, u ∈ U . The above system is the
Galerkin approximation of (1)-(2).

Denote byB̄h(0,ε) the closed ball centered in zero
in Vh with radiusε. For eachh> 0, we consider the time
optimal control problem for the above system (3)-(4)
which is to determine the smallestτ∗h > 0 such that there
existsuh with ‖uh‖L∞([0,τ ];Uh)

6 1 andzh(τ) ∈ B̄h(0,ε).
Moreover, we aim to determine the corresponding opti-
mal controlsu∗h.

The goal of this work is to study the convergence
of τ∗h to τ∗0 and of u∗h to u∗0 when h → 0. To this
aim, we need appropriate assumptions on the approx-
imation properties of the spaces(Vh)h>0 and (Uh)h>0.
More precisely, we assume that there existθ > 0, h1 >
0, C> 0, 06 β 6 α, such that for everyh∈ (0,h1) and
06 γ 6 1, we have:

(C1) ‖x−Phx‖X 6Chθγ‖x‖γ for everyx∈ Xγ .

(C2) ‖(I −Ph)B‖L (U,X) 6Chθ(1−β ).

(C3) ‖PhB‖L (U,Vh)
6Ch−θβ .

(C4) limh→0‖Qhu−u‖U = 0 for everyu∈U .

Note that assumptions(C1)− (C4) are very natu-
ral when applying our results to systems governed by
parabolic partial differential equations. They are sat-
isfied, in particular, by all the usual approximations
schemes based on finite elements or finite differences.
To be more precise, with assumptions(C1)− (C4),
we can prove the following approximation results with

rough initial data: ∀z0 ∈ X,∃ ĥ > 0,C > 0,s.t. ∀h ∈
(0, ĥ),∀t > 0,

‖z(t,z0,u)−zh(t,Phz0,u)‖6Chθ t−1‖z0‖X

+Chθ(1−β )| lnh| ‖u‖L∞([0,T];U).
(7)

We refer to [9] and [2] for more details about the above
approximation.

We are now in position to state the main results of
this paper:

Theorem 1.With the above notation and assumptions,
assume that z0 ∈X, ‖z0‖> ε and that(C1)−(C4) hold.
Thenlimh→0 τ∗h = τ∗0 .

Theorem 2. With the above notation and assumptions,
assume that if z∈X is such that the measure of the set of
those t> 0 such that B∗Ttz= 0 is strictly positive then
z= 0. Then we have

u∗h → u∗0 strongly in L2([0,τ∗];U).

2. Sketch of the proof.

2.1. Proof of Theorem 1

The proof of our main results requires several steps,
which will be briefly described in this section.
Lemma 1. With the above notation and assumptions,
let λ1 (resp.λ1,h) be the smallest eigenvalue of A0 (resp.
of Ah). Denote z0,h = Phz0. Then

(i) τ∗0(z0)6
ln(‖z0‖/ε)

λ1
, (z0 ∈ X).

(ii) τ∗h(z0,h)6
ln(‖z0,h‖/ε)

λ1,h
, (z0,h ∈Vh).

(iii ) λ1 6 λ1,h.

Proof. We prove at first(i). It suffices to notice that:

‖z(t,z0,0)‖6 e−λ1t‖z0‖.

Then, by takingt = ln(‖z0‖/ε)
λ1

, we have:‖z(t,z0,0)‖6 ε .
This proves(i).

A similar argument shows that(ii) also holds.
We end by proving(iii ). In fact, this inequality is

easily deduced by the min-max formula:

λ1 = min
z∈X1

2

‖A
1
2
0 z‖2

‖z‖2

and

λ1,h = min
z∈Vh

‖A
1
2
0 z‖2

‖z‖2 .



We also need the following result

Lemma 2. With the notation and assumptions in Lemma
1, for every z0 ∈ X, ‖z0‖> ε, there exist c,C> 0, h̃> 0
such that for any h∈ (0, h̃), we have

c6 τ∗h(Phz0)6C,

where C= 2ln(‖z0‖/ε)
λ1

.
Proof. We begin by proving thatτ∗h(Phz0) is
bounded from below. Suppose by contradiction that
limh→0 τ∗h(Phz0) = 0. By the continuity oft 7→ zh(t),
we have:

lim
h→0

‖zh(τ∗h ,Phz0,u
∗
h)−zh(0,Phz0,u

∗
h)‖

= lim
h→0

‖zh(τ∗h ,Phz0,u
∗
h)−Phz0‖= 0.

Using the fact that‖zh(τ∗h ,Phz0,u∗h)‖6 ε, it is clear that
limh→0‖Phz0‖6 ε . However, with(C1) it is clear that:

lim
h→0

‖Phz0−z0‖= 0,

which leads to the contradiction with the fact that
‖z0‖> ε.

We prove now thatτ∗h(Phz0) is bounded from
above. This is obvious by using Lemma 1, since

τ∗h(Phz0)6
ln(‖Phz0‖/ε)

λ1,h
6

2ln(‖z0‖/ε)
λ1

<+∞.

Proof of Theorem 1. It suffices to prove the following
two inequalities:

liminf
h→0

τ∗h > τ∗0 , (8)

limsup
h→0

τ∗h 6 τ∗0 . (9)

We begin by proving (8). We first notice that, for
everyT > 0 andu∈ Uad:

τ∗0(z0)6 T + τ∗0(z(T,z0,u)). (10)

By (7), we have

‖z(τ∗h ,z0,u
∗
h)−zh(τ∗h ,Phz0,u

∗
h)‖

6Chθ τ∗h
−1‖z0‖X +Chθ(1−β )| lnh| ‖u‖L∞([0,T];U).

This leads to:

‖z(τ∗h ,z0,u
∗
h)‖6 ε +Chθ τ∗h

−1‖z0‖X

+Chθ(1−β )| lnh| ‖u‖L∞([0,T];U)

6 ε +Chθ τ∗h
−1+Chθ(1−β )| lnh|.

Denote ¯z0 = z(τ∗h ,z0,u∗h). According to (10) withT =
τ∗h , we have:

τ∗0(z0)6 τ∗h + τ∗0(z̄0).

In fact, u∗h ∈ L∞([0,+∞[;Uh) ⊂ L∞([0,+∞[;U) and
‖u∗h(t)‖ 6 1 which means thatu∗h is an admissible con-
trol for the original system.

Then, according to Lemma 1, we have:

τ∗0 6 τ∗h +
ln((ε +Chθ τ∗h

−1+Chθ(1−β )| lnh|)/ε)
λ1

6 τ∗h +
Chθ

λ1ε
τ∗h

−1+C
hθ(1−β )| lnh|

λ1ε
. (11)

Thus, (8) can be deduced by takingh to zero and by the
fact that limh→0 τ∗h > c> 0 (Lemma 2).

We now prove the second inequality (9). We have:

‖zh(τ∗0 ,Phz0,Qhu∗)−z(τ∗0 ,z0,u
∗)‖

6 ‖zh(τ∗0 ,Phz0,Qhu∗)−zh(τ∗0 ,Phz0,u
∗)‖

+‖zh(τ∗0 ,Phz0,u
∗)−z(τ∗0 ,z0,u

∗)‖

6 ‖zh(τ∗0 ,Phz0,Qhu∗)−zh(τ∗0 ,Phz0,u
∗)‖

+Chθ τ∗0
−1+Chθ(1−β )| lnh|.

Set f (h) = ‖zh(τ∗0 ,Phz0,Qhu∗)−zh(τ∗0 ,Phz0,u∗)‖.
We notice that limh→0 f (h) = 0. Indeed,

lim
h→0

‖zh(τ∗0 ,Phz0,Qhu∗)−zh(τ∗0 ,Phz0,u
∗)‖

= lim
h→0

‖Φτ∗0 ,h(u
∗−Qhu∗)‖.

SinceΦτ∗0 ,h ∈ L (L2(0,τ∗0 ;U),X) (by the admissibility
assumption uponB), this leads to:

lim
h→0

f (h)6 K lim
h→0

‖Qhu∗−u∗‖L2(0,τ∗0 ;U) → 0,

using(C4). Thus, we have:

‖zh(τ∗0 ,Phz0,Qhu∗h)‖6 ε + f (h)

+Chθ τ∗0
−1+Chθ(1−β )| lnh|.

By the similar argument as in (11), we have:

τ∗h 6 τ∗0

+
ln((ε + f (h)+Chθ τ∗0

−1+Chθ(1−β )| lnh|)/ε)
λ1,h

6 τ∗0 +
f (h)+Chθ τ∗0

−1+Chθ(1−β )| lnh|

λ1ε
.

This leads to inequality (9) by lettingh tend to zero.



2.2. Proof of Theorem 2

Before giving the proof, we recall a standard en-
ergy estimate.
Lemma 3. Assume that z0 ∈ X1

2−α . Then, there exists

c> 0 such that

‖z(τ)‖2
1
2−α +

∫ τ

0

(
‖ż(s)‖2

−α +‖z(s)‖2
1−α

)
ds

6C

(∫ τ

0
‖Bu(s)‖2

−αds+‖z0‖
2
1
2−α

)
.

Proof of Theorem 2.
DenoteT = 2 ln(‖z0‖/ε)

λ1
. It is clear thatτ∗h 6 T for

all h> 0 andτ∗0 6 T. We extend(u∗h)h and(u∗0) to time
T by zero.

Since‖u∗h‖L∞(0,T;U) 6 1, there exist a control ¯u ∈
L∞(0,T;U) and a subsequence(hn)n → 0, such that :

u∗hn
→ ū weakly∗ in L∞(0,T;U).

Now we prove that ¯u= u∗0.
The main step here is to prove the following con-

vergence property :

‖zhn(τ
∗
hn
,u∗hn

,Phz0)−z(τ∗0 , ū,z0)‖→ 0. (12)

Indeed, sincēB(0,ε) is complete (notice that̄Bh(0,ε)⊂
B̄(0,ε)), (12) leads toz(τ∗0 , ū,z0)∈ B̄(0,ε). Then, by the
uniqueness of the time optimal control, we deduce that
ū= u∗0.

Now we prove (12). We have :

‖zhn(τ
∗
hn
,u∗hn

,Phz0)−z(τ∗0 , ū,z0)‖

6 ‖zhn(τ
∗
hn
,u∗hn

,Phz0)−z(τ∗hn
,u∗hn

,z0)‖ (13)

+‖z(τ∗hn
,u∗hn

,z0)−z(τ∗0 ,u∗hn
,z0)‖ (14)

+‖z(τ∗0 ,u∗hn
,z0)−z(τ∗0 , ū,z0)‖. (15)

Now we prove that these three parts converge to zero in
order to deduce (12).

It is clear that (13) converges to zero using the error
estimate (7).

Moreover, sincet 7→ z(t,u,z0) is continuous and
τ∗hn

→ τ∗0 , (14) converges to zero.
It remains to prove that (15) converges to zero. For

that, denoteψ(t) = z(t, ū,z0) andψn(t) = z(t,u∗hn
,z0).

Then by Lemma 3, we know that(ψn)n is a
bounded sequence in :

W =C(0,T;X1
2−α)∩L2(0,T;X1−α)

∩W1,2(0,T;X−α).

Using a generalized Aubin-Lions Theorem (see
[13, Cor. 4, p.85])) we deduce that :

∃ ψ̃ ∈C([0,T];X) s.t.,

ψn → ψ̃ strongly inC(0,T;X)

and
ψn → ψ̃ weakly inW.

Now we prove that̃ψ = ψ. We know that(ψn)n

satisfies :

ψ̇n = Aψn+Bu∗hn
,

ψn(0) = z0.

We prove then that ψ̇n → ˙̃ψ weakly in
L2(0,T;X−α), Aψn → Aψ̃ weakly in L2(0,T;X−α),
Bu∗hn

→ Bū weakly inL2([0,T];X) andψ̃(0) = z0.
The first two convergences are clear sinceψn →

ψ̃ weakly inW.
Moreover,u∗hn

∗
⇀ ū weakly ∗ in L∞([0,T];U) im-

plies that u∗hn
⇀ ū weakly inL2([0,T];U). Thus,

Bu∗hn
⇀ Bū in L2([0,T];X).

It remains to prove thatψ̃(0) = z0. In-
deed, we knowz0 = ψn(0) → ψ̃(0), since ψn →
ψ̃ strongly inC(0,T;X).

Consequently,̃ψ satisfies :

˙̃ψ = Aψ̃ +Bū,

ψ̃(0) = z0,

which implies thatψ̃ = ψ.
This leads to the fact that (15) converges to zero.
Thus, we have :

u∗h → u∗0 weakly ∗ in L∞(0,T;U). (16)

We deduce immediately that :

u∗h → u∗0 weakly inL2(0,T;U).

At last, since bothu∗h andu∗0 are bang-bang controls, we
have limh→0‖u∗h‖L2(0,T;U) = ‖u∗0‖L2(0,T;U). This leads

to the strong convergence inL2(0,T;U) and ends the
proof.

3. Example.

We consider here 1-D heat equation over[0,1] with
internal control over[1

3,
2
3] , more precisely, for every

t ≥ 0,

ż(t,x) = ∂ 2
xxz(t,x)

+ χ[ 1
3 ,

2
3 ]
(x)u(t,x) (x∈ [0,1], t ≥ 0), (17)

z(t,0) = z(t,1) = 0, (t ≥ 0), (18)

z(0,x) = 2sin(πx),(x∈ [0,1]), (19)



whereχ[ 1
3 ,

2
3 ]

is the characteristic function of the in-

terval [1
3,

2
3]. Obviously, (17)-(19) has the form (1)-(2)

by takingA0 =−∂ 2
xx with Dirichlet boundary conditions

of domainD(A0) =H1
0(0,1)∩H2(0,1) onX = L2(0,1).

The control operatorB∈ L (U,X) (hereα = 0) is
defined by:

Bϕ = χ[ 1
3 ,

2
3 ]

ϕ̃ ,

whereU = L2(1
3,

2
3) and whereϕ̃ is the extension ofϕ

outside[1
3,

2
3].

Now we consider the space semi-discrete approx-
imation of (17)-(19) derived by the finite difference
method. More precisely, forN∈N

∗ given andh= 1
N+1,

let zi(t) an approximation ofz(t, ih). We consider the
following scheme:

żi(t) =
zn
i+1−2zn

i +zn
i−1

h2 +Bhui(t),

z0(t) = zN+1(t) = 0,

zi(0) = 2sin(π ih),

whereBhui = ui if ih ∈ [1
3,

2
3] and 0 otherwise. If we

denote the unknownzh(t) = (zi(t))T
16i6N, the above

scheme can be rewritten in the vector form as (3)-(4).
It is well known that that(C1)− (C4) are satisfied

with β = 0 andθ = 1 (see for example in [14])
According to Theorem 1, for everyz0 ∈X,‖z0‖X >

ε, we have limh→0 τ∗h = τ∗0 . We test this scheme in Mat-
lab and have the following result:

N 5 10 20 30 40 50
τ∗

h 0.0344 0.0336 0.0331 0.0332 0.0331 0.0330
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[11] F. TRÖLTZSCH, On generalized bang-bang principles
for two time-optimal heating problems with constraints
on the control and the state, Demonstratio Math.,15
(1982), pp. 131–143.

[12] M. TUCSNAK AND G. WEISS, Observation and control
for operator semigroups, Birkhäuser Advanced Texts:
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