
The Dual-Execution-Environment Approach:

Analysis and Comparative Evaluation

Mohamed Sabt1,2, Mohammed Achemlal1,3, and Abdelmadjid Bouabdallah2

1 Orange Labs, 42 rue des coutures, 14066 Caen, France
{mohamed.sabt, mohammed.achemlal}@orange.com

2 Sorbonne universités, Université de technologie de Compiègne,
Heudiasyc, Centre de recherche Royallieu, 60203 Compiègne, France

{mohamed.sabt, madjid.bouabdallah}@hds.utc.fr
3 Greyc ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen, France

Abstract. The dual-execution-environment approach (dual-EE) is a tr-
usted model that was defined to allow mobile smart devices to guarantee
tamper-resistant execution for highly sensitive applications. Although
various solutions implementing dual-EE have been proposed in the liter-
ature, this model has not been formalized yet. In this paper, we revisit the
dual-EE approach and propose a theoretical framework to systematize
the design of dual-EE solutions regarding well-established primitives de-
fined in the Multiple Independent Levels of Security (MILS) architecture.
We provide a general classification of the different dual-EE proposals
based on their isolation properties. We introduce a comparative frame-
work allowing dual-EE solutions to be evaluated across a common set
of criteria. The relevance of our framework is examined by applying it
on three technologies, each one represents one category in our classifi-
cation. Results are consistent and explain some hidden and unexpected
properties of each technology. For instance, we find that bare-metal hy-
pervisors are ill-adapted to provide high assurance security even though
they might improve the overall security level of the system.

Keywords: trusted computing, separation kernel, MILS, TrustZone

1 Introduction

The wide use of modern mobile devices spurs service providers to propose access
to their services via smart devices. The growing number of attacks against such
devices puts mobile applications under potential security risks. Thus, smart de-
vices are not ideal for services requiring trusted platforms with proved security.
Examples include enterprise applications and NFC-based payment solutions. In-
deed, the adoption of mobile devices in sensitive business environments has been
hindered by the lack of appropriate level of security.

Sensitive-service providers require that their applications run on tamper-
resistant execution environment. Such an environment should at least guarantee
the following three properties [23]: (1) authenticity : the code under execution



2 M. Sabt, M. Achemlal, and A. Bouabdallah

should not have been changed; (2) integrity : runtime states (e.g. CPU registers,
memory and sensitive I/O) should not have been tampered with; and (3) pri-

vacy : code, data and runtime states should not be observable by unauthorized
applications or even underlying OS that might have been compromised.

The default protection mechanisms of smart devices are insufficient to pro-
vide tamper-resistant environment. This is due to the fact that these protec-
tion mechanisms are mainly based on the operating system, and thus as long
as the operating system has not been compromised, sensitive applications are
considered as protected. Unfortunately, despite continued efforts to improve the
security of operating systems of smart devices [9, 20], they are still essentially
untrustworthy for two reasons. First, they are complex and often developed us-
ing unsafe languages. Therefore, they are inherently error prone because design
flaws and implementation bugs are unavoidable. Second, they allow poor iso-
lation among applications. Indeed, a process with the root privilege can easily
access private data and tamper with the execution of other processes. Meanwhile,
using specially tailored operating systems can only have very limited success due
to their restricted features and compatibility to existing applications.

To remedy this situation, there have been numerous efforts aimed at provid-
ing tamper-resistant execution environments. Generally, those efforts can be clas-
sified into three categories. First, architectural enhancements based approach,
such as XOMOS [19] and AEGIS [24], allows sensitive applications to run on un-
trustworthy operating system. This approach requires nontrivial modifications
to the core processor architecture. Second, micro-kernel based approach, such as
SeL4 [16], tries to reduce the trusted computer base (TCB) by running a lim-
ited code in the privileged mode. This approach requires a redesign of operating
systems, thereby requiring nontrivial modifications to port existing applications.
Third, the dual-execution-environment approach (dual-EE), such as TLR [22],
solves the problem by multiplexing the feature-rich OS and a specialized OS
with restricted functionalities on the same smart device. It relies on the spe-
cialized OS to provide tamper-resistant capabilities. Applications that demand
tamper-resistant protection run only on the specialized trustworthy OS.

Compared to other approaches, the dual-EE is considered as a promising
approach intended for practical use [10]. The literature is full of proposals [2,
10, 13, 17, 27]. However, proposals differ substantially from each other in their
design objectives. Some address very specific environments, while others silently
seek generic solutions that fit all environments. Too often, authors claim the
superiority of their solutions and their assertion is based on self-defined criteria.
To make progress, we believe that knowledge regarding the dual-EE approach
must be systematized. There is a need to provide a theoretical framework which
defines how best to evaluate dual-EE proposals.

In this paper, we analyze the dual-EE approach in the context of the trusted
computing domain and the MILS architecture. We propose a standard bench-
mark and framework allowing dual-EE solutions to be rated across a common,
broad spectrum of criteria. Our work provides insights which prove useful in de-
signing more efficient dual-EE schemes. To the best of our knowledge, this is the



The Dual-EE Approach: Analysis and Comparative Evaluation 3

first comparative evaluation of the dual-EE solutions available on mobile smart
devices. Moreover, we believe that our comparative framework is extendable and
sufficiently general to be used to evaluate more fine-grained classifications.

Summary of Contributions: We make the following contributions:

– We construct a compact security model of the dual-EE approach using the
separation kernel model that provides a relevant abstraction level, thereby
contributing to a deeper understanding of the dual-EE approach. We rein-
terpret well-known security technologies, such as UICC card and TrustZone,
in the light of this model.

– We provide a framework to evaluate the dual-EE solutions. Our criteria are
divided into three categories: (1) functional criteria: schemes are evaluated
whether they implement all the requirements of a tamper-resistant environ-
ment; (2) security criteria: the properties of the separation kernel layer of the
scheme are analyzed; and (3) deployability criteria: schemes are evaluated
whether they could be easily deployed in a real context.

– We provide a classification of the different dual-EE solutions. Nevertheless,
our goal is not to provide a comprehensive survey, but to show the relevance
and the interest of our abstraction by providing a general classification on
which our comparative framework could be applied.

This paper is structured as follows: Section 2 gives a background informa-
tion on the MILS architecture. In Section 3, we give a general classification of
the dual-EE solutions. Section 4 explains our comparison methodology and thor-
oughly defines our chosen set of criteria. We apply our comparative framework to
our classification in Section 5. The resulted comparative evaluation is discussed
in Section 6. Section 7 surveys related work, and we end with a brief summary.

2 Background

Building a secure system has traditionally been a cat and mouse game. No
sooner are new security mechanisms integrated into systems than hackers find
how to bypass them. Research on trusted computing aims to replace this endless
game with a methodical process. The domain of trusted computing provides the
abstract concepts as well as the theoretical base on which ideal secure systems

are built [11]. It introduces various security models, called trusted models. Each
trusted model defines a set of security objectives, a threat model, and security
requirements to be satisfied by the component that enforces the security policy.
In this paper, we focus on the ‘separation kernel’ trusted model introduced by
John Rushby [21], or more precisely, on MILS [25].

MILS stands for Multiple Independent Levels of Security. This architecture
was developed in order to resolve the difficulty to evaluate the assurance level
of the widely deployed trusted model ‘reference monitor’ [18] because of its
continually growing complexity. MILS adopts a divide-and-conquer approach.
It separates a complex system that includes various modules requiring different
levels of security into smaller, hence verifiable components. Thus, instead of



4 M. Sabt, M. Achemlal, and A. Bouabdallah

Fig. 1. An Overview of the MILS Architecture

evaluating the whole complex system, these small components are individually
evaluated. An abstract view of the MILS architecture is depicted in figure 1.
The primary component of MILS is the separation kernel layer (SK). This layer
is responsible for creating a set of isolated functional units called partitions. All
communication between partitions is monitored by the SK layer. MILS is based
on separation technology and secure inter-partition communication.

In order to work properly, the SK layer must satisfy several requirements. The
SK should be designed so that it cannot be modified or disabled by rogue par-
titions. In addition, all inter-partition communication requests must go through
it. Furthermore, it must be well-structured and small enough, so that its cor-
rectness can be validated. In other words, the SK must be (1) tamper-proof, (2)
always invoked, and (3) evaluable. These properties correspond respectively to
the three principles: isolation, completeness and verifiability.

The dual-EE approach can be seen as a particular case of the MILS archi-
tecture where the separation kernel creates two partitions only. The next section
provides more details.

3 Dual-EE Solutions

There is an increasing need to use smart mobile devices for applications requiring
high security levels, such as enterprise and payment applications. However, their
openness and complexity impose fundamental limitations on the security which
these devices are able to provide. The dual-EE approach attempts to resolve
these limitations by providing trust and high-assurance security while keeping
the rich model of smart devices. It brings the best properties of open and trusted
systems to smart devices without any compromise. It partitions the system into
two execution environments running side-by-side: general-purpose execution en-
vironment (GPEE), and secure execution environment (SEE). The GPEE runs
the legacy, complex operating system, while the SEE runs a special trusted OS



The Dual-EE Approach: Analysis and Comparative Evaluation 5

Fig. 2. Representation of the Dual-EE Approach in the MILS Abstraction

with a selection of applications designed specifically for it. The SEE is designed
to be trustworthy to provide tamper-resistant capabilities.

Secure isolation is essential for the dual-EE approach. Generally, the security
of a system is reduced to that of its most vulnerable component. In dual-EE,
the security level is, by definition, supposed to be that of the GPEE. However,
the two execution environments are strongly isolated so that the compromise
of the GPEE does not impact the SEE. Figure 2 depicts the representation
of the dual-EE approach in the MILS architecture. In this paper, we consider
MILS as the abstract trusted model of the dual-EE approach in which only
two partitions exist and the strong isolation is guaranteed by the SK layer. The
main advantage of this representation is to use MILS properties as primitives to
better understand and thoroughly analyze the dual-EE approach. For instance,
MILS defines a set of design principles for the SK layer. These principles provide
an abstract model to define the isolation properties required between the two
execution environments. We discuss these principles in the next section.

According to their isolation technology, we classify the dual-EE solutions into
three categories:

1. Isolation based on external hardware module: this category consists
in introducing an additional secure coprocessor or integrated circuit to smart
devices. A secure coprocessor is a hardware module containing CPU, boot-
strap ROM, and secure non-volatile memory. This hardware module is phys-
ically shielded from illegal access, and the I/O interface to the module is
the only way to access its internal states. Hardware modules cannot only
store cryptographic keys without risk of release, but also they can perform
arbitrary computations using their CPU. In dual-EE, the SEE runs inside
the secure coprocessor. Tamper-resistant execution is guaranteed, since the
GPEE and the SEE run on physically two separated memories. Popular
examples are UICC card and baseband processor;

2. Isolation based on bare-metal hypervisor: this category consists in exe-
cuting a hypervisor in the most privilege mode of the processor. A hypervisor



6 M. Sabt, M. Achemlal, and A. Bouabdallah

is a software layer that implements the same instruction-set architecture as
the hardware on which it is executed. Thus, it allows multiple operating sys-
tems to coexist on the same hardware. Full-virtualization is not possible on
ARM processors, which represents 95% of the market of smart devices [1],
since ARM is not a virtualizable architecture [7]. ARM introduced hardware
virtualization support with the ARMv7 architecture. However, the use of
hardware-supported virtualization on ARM is still limited. Instead, para-
virtualization approach is prevalent and a myriad of solutions exists [15]. In
para-virtualization, OS needs to be modified in order to run on the under-
lying hypervisor. In dual-EE, the hypervisor plays the role of the SK layer,
and the number of virtual machines is limited to two;

3. Isolation based on special processor extensions: this category con-
sists in enhancing general-purpose processors with new hardware extensions.
These newly-introduced extensions allow the execution of secure code within
a potentially compromised OS. The most prevalent secure extensions target-
ing smart devices is ARM TrustZone [4]. In this paper, we only consider
ARM TrustZone because, to the best of our knowledge, it is the most de-
ployed security extensions in practice. A processor with TrustZone extensions
provides a special form of virtualization. It enables two virtual processors
with two security domains: the “secure” zone and the “normal” zone. In
dual-EE, the GPEE resides in the normal zone and the SEE resides in the
secure zone. The isolation of both zones or “worlds” is implemented by a
complex mechanism using hardware controllers, a configuration bit and a
new execution mode called monitor mode.

4 Comparison Methodology

In order to evaluate dual-EE solutions, we define three categories of criteria:
functional, security and deployability.

4.1 Functional Criteria

Schemes are evaluated whether they implement all the requirements of a tamper-
resistant environment. The SEE should provide the following features [12]:

– Protected Execution. The execution of secure applications should be pro-
tected from any interference caused by malicious software. Runtime states
of the SEE should be protected from being observed or tampered with.

– Sealed Storage. The integrity, secrecy and freshness of secure applications’
content should be protected. Content includes code as well as data.

– Protected Input. The SEE should protect their input data from being sniffed
or tampered with by malicious applications, such as key loggers.

– Protected Output. The integrity and the confidentiality of the output data
are protected. Protected input and output do not only concern user interface.

– Attestation. The SEE should provide mechanisms allowing secure applica-
tions to authenticate themselves to remote trusted parties.



The Dual-EE Approach: Analysis and Comparative Evaluation 7

4.2 Security Criteria

In dual-EE, isolation–an essential task to implement–is provided by the SK layer.
Schemes are evaluated whether the design principles of the SK layer [3] are
implemented in software or hardware in order to ensure:

– Data Separation. Data within one partition, namely execution environment,
cannot be read or modified by other partitions.

– Information Flow Control. Communication between partitions cannot occur
unless explicitly permitted by the SK layer.

– Sanitization. Shared resources cannot be used to leak information into other
partitions.

– Damage Limitation. Security breach in one partition cannot spread to other
partitions.

4.3 Deployability Criteria

The dual-EE approach is intended to be implemented in a real context. Thus, we
evaluate how easy schemes can be deployed. Deployability criteria are numerous.
In our study, we only consider the following properties:

– Support of Legacy Systems. We evaluate the amount of modifications needed
for the GPEE to run on the underlying SK layer. Ideally, no modification,
except for the inter-EE communication driver, is required.

– Cost. The addition of any software architecture has a cost. We only evaluate
the extra silicon cost that the scheme generates. For instance, the addition
of hardware module or internal processor extensions are factors which make
schemes costly.

– Overhead. Schemes should have minimal impact on applications that do
not require tamper-resistant protection. They should not incur too much
overhead to the SEE either.

– SEE Performance. We evaluate how fast the SEE could execute complex
operations.

Throughout the paper, for brevity and consistency, each criterion is referred
to with an italicized mnemonic title. In our study, we will rate each solution based
on its capability to offer the criteria described above. We emphasize that it would
be naive to rank dual-EE solutions simply by counting how many criteria each
satisfies. Some criteria clearly deserve more weight than others. In this paper, we
do not suggest any weights, since providing appropriate weights depend strongly
on the specific goal for which the dual-EE solutions are being compared.

5 Comparative Evaluation

We now use our criteria to evaluate three different solutions of the dual-EE
approach. Due to space constraints, we only explain one particular solution for
each category. We emphasize that, in selecting a particular solution, we do not
necessarily endorse it as better than alternatives–merely that it is reasonably
representative, or illuminates in some way what the category can achieve.



8 M. Sabt, M. Achemlal, and A. Bouabdallah

5.1 External Hardware Module: Smart Card

A smart card is essentially a minimal computing environment composed of a
CPU, ROM, EEPROM, RAM, and I/O port. It is capable of running applications
(called applets or cardlets) with a high level of security. In smart devices, smart
cards come in several flavors. They could be implemented either by an embedded
smart card chip, in an SD card that could be inserted in the device, or in the
SIM/UICC which is used by mobile operators to authenticate subscribers to
their network. In most cases, the SEE consists of Java Card OS, and the GPEE
can be any commodity operating system.

Smart cards physically shield the SEE from all types of software attacks
coming from the GPEE. Thus, no interference is possible during the execution
of secure applications. Moreover, tamper-resistant hardware prevents protected
data from being extracted by hardware attacks like microprobing and fault gen-
eration. To sum up, smart cards provide protected execution and sealed storage.
Attestation is guaranteed, since only authenticated code can run in the SEE.
However, smart cards fail to provide protected input and protected output. In
practice, smart cards are designed in a way that there is no direct communica-
tion link with the I/O devices. Smart cards, for instance, cannot control user
interface to allow users to securely enter their PIN code.

Regarding the SK layer, it is almost implemented in hardware. Both execu-
tion environments, namely the GPEE and the SEE, run in two different CPU
with their own memory and I/O devices. As a result, the software part of the
SK layer does not need to take care of either data separation or sanitization.
However, damage limitation depends on how well the inter-EE communication
is controlled. The information flow control is implemented in the SEE. In fact,
the SEE includes the SK part which is responsible for protecting the SEE from
accidental or malicious communication attempts that violate the system policy.

For reasons of silicon cost, smart cards are often made with limited resources.
An additional CPU increases the power consumption and the global cost of
the device. Cost and power consumption constraints lead to design smart cards
with limited processing power, slow processing speed and small permanent and
temporary memory [27]. Therefore, secure applications have low performance

and cannot perform complex computations. Clearly, smart cards support legacy
systems and incurs no overhead to the SEE.

5.2 Bare-Metal Hypervisor: KVM/ARM

KVM/ARM is the ARM hypervisor in the mainline Linux kernel [7]. It is the first
hypervisor to leverage ARM hardware virtualization support to run unmodified
operating systems on ARM hardware. It builds on KVM and leverages existing
infrastructure in the Linux kernel. KVM/ARM is a hosted bare-metal hypervisor,
where the hypervisor is integrated with a host kernel. It runs the hypervisor
in normal privileged CPU modes to leverage existing OS mechanisms without
modification, while at the same time leveraging ARM hardware virtualization.
In contrast to standalone bare-metal hypervisors (e.g. Xen), it supports a wide



The Dual-EE Approach: Analysis and Comparative Evaluation 9

range of ARM devices despite the fact that there is no standard hardware in the
ARM world. In dual-EE, the two execution environments (GPEE and SEE) are
two virtual machines running on the underlying hypervisor.

Hypervisors provide isolation properties to prevent potentially malicious VM
(GPEE) from attacking another VM (SEE). However, hypervisors only defend
against software-based attacks and do not take hardware attacks into account.
This isolation property works fine for data centers, but the threat model of mo-
bile smart devices includes hardware attacks. We illustrate the threat by two
examples. First, an attacker with physical access to the system can read any
data present in memory using the cold boot attack [14]. This attack is based
on the fact that RAMs retain their contents for several seconds after power is
lost. Second, an attacker with access to the system disk can run a modified
version of KVM/ARM that integrates malicious introspection mechanisms to
snoop on the runtime states of the SEE. The KVM/ARM hypervisor provides
protected execution, but not sealed storage because encryption keys can be re-
trieved using, for instance, the cold boot attack. Furthermore, it defines several
mechanisms to provide I/O virtualization and interrupt virtualization. Thus, it
provides protected input and protected output. The KVM/ARM alone does not
provide attestation; trust anchors, such as TPM, are required. It is worth noting
that any person who has physical access to the smart device can easily clone the
SEE and capture its internal states. This might result in serious attacks, such
as rolling back security updates, thus leaving the system vulnerable.

Regarding the SK layer, it is entirely implemented in software. All of its
design principles are performed by the KVM/ARM hypervisor. Therefore, the
hypervisor must be tamper-resistant and evaluable. To the best of our knowledge,
KVM/ARM is the smallest bare-metal hypervisor. It is comprised of only 12,883
lines of code. However, it is still too big to be formally verified.

For KVM/ARM, platforms with hardware virtualization capabilities are re-
quired. Hardware-based virtualization is not supported on all platforms. There-
fore, it presents an additional cost to the system. The fact that KVM/ARM
leverages hardware virtualization support presents two advantages. First, it can
run legacy systems, unlike hypervisors based on para-virtualization. Second, the
incurred overhead is minimal in comparison with other virtualization solutions.
For example, it uses Stage-2 translations to achieve low I/O performance over-
head with very little implementation effort. However, KVM/ARM still generates
within 10% of overhead over a multicore. In some contexts of smart devices, 10%
of overhead is not negligible.

5.3 Special Processor Extensions: TrustZone

ARM TrustZone technology can be seen as a special kind of virtualization with
hardware support for memory, I/O and interrupt virtualization [4]. This vir-
tualization enables ARM core to provide an abstraction of two virtual cores
(VCPUs): secure VCPU and non-secure VCPU. The monitor is seen as a mini-
mal hypervisor whose main role is the control of information flow between the
two virtual cores. In dual-EE, the SEE runs on the secure VCPU, while the



10 M. Sabt, M. Achemlal, and A. Bouabdallah

GPEE runs on the non-secure VCPU. It is worth mentioning that ARM Trust-
Zone was designed and optimized to implement the dual-EE approach. Indeed,
it implements all the hardware extensions defined in [3] and which the SK layer
requires in order to work properly.

Similar to bare-metal hypervisor, ARM TrustZone provides protected execu-

tion, protected input and protected output, but it does not provide sealed storage

or attestation. However, TrustZone is often completed with additional features,
such as secure boot and root of trust (RoT) hardware module, which allow
TrustZone to satisfy all the requirements of a tamper-resistant environment.

Regarding the SK layer, it is mainly implemented in hardware. The software
components to be trusted are minimal, hence evaluable. For instance, most CPU
registers are banked. Thus, saving and restoring CPU registers are performed by
the processor. In addition, TrustZone enables the co-existence of cache entries
of both SEE and GPEE. Thus, cleaning the cache memory during a context
switch is not required. As a result, the sanitization process performed during a
context switch is both fast and secure, since it is almost done by the hardware.
Data flow is well controlled. To enter the secure world, only a well-defined set
of interfaces exist. Any transition between the two worlds must go through the
monitor mode. This allows the SK layer to satisfy the completeness engineering
principle.

TrustZone incurs a limited execution overhead. The performance is nearly
native because both execution environments can access their corresponding re-
sources directly without going through an abstraction layer. Moreover, it can
run legacy systems without modifications, since each world has its own user and
privileged modes, and thereby removing the necessity of instruction emulation.
It is true that TrustZone presents an additional cost as it requires some mod-
ifications to the core processor, but these modifications are already extensively
deployed and implemented in a wide range of ARM platforms.

6 Discussion

A summary of our comparative evaluation is presented in table 1. We note that
the size of the SK layer is directly proportional to the number of the isolation
properties implemented in software [11]. A small SK is better for security because
the property of verifiability cannot be satisfied when the SK layer is too complex.
Therefore, solutions with many isolation properties provided by hardware are
considered better than those implementing their SK layer in software.

To our surprise, bare-metal hypervisors achieve the lowest score in our frame-
work. We did not expect this result, since the literature is abundant of solutions
presenting hypervisors as a promising approach to improve system security [7,
13, 15]. In this paper, we showed that this approach inherently suffers from three
main shortcomings. First, hypervisors come from the world of data centers, and
therefore their threat model does not include stolen devices. Even simple phys-
ical attacks, like cold boot attacks, can compromise the privacy requirement of
tamper-resistant execution. Second, the isolation properties are entirely imple-



The Dual-EE Approach: Analysis and Comparative Evaluation 11

Comparison Category Comparison Criteria Smart Card KVM TrustZone

Security Requirements

Protected Execution
Sealed Storage
Protected Input
Protected Output
Attestation

√
√

×
×√

√

×√
√

×

√
√

∗

√
√
√

∗

Isolation Properties

Data Separation
Information Flow Control
Sanitization
Damage Limitation

HW
SW
HW
HW

SW
SW
SW
SW

HW
HW

HW/SW
HW

Deployability Criteria

Legacy Systems
Low Overhead
Low Cost
High Performance

√
√

×
×

√

×
×√

√
√
√

∗

√

√
: satisfies the criterion; ×: does not satisfy the criterion;√
∗

: needs widely available additional hardware modules to satisfy the criterion;
HW: satisfied by hardware module; SW: satisfied by software implementation.

Table 1. Summary of our Comparative Evaluation of Dual-EE Solutions

mented in software, thereby negatively impacting the verifiability characteristic
of the SK layer. Third, although dedicating the whole virtualization layer to
hosting security tools present numerous advantages, it is not practical because it
will deprive the system from using other virtualization capabilities. Furthermore,
it is true that hardware-based virtualization solutions produce better overhead
and fewer modifications to existing systems compared to para-virtualization so-
lutions. However, they require specific extensions that are not supported on all
platforms. For example, the widely-used Qualcomm Snapdragon MSM8974 and
APQ8084 processors do not implement the hypervisor extension.

On the contrary, external hardware modules achieve the highest score in
terms of security. Our results are expected, as these modules provide a confined
execution environment which protects the application’s authenticity, integrity
and privacy against even sophisticated physical attacks. Nevertheless, external
hardware modules do not fit to a certain kind of secure applications that need
user interaction and better processing speed.

As for ARM TrustZone, it comes close to perfect score. Our results are con-
sistent and expected because TrustZone implements all the hardware extensions
that the SK layer requires in order to work properly. TrustZone provides a bal-
anced trade-off between bare-metal hypervisors and external hardware modules.
Indeed, it does not resist against some physical attacks and it requires a part
of the SK to be implemented in software [4]. In addition, TrustZone does not
provide sealed storage and attestation without additional hardware modules.
However, it is more secure than solutions based on bare-metal hypervisors and
more flexible than those based on external hardware modules. Our framework
shows that TrustZone-based solutions are efficient for real contexts. Once again,



12 M. Sabt, M. Achemlal, and A. Bouabdallah

our results are consistent with existing work. At present, millions of devices in-
tegrate TrustZone-based technologies. Examples are ObC in Lumia phones [17],
TIMA/TZ-RKP in Samsung smartphones [6], and <t-base of Trustonic [2].

7 Related Work

The two main research directions that our work targets is trustworthy execution
and trusted computing in mobile smart devices. Extensive discussion of trusted
computing solutions for mobile devices is found in [5]. Authors in [26] evalu-
ate existing hardware security features available on mobile devices for creating
tamper-resistant execution. However, these surveys fail to identify dual-EE as a
promising model that brings trusted computing for smart devices.

Earlier works focus solely on a particular dual-EE technology discussing the
advantages that it presents compared to other existing technologies. For instance,
the case of TrustZone is presented in [27] and that of bare-metal hypervisors
is presented in [13]. Too often, authors assert the superiority of their solution
without explicitly stating their evaluation criteria. As such, consensus is unlikely
as objective comparison between different solutions is not possible.

The closest work to ours is [8], both of which propose a standard benchmark
and framework allowing dual-EE solutions to be evaluated across a common
set of criteria. Authors in [8] construct their comparative framework on security
functions which they define to cover the security risks for enterprise mobile appli-
cations. On the other hand, we construct our comparative framework on MILS,
a well-known trusted model. The main advantage of using MILS is to provide
a deeper comprehension of many hidden properties of the dual-EE approach. In
addition, some may argue the impartiality of any framework built on self-cooked
criteria, while the relevance and the objectivity of our criteria are guaranteed,
since they are based on a thoroughly defined trusted model.

8 Conclusions and Future Work

In this paper, we revisited the dual-EE approach, a model that allows mobile
smart devices to guarantee a tamper-resistant execution for highly sensitive ap-
plications. We introduced the dual-EE approach in the context of trusted com-
puting. The domain of trusted computing gives us convenient abstract models
to better represent the characteristics of the dual-EE approach.

In this paper, we also provided a general classification of the dual-EE solu-
tions defined in the literature. The goal of this classification is not to provide
an extensive survey, but to examine our framework by applying it on a rep-
resentative of each class. Results are consistent with related work and some-
times unexpected. They show that TrustZone provides a balanced compromise
to implement the dual-EE approach. They also show that systems requiring the
maximum level of security should adopt external hardware modules, while hy-
pervisors are ill-adapted to provide high assurance security even though they
might improve the overall security level of the system.



The Dual-EE Approach: Analysis and Comparative Evaluation 13

We believe that our work can be easily extended to include other compari-
son criteria. An interesting aspect is the scheduling techniques present on MILS.
In some smart devices, it is necessary that malicious allocation of hardware re-
sources (e.g. CPU time) do not impact the SEE execution. Despite their high
importance, temporal constraints are rarely taken into account in dual-EE solu-
tions. Our abstract model forms a theoretical basis that systematizes the design
of dual-EE solutions regarding primitives defined in the MILS architecture.

Some might think that dual-EE is nothing but a special case of the multi-EE
approach in which an arbitrary number of execution environments runs on the
SK layer. However, we prove by induction that the opposite is true: all dual-
EE solution can construct a multi-EE architecture. Due to space constraint, we
do not include our proof in this paper. Future work will focus on extending
our model to include more properties related to the SK layer, a comprehensive
evaluation of more dual-EE solutions and formal proofs related to our work.

References

1. ARM Holdings plc. Annual report 2013: Strategic report, 2013.

2. Trustonic. https://www.trustonic.com, 2014. Accessed: January 2 2015.

3. J. Alves-Foss, P. W. Oman, C. Taylor, and W. S. Harrison. The MILS Architec-
ture for High-Assurance Embedded Systems. International Journal of Embedded

Systems, 2(3):239–247, 2006.

4. ARMLtd. ARM Security Technology - Building a Secure System using TrustZone
Technology, 2009.

5. N. Asokan, J. E. Ekberg, K. Kostiainen, A. Rajan, C. Rozas, A. R. Sadeghi,
S. Schulz, and C. Wachsmann. Mobile Trusted Computing. Proceedings of the

IEEE, 102(8):1189–1206, Aug 2014.

6. A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and
W. Shen. Hypervision Across Worlds: Real-time Kernel Protection from the ARM
TrustZone Secure World. In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’14, pages 90–102, New York,
NY, USA, 2014. ACM.

7. C. Dall and J. Nieh. KVM/ARM: The Design and Implementation of the Linux
ARM Hypervisor. SIGPLAN Not., 49(4):333–348, Feb. 2014.

8. M. El-Serngawy and C. Talhi. Securing Business Data on Android Smartphones.
In Mobile Web Information Systems, volume 8640 of Lecture Notes in Computer

Science, pages 218–232. Springer International Publishing, 2014.

9. W. Enck, M. Ongtang, and P. McDaniel. Understanding Android Security. IEEE
Security and Privacy, 7(1):50–57, Jan. 2009.

10. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A Vir-
tual Machine-based Platform for Trusted Computing. SIGOPS Oper. Syst. Rev.,
37(5):193–206, Oct. 2003.

11. M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold Co., New
York, NY, USA, 1988.

12. D. Grawrock. The Intel Safer Computing Initiative: Building Blocks for Trusted

Computing. Books by engineers, for engineers. Intel Press, 2006.



14 M. Sabt, M. Achemlal, and A. Bouabdallah

13. K. Gudeth, M. Pirretti, K. Hoeper, and R. Buskey. Delivering Secure Applications
on Commercial Mobile Devices: The Case for Bare Metal Hypervisors. In Pro-

ceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and

Mobile Devices, SPSM ’11, pages 33–38, New York, NY, USA, 2011. ACM.
14. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-

landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remember:
Cold-boot Attacks on Encryption Keys. Commun. ACM, 52(5):91–98, May 2009.

15. J.-Y. Hwang, S.-b. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu, S.-Y. Park, and C.-R.
Kim. Xen on ARM: System Virtualization Using Xen Hypervisor for ARM-Based
Secure Mobile Phones. In Proceedings of the 5th IEEE International Conference

on Consumer Communications and Networking, CCNC ’08, pages 257–261, Jan
2008.

16. G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and
G. Heiser. Comprehensive Formal Verification of an OS Microkernel. ACM Trans.

Comput. Syst., 32(1):2:1–2:70, Feb. 2014.
17. K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board Credentials

with Open Provisioning. In Proceedings of the 4th International Symposium on

Information, Computer, and Communications Security, ASIACCS ’09, pages 104–
115, New York, NY, USA, 2009. ACM.

18. B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, Jan. 1974.
19. D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an Untrusted Operating

System on Trusted Hardware. SIGOPS Oper. Syst. Rev., 37(5):178–192, Oct. 2003.
20. V. R. Pandya and M. Stamp. iPhone Security Analysis. Journal of Information

Security, 1(2):74–87, Oct. 2010.
21. J. M. Rushby. Design and Verification of Secure Systems. SIGOPS Oper. Syst.

Rev., 15(5):12–21, Dec. 1981.
22. N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM Trustzone to Build a

Trusted Language Runtime for Mobile Applications. SIGARCH Comput. Archit.

News, 42(1):67–80, Feb. 2014.
23. A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer:

Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy
Systems. SIGOPS Oper. Syst. Rev., 39(5):1–16, Oct. 2005.

24. G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. AEGIS: Architec-
ture for Tamper-evident and Tamper-resistant Processing. In Proceedings of the

17th Annual International Conference on Supercomputing, ICS ’03, pages 160–171,
New York, NY, USA, 2003. ACM.

25. M. W. Vanfleet, J. A. Luke, W. R. Beckwith, C. Taylor, B. Calloni, and
G. Uchenick. MILS: Architecture for High-Assurance Embedded Computing.
CrossTalk: Journal of Defence Software Engineering, 18(8):12–16, 2005.

26. A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune. Trustworthy
Execution on Mobile Devices: What Security Properties Can My Mobile Platform
Give Me? In Proceedings of the 5th International Conference on Trust and Trust-

worthy Computing, TRUST’12, pages 159–178, Berlin, Heidelberg, 2012. Springer-
Verlag.

27. P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves. Implementing Embedded
Security on Dual-Virtual-CPU Systems. IEEE Des. Test, 24(6):582–591, Nov.
2007.


