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Abstract

In this paper we show how to learn directly from image
data (i.e., without resorting to manually-designed features)
a general similarity function for comparing image patches,
which is a task of fundamental importance for many com-
puter vision problems. To encode such a function, we opt
for a CNN-based model that is trained to account for a
wide variety of changes in image appearance. To that end,
we explore and study multiple neural network architectures,
which are specifically adapted to this task. We show that
such an approach can significantly outperform the state-of-
the-art on several problems and benchmark datasets.

1. Introduction

Comparing patches across images is probably one of the
most fundamental tasks in computer vision and image anal-
ysis. It is often used as a subroutine that plays an important
role in a wide variety of vision tasks. These can range from
low-level tasks such as structure from motion, wide baseline
matching, building panoramas, and image super-resolution,
up to higher-level tasks such as object recognition, image
retrieval, and classification of object categories, to mention
a few characteristic examples.

Of course, the problem of deciding if two patches corre-
spond to each other or not is quite challenging as there exist
far too many factors that affect the final appearance of an
image [17]. These can include changes in viewpoint, varia-
tions in the overall illumination of a scene, occlusions, shad-
ing, differences in camera settings, etc. In fact, this need
of comparing patches has given rise to the development of
many hand-designed feature descriptors over the past years,
including SIFT [15], that had a huge impact in the com-
puter vision community. Yet, such manually designed de-
scriptors may be unable to take into account in an optimal
manner all of the aforementioned factors that determine the
appearance of a patch. On the other hand, nowadays one
can easily gain access to (or even generate using available

Source code and trained models are available online at http:
//imagine.enpc.fr/˜zagoruys/deepcompare.html (work
supported by EC project FP7-ICT-611145 ROBOSPECT).
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Figure 1. Our goal is to learn a general similarity function for im-
age patches. To encode such a function, here we make use of and
explore convolutional neural network architectures.

software) large datasets that contain patch correspondences
between images [22]. This begs the following question: can
we make proper use of such datasets to automatically learn
a similarity function for image patches ?

The goal of this paper is to affirmatively address the
above question. Our aim is thus to be able to generate a
patch similarity function from scratch, i.e., without attempt-
ing to use any manually designed features but instead di-
rectly learn this function from annotated pairs of raw image
patches. To that end, inspired also by the recent advances in
neural architectures and deep learning, we choose to repre-
sent such a function in terms of a deep convolutional neural
network [14, 13] (Fig. 1). In doing so, we are also interested
in addressing the issue of what network architecture should
be best used in a task like this. We thus explore and propose
various types of networks, having architectures that exhibit
different trade-offs and advantages. In all cases, to train
these networks, we are using as sole input a large database
that contains pairs of raw image patches (both matching
and non-matching). This allows to further improve the per-
formance of our method simply by enriching this database
with more samples (as software for automatically generat-
ing such samples is readily available [21]).

To conclude this section, the paper’s main contributions
are as follows: (i) We learn directly from image data (i.e.,
without any manually-designed features) a general similar-

1

ar
X

iv
:1

50
4.

03
64

1v
1 

 [
cs

.C
V

] 
 1

4 
A

pr
 2

01
5

http://imagine.enpc.fr/~zagoruys/deepcompare.html
http://imagine.enpc.fr/~zagoruys/deepcompare.html


ity function for patches that can implicitly take into ac-
count various types of transformations and effects (due to
e.g., a wide baseline, illumination, etc.). (ii) We explore
and propose a variety of different neural network models
adapted for representing such a function, highlighting at the
same time network architectures that offer improved per-
formance. as in [19]. (iii) We apply our approach on sev-
eral problems and benchmark datasets, showing that it sig-
nificantly outperforms the state-of-the-art and that it leads
to feature descriptors with much better performance than
manually designed descriptors (e.g., SIFT, DAISY) or other
learnt descriptors as in [19]. Importantly, due to their con-
volutional nature, the resulting descriptors are very efficient
to compute even in a dense manner.

2. Related work

The conventional approach to compare patches is to use
descriptors and a squared euclidean distance. Most feature
descriptors are hand-crafted as SIFT [15] or DAISY [26].
Recently, methods for learning a descriptor have been pro-
posed [27] (e.g., DAISY-like descriptors learn pooling re-
gions and dimensionality reduction [3]). Simonyan et al.
[19] proposed a convex procedure for training on both tasks.

Our approach, however, is inspired by the recent success
of convolutional neural networks [18, 25, 24, 9]. Although
these models involve a highly non-convex objective func-
tion during training, they have shown outstanding results in
various tasks [18]. Fischer et al. [10] analysed the perfor-
mance of convolutional descriptors from AlexNet network
(that was trained on Imagenet dataset [13]) on the well-
known Mikolajczyk dataset [16] and showed that these con-
volutional descriptors outperform SIFT in most cases ex-
cept blur. They also proposed an unsupervised training ap-
proach for deriving descriptors that outperform both SIFT
and Imagenet trained network.

Zbontar and LeCun in [28] have recently proposed a
CNN-based approach to compare patches for computing
cost in small baseline stereo problem and shown the best
performance in KITTI dataset. However, the focus of that
work was only on comparing pairs that consist of very small
patches like the ones in narrow baseline stereo. In contrast,
here we aim for a similarity function that can account for
a broader set of appearance changes and can be used in a
much wider and more challenging set of applications, in-
cluding, e.g., wide baseline stereo, feature matching and
image retrieval.

3. Architectures

As already mentioned, the input to the neural network
is considered to be a pair of image patches. Our models
do not impose any limitations with respect to the number
of channels in the input patches, i.e., given a dataset with

colour patches the networks could be trained to further in-
crease performance. However, to be able to compare our
approach with state-of-the-art methods on existing datasets,
we chose to use only grayscale patches during training. Fur-
thermore, with the exception of the SPP model described in
section 3.2, in all other cases the patches given as input to
the network are assumed to have a fixed size of 64 × 64
(this means that original patches may need to be resized to
the above spatial dimensions).

There are several ways in which patch pairs can be pro-
cessed by the network and how the information sharing can
take place in this case. For this reason, we explored and
tested a variety of models. We start in section 3.1 by de-
scribing the three basic neural network architectures that
we studied, i.e., 2-channel, Siamese, Pseudo-siamese (see
Fig. 2), which offer different trade-offs in terms of speed
and accuracy (note that, as usually, applied patch-matching
techniques imply testing a patch against a big number of
other patches, and so re-using computed information is al-
ways useful). Essentially these architectures stem from the
different way that each of them attempts to address the fol-
lowing question: when composing a similarity function for
comparing image patches, do we first choose to compute
a descriptor for each patch and then create a similarity on
top of these descriptors or do we perhaps choose to skip
the part related to the descriptor computation and directly
proceed with the similarity estimation?

In addition to the above basic models, we also describe
in section 3.2 some extra variations concerning the network
architecture. These variations, which are not mutually ex-
clusive to each other, can be used in conjunction with any
of the basic models described in section 3.1. Overall, this
leads to a variety of models that is possible to be used for
the task of comparing image patches.

3.1. Basic models

Siamese: This type of network resembles the idea of
having a descriptor [2, 6]. There are two branches in the net-
work that share exactly the same architecture and the same
set of weights. Each branch takes as input one of the two
patches and then applies a series of convolutional, ReLU
and max-pooling layers. Branch outputs are concatenated
and given to a top network that consists of linear fully con-
nected and ReLU layers. In our tests we used a top network
consisting of 2 linear fully connected layers (each with 512
hidden units) that are separated by a ReLU activation layer.

Branches of the siamese network can be viewed as de-
scriptor computation modules and the top network - as a
similarity function. For the task of matching two sets of
patches at test time, descriptors can first be computed inde-
pendently using the branches and then matched with the top
network (or even with a distance function like l2).

Pseudo-siamese: In terms of complexity, this architec-
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Figure 2. Three basic network architectures: 2-channel on the left,
siamese and pseudo-siamese on the right (the difference between
siamese and pseudo-siamese is that the latter does not have shared
branches). Color code used: cyan = Conv+ReLU, purple = max
pooling, yellow = fully connected layer (ReLU exists between
fully connected layers as well).

ture can be considered as being in-between the siamese
and the 2-channel networks. More specifically, it has the
structure of the siamese net described above except that
the weights of the two branches are uncoupled, i.e., not
shared. This increases the number of parameters that can
be adjusted during training and provides more flexibility
than a restricted siamese network, but not as much as the
2-channel network described next. On the other hand, it
maintains the efficiency of siamese network at test time.

2-channel: unlike the previous models, here there is no
direct notion of descriptor in the architecture. We simply
consider the two patches of an input pair as a 2-channel
image, which is directly fed to the first convolutional layer
of the network. In this case, the bottom part of the net-
work consists of a series of convolutional, ReLU and max-
pooling layers. The output of this part is then given as input
to a top module that consists simply of a fully connected
linear decision layer with 1 output. This network provides
greater flexibility compared to the above models as it starts
by processing the two patches jointly. Furthermore, it is
fast to train, but in general at test time it is more expensive
as it requires all combinations of patches to be tested against
each other in a brute-force manner.

3.2. Additional models

Deep network. We apply the technique proposed by Si-
monyan and Zisserman in [20] advising to break up bigger
convolutional layers into smaller 3x3 kernels, separated by
ReLU activations, which is supposed to increase the non-
linearities inside the network and make the decision func-
tion more discriminative. They also report that it might be
difficult to initialise such a network, we, however, do not
observe this behavior and train the network from scratch
as usual. In our case, when applying this technique to our
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Figure 3. A central-surround two-stream network that uses a
siamese-type architecture to process each stream. This results in
4 branches in total that are given as input to the top decision layer
(the two branches in each stream are shared in this case).

model, the convolutional part of the final architecture turns
out to consist of one convolutional 4x4 layer and 6 convo-
lutional layers with 3x3 layers, separated by ReLU activa-
tions. As we shall also see later in the experimental results,
such a change in the network architecture can contribute in
further improving performance, which is in accordance with
analogous observations made in [20].

Central-surround two-stream network. As its name
suggests, the proposed architecture consists of two separate
streams, central and surround, which enable a processing in
the spatial domain that takes place over two different resolu-
tions. More specifically, the central high-resolution stream
receives as input two 32 × 32 patches that are generetad
by cropping (at the original resolution) the central 32 × 32
part of each input 64×64 patch. Furthermore, the surround
low-resolution stream receives as input two 32×32 patches,
which are generated by downsampling at half the original
pair of input patches. The resulting two streams can then be
processed by using any of the basic architectures described
in section 3.1 (see Fig. 3 for an example that uses a siamese
architecture for each stream).

One reason to make use of such a two-stream architec-
ture is because multi-resolution information is known to be
important in improving the performance of image match-
ing. Furthermore, by considering the central part of a patch
twice (i.e., in both the high-resolution and low-resolution
streams) we implicitly put more focus on the pixels closer
to the center of a patch and less focus on the pixels in the pe-
riphery, which can also help for improving the precision of
matching (essentially, since pooling is applied to the down-
sampled image, pixels in the periphery are allowed to have
more variance during matching). Note that the total input
dimenionality is reduced by a factor of two in this case. As
a result, training proceeds faster, which is also one other
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Figure 4. SPP network for a siamese architecture: SPP layers (or-
ange) are inserted immediately after the 2 branches of the network
so that the top decision layer has an input of fixed dimensionality
for any size of the input patches.

practical advantage.

Spatial pyramid pooling (SPP) network for compar-
ing patches. Up to this point we have been assuming that
the network requires the input patches to have a fixed size
of 64 × 64. This requirement comes from the fact that the
output of the last convolutional layer of the network needs
to have a predefined dimensionality. Therefore, when we
need to compare patches of arbitrary sizes, this means that
we first have to resize them to the above spatial dimensions.
However, if we look at the example of descriptors like SIFT,
for instance, we can see that another possible way to deal
with patches of arbitrary sizes is via adjusting the size of
the spatial pooling regions to be proportional to the size of
the input patch so that we can still maintain the required
fixed output dimensionality for the last convolutional layer
without deteriorating the resolution of the input patches.

This is also the idea behind the recently proposed SPP-
net architecture [11], which essentially amounts to inserting
a spatial pyramid pooling layer between the convolutional
layers and the fully-connected layers of the network. Such a
layer aggregates the features of the last convolutional layer
through spatial pooling, where the size of the pooling re-
gions is dependent on the size of the input. Inspired by this,
we propose to also consider adapting the network models of
section 3.1 according to the above SPP-architecture. This
can be easily achieved for all the considered models (e.g.,
see Fig. 4 for an example with a siamese model).

4. Learning

Optimization. We train all models in strongly super-
vised manner. We use a hinge-based loss term and squared
l2-norm regularization that leads to the following learning

objective function

min
w

λ

2
‖w‖2 +

N∑
i=1

max(0, 1− yioneti ) , (1)

where w are the weights of the neural network, oneti is
the network output for the i-th training sample, and yi ∈
{−1, 1} the corresponding label (with −1 and 1 denoting a
non-matching and a matching pair, respectively).

ASGD with constant learning rate 1.0, momentum 0.9
and weight decay λ = 0.0005 is used to train the models.
Training is done in mini-batches of size 128. Weights are
initialised randomly and all models are trained from scratch.

Data Augmentation and preprocessing. To com-
bat overfitting we augment training data by flipping both
patches in pairs horizontally and vertically and rotating to
90, 180, 270 degrees. As we don’t notice overfitting while
training in such manner we train models for a certain num-
ber of iterations, usually for 2 days, and then test perfor-
mance on test set.

Training dataset size allows us to store all the images di-
rectly in GPU memory and very efficiently retrieve patch
pairs during training. Images are augmented ”on-the fly”.
We use Titan GPU in Torch [7] and convolution routines
are taken from Nvidia cuDNN library [5]. Our siamese de-
scriptors on GPU are just 2 times slower than computing
SIFT descriptors on CPU and 2 times faster than Imagenet
descriptors on GPU according to [10].

5. Experiments
We applied our models to a variety of problems and

datasets. In the following we report results, and also pro-
vide comparisons with the state-of-the-art.

5.1. Local image patches benchmark

For a first evaluation of our models, we used the standard
benchmark dataset from [3] that consists of three subsets,
Yosemite, Notre Dame, and Liberty, each of which contains
more than 450,000 image patches (64 x 64 pixels) sampled
around Difference of Gaussians feature points. The patches
are scale and orientation normalized. Each of the subsets
was generated using actual 3D correspondences obtained
via multi-view stereo depth maps. These maps were used to
produce 500,000 ground-truth feature pairs for each dataset,
with equal number of positive (correct) and negative (incor-
rect) matches.

For evaluating our models, we use the evaluation pro-
tocol of [4] and generate ROC curves by thresholding the
distance between feature pairs in the descriptor space. We
report the false positive rate at 95% recall (FPR95) on each
of the six combinations of training and test sets, as well as
the mean across all combinations. We also report the mean,
denoted as mean(1, 4), for only those 4 combinations that



were used in [1], [3] (in which case training takes place on
Yosemite or Notre Dame, but not Liberty).

Table 1 reports the performance of several models, and
also details their architecture (we have also experimented
with smaller kernels, less max-pooling layers, as well as
adding normalisations, without noticing any significant im-
provement in performance). We briefly summarize some of
the conclusions that can be drawn from this table. A first
important conclusion is that 2-channel-based architectures
(e.g., 2ch, 2ch-deep, 2ch-2stream) exhibit clearly
the best performance among all models. This is something
that indicates that it is important to jointly use information
from both patches right from the first layer of the network.

2ch-2stram network was the top-performing network
on this dataset, with 2ch-deep following closely (this ver-
ifies the importance of multi-resolution information during
matching and that also increasing the network depth helps).
In fact, 2ch-2stream managed to outperform the previ-
ous state-of-the-art by a large margin, achieving 2.45 times
better score than [19]! The difference with SIFT was even
larger, with our model giving 6.65 times better score in this
case (SIFT score on mean(1,4) was 31.2 according to
[3]).

Regarding siamese-based architectures, these too man-
age to achieve better performance than existing state-of-
the-art systems. This is quite interesting because, e.g.,
none of these siamese networks tries to learn the shape,
size or placement of the pooling regions (like, e.g., [19, 3]
do), but instead utilizes just standard max-pooling lay-
ers. Among the siamese models, the two-stream network
(siam-2stream) had the best performance, verifying
once more the importance of multi-resolution information
when it comes to comparing image patches. Furthermore,
the pseudo-siamese network (pseudo-siam) was better
than the corresponding siamese one (siam).

We also conducted additional experiments, in which
we tested the performance of siamese models when their
top decision layer is replaced with the l2 Euclidean dis-
tance of the two convolutional descriptors produced by
the two branches of the network (denoted with the suf-
fix l2 in the name). In this case, prior to applying the
Euclidean distance, the descriptors are l2-normalized (we
also tested l1 normalization). For pseudo-siamese only one
branch was used to extract descriptors. As expected, in
this case the two-stream network (siam-2stream-l2)
computes better distances than the siamese network
(siam-l2), which, in turn, computes better distances than
the pseudo-siamese model (pseudo-siam-l2). In fact,
the siam-2stream-l2 network manages to outperform
even the previous state-of-the-art descriptor [19], which is
quite surprising given that these siamese models have never
been trained using l2 distances.

For a more detailed comparison of the various models,

conv3(3456) conv4(3456) conv5(2304)
Notredame 12.22 9.64 19.384
Liberty 16.25 14.26 21.592
Yosemite 33.25 30.22 43.262
mean 20.57 17.98 28.08

Table 2. FPR95 for imagenet-trained features (dimensionality of
each feature appears as subscript).

we provide the corresponding ROC curves in Fig. 5. Fur-
thermore, we show in Table 2 the performance of imagenet-
trained CNN features (these were l2-normalized to improve
results). Among these, conv4 gives the best FPR95 score,
which is equal to 17.98. This makes it better than SIFT but
still much worse than our models.

(a) (b)

Figure 6. (a) Filters of the first convolutional layer of siam net-
work. (b) Rows correspond to first layer filters from 2ch network
(only a subset shown), depicting left and right part of each filter.

(a) true positives (b) false negatives

(c) true negatives (d) false positives

Figure 7. Top-ranking false and true matches by 2ch-deep.

Fig. 6(a) displays the filters of the first convolutional
layer learnt by the siamese network. Furthermore, Fig. 6(b)
shows the left and right parts for a subset of the first layer
filters of the 2-channel network 2ch. It is worth mention-
ing that corresponding left and right parts look like being
negative to each other, which basically means that the net-
work has learned to compute differences of features be-
tween the two patches (note, though, that not all first layer
filters of 2ch look like this). Last, we show in Fig. 7 some
top ranking false and correct matches as computed by the
2ch-deep network. We observe that false matches could
be easily mistaken even by a human (notice, for instance,
how similar the two patches in false positive examples look
like).

For the rest of the experiments, we note that we use mod-
els trained on the Liberty dataset.



Train Test 2ch-2stream 2ch-deep 2ch siam siam-l2 pseudo-siam pseudo-siam-l2 siam-2stream siam-2stream-l2 [19]
Yos ND 2.11 2.52 3.05 5.75 8.38 5.44 8.95 5.29 5.58 6.82
Yos Lib 7.2 7.4 8.59 13.48 17.25 10.35 18.37 11.51 12.84 14.58
ND Yos 4.1 4.38 6.04 13.23 15.89 12.64 15.62 10.44 13.02 10.08
ND Lib 4.85 4.55 6.05 8.77 13.24 12.87 16.58 6.45 8.79 12.42
Lib Yos 5 4.75 7 14.89 19.91 12.5 17.83 9.02 13.24 11.18
Lib ND 1.9 2.01 3.03 4.33 6.01 3.93 6.58 3.05 4.54 7.22

mean 4.19 4.27 5.63 10.07 13.45 9.62 13.99 7.63 9.67 10.38
mean(1,4) 4.56 4.71 5.93 10.31 13.69 10.33 14.88 8.42 10.06 10.98

Table 1. Performance of several models on the “local image patches” benchmark. The models architecture is as follows: (i) 2ch-2stream
consists of two branches C(95, 5, 1)-ReLU-P(2, 2)-C(96, 3, 1)-ReLU-P(2, 2)-C(192, 3, 1)-ReLU-C(192, 3, 1)-ReLU, one for cen-
tral and one for surround parts, followed by F(768)-ReLU-F(1) (ii) 2ch-deep = C(96, 4, 3)-Stack(96)-P(2, 2)-Stack(192)-F(1),
where Stack(n) = C(n, 3, 1)-ReLU-C(n, 3, 1)-ReLU-C(n, 3, 1)-ReLU. (iii) 2ch = C(96, 7, 3)-ReLU-P(2, 2)-C(192, 5, 1)-ReLU-
P(2, 2)-C(256, 3, 1)-ReLU-F(256)-ReLU-F(1) (iv) siam has two branches C(96, 7, 3)-ReLU-P(2, 2)-C(192, 5, 1)-ReLU-P(2, 2)-
C(256, 3, 1)-ReLU and decision layer F(512)-ReLU-F(1) (v) siam-l2 reduces to a single branch of siam (vi) pseudo-siam is uncoupled
version of siam (vii) pseudo-siam-l2 reduces to a single branch of pseudo-siam (viii) siam-2stream has 4 branches C(96, 4, 2)-ReLU-
P(2, 2)-C(192, 3, 1)-ReLU-C(256, 3, 1)-ReLU-C(256, 3, 1)-ReLU (coupled in pairs for central and surround streams), and decision
layer F(512)-ReLU-F(1) (ix) siam-2stream-l2 consists of one central and one surround branch of siam-2stream. The shorthand no-
tation used was the following: C(n, k, s) is a convolutional layer with n filters of spatial size k × k applied with stride s, P(k, s) is a
max-pooling layer of size k × k applied with stride s, and F(n) denotes a fully connected linear layer with n output units.
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Figure 5. ROC curves for various models (including the state-of-the-art descriptor [19]) on the local image patches benchmark. Numbers
in the legends are corresponding FPR95 values

5.2. Wide baseline stereo evaluation

For this evaluation we chose the dataset by Strecha et al.
[23], which contains several image sequences with ground
truth homographies and laser-scanned depthmaps. We used
“fountain” and “herzjesu” sequences to produce 6 and 5 rec-
tified stereo pairs respectively. Baselines in both sequences

we chose are increasing with each image making matching
more difficult. Our goal was to show that a photometric cost
computed with neural network competes favorably against
costs produced by a state-ot-the-art hand-crafted feature de-
scriptor, so we chose to compare with DAISY [26].

Since our focus was not on efficiency, we used an un-



optimized pipeline for computing the photometric costs.
More specifically, for 2-channel networks we used a brute-
force approach, where we extract patches on corresponding
epipolar lines with subpixel estimation, construct batches
(containing a patch from the left image I1 and all patches
on the corresponding epipolar line from the right image I2)
and compute network outputs, resulting in the cost:

C(p, d) = −onet(I1(p), I2(p+ d)) (2)

Here, I(p) denotes a neighbourhood intensity matrix
around a pixel p, onet(P1, P2) is the output of the neural
network given a pair of patches P1 and P2, and d is the dis-
tance between points on epipolar line.

For siamese-type networks, we compute descriptors for
each pixel in both images once and then match them with
decision top layer or l2 distance. In the first case the formula
for photometric cost is the following:

C(p, d) = −otop(D1(I1(p)), D2(I2(p+ d))) (3)

where otop is output of the top decision layer, and D1, D2

are outputs of branches of the siamese or pseudo-siamese
network, i.e. descriptors (in case of siamese network D1 =
D2). For l2 matching, it holds:

C(p, d) = ‖D1(I1(p))−D2(I2(p+ d))‖2 (4)

It is worth noting that all costs above can be computed a
lot more efficiently using speed optimizations similar with
[28]. This essentially means treating all fully connected lay-
ers as 1 × 1 convolutions, computing branches of siamese
network only once, and furthermore computing the outputs
of these branches as well as the final outputs of the network
at all locations using a number of forward passes on full im-
ages (e.g., for a 2-channel architecture such an approach of
computing the photometric costs would only require feed-
ing the network with s2 ·dmax full 2-channel images of size
equal to the input image pair, where s is the stride at the first
layer of the network and dmax is the maximum disparity).

Once computed, the photometric costs are subsequently
used as unary terms in the following pairwise MRF energy

E({dp})=
∑
p

C(p, dp)+
∑

(p,q)∈E

(λ1+λ2e
− ‖∇I1(p)‖2

σ2 )·|dp−dq| ,

minimized using algorithm [8] based on FastPD [12] (we
set λ1=0.01, λ2=0.2, σ=7 and E is a 4-connected grid).

We show in Fig. 9 some qualitative results in terms of
computed depth maps (with and without global optimiza-
tion) for the “fountain” image set (results for “herzjesu” ap-
pear in supp. material due to lack of space). Global MRF
optimization results visually verify that photometric cost
computed with neural network is much more robust than
with hand-crafted features, as well as the high quality of the

depth maps produced by 2-channel architectures. Results
without global optimization also show that the estimated
depth maps contain much more fine details than DAISY.
They may exhibit a very sparse set of errors for the case of
siamese-based networks, but these errors can be very easily
eliminated during global optimization.

Fig. 8 also shows a quantitative comparison, focusing in
this case on siamese-based models as they are more effi-
cient. The first plot of that figure shows (for a single stereo
pair) the distribution of deviations from the ground truth
across all range of error thresholds (expressed here as a
fraction of the scene’s depth range). Furthermore, the other
plots of the same figure summarize the corresponding distri-
butions of errors for the six stereo pairs of increasing base-
line (in this case we also show separately the error distribu-
tions when only unoccluded pixels are taken into account).
The error thresholds were set to 3 and 5 pixels in these plots
(note that the maximum disparity is around 500 pixels in the
largest baseline). As can be seen, all siamese models per-
form much better than DAISY across all error thresholds
and all baseline distances (e.g., notice the difference in the
curves of the corresponding plots).

5.3. Local descriptors performance evaluation

We also test our networks on Mikolajczyk dataset for lo-
cal descriptors evaluation [16]. The dataset consists of 48
images in 6 sequences with camera viewpoint changes, blur,
compression, lighting changes and zoom with gradually in-
creasing amount of transfomation. There are known ground
truth homographies between the first and each other image
in sequence.

Testing technique is the same as in [16]. Briefly, to test
a pair of images, detectors are applied to both images to
extract keypoints. Following [10], we use MSER detec-
tor. The ellipses provided by detector are used to exctract
patches from input images. Ellipse size is magnified by a
factor of 3 to include more context. Then, depending on
the type of network, either descriptors, meaning outputs of
siamese or pseudo-siamese branches, are extracted, or all
patch pairs are given to 2-channel network to assign a score.

A quantitative comparison on this dataset is shown for
several models in Fig. 10. Here we also test the CNN
network siam-SPP-l2, which is an SPP-based siamese
architecture (note that siam-SPP is same as siam but
with the addition of two SPP layers - see also Fig. 4). We
used an inserted SPP layer that had a spatial dimension of
4 × 4. As can be seen, this provides a big boost in match-
ing performance, suggesting the great utility of such an ar-
chitecture when comparing image patches. Regarding the
rest of the models, the observed results in Fig. 10 recon-
firm the conclusions already drawn from previous experi-
ments. We simply note again the very good performance
of siam-2stream-l2, which (although not trained with
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Figure 8. Quantitative comparison for wide-baseline stereo on “fountain” dataset. (Leftmost plot) Distribution of deviations from ground
truth, expressed as a fraction of scene’s depth range. (Other plots) Distribution of errors for stereo pairs of increasing baseline (horizontal
axis) both with and without taking into account occluded pixels (error thresholds were set equal to 1 and 3 pixels in these plots - maximum
disparity is around 500 pixels).

Figure 9. Wide baseline stereo evaluation. From left to right: DAISY, siam-2stream-l2, siam, 2ch. First row - “winner takes all”
depthmaps, second row - depthmaps after MRF optimization.

l2 distances) is able to significantly outperform SIFT and
to also match the performance of imagenet-trained features
(using, though, a much lower dimensionality of 512).

6. Conclusions
In this paper we showed how to learn directly from

raw image pixels a general similarity function for patches,
which is encoded in the form of a CNN model. To that
end, we studied several neural network architecures that
are specifically adapted to this task, and showed that they
exhibit extremely good performance, significantly outper-
forming the state-of-the-art on several problems and bench-
mark datasets.

Among these architectures, we note that 2-channel-based
ones were clearly the superior in terms of results. It is,
therefore, worth investigating how to further accelerate
the evaluation of these networks in the future. Regard-
ing siamese-based architectures, 2-stream multi-resolution
models turned out to be extremely strong, providing always
a significant boost in performance and verifying the im-
portance of multi-resolution information when comparing
patches. The same conclusion applies to SPP-based siamese
networks, which also consistently improved the quality of
results1.

1In fact, SPP performance can improve even further, as no multiple
aspect ratio patches were used during the training of SPP models (such
patches appear only at test time).
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Figure 10. Evaluation on the Mikolajczyk dataset [16] showing the
mean average precision (mAP) averaged over all types of transfor-
mations in the dataset (as usual, the mAP score measures the area
under the precision-recall curve). More detailed plots are provided
in the supplemental material due to lack of space.

Last, we should note that simply the use of a larger train-
ing set can potentially benefit and improve the overall per-
formance of our approach even further (as the training set
that was used in the present experiments can actually be
considered rather small by today’s standards).
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