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2 Université Lyon 1, Villeuranne, France
salima.hassas@univ-lyon1.fr

Abstract
We present an architecture for self-motivated agents to generate behaviors in a dynamic envi-
ronment according to its possibilities of interactions. Some interactions have predefined valences
that specify inborn behavioral preferences. Over time, the agent learns to recognize affordances
in its surrounding environment under the form of structures called signatures of interactions.
The agent keeps track of enacted interactions in a spatial memory to generate a completed con-
text in which it can use signatures to recognize and localize distant possibilities of interactions,
and generates behaviors that satisfy its motivation principles.
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learning, Self-motivation, Spatial awareness.

1 Introduction

In this paper, we address the problem of the construction, interpretation and exploitation of a
short-term representation of a dynamic environment by an artificial agent that initially ignore
elements that compose its environment. Our work is based on a model proposed by Georgeon
and Aha [3], called Radical Interactionism, in which actions and perceptions are considered
as inseparables and kept embedded within data structures called interactions. Specifically,
interactions are used to model Piaget’s notion of sensorimotor scheme [8].

In previous works [2][1], we proposed and tested mechanisms that allow an artificial agent
to construct and exploit such a structure to generate behaviors adapted to the environmental
context of the agent. These mechanisms are inspired from biology: most natural organisms have
brain structures that maintains some geometrical correspondences with the animal’s surround-
ing space, such as tectum[6] (or colliculus in mammals), or sensorimotors cortices[5]. These
mechanisms are however limited to a static environment. To overcome this limitation, we pro-
pose to adapt these mechanisms to consider movements of elements of the environment. This
paper focuses on the adaptation of mechanisms that learn to define objects that compose the
environment, and mechanisms that generate behaviors.
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Figure 1: Model of the Parallel Radical Interactionism [2]. A decision cycle begins with an
intended interaction it of the agent, which then experiments a set of enacted interactions Et

2 Formalization of Parallel Radical Interactionism (PRI)

The PRI model[2] begins with a set I of primitive interactions. Each primitive interaction i is
attributed a valence vi that defines the agent’s behavioral preferences. This principle defines a
form of intrinsic motivation [7], called Interactional Motivation. A PRI decision cycle, illustrated
in Figure 1, begins with an intended interaction it from the agent. At the end of the decision
cycle, the agent is informed of interactions that were actually enacted, called Enacted set Et.

We thus consider that the agent receives additional sensory stimuli when an interaction is
enacted. These stimuli cannot be considered without the interaction that produce them. We
thus propose to construct new interactions by associating an interaction and a stimuli. We
call secondary interaction i such an interaction, associated interaction of i the interaction that
composes i, and primary interaction an interaction that is not based on another one.

In a preliminary work1, we have implemented an agent equipped with a sequential RI
algorithm that can capture sequential properties of mobile elements. We thus propose that the
agent can consider sequences of two enacted interactions. Indeed, a sequence of interactions
can carry information about the relative movement of an object detected by these interactions.

3 The Spatial Memory System

We have proposed a structure, called Space Memory System (SMS) [2][1], that completes the
interactional context Et and helps the agent to generate behaviors adapted to the environment.

The SMS is based on structures that can characterize elements of the environment, called
Signatures of Interaction. The principle is based on the assumption that the result of the enac-
tion of an interaction depends on a limited context of elements of the environment, considered
as the “objects” that affords this interaction. This definition of objects relates to the concept of
affordance proposed by Gibson[4]: an object is a specific spatial configuration of elements in the
environment that affords an interaction, and does not require a priori knowledge. A RI agent
cannot directly observe these objects, but can “experience” them through interactions. The
aim of the signature mechanism is thus to define for each interaction i a set of interactions {j}
for which the enaction can characterize the presence of the object that affords i. This mecha-
nism is similar to the mechanism proposed by Uğur et al. [9]. However, the use of interactions
rather than actions and perceptions makes it possible to learn spatial properties of space, as
interactions carry information about the movements of the agent in space. Our mechanism is
adapted from [2], and extended to sequences of interactions. The mechanism is formalized as a
certitude function c that gives the certitude that an interaction or sequence i can be successfully
enacted in a context E with an absolute certitude of success when c(i, E) = 1 and of failure
when c(i, E) = −1. This function is reinforced at each decision cycle, based on the results of

1http://e-ernest.blogspot.fr/2012/03/ernest-111.html
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enaction. The parameters of c constitutes the Signatures of interactions. We propose an imple-
mentation based on a single layer neuronal network, with a neuron per interaction (1). To this
end, the context Et is coded as a binary vector [ε1,t; ...; εn,t], with n the number of interactions
and sequences used by the agent, and εk,t = 1 when ik ∈ Et. Each signature of interaction or
sequence i is composed of a set Wi of n weights wi,k and a bias wi,n+1.

c(i, Et) = g

(
∑

k∈[1;n]

εk,t · wi,k) + wi,n+1

 with g(x) =
2

1 + e−x
− 1 (1)

A set Wi is updated each time the interaction or sequence i is completed as a success or a
failure, using the delta rule (2). We note ri,t = 1 if i succeeded and ri,t = −1 if i failed.

wta,k ← wt−1a,k +α×εk,t−1× (ra,t−c(a,Et−1)) , ∀k ∈ [1;n+1], α ∈ [0; 1] the learning rate. (2)

We propose to use a hard-coded structure, called Space Memory [2], that integrates and
tracks detected objects, to study more precisely the modified mechanism of signature of inter-
action and the exploitation mechanism of the SMS. A space memory M is composed of a set
P of position p in egocentric reference. A part of these positions is related to positions that
correspond to interactions. This subset of positions constitutes the area of space the agent can
observe through interactions, we call Observable Space PO. Any geometrical transformation
can be approximated by a function τ : p → p′. Moving an element in space thus consists in
changing its position according to τ . Each primary interaction i produces a transformation τi.
Note that [1] proposes mechanisms to construct such a structure without any preconception.

The selection mechanism is based on two decisional systems. The exploration system leads
the agent to try interactions for the sake of learning signatures. As the frequency of the enaction
of sequence of interaction is very low, we propose a mechanism that foster the less tested weights.
For each weight of each signature, we attribute a counter ci,k that is incremented each time the
weight is modified. At each decision cycle t, we compute the relevance of testing an interaction or
a sequence in the current context Et, defined by

∑
k∈[1:n] ci,k×εk,t. An interaction or a sequence

is candidate when its certitude of success is smaller (in absolute value) than a threshold, called
reliability threshold. The candidate interaction with the lowest relevance is then selected and
enacted. If no interaction is candidate, the agent uses the exploitation mechanism.

The exploitation mechanism selects interactions to maximize valence in the short and
medium terms. It considers the relative movement of objects generated by the enaction of
interactions, and adds a utility value to valence of interactions, that depends on the variation
of distance of objects and the valence of interactions afforded by these objects. Closest objects
have a greater influence as the agent is more likely to interact with them in the short term.
Formally, we note Mτ an image of the Spatial Memory M when a transformation τ ∈ T is
applied, and Eτ the list of interactions stored in Mτ , limited to PO. For each transformation τ ,
a distal object that affords an interaction i is considered as present with a certitude of c(i, Eτ ).
We note d(τ) the distance of the object. The utility value ∆ik , that characterizes the global
variation of distance produced by a candidate interaction ik, is computed as follows:

∆ik =
∑
i∈I

(∫
τ∈T

c(i, Eτ+τik )× f(d(τ+τik ))−
∫
τ∈T

c(i, Eτ )× f(d(τ))

)
× vi (3)

Where f : R+ →]0; 1] is a function that characterizes object influence according to their
relative distance. In our implementations, we use the function f : x → γx with γ ∈]0; 1]. The
mechanism then selects, among candidates ik, the next intended interaction it+1 defined by
it+1 = maxik (vik + β ×∆ik), with β ∈ R+ the influence coefficient of the SMS.
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Figure 2: Left: the agent in its environment. The agent is represented as a gray shark, preys as
blue fishes and food as blue alga. Right: the interactional context. Inputs are gathered accord-
ing to properties of related visual sequences of interaction. Input related to primary sequences
of interactions are represented with seven squares (here, move forward twice is enacted).

4 Implementation on an artificial agent

We have implemented our mechanisms on an agent moving in a 2-dimensional continuous en-
vironment (Figure 2). The agent-environment system defines a set of 7 primary interactions
(valence is given in parenthesis): move forward of half the length of the agent (1), bump
(-5), move forward and eat something edible (50), turn left of 45◦ (-1), turn right of 45◦

(-1), turn left of 22.5◦ (-1), turn right of 22.5◦ (-1). We add a set of visual secondary
interactions that consists in seeing an element of a color among {red, green, blue} at a position
p (supposed defined by a movement and optic flow), while enacting one of the primary interac-
tions (except for bump that does not produce movement). We discretize observable positions
as a regular grid of 30× 15 positions to simplify movements in space memory.

We define 4 types of elements, characterized by a color that makes them recognizable ac-
cording to the interactional system of the agent: wall block (green) that affords bump, food
and mobile preys (blue) that affords eat, and alga (red) that has no influence on enaction of
interactions. Mobile preys move forward at a same speed than the agent. Edible elements are
removed when eaten and a same element is added in a randomly selected empty place.

We introduce sequences of interactions to detect relative movements of elements. We only
consider relevant sequences. Note that defining relevant sequences is an open question that we
intend to address in future works. Primary interactions defines the following sequences: move
forward twice (2), bump (-5), move forward, then eat (52), turn left of 90◦ (-2),
turn right of 90◦ (-2), turn left of 45◦ (-2), and turn right of 45◦ (-2). A sequence of
secondary interactions is composed of a sequence of two secondary interaction. Blue elements
can be immobile or move in 8 directions, relative to the agent, as it can rotate of 45◦. The
agent can thus experiment, for each position and primary interaction, 9 sequences of secondary
interactions. Green and red elements are immobile: the agent can experiment one sequence.
We thus define a set of (9 + 1 + 1)× 30× 15× 6 = 29700 sequences of secondary interactions.

We first test the signature mechanism. We let the agent interacts with its environment,
and stop the experiment after 100 000 decision cycles. Figure 3 shows examples of signatures.
We can observe that move forward twice is related to the absence of green and blue element
in front of the agent (mid-red blob on signature), and bump is related to a green element in
front of the agent. We can note that the size of these elements are nearly the size of the
agent. The signature of move forward then eat designates a blue element for which the position
depends of its movement (and move forward twice is related to their absence): the signature
thus integrates dynamic properties of preys. Turn sequences, that cannot fail, are strongly
related to the bias. Signatures of visual sequences shows interesting properties: they designate
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Figure 3: Signatures of sequences of interactions move forward twice, bump, move forward then
eat, turn left of 45◦, move forward twice and seeing a blue immobile element, and turning left of
45◦ and seeing a blue element with a forward-left movement (at a position designated by a red
square), obtained after 100 000 decision cycles. We gather weights related to visual sequences
characterized by a same associated sequence (left) and a same color and observed movement
(top). Each group is organized to match the topography of the visual field. Weights related to
primary interactions and the bias are represented with squares. A black color means a weight
of -1 and a white color means a weight of 1. We can observe that move forward is related to the
absence of blue and green element in front of the agent, bump is afforded by a green element
and eat by a blue element for which the position depends on the movement of preys. Turns
sequences are strongly related to the bias as they cannot fail. Signatures of visual sequences
designate interactions related to seeing an element of a same color, at a position that correspond
to the transformation produced by enacted sequences (orange arrows).

elements of a same color than the considered sequence, but at a position that correspond to the
position of the sequence, moved by the movement produced by sequences of interactions and
the movement of objects. Figure 4 shows examples of these observed movements. In case of
sequences of visual interactions related to turns interactions, we also observe a permutation in
the movement characterized by sequences designated by signatures. These observations show
that signatures integrate spatial and dynamics properties of the environment.

We then add the space memory to test the exploitation mechanism. We propose a simplifi-
cation of the interactional system: as signatures gather interactions related to a same element,
we propose to consider sequences of visual interactions regardless of their associated primary
interaction. This simplification decreases the number of sequence and significantly increases
the frequency of enaction of these sequences. The downside is that we cannot define signatures
of sequences of visual interaction nor enact these sequences. We increase the resolution of the
grid that define positions to observe more precisely signatures of interactions.

The experiment is conducted as previously. We let the agent interact with its environment,
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(1.03; 1.08; -0.28°) (-0.05; 0.91; -0.21°) (1.15; 0.94; 0.64°)

(-0.86; -0.85; 44.7°)(-0.16; -0.01; 43.9°)(0.58; 0.76; 45.1°)

Figure 4: Difference of position between a sequence of visual interaction (black dots) and the
barycenter of position of sequences designated by its signature (red circles). Average transfor-
mations (x, y, θ) produced by enaction of associated interactions are easily recognizable.

Figure 5: Signatures of sequences move forward twice, bump and move forward then eat, ob-
tained after 25 000 decision cycles with the simplified interactional system. Object constructed
by the agent are similar to that obtained with the complete interactional system.

driven by a curiosity and an exploitation mechanism. We had to reduce the speed of prey to
0.7 times the speed of the agent to allow the agent to reach a prey by approaching it laterally
with an angle of 45◦. Figure 5 shows signatures of primary interactions obtained after 25 000
decision cycles. The objects observed by the agent are similar to previously.

We then disable the agent’s learning mechanism and observe its behavior in presence of a
prey. It appears that the agent “aims” at a point in space in front of a prey (Figure 6). Indeed,
the signature of eat interaction considers the movement of preys: the “center” of the object
(i.e. the point of space where the interaction can be afforded) is not in front of the prey, but
in front of the position of the prey after enacting the interaction. This property is especially
visible when we place a wall block in front of the agent (Figure 6 right): as the prey moves left
behind the wall block, the agent turns left to reach the prey, although the prey is still in the
left side of the agent. This observation shows that the agent considers the future positions of
objects rather than their current position.

5 Conclusion

We proposed an adaptation of mechanisms proposed in [2] for a dynamic environment, inspired
by sequential RI models. We observed that only a few modifications were needed to allow
an artificial agent to discover dynamic properties of its environment. The use of sequences of
interactions has a little incidence on principles of mechanisms developed for a static environ-
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Figure 6: Left: the agent is strongly attracted by the prey (1-2), as it affords an interaction
with a high valence. The agent is attracted by the future position of the prey: it turns left
while the prey is at its right side (2-3), which allows the agent to reach the prey (4). Right: a
wall block is added in front of the agent (1). The agent “anticipates” the position of the prey
and bypass the wall by its left side (2). Without perceiving the prey anymore, the agent turns
left and moves forward to pass ahead the prey and reach it (3).

ment. Indeed, a sequence of interaction, like an interaction, can success or fail, which makes it
possible to use them as an input of the interactional context to complete or replace interactions
without modifying the principle of signatures of interactions. The agent shows that it can learn
and integrate elements that afford its interactions and spatial properties of its environment,
like with mechanisms developed for static environments. It also learns dynamic regularities of
its environment, under the form of sequences of interactions that allow to detect movements of
objects and to predict their position. The use of a hard-coded space memory is a strong precon-
ception. However, modifications of mechanisms of constructions of structures to characterize
objects and spatial properties of space does not seem to need modifications of mechanisms of
construction and exploitation of the agnostic space memory developed previously[1]. In future
works, we intend to implement our mechanisms in more complex systems, and in particular
agents using continuous sets of interaction.
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