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Abstract: Covariate-adaptive treatment allocation is considered in the
situation when a compromise must be made between information (about
the dependency of the probability of success of each treatment upon influ-
ential covariates) and cost (in terms of number of subjects receiving the
poorest treatment). Information is measured through a design criterion for
parameter estimation, the cost is additive and is related to the success
probabilities. Within the framework of approximate design theory, the de-
termination of optimal allocations forms a compound design problem. We
show that when the covariates are i.i.d. with a probability measure µ, its
solution possesses strong similarities with the construction of optimal de-
sign measures bounded by µ. We characterize optimal designs through an
Equivalence Theorem and construct a covariate-adaptive sequential allo-
cation strategy that converges to the optimum. Our new optimal designs
can be used as benchmarks for other, more usual, allocation methods. A
response-adaptive implementation is possible for practical applications with
unknown model parameters. Several illustrative examples are provided.

MSC 2010 subject classifications: Primary 62K05; secondary 62P10.
Keywords and phrases: optimal design, treatment allocation, bounded
design measure, equivalence theorem, multi-armed bandit problem.

1. Introduction and motivation

We consider a treatment allocation problem with K treatments for which the
probabilities of success depend on side information given by covariates. The
response Yt = Yt(X) of a subject with covariates X to treatment t satisfies

E{Yt|X = x, t = k} = ηk(x, θk) , k ∈ {1, . . . ,K} , (1.1)

where θk denotes the (unknown) value of the model parameters for treatment
k and the functions ηk are known. In particular, this covers the case of binary
responses Yt ∈ {0, 1}, with Prob[Yt = 1|X = x, t = k] = ηk(x, θk), with logis-
tic regression as a typical example. Throughout the paper we consider scalar
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responses ηk, but the multivariate situation case may be considered as well,
see, e.g., Dragalin and Fedorov (2006); Dragalin et al. (2008a,b); Rabie and
Flournoy (2013) for bivariate binary responses corresponding to efficacy and
toxicity. Note that the different models may have some parameters in common;
i.e., the vectors θk may share some components. We suppose that the covariates
are i.i.d. among subjects, with some probability measure µ. The responses are
independent too; that is, the random vectors (Xi, Y1(X), . . . , Yk(Xi)) are i.i.d.

In a bandit framework, this allocation problem corresponds to a multi-armed
bandit problem which involves sampling from non-homogeneous populations,
the response in each population being determined by a random vector of covari-
ates and a vector of unknown parameters. The problem can be described as that
of choosing between arms of a slot machine, where a random arm-dependent re-
ward is realized each time an arm is pulled, see, e.g., Goldenshluger and Zeevi
(2013).

We consider trials that aim at explicitly taking two conflicting objectives into
account. The first one concerns statistical inference about the response models
ηk and consists in estimating the θk with good precision. For that reason, the
allocation rule that we propose will rely on a classical criterion for experimental
design, related to the precision of the estimation of the θk. The second ob-
jective concerns individual ethics: one aims at minimizing a cumulative regret
relative to allocation of each subject to the best treatment. The overall strat-
egy may correspond to maximizing information under a constraint on regret, or
minimize the regret with a constraint on information. From Lagrangian dual-
ity, when the information and regret functionals are respectively concave and
convex (we shall use a linear regret in what follows), such strategies amount
at maximizing a linear combination of information and regret. By tuning the
(scalar) Lagrange coefficient, we can then set a compromise between the infor-
mation gained from the trial and the efficient treatment of individuals enroled
in the trial, see Dragalin and Fedorov (2006); Dragalin et al. (2008a); Pronzato
(2010).

Covariate-adaptive allocation rules are considered, for which the decision of
which treatment to assign to the n-th subject is taken after observation of its
covariates Xn. The main objective of the paper is to derive simple sequential al-
location rules that are asymptotically optimal for the compromise criterion that
we propose. The concept of design measures is natural for investigating asymp-
totic properties, and we shall decompose µ into positive measures ξ1, . . . , ξK on
the set of covariates, with ξk the fraction of µ corresponding to subjects allo-
cated to treatment k. Any such decomposition defines a design ξ. The presence

of the constraint
∑K
k=1 ξk = µ on ξ introduces similarities with the construc-

tion of optimal bounded design measures, and an Equivalence Theorem is de-
rived in Section 2, in a form similar to that in (Wynn, 1982; Fedorov, 1989;
Sahm and Schwabe, 2001), see also Pronzato (2004). Optimal designs ξ∗[µ] for
an information/regret compromise are then characterized. The introduction of
randomization is considered in Section 3, with a characterization of optimal
designs having a given randomization factor. Two covariate-adaptive allocation
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rules are presented in Section 4. The first one relies on the prior construction
of an (oracle) optimal design ξ∗[µ], the second is doubly adaptive and does not
assume knowledge of µ. The paper focusses on locally optimum design, where
the model parameters θk are fixed to some prior nominal values. Covariate-
Adjusted Response-Adaptive (CARA) rules, see Hu and Rosenberger (2006);
Hu and Hu (2012); Zhang et al. (2007); Zhang and Hu (2009); Baldi Antognini
and Zagoraiou (2015), where allocation of the n-th subject to one of the K
treatments depends on the current Xn and estimated values θn−1

k of the θk for
the K models, are briefly considered in Section 5.

2. Optimal covariate-adaptive design

2.1. Allocation criterion

Let X ⊂ Rd denote the space of covariates Xi, which are assumed to be inde-
pendently identically distributed (i.i.d.) with a probability measure µ such that
µ(X ) = 1. We shall consider the two following situations,

H1a: X is finite,

H1b: X is a compact subset of Rd with non-empty interior int(X ).

In the second case, we shall assume the following

H2: µ has a density with respect to the Lebesgue measure,

the ηk(·, θk) are continuously differentiable in x ∈ int(X ).

We assume that the models are distinguishable in the following sense:

µ {x ∈X : ηk(x, θk) = ηj(x, θj) for some j 6= k} = 0 . (2.1)

Regret. If the parameters θk in each model ηk were known, we could use an
oracle rule and allocate a subject with covariates X to treatment k∗ such that

η∗(X) = ηk∗(X) = max
k=1,...,K

ηk(X, θk) .

However, for unknown θk allocation to the best treatment cannot be guaranteed
and we define the (cumulative) regret after n allocations as

Rn(θ) =
1

n

n∑
i=1

[η∗(Xi)− ηki(Xi, θki)] ,

when the i-th subject with covariates Xi has been allocated to treatment ki, for
all i = 1, . . . , n. This can also be written as

Rn(θ) = Pµnη∗ −
K∑
k=1

Pξn,kηk(·, θk) , (2.2)
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where, for a measure ν on X and a ν-measurable function f : X −→ R we
denote Pνf =

∫
X f(x) dν(x). Here µn is the empirical measure of the Xi and

ξn,k =
Nn,k
n

µn,k , k = 1, . . . ,K , (2.3)

with µn,k the empirical measure of the Xi that have been allocated to treatment
k in the first n assignments, and Nn,k their number. Other forms of regret will
be suggested in Section 5.

Information. Let θ ∈ Rp denote the vector of all parameters in the K models
ηk, with p <

∑K
k=1 dim(θk) when the models have some parameters in common.

Information will be related to the precision of the Maximum Likelihood (ML)
estimation of θ, measured by the (inverse of the) normalized Fisher information
matrix. Denote by Mk(x; θk) the elementary information matrix corresponding
to the observation of the response Yt|X = x, t = k, with expectation ηk(x, θk),
see (1.1); Mk(x; θk) is p × p, but its j-th row and column are formed of zeros
when θk does not contain the j-th component of θ. For example, in Bernoulli
trials with a single response Yt ∈ {0, 1}, we have

Mk(x; θk) =
∂ηk(x, θk)

∂θ

∂ηk(x, θk)

∂θ>
1

ηk(x, θk)[1− ηk(x, θk)]
. (2.4)

In case of H1b, we assume the following in complement of H2:

H2’: all components of Mk(x; θk) are continuously differentiable in x ∈ int(X ).

With notations similar to the regret calculation, we can compute the normal-
ized information matrix after n allocations as

Mn(θ) =
1

n

n∑
i=1

Mki(x; θki) =

K∑
k=1

Pξn,kMk(·; θk) . (2.5)

We shall measure the information content of the trial by Ψ(Mn), with Ψ(·) a
design criterion defined on the set of symmetric non-negative definite p× p ma-
trices. We suppose that Ψ(·) is concave, monotonic for Loewner ordering, twice
continuously differentiable and strictly concave on the set M+ of symmetric
positive-definite matrices. Typical examples are

Ψq(M) =

{
−trace(M−q) for q > 0 ,
log det(M) for q = 0 (D-optimality) ,

(2.6)

with A-optimal design when q = 1, see, e.g., Pukelsheim (1993, Chap. 5).

Limiting allocations and design measures. In the usual context of opti-
mal design theory, the consideration of an asymptotic framework where design
measures are substituted for exact designs of given size n much facilitates the
construction of optimal designs. It is also the case here, with a further justifica-
tion by the presence of the probability measure µ at the core of the problem.
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The measures ξn,k defined by (2.3) satisfy
∑K
k=1 ξn,k = µn, with µn → µ as

n → ∞ since the Xi are i.i.d. with µ. We shall thus consider design measures
ξ = (ξ1, . . . , ξK) that form a decomposition of µ into µ =

∑K
k=1 ξk, where

ξk will define the target limiting allocation in a sequential allocation rule and
corresponds to the fraction of µ devoted to treatment k. Note that the ξk are
not probability measures. We shall denote by Ξ(µ) the set of such ξ,

Ξ(µ) = {ξ = (ξ1, . . . , ξK) ∈ (MX )K :

K∑
k=1

ξk = µ} , (2.7)

where MX is the set of non-negative measures on X absolutely continuous
with respect to µ. Notice that Ξ(µ) is convex.

Combining information and regret. The regret R(ξ; θ) for a ξ ∈ Ξ(µ) can
be written as

R(ξ; θ) = Pµη∗ −
K∑
k=1

Pξkηk(·, θk) , (2.8)

see (2.2). The associated information is ψ(ξ; θ) = Ψ[M(ξ; θ)], with

M(ξ; θ) =

K∑
k=1

PξkMk(·; θk) ,

see (2.5). We suppose that M(ξ; θ) is positive definite when all ξk = µ/K in ξ.
We shall consider design problems that correspond to the maximization of

compromise criteria of the form J (α)(ξ; θ) = (1 − α)ψ(ξ; θ) − αR(ξ; θ) for

some α ∈ [0, 1]. In J (α)(ξ; θ) the information content of the trial, measured
by ψ(ξ; θ), is balanced by the regret R(ξ; θ) which corresponds to an ethical
cost, see Pronzato (2010) for a similar approach in another context. Due to the
equivalence between constrained and compound optimal designs, see Cook and
Wong (1994); Pronzato (2010) and Fedorov and Leonov (2014, Chap. 4), this
is equivalent to maximizing ψ(ξ; θ) under a constraint of the form R(ξ; θ) ≤ τ
for some constant τ . Indeed, the Lagrangian for this constrained problem can
be written as L (ξ, C) = ψ(ξ; θ) − C [R(ξ; θ) − τ ], with C ≥ 0 the Lagrange
parameter; maximizing ψ(ξ; θ) with R(ξ; θ) ≤ τ is equivalent to maximizing

L (ξ, C) for some C = C(τ) and is equivalent to maximizing J (α)(ξ; θ) for
α = C/(1 + C). Due to the concavity of Ψ(·), any non-dominated solution ξ∗

(that is, such that there does not exist a ξ′ ∈ Ξ(µ) satisfying ψ(ξ′; θ) ≥ ψ(ξ∗; θ)

and R(ξ′; θ) ≤ R(ξ∗; θ) with one of these inequalities being strict) maximizes

J (α)(ξ; θ) for some α ∈ [0, 1]. Figure 3—right in Example 3 will provide an il-

lustration. Similarly, maximizing J (α)(ξ; θ) is equivalent to minimizing R(ξ; θ)
under the constraint ψ(ξ; θ) ≥ τ ′ for some constant τ ′. Baldi Antognini and Gio-
vagnoli (2010) give a justification for using compromise design in the context of
clinical trials, but they do not take covariates into account. Balancing efficiency
and ethics is also considered in (Hu et al., 2015), but no explicit optimal design
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is used as a target for sequential allocation (see in particular Example 3). The
achievement of a suitable balance between treatments is often explored through
the introduction of randomization in the definition of the allocation rule, see,
e.g., Ball et al. (1993); Atkinson and Biswas (2005); Hu and Hu (2012). The
duality information/regret is then less clearly accounted for than in the maxi-
mization of J (α)(ξ; θ). Randomization will be considered in Section 3 through
the issue of selection bias.

In what follows, we omit the dependence in θ of information and regret when
it does not impede readability. Due to the expression (2.8) of the regret, maxi-
mizing J (α)(ξ) is equivalent to maximizing

H(α)(ξ) = (1− α)ψ(ξ) + αφ(ξ) (2.9)

where φ(ξ) is a cumulative reward (to be maximized), φ(ξ) =
∑K
k=1 Pξkηk(·).

Notice that when Ψ(M) = log det(M) (D-optimality), optimal designs for
H(α)(·) are invariant by reparameterization of the models ηk for any α ∈ [0, 1].

2.2. An Equivalence Theorem for compromise optimal designs

For any concave functional h(u) defined for all u in some linear space S and for
any u and v in S , we shall denote Gh(u; v) = limγ→0+ [h(u+ γv)−h(u)]/γ and
Fh(u; v) = Gh(u; v−u). Due to the concavity of h(·) these directional derivatives
exist in R∪{+∞} for any u such that h(u) > −∞, see, e.g., Pshenichnyi (1971,
p. 38), Pronzato and Pázman (2013, Lemma 5.16). For any ξ ∈ (MX )K (not
necessarily in Ξ(µ) given by (2.7)) such that Ψ(·) is differentiable at M(ξ), we
denote ∇ψ(ξ) = ∇Ψ[M(ξ)], where ∇Ψ(M) = ∂Ψ(M)/∂M. For any ξ and ν in

(MX )K such that M(ξ) ∈M+, we then have

GH(α)(ξ; ν) = (1− α)trace[∇ψ(ξ)M(ν)] + αφ(ν) =

K∑
k=1

G
(α)
k (ξ; νk) ,

where G
(α)
k (ξ; νk) = (1 − α)trace[∇ψ(ξ)Mk(νk)] + αφk(νk), with Mk(νk) =

PνkMk(·) and φk(νk) = Pνkηk(·), k = 1, . . . ,K. When ψ(·) is differentiable at ξ
we thus obtain

G
(α)
k (ξ; νk) = PνkG

(α)
k (ξ, ·) =

∫
X

G
(α)
k (ξ, x) dνk(x) ,

where we have denoted

G
(α)
k (ξ, x) = G

(α)
k (ξ; δx) = (1− α)trace[∇ψ(ξ)Mk(x)] + αηk(x) , (2.10)

with δx the delta measure at x. As usual in design theory, the convexity of
Ξ(µ) given by (2.7) and the concavity of H(α)(·) given by (2.9) yield an Equiv-
alence Theorem, which states that ξ∗ ∈ Ξ(µ) maximizes H(α)(·) if and only if
FH(α)(ξ∗; ν) ≤ 0 for any ν ∈ Ξ(µ), where

FH(α)(ξ; ν) = (1− α)trace[∇ψ(ξ) {M(ν)−M(ξ)}] + α[φ(ν)− φ(ξ)] .

This necessary and sufficient condition for optimality can be restated as follows.
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Theorem 2.1 Suppose that H(α)(·) is differentiable at ξ∗
(α)

= (ξ∗1 , . . . , ξ
∗
K) ∈

Ξ(µ). The following statements are equivalent:

(i) ξ∗ = ξ∗
(α)

is optimal, i.e., ξ∗ maximizes H(α)(ξ) with respect to ξ ∈ Ξ(µ);

(ii) for all i = 1, . . . ,K, G
(α)
i (ξ∗, x) ≥ maxj 6=iG

(α)
j (ξ∗, x) ξ∗i -a.e.;

(iii) X can be partitioned into nK subsets XJt
= X

(α)
Jt

, t = 1, . . . , nK ≤
2K − 1, with index sets Jt that are subsets of {1, . . . ,K}, and such that,
for all t = 1, . . . , nK ,

(a)
∑
i∈Jt

ξ∗i = µ on XJt
,

(b) G
(α)
i (ξ∗, x) = G

(α)
j (ξ∗, x) on XJt for all i, j ∈Jt,

(c) G
(α)
i (ξ∗, x) > G

(α)
j (ξ∗, x) for x ∈XJt

, i ∈Jt and j 6∈Jt.

The proof of Theorem 2.1 is given in Appendix. The theorem takes a simpler

form when K = 2: the function x −→ ∆
(α)
12 (ξ∗, x) = G

(α)
1 (ξ∗, x) − G(α)

2 (ξ∗, x)
then defines a partition of X in m sets, m ≤ 3, as expressed in the following
corollary.

Corollary 2.1 Suppose that K = 2 and H(α)(·) is differentiable at ξ∗
(α)

=
(ξ∗1 , ξ

∗
2) ∈ Ξ(µ). The following statements are equivalent:

(i) ξ∗ = ξ∗
(α)

is optimal, i.e., it maximizes H(α)(ξ) with respect to ξ ∈ Ξ(µ);

(ii) ∆
(α)
12 (ξ∗, x) ≥ 0 ξ∗1-a.e. and ∆

(α)
12 (ξ∗, x) ≤ 0 ξ∗2-a.e.;

(iii) there exist two subsets X1 = X
(α)

1 and X2 = X
(α)

2 of X such that

(a) ξ∗1 = µ on X1 and ξ∗2 = µ on X2,

(b) ∆
(α)
12 (ξ∗, x) = 0 on X \ (X1 ∪X2),

(c) ∆
(α)
12 (ξ∗, x) > 0 for x ∈X1 and ∆

(α)
12 (ξ∗, x) < 0 for x ∈X2.

Notice that ξ∗, the K functions x −→ G
(α)
k (ξ, x) and the sets Xi depend on

θ, see (2.10). We shall use the notations ξ∗
θ
, G

(α)
k (ξ, x; θ), Xi(θ) to emphasize

this dependence when necessary (Section 5).

2.3. Some properties of compromise optimal designs

The values of H(α)(ξ∗
(α)

), (1 − α)ψ(ξ∗
(α)

) and αφ(ξ∗
(α)

) are always uniquely

defined for any α ∈ [0, 1] (which implies that ψ(ξ∗
(α)

) and φ(ξ∗
(α)

) are uniquely
defined for α respectively in [0, 1) and (0, 1]). Moreover, one can show that

H(α)(ξ∗
(α)

), (1−α)ψ(ξ∗
(α)

) and αφ(ξ∗
(α)

) are continuous functions of α in [0, 1],

that ψ(ξ∗
(α)

) is non-increasing for α ∈ [0, 1) and φ(ξ∗
(α)

) is non-decreasing on

(0, 1], and thatH(α)(ξ∗
(α)

) is convex and continuously differentiable with respect

to α in (0, 1), with dH(α)(ξ∗
(α)

)/dα = φ(ξ∗
(α)

)− ψ(ξ∗
(α)

).
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2.3.1. The special case α = 1

This case corresponds to the usual framework in bandit theory, with abundant
results on the construction of strategies minimizing the expected regret, see, e.g.,
Lai and Robbins (1985); Goldenshluger and Zeevi (2011, 2013). Theorem 2.1

applies when α = 1 since H(1)(ξ) =
∑K
k=1 Pξkηk(·) is linear in the ξk, and

the sets Xj are uniquely defined. For instance, when K = 2, (2.1) implies

that the optimal design is given by ξ∗ = ξ∗
(1)

= (ξ∗1 , ξ
∗
2) such that ξ∗1 = µ on

X
(1)

1 = {x ∈ X : η1(x) > η2(x)} and ξ∗2 = µ on X
(1)

2 = {x ∈ X : η1(x) <
η2(x)}. Therefore, when the models are such that η1(x) > η2(x) for all x ∈X ,

X
(1)

1 = X and ξ∗ does not allow estimation of θ2. In a sequential response-
adaptive situation where assignment decisions are based on estimated values of
the model parameters, it means that a deterministic decision rule using α = 1
(a method sometimes called “best intention design”) may fail to ensure the
consistent estimation of θ; moreover, allocation to the poorest treatment for all
n large enough may happen with positive probability.

When M(ξ∗
(1)

) is nonsingular, the design ξ∗
(1)

may be optimal for all H(α)(·)
with α in some interval [α, 1], see Example 3. Note that

max
ξ∈Ξ(µ)

φ(ξ) = φ(ξ∗
(1)

) and R(ξ) = φ(ξ∗
(1)

)− φ(ξ) for any ξ ∈ Ξ(µ) . (2.11)

2.3.2. Uniqueness of M(ξ∗
(α)

) for α < 1

The information criteria (2.6) are such that Ψ(M) = −∞ for any singular M and

is finite otherwise. Then, for any α ∈ [0, 1), a design ξ∗
(α)

optimal for H(α)(·)
defined by (2.9) is such that M(ξ∗

(α)
) ∈ M+; H(α)(·) is thus differentiable at

ξ∗
(α)

and Theorem 2.1 applies. This is also the case for the positively homoge-

neous versions Ψ(M) = det1/p(M) and Ψ(M) = (trace[M−q]/p)−1/q (q > 0),
which have continuous extensions Ψ(M) = 0 at singular M, see Pukelsheim
(1993, Chap. 5). Indeed, the property that the directional derivative FΨ(M,M′)

equals +∞ when M is singular and M′ has full rank ensures that M(ξ∗
(α)

) is
nonsingular when α < 1.

The strict concavity of Ψ(·) implies the uniqueness of M(ξ∗
(α)

) ∈ M+, and

therefore of the functions x −→ G
(α)
k (ξ∗

(α)
, x) and sets X

(α)
Jt

in Theorem 2.1-

(iii).

2.3.3. Uniqueness of ξ∗
(α)

The optimal design ξ∗
(α)

= (ξ∗1 , . . . , ξ
∗
K) that maximizes H(α)(ξ) is uniquely

defined (up to sets of zero measure) when

µ{x ∈X : G
(α)
i (ξ∗, x) = G

(α)
j (ξ∗, x)} = 0 for all i 6= j (2.12)
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(which corresponds to µ(X1 ∪X2) = 1 when K = 2, see Corollary 2.1).
Condition (2.12) is often satisfied when α ∈ [0, 1) and µ has a density with

respect to the Lebesgue measure, but the reverse situation cannot be considered
as exceptional, as Example 1 will illustrate. A simple generic case where the
condition fails is when α = 0, K = 2, η1, η2 have no parameters in common,
but the numerical values of θ1 and θ2 are such that, for any ξ, M1(ξ) = cM2(ξ)
when we write M(ξ) as

M(ξ) =

(
M1(ξ1) O
O> M2(ξ2)

)
,

with c some positive constant. Take for instance Ψ(M) = log det(M). Then, for
any ξ ∈ Ξ(µ) we have H(0)(ξ) = log det[M1(ξ1)] + log det[M1(ξ2)] + p1 log(c),
with p1 the number of parameters in η1 (and η2). Consider ξ

µ
= (µ/2, µ/2) =

((ξ1 + ξ2)/2, (ξ1 + ξ2)/2) ∈ Ξ(µ); it satisfies H(0)(ξ
µ
) = 2 log det{M1[(ξ1 +

ξ2)/2]}+ p1 log(c). The concavity of log det(·) implies that H(0)(ξ
µ
) ≥ H(0)(ξ),

and ξ
µ

is thus optimal, with X1 = X2 = ∅ in Corollary 2.1-(iii). Moreover, any

optimal design ξ∗ = (ξ∗1 , ξ
∗
2) is such that M1(ξ∗1) = M1(ξ∗2), and the designs

(ξ∗2 , ξ
∗
1) and (1−γ)ξ∗+γξ

µ
are also optimal for all γ ∈ [0, 1]. Since α = 0, these

optimal designs may have different regret values, see Example 3.

When (2.12) is satisfied and ξ∗
(α)

is uniquely defined, the sequential allo-
cation rules presented in Section 4 are such that the empirical measures ξn,k
defined by (2.3) converge a.s. to the ξ∗k

(α) (weak convergence), and the alloca-

tion proportions ξn,k(X ) converge a.s. to their optimal counterparts ξ∗k
(α)(X ).

Note that when α < 1 this convergence of allocation proportions can always
be ensured by including an intercept θ0k in each of the k models ηk due to the

uniqueness of M(ξ∗
(α)

), see Section 2.3.2.

2.4. Bounds on optimal regret and information

Upper bounds on optimal regret. Let ξ∗
(α) ∈ Ξ(µ) be an optimal design

that maximizes H(α)(ξ) for a given α ∈ (0, 1]. Take any k ∈ {1, . . . ,K} and
consider a set XJt in Theorem 2.1-(iii) that contains k, the measure ξk being
positive on such sets XJt only. For any x ∈ XJt and any j ∈ {1, . . . ,K} we
have

ηj(x)− ηk(x) ≤ 1− α
α

trace
{
∇ψ(ξ∗

(α)
)[Mk(x)−Mj(x)]

}
,

see (2.10). The monotonicity of Ψ(·) for Loewner ordering implies that∇ψ(ξ∗
(α)

)
is non-negative definite, therefore

η∗(x)− ηk(x) = max
j

[ηj(x)− ηk(x)] ≤ 1− α
α

trace
[
∇ψ(ξ∗

(α)
)Mk(x)

]
.

Repeating the same operation for all k, and integrating over all ξ∗
k

(α)
, we obtain

R(ξ∗
(α)

) ≤ 1− α
α

trace
[
∇ψ(ξ∗

(α)
)M(ξ∗

(α)
)
]
. (2.13)
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In the special case Ψ(M) = log det(M) the bound does not depend on ξ∗
(α)

:

indeed, we then have ∇ψ(ξ) = M−1(ξ), which gives R(ξ∗
(α)

) ≤ p(1− α)/α.

Another upper bound on R(ξ∗
(α)

) can be obtained by exploiting the concavity

of ψ(·) and comparing ξ∗
(α)

with ξ∗
(1)

. For any α ∈ [0, 1], we have H(α)(ξ∗
(α)

) ≥
H(α)(ξ∗

(1)
), so that, using (2.11),

R(ξ∗
(α)

) = φ(ξ∗
(1)

)− φ(ξ∗
(α)

) ≤ 1− α
α

[ψ(ξ∗
(α)

)− ψ(ξ∗
(1)

)]

≤ 1− α
α

trace
{
∇ψ(ξ∗

(1)
)[M(ξ∗

(α)
)−M(ξ∗

(1)
)]
}
. (2.14)

A lower bound on optimal information. By definition, an optimal de-

sign ξ∗
(α)

maximizing H(α)(ξ), α ∈ [0, 1), satisfies ψ(ξ∗
(α)

) ≥ ψ(ξ) + α[φ(ξ) −
φ(ξ∗

(α)
)]/(1 − α) for all ξ ∈ Ξ(µ). Therefore, ψ(ξ∗

(α)
) ≥ ψ(ξ) + α[φ(ξ) −

maxν∈Ξ(µ) φ(ν)]/(1− α). Using (2.11), we obtain

ψ(ξ∗
(α)

) ≥ ψ(ξ)− α

1− α
R(ξ) , ∀ξ ∈ Ξ(µ) . (2.15)

2.5. Examples

2.5.1. Example 1

Consider a linear response bandit problem, with K = 2, and ηk(x, θk) = a0 +
bkx, k = 1, 2. The two models have the parameter a0 in common, and θ =
(a0, b1, b2)>. We take Ψ(M) = log det(M) and suppose that µ is uniform on
X = [−1, 1] and that Yt|X = x, t = k has mean ηk(x, θk) and variance 1. We
thus have, for any x ∈X and any ξ = (ξ1, ξ2) ∈ Ξ(µ),

M1(x)=

 1 x 0
x x2 0
0 0 0

, M2(x)=

 1 0 x
0 0 0
x 0 x2

, M(ξ)=

 1 m1 m2

m1 s2
1 0

m2 0 s2
2

 ,

where mk =
∫

X xdξk(x), s2
k =

∫
X x2 dξk(x) (with m1 + m2 = 0 and s2

1 +
s2

2 =
∫

X x2 dµ(x) = 1/3). This example illustrates the fact that we can have

X
(α)

1 = X
(α)

2 = ∅ in Corollary 2.1 for all α in some interval also in the case
where µ has a density with respect to the Lebesgue measure. Without any loss
of generality, we suppose that a0 = 0 and b2 > b1.

Direct calculation shows that the optimal design for all α ≥ α = 24/(24 +

b2 − b1) is ξ∗
(1)

such that X
(α)

1 = [−1, 0) and X
(α)

2 = (0, 1].

On the other hand, G
(α)
1 (ξ, x) and G

(α)
2 (ξ, x) are polynomials of degree 2 in x

for any ξ ∈ Ξ(µ), and when α ≤ α their difference can be made identically zero

for all x ∈X by choosing a ξ ∈ Ξ(µ) with suitable values of m1,m2, s
2
1 and s2

2.
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Then, X
(α)

1 = X
(α)

2 = ∅ in Corollary 2.1. The conditions are s2
1 = s2

2 = 1/6

and m1 = −m2 = m∗1
(α) with

m∗1
(α) =

1

α(b2 − b1)

(
1− α−

[
(1− α)2 +

α2(b2 − b1)2

12

]1/2
)
.

They are fulfilled for instance for ξ∗1
(α) = µ on [−1,−A(α)] ∪ [0, A(α)] and

ξ∗2
(α) = µ on the complement, with A(α) =

√
2(m∗1

(α) + 1/4)1/2, which satisfies
A(α) = 0 and limα→0A(α) = 1/

√
2. Also, elementary calculations show that the

optimal solution whose (Shannon) entropy
∑2
i=1

∫
X − log{[dξ∗i /dµ](x)} dξ∗i (x)

is maximum is given by [dξ∗1/dµ](x) = (1/2) [1 + exp(λ1x)]−1, with λ1 > 0

such that m1 = m∗1
(α). Note that ξ∗1

(α)(X ) = ξ∗2
(α)(X ) = 1/2 for all α for

these two types of solutions, but other optimal designs ξ∗
(α)

exist such that

ξ∗1
(α)(X ) 6= ξ∗2

(α)(X ) for α < α.
The information and regret of a design ξ only depend on m1 and s2

1 and their
optimal values are given by

ψ(ξ∗
(α)

) = −2 log(12), R(ξ∗
(α)

) = 0 for α ≥ α

ψ(ξ∗
(α)

) = log

[
1

36
− 1

3
(m∗1

(α))2

]
, R(ξ∗

(α)
) = (b2 − b1)

[
m∗1

(α) +
1

4

]
otherwise.

2.5.2. Example 2

A slightly simpler version of previous example yields a completely different solu-
tion. Take η1(x, θk) = a0, η2(x, θ2) = a0 + b2x, so that there are two parameters
only, θ = (a0, b2)>. We still take µ uniform on X = [−1, 1], Ψ(M) = log det(M),
and suppose that b2 > 0. The information matrix for a ξ ∈ Ξ(µ) is

M(ξ) =

(
1 m2

m2 s2
2

)
with m2 =

∫
X xdξ2(x), s2

2 =
∫

X x2 dξ2(x). The design ξ∗
(1)

with X
(α)

1 =

[−1, 0) and X
(α)

2 = (0, 1] is now optimal for α ≥ α = 72/(72 + 5b2). For

α < α, G
(α)
2 (ξ, x) is still a polynomial of degree 2 in x but G

(α)
1 (ξ, x) is constant,

and their difference cannot be made identically zero for x in an interval. The

solution is thus much different from that in Example 1: the optimal design ξ∗
(α)

is uniquely defined for α < α, it corresponds to ξ∗1
(α) = µ on X

(α)
1 = (A(α), 0)

and ξ∗2
(α) = µ on X

(α)
2 = [−1, A(α))∪ (0, 1], where A(α) ∈ [−1, 0] is solution of

the fourth-degree equation

3αb2A
4 − 8αb2A

3 + 24(1− α)A2 − 48(1− α)A− 16αb2 = 0 ,

with A(α) = −1 and A(0) = 0 (for α = 0, pulling only the second arm permits
to estimate both a0 and b2 while regret is ignored).
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2.5.3. Example 3

We consider optimal allocation for two logistic regression models with Mk(x, θk)
given by (2.4), k = 1, 2, and η1(x) = η1(x, θ1) = 0.25 + 0.5 ez1(x)/(1 + ez1(x)),
η2(x) = η2(x, θ2) = 0.25+0.5/(1+ez2(x)), where zi(x) = bi(x−ai), θi = (ai, bi),
i = 1, 2.

We take Ψ(M) = log det(M), with nominal parameter values θ1 = θ2 =
(1/2, 10)>, and µ uniform on X = [0, 1]. Figure 1 presents η1(x) and η2(x) as
functions of x, with η1(x) = η2(x) for x = 1/2. The two responses are chosen
totally different on purpose.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η1(x)

η2(x)

x

Fig 1. Example 3: η1(x) (solid line) and η2(x) (dashed line) as functions of x.

For any α ∈ (0, 1] the optimal design ξ∗ = ξ∗
(α)

is uniquely defined, with

ξ∗1 = µ on X
(α)

1 = (A(α), B(α)) ∪ (C(α), 1] and ξ∗2 = µ on X
(α)

2 = [0, A(α)) ∪
(B(α), C(α)) for some A(α) ≤ B(α) ≤ C(α) in (0, 1). Figure 2-left illustrates

the situation for α = 0.7 through a plot of G
(α)
1 (ξ∗, x)−G(α)

2 (ξ∗, x) as a function
of x, see Corollary 2.1-(ii). The optimal designs obtained for α varying in (0, 1]
are shown in Fig. 2-right. Here η2(x) = 1− η1(x); the peculiar symmetry of the
responses yields A(α) + C(α) = 1 and B(α) = 1/2 for all α.

The optimal design ξ∗
(1)

for α = 1 corresponds to A(1) = C(1) = 1/2 and

ξ∗1
(1) = µ on (1/2, 1], ξ∗2

(1) = µ on [0, 1/2). Numerical calculations show that it
is optimal for all H(α)(·) with α ≥ α ' 0.9949.

Figure 3-left presents the optimal regret R(ξ∗
(α)

) (solid line) and the upper
bound p(1−α)/α (dashed line) as functions of α; the bottom part of the figure

shows ψ(ξ∗
(α)

) (solid line) and the lower bound (2.15) (dashed line) obtained
for ξ = ξ

µ
= (µ/2, µ/2). Since η2(x) = 1 − η1(x), we are in the situation of

Section 2.3.3: when α = 0, any convex combination (1− γ)ξ∗
(0)

+ γξ
µ

with γ ∈

[0, 1] is optimal, where ξ∗
(0)

denotes the particular solution given by ξ
∗(0)
1 = µ

on X1
(0) ' (0.3621, 0.5) ∪ (0.6379, 1] and ξ

∗(0)
2 = µ on X2

(0) ' [0, 0.3621) ∪
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Fig 2. Example 3 — Left: illustration of the optimality of ξ∗ for α = 0.7; right: subsets X1
(α)

and X2
(α) of Corollary 2.1-(iii) for α ∈ (0, 1].

(0.5, 0.6379). The regret at α = 0 can take any value between R(ξ∗
(0)

) and
R(ξ

µ
).

Figure 3-right presents the information ψ(ξ∗
(α)

) as a function of the regret

R(ξ∗
(α)

) for α ∈ (0, 1]. Non-dominated solutions (see Section 2.1) correspond
to the curve in solid-line, on which the solution for α = 0.95 is indicated by a
circle. The slope of the tangent to the curve at this point (in dashed line) equals
C = α/(1 − α) = 19, with C the Lagrange coefficient for the maximization of

Ψ(ξ) under the constraint R(ξ) ≤ R(ξ∗
(0.95)

).

The construction of optimal designs ξ∗
(α)

, together with plots similar to the
one in Fig. 3-right, can be used to benchmark other designs. For instance, the
information and regret values obtained for ξ based on covariate-adjusted odds
ratio (see, e.g., Hu and Rosenberger (2006, Chap. 9)), with [dξ1/dµ](x) pro-
portional to η1(x)[1− η2(x)]/{η2(x)[1− η1(x)]}, is indicated by a star, showing
that it can be improved both in terms of information and regret. The same is
true for other rules which are not targeting any specific compromise, in partic-
ular those obtained as limits of sequential ad’hoc allocation rules. For instance,
one may consider the limits of the information and regret values ψ(ξ

n
) and

R(ξ
n
) (obtained by simulation) for the following generalization of the sequen-

tial compromise rule of Hu et al. (2015), which allocates the (n+ 1)-st subject
to treatment 1 with probability

π1(Xn+1) =
da1(ξ

n
, Xn+1)

[1− η1(Xn+1)]b

(
2∑
k=1

dak(ξ
n
, Xn+1)

[1− ηk(Xn+1)]b

)−1

, (2.16)

with a and b some positive constants, dak(ξ
n
, x) = trace[M−1(ξ

n
)Mk(x)], and

where ξ
n

denotes the empirical design (ξn,1, ξn,2), see (2.3). Taking b = 1 and
a = 1 or 2 as suggested in (Hu et al., 2015) gives limiting designs close to ξ

µ
, and
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a large regret close to R(ξ
µ
) ' 0.1814. For a = 1, the limiting designs approach

ξ∗
(1)

as b increases, the values for b = 3, 4, 6 and 10 are indicated by triangles
on Fig. 3-right, from right (b = 3) to left (b = 10).

In general, the limiting designs for such ad’hoc rules do not have the particular
form of optimal designs in Theorem 2.1 and are therefore suboptimal, both in
terms of regret and information. Sequential rules that converge to an optimal

ξ∗
(α)

for any given α will be presented in Section 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−20.5
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−18

α
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∗
)

0 0.01 0.02 0.03 0.04 0.05 0.06
−20.5

−20
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−19
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−17.5

α = 0.95

α = 0

α = 1

R(ξ∗)

ψ
(ξ

∗
)

Fig 3. Example 3 — Left–top: R(ξ∗(α)) (solid line) and upper bound 4(1−α)/α (dashed line);

left–bottom: ψ(ξ∗(α)) (solid line) and lower bound (2.15) (dashed line); right: ψ(ξ∗(α)) as a

function of R(ξ∗(α)), α ∈ (0, 1] with a circle at α = 0.95; R(ξ∗(α)) is not uniquely defined at
α = 0; the star corresponds to allocation based on covariate-adjusted odds ratio, the triangles
to the limiting values for the ad’hoc compromise rule (2.16) with a = 1 and b = 3, 4, 6, 10
from right to left.

2.6. Guaranteed minimal allocation proportions

In order to avoid strongly imbalanced allocation, one may wish to set some lower
bounds on allocation proportions. In this section we impose that ξk(X ) ≥ β/K
for all k, with β ∈ [0, 1] (remember that µ(X ) = 1). An optimal unconstrained
design as considered in Section 2.2 may then remain optimal within this frame-
work when β is small enough, but the constraints on allocation proportions
modify the characterization of optimal designs for large β.

For any ξ = (ξ1, . . . , ξK) ∈ Ξ(µ), denote

ρ(ξ) = K min
k=1,...,K

ξk(X ) . (2.17)

The set Ξβ(µ) of designs ξ ∈ Ξ(µ) such that ρ(ξ) ≥ β is convex, and ξ∗
P

(α,β) ∈
Ξβ(µ) maximizes H(α)(·) if and only if FH(α)(ξ∗

P

(α,β)
; ν) ≤ 0 for all ν ∈ Ξβ(µ).

In the case K = 2, this yields the following modification of Corollary 2.1.
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Theorem 2.2 Suppose that K = 2 and H(α)(·) is differentiable at ξ∗
P

(α,β)
=

ξ∗ = (ξ∗1 , ξ
∗
2) ∈ Ξβ(µ) for some α, β ∈ [0, 1]. The following statements are

equivalent:

(i) ξ∗ is optimal, i.e., it maximizes H(α)(ξ) with respect to ξ ∈ Ξβ(µ);

(ii) there exists a constant c = c(β) such that ∆
(α)
12 (ξ∗, x) ≥ c ξ∗1-a.e. and

∆
(α)
12 (ξ∗, x) ≤ c ξ∗2-a.e.;

(iii) there exist two subsets X1 = X
(α,β)

1 and X2 = X
(α,β)

2 of X and a
constant c = c(β) such that

(a) ξ∗1 = µ on X1 and ξ∗2 = µ on X2,

(b) ∆
(α)
12 (ξ∗, x) = c on X \ (X1 ∪X2),

(c) ∆
(α)
12 (ξ∗, x) > c for all x ∈X1 and ∆

(α)
12 (ξ∗, x) < c for all x ∈X2.

The proof is given in Appendix. Note that when µ has a density with respect
to the Lebesgue measure and β > 0, it is reasonable to assume that M(ξ) has

full rank for all ξ ∈ Ξβ(µ), which guarantees the differentiability of H(α)(·) at

ξ∗
P

(α,β)
.

Developments similar to those in Section 2.4 show that an optimal design

ξ∗
P

= ξ∗
P

(α,β)
= (ξ∗1 , ξ

∗
2) satisfies

η2(x)− η1(x) ≤ 1− α
α

trace{∇ψ(ξ∗
P

)[M1(x)−M2(x)]} − c(β)

α
, x ∈X \X2

η1(x)− η2(x) ≤ 1− α
α

trace{∇ψ(ξ∗
P

)[M2(x)−M1(x)]}+
c(β)

α
, x ∈X \X1

Therefore, R(ξ∗
P

) ≤ (1−α)/α trace{∇ψ(ξ∗
P

)M(ξ∗
P

)}+[ξ∗2(X )−ξ∗1(X )] c(β)/α,

where the second term is non-positive. The comparison between ξ∗
P

(α,β)
and

ξ∗
P

(1,β)
yields an inequality similar to (2.14). Also, the lower bound on informa-

tion obtained in Section 2.4 remains valid when we consider designs ξ ∈ Ξβ(µ).
In particular, the comparison with ψ(ξ

µ
) obtained for balanced random alloca-

tion gives ψ(ξ∗
P

(α,β)
) ≥ ψ(ξ

µ
)− αR(ξ

µ
)/(1− α).

3. Allocation with randomization

Selection bias occurs if the experimenter is able to correctly guess next allocation
in a sequential trial, see, e.g., Rosenberger and Lachin (2002, Chap. 6). The bias
factor Bn for n allocations is

Bn =
nb. of correctly guessed allocations - nb. of incorret guesses

n
.

Suppose that allocations follow the optimal design of Theorem 2.1, with allo-
cation to treatment j when x ∈ Xj . Then, in all situations where condition
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(2.12) is satisfied, the bias factor is 1. This is also the case, asymptotically, in
a response-adaptive framework where Xj = Xj(n) evolves with the number n

of allocations and depends on the current estimated value θ̂n: the experimenter
may still know the rule and predict the next allocation. In this section, we intro-
duce randomization in allocations in the following way: for each subject, with
probability β we use random balanced allocation and with probability 1 − β
we use an optimized, predictable, rule. Then, only the fraction 1 − β of allo-
cations can be guessed correctly with certainty, and Bn

a.s.→ 1 − β as n → ∞.
Developments similar to those of Section 2 can be made within this randomized
framework and are presented below.

3.1. Optimal design and Equivalence Theorem

For any ξ ∈ Ξ(µ), we define the uniform randomization factor of ξ as

r(ξ) = K min
k=1,...,K

inf
x∈X

dξk
dµ

(x) , (3.1)

with dξk/dµ the Radon-Nikodým derivative of ξk with respect to µ. Then, if
the ξn,j defined by (2.3) tend to ξj as n tends to infinity (weak convergence),
Bn satisfies lim supn→∞Bn ≤ 1− r(ξ). Note that r(ξ) ≤ ρ(ξ) defined by (2.17),
with equality if and only if ξk = µ/K for some k.

Consider the maximization of H(α)(ξ) with respect to ξ ∈ Ξ(µ) under the
constraint r(ξ) ≥ β, for some given β ∈ [0, 1]. For any ξ ∈ Ξ(µ), the fraction
of µ that corresponds to allocation of treatment k can be decomposed as ξk =
(β/K)µ + ξ̃k, where ξ̃ = (ξ̃1, . . . , ξ̃K) belongs to Ξ[(1 − β)µ], see (2.7). This

optimal design problem thus consists in maximizing H(α,β)(ξ̃) = H(α)(ξ̃ + βξ
µ
)

with respect to ξ̃ ∈ Ξ[(1− β)µ], with ξ
µ

= (µ/K, . . . , µ/K) ∈ Ξ(µ).

As in Section 2.2, this is a concave optimization problem over a convex set. We

shall denote by ξ∗
R

(α,β)
a design in Ξ(µ) that maximizes H(α)(ξ) under the con-

straint r(ξ) ≥ β, for given α, β ∈ [0, 1]. Such optimal designs ξ∗
R

(α,β)
= ξ̃
∗

+βξ
µ

are still characterized by Theorem 2.1, with the following slight modifications:
the statement in (ii) is now valid ξ̃∗i -a.e.;

∑
i∈Jt

ξ̃∗i = (1− β)µ in (iii-a). When

K = 2, Corollary 2.1 is modified as follows: the statements in (ii) are valid ξ̃∗1
and ξ̃∗2 -a.e.; in (iii), ξ∗1 = (1 − β/2)µ on X1 and ξ∗2 = (1 − β/2)µ on X2. Note
that H(α,β)(·) is differentiable at any ξ̃ ∈ Ξ[(1−β)µ] when β > 0, since we have
assumed that M(ξ

µ
) ∈ M+. The case of unbalanced randomization could be

treated in the same way.

3.2. Bounds on optimal regret and information

When β > 0, due to linearity in ξ of R(ξ), the regret for an optimal design ξ∗ =

ξ∗
R

(α,β)
= ξ̃
∗

+βξ
µ

can be decomposed into two parts, R(ξ∗) = R(ξ̃
∗
)+β R(ξ

µ
),
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where R(ξ̃
∗
) satisfies an inequality similar to (2.13). Therefore

R(ξ∗) ≤ 1− α
α

trace[∇ψ(ξ∗)M(ξ̃
∗
)] + β R(ξ

µ
) .

When Ψ(M) = log det(M), we obtain

R(ξ∗) ≤ p 1− α
α

+ β R(ξ
µ
)− β 1− α

α
trace[M−1(ξ∗)M(ξ

µ
)] .

Since trace[M−1(ξ∗)M(ξ
µ
)] > trace{([KM(ξ

µ
)]−1M(ξ

µ
)} = p/K, we have

R(ξ∗) < p (1 − β/K) (1 − α)/α + β R(ξ
µ
). We can also obtain an inequality

similar to (2.14), based on the comparison between ξ∗
R

(α,β)
and ξ∗

R

(1,β)
.

When α < 1, we can compare the information ψ(ξ∗
R

(α,β)
) with that obtained

for another design ξ ∈ Ξ(µ) such that r(ξ) ≥ β. As in Section 2.4, we have

ψ(ξ∗
R

(α,β)
) ≥ ψ(ξ) + α[φ(ξ)− φ(ξ∗

R

(α,β)
]/(1− α) and therefore

ψ(ξ∗
R

(α,β)
) ≥ ψ(ξ) +

α

1− α
[φ(ξ)− max

ν∈Ξ(µ):r(ν)≥β
φ(ν)]

= ψ(ξ) +
α

1− α
[φ(ξ)− βφ(ξµ)− (1− β) max

ν∈Ξ(µ)
φ(ν)] ,

where we have used the linearity of φ(ξ) with respect to ξ. Using (2.11), we

obtain in particular ψ(ξ∗
R

(α,β)
) ≥ ψ(ξ

µ
)−(1−β)R(ξ

µ
)α/(1−α), to be compared

with (2.15).

3.3. Example 4

We modify the allocation problem in Example 3, and take now η1(x) = η1(x, θ1)
= 0.1 + 0.5 ez1(x)/(1 + ez1(x)). We also introduce balanced random allocation
through the constraint r(ξ) ≥ β = 0.2. The optimal designs obtained for α ∈
[0, 1] are presented in Fig. 4-right. Note that there is a range of values of α

for which the sets X
(α)
j are now the unions of three intervals, compare with

Fig. 2-right. Also, for α = 0 and all β ∈ [0, 1] the optimal designs ξ∗
R

(0,β)
are

now uniquely defined.

4. Covariate-adaptive sequential allocation targeting an optimal
design

Denote by T1,T2, . . . the sequence of treatment assignments, where Tn =
(Tn,1, . . . , Tn,K) with Tn,j = 1 when the n-th subject, with covariates Xn, is
allocated to treatment j, all Tn,i with i 6= j being then zero. The (n + 1)-st
subject is allocated to treatment k with probability

πk(Xn+1) = Prob(Tn+1,k = 1|Xn+1,Fn) , k = 1, . . . ,K , (4.1)
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Fig 4. Example 2 — Left: η1(x) (solid line) and η2(x) (dashed line) as functions of x; right:

subsets X
(α)
1 and X

(α)
2 of Corollary 2.1-(ii) for α ∈ [0, 1] and β = 0.2.

with Fn the sigma field σ(T1, . . . ,Tn, X1, . . . , Xn). Also denote Nn =
∑n
i=1 Ti,

so that its k-th component Nn,k is the number of subjects allocated to treatment
k in the first n assignments. The empirical measures ξn,k defined in (2.3) are
then given by ξn,k = (1/n)

∑n
i=1 Ti,k δXi .

In this section we present different choices for πk(·) in (4.1) that asymp-
totically achieve the limiting allocation given by one of the optimal designs
ξ∗ = (ξ∗1 , . . . , ξ

∗
K) considered in Sections 2 and 3. A first easy solution to achieve

ξn,k
a.s.→ ξ∗k (weak convergence) is to sample according to ξ∗k in (4.1). This is con-

sidered in Section 4.1. A second rule, design adaptive in the sense that πk(Xn+1)
depends on the ξn,k, k = 1, . . . ,K, is considered in Section 4.2. We always as-
sume that the first n0 subjects are allocated with some predefined rule (e.g.,
balanced random allocation), for some n0 > 0.

4.1. Sequential allocation based on oracle optimal design

Consider the sequential allocation rule defined by

π∗k(Xn+1) =
dξ∗k
dµ

(Xn+1) , n ≥ n0 , (4.2)

where ξ∗ denotes an optimal design as in Section 2, or an optimal design ξ∗
R

(α,β)

satisfying r(ξ∗
R

(α,β)
) ≥ β as in Section 3, see (3.1). In particular, when (2.12) is

satisfied, then (4.2) simply corresponds to

π∗k(Xn+1) =

{
1 if G

(α)
k (ξ∗, Xn+1) = maxj=1,...,K G

(α)
k (ξ∗, Xn+1)

0 otherwise
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when β = 0, and more generally to

π∗k(Xn+1) =

{
1− (K − 1)β/K if G

(α)
k (ξ∗, Xn+1) = maxj=1,...,K G

(α)
j (ξ∗, Xn+1)

β/K otherwise
(4.3)

for β ≥ 0. Tn follows a multinomial distribution, with Prob{Tn,k = 1} = ξ∗k(X )
for all k and n. Therefore,

N/n
a.s.→ ρ∗ = ρ(ξ∗) = (ξ∗1(X ), . . . , ξ∗K(X ))> (4.4)

from the Strong Law of Large Numbers (SLLN), and
√
n(N/n−ρ∗) d→ N (0,Σ∗)

with Σ∗ = diag(ρ∗) − ρ∗ρ∗> from the Central Limit Theorem (CLT). The
proportions Nn/n also satisfy the Law of the Iterated Logarithm (LIL), with
lim supn→∞

√
n/(2σ2

k Log Log n) |Nn,k/n − ρ∗k| = 1 (a.s.) for all k, where σ2
k =

Σ∗kk and Log t = max{1, log t} for all t > 0. Moreover, Rn = R(ξ∗
n
) and Mn =

M(ξ∗
n
) respectively given by (2.2) and (2.5) satisfy Rn

a.s.→ R(ξ∗) and Mn
a.s.→

M(ξ∗), where ξ∗
n

= (ξ∗n,1, . . . , ξ
∗
n,K) with ξ∗n,k the empirical measure (2.3). We

thus have ψ(ξ∗
n
)

a.s.→ ψ(ξ∗) and H(α)(ξ∗
n
)

a.s.→ H(α)(ξ∗). The values of R(ξ∗
n
) and

ψ(ξ∗
n
) also obey the CLT; direct calculations show that

√
n[R(ξ∗

n
) − R(ξ∗)]

d→
N (0, V ∗R) and (using the delta method) that

√
n[ψ(ξ∗

n
) − ψ(ξ∗)]

d→ N (0, V ∗ψ ),
with

V ∗R =

K∑
k=1

Pξ∗k(η∗ − ηk)2 −R2(ξ∗) , (4.5)

V ∗ψ =

K∑
k=1

Pξ∗ktrace2[∇ψ(ξ∗)Mk(·)]− trace2[∇ψ(ξ∗)M(ξ∗)] . (4.6)

Although attractive from a theoretical viewpoint, (4.2) has the inconvenient
that it relies on the prior construction of an optimal design ξ∗. In particular,
extension to response-adaptive allocation may be unpractical: indeed, allocation
of the (n+ 1)-st subject should then be based on the optimal design ξ∗(θ̂n) for

the current estimated value θ̂n of θ, see Section 5, which means that an oracle
providing ξ∗(θ) for any θ should be available. In the next section we consider an
allocation rule π̂k(Xn+1) that asymptotically samples from ξ∗ without requiring
neither the explicit construction of ξ∗ nor the knowledge of µ.

4.2. Doubly-adaptive sequential allocation

The rule is based on the substitution of ξ̂
n

= (ξ̂n,1, . . . , ξ̂n,K) for ξ∗ in (4.3), with

ξ̂n,k the empirical measure (2.3) for the sequential assignments. It is covariate
and design-adaptive, i.e., adaptive also with respect to previous allocations, and
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uses allocation probabilities given by

π̂k(Xn+1) =


1−[K−`n(Xn+1)]β/K

`n(Xn+1) if

G
(α)
k (ξ̂

n
, Xn+1) = maxj=1,...,K G

(α)
j (ξ̂

n
, Xn+1)

β/K otherwise,
(4.7)

where `n(x) =
∣∣∣{j ∈ {1, . . . ,K} : G

(α)
j (ξ̂

n
, x) = maxk=1,...,K G

(α)
k (ξ̂

n
, x)
}∣∣∣. When

`n(Xn+1) = 1, then π̂k(Xn+1) = 1−(K−1)β/K for k such thatG
(α)
k (ξ̂

n
, Xn+1) =

maxj=1,...,K G
(α)
j (ξ̂

n
, Xn+1).

Theorem 4.1 indicates that when β > 0, ξ̂
n

generated by (4.7) has the same

asymptotic information and regret values as ξ∗
R

(α,β)
of Section 3. When α = 0

and Ψ(M) = log det(M), (4.7) corresponds to the sequential construction of
a D-optimal design in Ξ(µ), see Atkinson (1982, 1999, 2002). Notice, however,
that the investigation of the convergence properties of such extensions of biased-
coin designs with covariate information, based on optimal design theory, has
received little attention in the literature, if any. Also note that the allocation
rule (4.7) does not enter the general framework considered in (Baldi Antognini
and Zagoraiou, 2015). The proof of Theorem 4.1 is given in Appendix. The
assumption that X is bounded in H1b can be relaxed, at the expense of adding
suitable moment conditions on Mk(X) and growth condition on ∇2Ψ(·) to H2
and H2’, similarly to Pronzato (2006, Th. 9).

Theorem 4.1 Under H1a or (H1b, H2, H2’), for any β ∈ (0, 1] and α ∈ [0, 1],
the allocation rule (4.7) satisfies

H(α)(ξ̂
n
)

a.s.→ H(α)(ξ∗
R

(α,β)
) , n→∞ ,

with ξ∗
R

(α,β)
an optimal design maximizing H(α)(ξ) with respect to ξ ∈ Ξ(µ)

under the constraint r(ξ) ≥ β, see (3.1). Moreover, M(ξ̂
n
)

a.s.→ M(ξ∗
R

(α,β)
),

ψ(ξ̂
n
)

a.s.→ ψ(ξ∗
R

(α,β)
), and also R(ξ̂

n
)

a.s.→ R(ξ∗
R

(α,β)
) if α > 0.

When α < 1, the assumption that β > 0 permits to bound the second-order
derivative of ψ(·) from below and is crucial in the proof of the theorem. For
β = 0, we only have a dichotomous property, similar to that in (Wu and Wynn,

1978): either H(α)(ξ̂
n
) → H(α)(ξ∗

R

(α,β)
), or lim infn→∞Ψ[M(ξ̂

n
)] = −∞ when

Ψ(·) is one of the criteria (2.6) (lim infn→∞Ψ[M(ξ̂
n
)] = 0 for their positively

homogeneous versions). However, the Xi being i.i.d. in X with M(ξ
µ
) ∈ M+

(where ξµk = µ/K for all k), one can force the second event to have zero
probability. For α ∈ [0, 1) and β = 0, we modify the rule (4.7) through the

introduction of a lower bound ψ(α) on ψ(ξ∗
(α)

), obtained for instance from
(2.15). For each n ≥ n0, we allocate the (n+ 1)-st subject to treatment k with

probability 1/K if ψ(ξ̂
n
) < min{ψ(α), ψ(ξ

µ
)} and with probability π̂β=0

k (Xn+1)

otherwise, where π̂β=0
k (Xn+1) substitutes β = 0 in (4.7). Then, for α < 1 and
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β = 0, the second-order derivative of ψ(·) at ξ̂
n

is bounded from below (a.s.),

and the empirical design ξ̂
n

obtained with this modified allocation rule satisfies
the same asymptotic properties as in Theorem 4.1.

From Theorem 4.1, when α, β > 0 (or β = 0 with 0 < α < 1 for the modified
rule just above), the information and regret values obtained with (4.7) converge
(a.s.) to those obtained with the rule (4.2) based on an oracle optimal design.
Under the conditions mentioned in Section 2.3.3, this is also the case for the
allocation proportions N/n. On the other hand, numerical simulations indicate

that their asymptotic variance Σ̂ is smaller than Σ∗ obtained with π∗k(Xn+1),
a phenomenon that resembles the improved treatment balance obtained by the
method of Pocock and Simon (1975) generalizing Efron (1971). The doubly-
adaptive designs of Zhang and Hu (2009), which extend the approach of Hu
and Zhang (2004) to the presence of covariates, are able to yield (in the limit)
a reduction of Σ∗ to

Var(π∗) = Pµ(π∗(·)− ρ∗)(π∗(·)− ρ∗)> ,

where π∗(x) = (π∗1(x), . . . , π∗K(x))> with π∗k(x) and ρ∗ given by (4.2) and (4.4).
When β = 0 and (2.12) is satisfied (so that π∗k(x) ∈ {0, 1} for all x), then
Var(π∗) = Σ∗ and numerical simulations show that the rule π̂k(Xn+1) given by
(4.7) achieves a smaller asymptotic variance than Var(π∗) for the proportions
N/n, indicating that Var(π∗) is not the best asymptotic variability within the
class of covariate-adjusted designs considered in (Zhang and Hu, 2009, Eq. (2.9)).
This will be illustrated in Section 4.3.2 which continues Example 3. Note that the
approach used in the same paper for the derivation of Σ̂, based on a functional
CLT, seems difficult to extend to our situation where the design adaptation
concerns the whole matrix M(ξ̂

n
) and not only the proportions N/n.

When ξ∗ is not unique, one may wonder what is the limiting design for (4.7).
Numerical simulations indicate convergence to a unique design, whatever the ini-
tialization of the sequential procedure (with n0 arbitrarily large). Section 4.3.1
gives an illustration through a continuation of Example 1 of Section 2.5.1. Fur-
ther developments are required to investigate if the stability properties of (4.7)
around an optimal design ξ∗ permit to characterize which particular optimal
designs can be reached in the limit.

4.3. Examples

4.3.1. Example 1 (continued)

Figure 5 presents histograms of ξ̂n,1 and ξ̂n,2 obtained with (4.7) in the situation
where there are infinitely many optimal designs ξ∗ (α = 0.75 < α = 0.96, see
Section 2.5.1). Whatever the initialization of (4.7), we always observe conver-

gence of ξ̂
n

to the same limiting optimal design.
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Fig 5. Example 1: histograms of ξ̂n,1 and ξ̂n,2, n = 106 (β = 0, α = 0.75 < α = 0.96).

4.3.2. Example 3 (continued)

Consider again the situation of Example 3, see Section 2.5.3, with α = 0.7 and
β = 0. We have performed 1, 000 simulations of allocation rules (4.3) and (4.7)
with n = 5, 000 subjects (we use n0 = 4, i.e., two initial assignments of each
treatment). Empirical distributions are smoothed with a normal kernel density
estimator, using Silverman’s rule for bandwidth selection.

Figure 6-left shows the empirical distributions of
√
n(Nn,k/n−ρ∗k), for k = 1

(top) and k = 2 (bottom). The dashed-line curve is for (4.3) and shows good
agreement with the asymptotic distribution N (0, σ2

k) (solid-line); the dotted-
line curve is for (4.7) which exhibits smaller variability around the optimal
proportions ρ∗.

Figure 6-right presents the empirical distributions of
√
n[ψ(ξ

n
)−ψ(ξ∗)] (top)

and
√
n[R(ξ

n
)−R(ξ∗)] (bottom). There is good agreement with the asymptotic

distributions N (0, V ∗ψ ) and N (0, V ∗R) (solid lines) for (4.3) (dashed lines), where
V ∗R and V ∗ψ are given by (4.5) and (4.6). The simulations indicate that the bias
on Rn for the rule (4.7) decreases more slowly than 1/n; see the dotted line
on Fig. 6-bottom-right, together with Fig. 7-left which presents the log of the
empirical bias Rn − R(ξ∗) (obtained from 1,000 simulations) as a function of
n: the bias is O(1/n) for (4.3), but between O(1/

√
n) and O(1/n) for (4.7).

Simulations with other values of α show that this bias decreases faster as α
tends to 1, see Fig. 7-right which corresponds to α = 0.98.

4.3.3. Example 4 (continued)

Consider again the situation of Example 4, see Section 3.3, with α = 0.7 and β =
0.2. Figure 8-left presents histograms of ξ̂n,1 and ξ̂n,2 obtained with allocation
rule (4.7) (with n = 2 104 and n0 = 4 — two initial assignments of each
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Fig 6. Example 3 (α = 0.7, β = 0, n = 5, 000, 1, 000 repetitions) — Left: empirical dis-
tributions of

√
n(Nn,k/n − ρ∗k), k = 1, 2, for (4.3) (dashed-lines) and (4.7) (dotted lines),

the solid-lines correspond to N (0, σ2
k); right: empirical distributions of

√
n[ψ(ξ

n
) − ψ(ξ∗)]

and
√
n[R(ξ

n
)−R(ξ∗)] for (4.3) (dashed-lines) and (4.7) (dotted lines), normal distributions

N (0, V ∗
ψ ) and N (0, V ∗

R) (solid lines).

treatment). Note the good agreement with the optimal design ξ∗
R

(α,β)
presented

in Fig.4-right, where ξ∗1 = (1− β/2)µ on X1 ' (0.237, 0.368) ∪ (0.495, 0.610) ∪
(0.7525, 1].

In fact, for most assignments the rule (4.7) agrees with (4.3) which samples

from ξ∗
R

(α,β)
: different allocations occur essentially for values of x near the end-

points of the intervals that define X1, see Fig. 8-right for a histogram of the
values of X where (4.3) would give a treatment different from that given by (4.7).
Figure 9-left shows the number ND

n of disagreements with (4.3) when (4.7) is

used in a sequence of length n. G
(α)
j (ξ̂

n
, x) converges to Gj(ξ

∗
R

(α,β)
, x) in 1/

√
n,

j = 1, 2, and ND
n increases as

√
n, see the curve in dashed line. Figure 9-right

presents the evolution of R(ξ̂
n
) (top) and H(ξ̂

n
) (bottom) as functions of n for

the rule (4.7). Convergence to the optimal values (indicated by dashed lines) is
reasonably fast; the figure is quasi identical when (4.3) is used with the same
sequence of covariates.

4.3.4. Example 5

We add a third model to Example 4, η3(x, θ3) = θ3 = 0.1 (so that η3(x, θ3) <
min{η1(x, θ1), η2(x, θ2)} for all x, with the third treatment representing for

instance placebo). Histograms of ξ̂j,n obtained with (4.7) (n = 2 104 and n0 = 6)
are presented in Fig. 10-left and right, respectively for α = 0.7, β = 0.2 and
α = 0.9, β = 0.2. For large enough α or β, the optimal design is such that
ξ∗3 = (β/3)µ, i.e., the random component of the design gives enough precision
for the estimation of θ3 (the placebo effect), taking the poor efficacy of this
treatment into account.
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Fig 7. Example 3: empirical bias Rn−R(ξ∗) (1, 000 repetitions) as a function of n (log scale)
in solid line for (4.3) (bottom) and (4.7) (top), the dashed lines correspond to a decrease rate
1/n, the dotted line (top) to 1/
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n; left: α = 0.7, right: α = 0.98.
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Fig 8. Example 4 (α = 0.7, β = 0.2) — Left: histograms of ξ̂n,1 and ξ̂n,2, n = 2 104; right:
histogram of covariates for which (4.3) would disagree from (4.7).

5. Further extensions and developments

The paper proposes sequential allocation rules that target optimal strategies, in
the sense that the asymptotic regret and information values are non dominated,
contrasting with ad’hoc rules whose asymptotic regret and information can usu-
ally both be improved. These results can be extended in various directions.

Extension to response-adaptive rules. As usual in nonlinear situations,

optimal designs ξ∗
θ

(α)
depend on the unknown value θ of the model parame-

ters. Here we only considered locally optimum design, where θ is set to a given
nominal value θ0. In a response-adaptive implementation, when assigning the
(n + 1)-st subject, θ0 can be replaced by θ̂n, the current ML estimator of θ
based on the n responses observed previously. The asymptotic properties given
in Section 4.1 and Theorem 4.1 must be reconsidered when such CARA de-
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Fig 9. Example 4 (α = 0.7, β = 0.2) — Left: number of disagreements with (4.3) when (4.7)
is used in a sequence of length n (the curve in dashed line corresponds to 3.75
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Fig 10. Example 5 — Histograms of ξ̂n,k, k = 1, 2, 3 (n = 2 104) for α = 0.7, β = 0.2 (left)
and α = 0.9, β = 0.2 (right).

signs are used. In particular, the asymptotic variances of the proportions N/n,
information and regret are modified (increased) compared to Section 4 due to

adaptation of allocations to θ̂n. Only a few indications are given below, de-
tailed developments on the asymptotic properties of these CARA designs for
generalized linear models, which cover a broad class of applications, will be pre-
sented in a forthcoming paper. How to define and obtain an optimal allocation
scheme is still considered as an open problem, see Zhang et al. (2007). To our
knowledge, this is the first attempt to incorporate covariate information in a
response-adaptive design which converges to an optimal target.

First, one may consider a response-adaptive version of (4.2) based on the

construction of ξ∗
θ̂n

(α)
for each n, with θ̂n in a compact subset Θ of Rp con-

taining admissible θ. When α < 1, developments similar to those in (Zhang
et al., 2007) can be used to prove the strong consistency and asymptotic nor-
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mality of θ̂n, with
√
n(θ̂n − θ) d→ N (0,M−1(ξ∗

θ

(α)
; θ)) under rather standard

regularity assumptions. Condition A in the same paper is not satisfied since
µ{x : π∗k(x; θ) = 0} > 0 when π∗k(x; θ) is given by (4.2), but it maybe counter-

balanced by the assumption that all optimal information matrices M(ξ∗
θ

(α)
; θ),

θ ∈ Θ, are nonsingular. One may also ensure the asymptotic normality of al-
location proportions N/n, information and regret, like in Section 4.1 but with
larger variances. One may try to reduce their values, following the approach in
(Zhang and Hu, 2009), provided that the allocation probabilities are suitably
smoothed to remove abrupt fronts.

Although theoretically feasible, the computation of ξ∗
θ̂n

(α)
for each n is rather

inconvenient. One may circumvent that difficulty by constructing approxima-

tions Ĝ
(α)
k (ξ∗

θ

(α)
, x; θ) of the functions (x, θ) ∈ (X × Θ) −→ G

(α)
k (ξ∗

θ

(α)
, x; θ),

k = 1, . . . ,K: using Theorem 2.1 and the values of Ĝ
(α)
k (ξ∗

θ̂n
(α)
, Xn+1; θ̂n), one

may then compute the K allocation probabilities π̂∗k(Xn+1; θ̂n) for every θ̂n.
Alternatively, one may consider a response-adaptive version of (4.7), with

G
(α)
k (ξ

n
, x; θ̂n) substituted for G

(α)
k (ξ

n
, x; θ0). The strong consistency of θ̂n and

its asymptotic normality
√
n(θ̂n − θ) d→ N (0,M−1(ξ∗

θ

(α)
; θ)) can be preserved

under suitable regularity assumptions. This is essential since it provides a jus-

tification for the use of Ψ[M(ξ∗
θ

(α)
; θ)] as a measure of the information content

of the experiment.

Other cumulative regrets. As an alternative to (2.2) which relies on cu-
mulative treatment responses, one may relate the regret to the number of sub-
jects not receiving the best treatment (i.e., receiving the worst treatment when

K = 2) and consider Rn = (1/n)
∑n
i=1 I{ηki(Xi) 6= η∗(Xi)} = 1−

∑k
k=1 ξn,k{x :

ηk(x) = η∗(x)}. The responses ηk must then be replaced by the indicator func-

tions η′k(x) = I{ηk(x) = η∗(x)} in φ(ξ), see (2.9), and G
(α)
k (ξ, x), see (2.10).

Also, one may enforce individual ethics by increasing the penalty for not using
the best treatment, and consider Rn =

∑n
l=1 Pξn,k [ηqk(·) − ηq∗(·)] with q < 0.

Most developments in the paper remain valid since R(ξ) is still linear in ξ.

Adaptive choice of α. It seems difficult to select a suitable value for α
in absence of information on the performance of the corresponding optimal

design ξ∗
θ

(α)
, even if the bounds in Sections 2.4 and 3.2 may help. An alternative

solution is to specify a target τ on the regret, and maximize information under
the constraint that R(ξ) ≤ τ , with associated Lagrangian L (ξ, C) = ψ(ξ; θ) −
C[R(ξ; θ)−τ ], see Section 2.1. In a CARA scheme, one may then let the Lagrange

coefficient C vary with n as Cn+1 = max{0, Cn + γ[R(ξ̂n; θ̂n) − τ ]}, with γ
some positive constant. This is equivalent to letting α depend on n, with Cn =
αn/(1− αn) and αn+1 = Cn+1/(1 + Cn+1).

Finally, one may consider adaptive strategies that give an increasing impor-
tance to allocation to the best treatment, and let α = αn tend to 1 as n → ∞
in a CARA rule. This is equivalent to letting Cn = αn/(1 − αn) tend to infin-
ity, which raises several open questions: which increase rate for Cn ensures the
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strong consistency of θ̂n? Is it possible to reach the best achievable decrease rate
for the expected regret in this context, that is E{Rn} = O(log(n)/n), see for
instance Lai and Robbins (1985); Cappé et al. (2013); Goldenshluger and Zeevi
(2013)?

Appendix: proofs

Proof of Theorem 2.1. The proof closely follows the one in (Sahm and Schwabe,
2001).

Proof that (i) =⇒ (ii). Suppose that (ii) is not satisfied. It implies that there

exists A ⊂ X with ξ∗i (A ) > 0 and G
(α)
i (ξ∗, x) < G

(α)
j (ξ∗, x) for some j 6= i

and all x ∈ A . Consider the measure ν ∈ Ξ(µ) defined by ν = ξ∗ on X \ A
and νi = 0, νj = ξ∗j + ξ∗i , νk = ξ∗k for k 6= i, j on A . We have

FH(α)(ξ∗; ν) = (Pνi − Pξ∗i )G
(α)
i (ξ∗, ·) + (Pνj − Pξ∗j )G

(α)
j (ξ∗, ·)

=

∫
A

[G
(α)
j (ξ∗, x)−G(α)

i (ξ∗, x)] dξ∗i (x) > 0

which implies that ξ∗ cannot be optimal.
Proof that (ii) =⇒ (iii). For any subset Jt of {1, . . . ,K}, define

XJt = {x ∈X : G
(α)
i (ξ∗, x) = G

(α)
j (ξ∗, x) > G

(α)
k (ξ∗, x)

for all i, j ∈Jt and k 6∈Jt} .

Let nK denote the number of nonempty sets among those 2K−1 sets; they form
a partition of X . Take any XJt

in this partition, we show that
∑
i∈Jt

ξ∗i = µ on
XJt by contradiction. Indeed, suppose this is not true, then there exist a subset

A of XJt and k 6∈ Jt such that ξ∗k(A ) > 0; (ii) implies that G
(α)
k (ξ∗, x) ≥

G
(α)
i (ξ∗, x) for x ∈ A and i ∈Jt, which contradicts the definition of XJt

. The
nK nonempty sets XJt

thus satisfy the required properties.
Proof that (iii) =⇒ (i). Let ν be element of Ξ(µ). We have

FH(α)(ξ∗; ν)=

nK∑
t=1

{
K∑
k=1

(∫
XJt

G
(α)
k (ξ∗, x) dνk(x)−

∫
XJt

G
(α)
k (ξ∗, x) dξ∗k(x)

)}
.

For each t and for all i ∈ Jt and j 6∈ Jt, G
(α)
i (ξ∗, x) = G

(α)
(t) (x) > G

(α)
j (ξ∗, x)

on XJt
and ξ∗j (XJt

) = 0. Therefore,

K∑
k=1

(∫
XJt

G
(α)
k (ξ∗, x) dνk(x)−

∫
XJt

G
(α)
k (ξ∗, x) dξ∗k(x)

)

≤
∫

XJt

G
(α)
(t) (x) (

∑
k

dνk)(x)−
∫

XJt

G
(α)
(t) (x) (

∑
i∈Jt

dξ∗i )(x) = 0 .
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We thus obtain that FH(α)(ξ∗; ν) ≤ 0 for any ν ∈ Ξ(µ), which implies that ξ∗ is
optimal.

Proof of Theorem 2.2. We denote ∆12(x) = G
(α)
1 (ξ∗, x)−G(α)

2 (ξ∗, x), x ∈X .
Proof that (i) =⇒ (ii). Denote c1 = max{c : ξ∗1{x ∈ X : ∆12(x) ≥ c} =

ξ∗1(X )}, c2 = min{c : ξ∗2{x ∈ X : ∆12(x) ≥ c} = ξ∗2(X )}. Suppose that (ii) is
not satisfied. Then, c1 < c2 (otherwise, c = (c1+c2)/2 would satisfy (ii)). Define
c∗1 = (2c1 + c2)/3, c∗2 = (c1 + 2c2)/3. For ε > 0 small enough, we can always find
two subsets A1 and A2 of X such that ξ∗1(A1) = ξ∗2(A2) = ε and ∆12(x) < c∗1
on A1, ∆12(x) > c∗2 on A2. Consider the design ν = (ν1, ν2) ∈ Ξ(µ), defined by
ν = ξ on X \ (A1 ∪A2) and

(ν1 = 0, ν2 = ξ∗1 + ξ∗2) on A1; (ν1 = ξ∗1 + ξ∗2 , ν2 = 0) on A2 .

It satisfies νk(X ) = ξ∗k(X ), k = 1, 2, and therefore belongs to Ξβ(µ) (i.e., it
satisfies π(ν) ≥ β). The directional derivative FH(α)(ξ∗; ν) satisfies

FH(α)(ξ∗; ν) =

2∑
k=1

[Pνk − Pξ∗k ]G
(α)
k (ξ∗, ·)

=

∫
A2

∆12(x) dξ∗2(x)−
∫

A1

∆12(x) dξ∗1(x)

> ε (c∗2 − c∗1) = ε
c2 − c1

3
> 0 ,

which contradicts the optimality of ξ∗.
Proof that (ii) =⇒ (iii). We simply take X1 = {x ∈ X : ∆12(x) > c} and

X2 = {x ∈X : ∆12(x) < c}.
Proof that (iii) =⇒ (i). For any ν ∈ Ξβ(µ), we have

FH(α)(ξ∗; ν) =

∫
X1

2∑
k=1

G
(α)
k (ξ∗, x)(dνk − dξ∗k)(x)

+

∫
X2

2∑
k=1

G
(α)
k (ξ∗, x)(dνk − dξ∗k)(x) +

∫
X3

2∑
k=1

G
(α)
k (ξ∗, x)(dνk − dξ∗k)(x) ,

where we have denoted X3 = X \(X1∪X2). Since G
(α)
2 (ξ∗, x) < G

(α)
1 (ξ∗, x)−c

on X1, G
(α)
1 (ξ∗, x) < G

(α)
2 (ξ∗, x)+c on X2, and G

(α)
1 (ξ∗, x) = G

(α)
2 (ξ∗, x)+c on

X3, and using the properties ν1 + ν2 = ξ∗1 + ξ∗2 = µ, ξ∗1 = µ on X1 and ξ∗2 = µ
on X2, we obtain

FH(α)(ξ∗; ν) ≤ c[−ν2(X1) + ν1(X2) + ν1(X3)− ξ∗1(X3)] . (5.1)

Suppose that ξ∗ satisfies (iii) with c = 0. Then FH(α)(ξ∗; ν) ≤ 0 for all ν ∈ Ξ(µ)
and ξ∗ is optimal (this is in fact Corollary 2.1). Suppose now, without any loss
of generality, that ξ∗ satisfies (iii) with c > 0. This means that the constraint
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π(ξ∗) ≥ β is saturated, and more precisely that ξ∗2(X ) = β. Then, substituting
µ(X2) − ν2(X2) for ν1(X2), µ(X3) − ν2(X3) for ν1(X3) and µ(X3) − ξ∗2(X3)
for ξ∗1(X3) in the upper bound (5.1), since ν2(X ) ≥ β for ν ∈ Ξβ(µ), we obtain

FH(α)(ξ∗; ν) ≤ c[ξ∗2(X )− ν2(X )] ≤ 0 ,

which implies that ξ∗ is optimal.

In the proof of Theorem 4.1 we shall consider non-sequential exact designs

ξNS

n
= (ξNS

n,1, . . . , ξ
NS
n,K) that maximize H

(α)
n = (1 − α)Ψ(Mn) + αRn, see (2.3).

Next lemma indicates that ξNS

n
has asymptotically the same information and

regret values as an optimal design ξ∗ ∈ Ξ(µ), see Section 2.

Lemma 5.1 Under H1a or (H1b, H2, H2’), a non-sequential exact design ξNS

n
=

(ξNS
n,1, . . . , ξ

NS
n,K) that maximizes H

(α)
n = (1−α)Ψ(Mn)+αRn, α ∈ [0, 1], satisfies

H(α)(ξNS

n
)

a.s.→ H(α)(ξ∗) , n→∞ , (5.2)

with ξ∗ an optimal design maximizing H(α)(ξ) with respect to ξ ∈ Ξ(µ). More-

over, ψ(ξNS

n
)

a.s.→ ψ(ξ∗) if α < 1 and R(ξNS

n
)

a.s.→ R(ξ∗) if α > 0.

Proof of Lemma 5.1. Any arbitrary sequential allocation rule satisfies H
(α)
n =

(1−α)Ψ(Mn)+αRn ≤ H(α)(ξNS

n
). This is true in particular for ξ∗

n
of Section 4.1.

Since H(α)(ξ∗
n
)

a.s.→ H(α)(ξ∗) as n → ∞, we have lim infn→∞H(α)(ξNS

n
) ≥

H(α)(ξ∗). In the rest of the proof, we show that lim supn→∞H(α)(ξNS

n
) ≤

H(α)(ξ∗) and then consider the limits of ψ(ξNS

n
) and R(ξNS

n
).

Assume first that α < 1. We treat the two cases H1a and (H1b, H2, H2’)
separately.

Under H1a, suppose that X = {x(1), . . . , x(m)} and, without any loss of
generality, that µ(x(j)) > 0 for all j. Denote δn = [maxj=1,...,m µn(x(j)) −
µ(x(j))]/µ(x(j)), with µn the empirical measure of the Xi for the first n subjects.

From the SLLN, δn
a.s.→ 0, n→∞. Now, H(α)(ξNS

n
) ≤ H(α)(ξ∗[µn]), where ξ∗[µn]

maximizes H(α)(ξ) with respect to ξ ∈ Ξ(µn) (since ξNS

n
is subject to the restric-

tions imposed to an exact design, whereas ξ∗[µn] is not). Without any loss of
generality, we can assume that all ηk are positive (since optimal designs are in-
variant by addition of a positive constant to each ηk). Then, since M(ξ) is linear

in ξ and ψ(·) is Loewner increasing, we have H(α)(ξ∗[µn]) ≤ H(α)(ξ∗[(1+δn)µ]).

From the concavity of H(α)(·), we finally obtain

H(α)(ξ∗[(1 + δn)µ]) ≤ H(α)

(
1

1 + δn
ξ∗[(1 + δn)µ]

)
+(1− α) trace

{
∇ψ

[
1

1 + δn
M(ξ∗[(1 + δn)µ])

]
δn

1 + δn
M(ξ∗[(1 + δn)µ])

}
+α

δn
1 + δn

φ(ξ∗[(1 + δn)µ]) ≤ H(α)(ξ∗[µ]) +O(δn) ,
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where the last inequality follows from the fact that ξ∗[(1+δn)µ]/(1+δn) ∈ Ξ(µ).

Therefore, lim supn→∞H(α)(ξNS

n
) ≤ H(α)(ξ∗).

The proof under (H1b, H2, H2’) is more involved, and we use results on
empirical processes to avoid lengthy developments. For any design ξ and any k,

the function x −→ G
(α)
k (ξ, x) depends on ξ only through the matrix M(ξ), and

this dependence is continuous in M(ξ). For any pair of designs ξ
a
, ξ

b
, we have

G
(α)
k (ξ

a
, x)−G(α)

k (ξ
b
, x) = (1− α)trace{[∇ψ(ξ

a
)−∇ψ(ξ

b
)]Mk(x)} . (5.3)

Since α < 1 and H(α)(ξNS

n
) ≥ H(α)(ξ∗

n
)

a.s.→ H(α)(ξ∗), there exists (a.s.) a n1 and

ε > 0 such that λmin[M(ξNS

n
)] > ε for all n > n1, with λmin(M) the minimum

eigenvalue of M. Since Ψ(·) is twice continuously differentiable in M+, (5.3)

implies that |G(α)
k (ξ

a
, x)−G(α)

k (ξ
b
, x)| < B(ε) ‖M(ξ

a
)−M(ξ

b
)‖
√

trace[M2
k(x)]

when λmin[M(ξ
i
)] > ε, i = a, b, for some B(ε) < ∞. The functions x −→

G
(α)
k (ξNS

n
, x) thus belong to a Glivenko-Cantelli class (and even a Donsker class)

for all n > n1 (a.s.), see, e.g., van der Vaart (1998, p. 271). With probability 1,

the design ξNS

n
defines a partition of X in K sets Xn,k such that G

(α)
k (ξNS

n
, x) =

maxj=1,...,K G
(α)
j (ξNS

n
, x) for x ∈ Xn,k, see Theorem 2.1. Denote by ξNS

n
[µ] =

(ξNS

n,1
[µ], . . . , ξNS

n,K
[µ]) ∈ Ξ(µ) the design defined by ξNS

n,k
[µ] = µ for x ∈ Xn,k.

The concavity of Ψ(·) gives

H(α)(ξNS

n
) ≤ H(α)(ξNS

n
[µ]) +

K∑
k=1

[
PξNS

n,k
[µ] − PξNS

n,k

]
G

(α)
k (ξNS

n
, ·)

= H(α)(ξNS

n
[µ]) + [Pµ − Pµn ] max

k
G

(α)
k (ξNS

n
, ·)

a.s.→ H(α)(ξNS

n
[µ]) ≤ H(α)(ξ∗) n→∞ .

This concludes the proof of (5.2) for α < 1. Since M(ξ∗) is unique for α < 1, see

Section 2.3.2, M(ξNS

n
[µ])

a.s.→ M(ξ∗) and M(ξNS

n
)

a.s.→ M(ξ∗), so that ψ(ξNS

n
)

a.s.→
ψ(ξ∗). Moreover, R(ξNS

n
)

a.s.→ R(ξ∗) if α > 0.

When α = 1, (5.2) and R(ξNS

n
)

a.s.→ R(ξ∗) follow from (2.1), since ξNS

n
coincides

with ξ∗
n

of Section 4.1.

When randomization is introduced, we can compare the performance of ξNS

n

with that obtained for ξ∗
R

(α,β) ∈ Ξ(µ) that maximizes H(α)(ξ) under the con-

straint r(ξ) ≥ β, see Section 3. The exact design ξNS

n
is now such that nβ = dβne

subjects are assigned randomly with uniform probability among treatments, the

remaining n−nβ subjects being assigned optimally, in order to maximize H
(α)
n .

The same results as in Lemma 5.1 then apply, with the additional property that

M(ξNS

n
)

a.s.→ M(ξ∗
R

(α,β)
) also for α = 1, with M(ξ∗

R

(α,β)
) having full rank.

Since the functions x −→ G
(α)
k (ξNS

n
, x) belong to a Donsker class for n large
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enough, we also have a CLT for M(ξNS

n
), ψ(ξNS

n
) and R(ξNS

n
). However, the proof

of Theorem 4.1 only uses the property H(α)(ξNS

n
)

a.s.→ H(α)(ξ∗
R

(α,β)
).

Proof of Theorem 4.1. Assume first that α < 1. For all n, denote H
(α)
n =

H(α)(ξ̂
n
), with ξ̂

n
= (ξ̂n,1, . . . , ξ̂n,K), so that ξ̂

n+1
= n/(n+1) ξ̂

n
+1/(n+1)ωn+1

with ωn+1,k = Tn+1,kδXn+1 for all k. Using a second-order Taylor development,
we can write

H
(α)
n+1 = H(α)

n +
1

n+ 1
[GH(α)(ξ̂

n
, ωn+1)−GH(α)(ξ̂

n
, ξ̂
n
)]

+
1− α

2(n+ 1)2

∂2ψ[(1− γ)ξ̂
n

+ γωn+1]

∂γ2

∣∣∣∣
γ=γ0

for some γ0 ∈ (0, 1/(n + 1)). Since β > 0 and M(ξ
µ
) ∈ M+ (with ξµk =

µ/K for all k), there exists ε > 0 and n1 (a.s.) such that for all n > n1 the

minimum eigenvalue of M[(1 − γ0)ξ̂
n

+ γ0ωn+1] is larger than ε. Therefore,

∂2ψ[(1− γ)ξ̂
n

+ γωn+1]/∂γ2
∣∣
γ=γ0

> −A(ε) for some A(ε) <∞, and

H
(α)
n+1 > H(α)

n +
1

n+ 1
[GH(α)(ξ̂

n
, ωn+1)−GH(α)(ξ̂

n
, ξ̂
n
)]− (1− α)A(ε)

2(n+ 1)2
. (5.4)

Since Tn+1,k is generated via (4.7), we obtain

E{GH(α)(ξ̂
n
, ωn+1)−GH(α)(ξ̂

n
, ξ̂
n
)|Fn} = max

ν∈Ξ(µ),r(ν)≥β
FH(α)(ξ̂

n
, ν) ,

and thus

E{H(α)
n+1|Fn} > H(α)

n +
1

n+ 1
max

ν∈Ξ(µ),r(ν)≥β
FH(α)(ξ̂

n
, ν)− (1− α)A(ε)

2(n+ 1)2

for all n > n1. Note that maxν∈Ξ(µ),r(ν)≥β FH(α)(ξ̂
n
, ν) may be negative, so that

a direct use of the Robbins-Siegmund’s Theorem (1971) is not possible.

Since Hn ≤ H(α)(ξNS

n
)

a.s.→ H
(α)
∗ = H(α)(ξ∗

R

(α,β)
), see Lemma 5.1, we have

lim supn→∞Hn ≤ H
(α)
∗ . Suppose that lim supn→∞Hn < H

(α)
∗ − δ for some

δ > 0. The concavity ofH(α)(·) implies that maxν∈Ξ(µ),r(ν)≥β FH(α)(ξ̂
n
, ν) > δ/2

for n large enough, and therefore E{H(α)
n+1|Fn} ≥ Hn+δ/[4(n+1)] for all n larger

than some n2, which is impossible (since H(α)(ξ) is bounded). This implies that

lim supn→∞Hn = H
(α)
∗ (a.s.), and we only need to show that, for any δ > 0, the

event lim infn→∞Hn < H
(α)
∗ − δ has probability zero. The result follows from

arguments similar to those used for the proof of Doob’s upcrossing Lemma,
see Williams (1991, page 108): (5.4) implies that Hn+1 − Hn > −δ/6 for all

n large enough, while on the other hand lim supn→∞Hn = H
(α)
∗ implies that

Hn < H
(α)
∗ + δ/6 for all n large enough. The rest of the proof is identical to

Pronzato (2006, Th. 9).
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Finally, M(ξ̂
n
)

a.s.→ M(ξ∗
R

(α,β)
) since the optimal matrix is unique, therefore

ψ(ξ̂
n
)

a.s.→ ψ(ξ∗
R

(α,β)
), and moreover R(ξ̂

n
)

a.s.→ R(ξ∗
R

(α,β)
) for α > 0.

If α = 1, ξ̂
n

coincides with ξNS

n
from (2.1), and Lemma 5.1 applies. Moreover,

M(ξ̂
n
)

a.s.→ M(ξ∗
R

(1,β)
) since β > 0.
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