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ABSTRACT:

Regarding their complexity, industrial systems are hard to design and even harder to validate

and maintain. We try to address some particular issues of the railway systems conception.

Railway systems are characterized by their identified and limited number of failure accidents. Thus, safety
analyses is mainly based on the research of failure scenarios that lead to these accidents. Those scenarios
represent the misbehavior that must be avoided or corrected in the system. But, the specifications ambiguity
makes it difficult to obtain a consistency and completeness in the analysis. At this point, the main issue is the
systematic errors. They consist on the gaps on the system description that not only affect the comprehension but
also the completeness of the analysis.

In this article, we propose an approach for system formalization and safety analyses. We define ScOLA, a
modeling language built to understand and to formalize the specifications based on core concepts. We explain
how, using a formal description and a stepwise simulation of the system, safety analysis can be performed
easier and faster. The approach is applied to the Trainguard Mass Transit (the CBTC product of Siemens)

CBTC(Communication Based Train Control) system of Siemens

Keywords : Scola, Systems engineering, formal specification, safety analysis, CBTC.

1 INTRODUCTION

Safety analysis in railway systems differs from the
other industries. In that new systems are particular
configurations of already existing ones. Therefore,
to conduct a safety analysis, experts reuse existing
ones. However, traditional methods do not resist to
the growing complexity of systems. New features and
functions have to be added. It is very difficult to de-
velop, validate and maintain them. One of the rea-
sons is the amount of implicit knowledge in the docu-
ments produced for existing systems. Exhaustiveness
in safety and systems analysis became very difficult
to prove.

Modeling is the most formal way for engineers
to communicate, but accuracy is required. Multi-
ple modeling languages, whether they are high or
low level appeared and enhanced the way systems

are done. Formal models have been designed and
used to, in one hand, specify, design and develop
systems such as the B-Method based on B(Abrial
2005), Scade (Abdulla et al. 2006) and more re-
cently AADL(Feiler et al. 2006). Formal methods
are also used for system safety and validation pur-
poses such as NuSMV(Cimatti et al. 1999), Hip-
Hops(Papadopoulos et al. 2011), Simulink (Ong
1998) and Altarica(Arnold et al. 1999). Those meth-
ods are used in the industry, and are very powerful to
specify and validate complex systems in an exhaus-
tive way.

Still, the entry cost is high. In order to use for-
mal models, it is required to have an accurate un-
derstanding of the system and an expertise in for-
mal methods. In another hand, the so-called semi-
formal methods are mainly graphical notations that
represent the system at each stage in the development



life-cycle. An example of the semi-formal methods is
the SysML(Friedenthal et al. 2011) language, defined
by the OMG(Object Management Group). It is used
to enlighten some ambiguities in systems and have a
graphical view of the system. However, in order for an
analysis to be accurate, it has to be exhaustive. Semi-
formal methods are not designed for this purpose.

The issue today is how to build a bridge between
the people designing the system and the people val-
idating it. Making sure that a system where safety
techniques are applied is correct, exhaustive and for-
mal.

Brainstorming with the different system stakehold-
ers, we noticed that the biggest issue is communica-
tion. The main reason is the lack of clarity in systems
description, and the heterogeneity in the methods and
tools used in the V-cycle. We built the SCOLA mod-
eling language aiming at having a framework where
system engineers can define and validate a system for-
mally, starting from informal and textual descriptions
of the system.

In this article, we present our on-going work on the
formalization of railway systems: how can a formal
description of system specifications allow a more effi-
cient safety analysis of systems. Section 2 presents the
process of system and safety engineering in the rail-
way systems, section 3 introduces ScOLA and its core
concepts, section 4 present the different techniques
of safety analysis based on ScOLA models. Finally,
section 5 is a concrete railway systems case study
and the application of ScOLA and the different safety
techniques identified on the Siemens CBTC product
TGMT (Trainguard Mass Transit).

2 SYSTEMS ENGINEERING AND SAFETY
ANALYSIS PROCESSES IN CBTC SYSTEMS

According to the IEEE 1474 standard(IEEE 2004),
a CBTC system is a continuous, automatic train
control system using high-resolution train location
determination, independent of track circuits; con-
tinuous, high-capacity, bidirectional train-to-wayside
data communications; and trainborne and wayside
processors capable of implementing Automatic Train
Protection (ATP) functions, as well as optional Au-
tomatic Train Operation (ATO) and Automatic Train
Supervision (ATS) functions.(Pascoe and Eichorn
2009).

CBTC equipped trains determine independently
their localization and forwards it to the track equip-
ments.

The Trainguard® Mass Transit CBTC system is a
Siemens solution for railway automation. It represents
the operating system of a train. It is composed of two
subsystems, the on-board and the wayside.

The on-board subsystem controls the train doors,
the braking, the train position, its speed and the stop
with the information to the passengers. The wayside

mainly determines the trains movement authority ac-
cording to their speed and position.

2.1 Systems engineering process

In order to define a modeling language that fits a sys-
tem and its requirements, we need to understand how
systems should be designed in theory, and what are
the gaps with the existing methods.

The systems engineering (SE) process is the first
phase of the system development in complex systems.
According to (Leonard 1999), it integrates the inputs
(customers requirements, requirements from prior de-
velopments, standards requirements), analyzes the re-
quirements (functional, performance and design), re-
alizes the functional and structural analysis (functions
and components refinements) and finally a synthesis
with the functions allocations.

On another hand, in the Cenelec standard
EN50126(EN50126 1999), the system engineering
process is simplified. It embeds a concept phase and
a system definition and application conditions phase,
in parallel with the system validation and the pro-
duction of system requirements. The concept includes
the definition of which components are going to be
developed and why (given the customers’ needs and
the requirements collection). Followed by the defini-
tion in parallel with the validation of requirements.
Figure 1 represents the v-cycle according to standard
en50126. The system definition is basically a draw-

System Definition

System
Requirements

System Architecture

System Acceptance

System Validation

Requirements allocation

. Design ﬂl'l‘.j Installation
implementation
Manufacturing

Figure 1: en50126 standard v-cycle

ing defining the internal and external elements and
interfaces of the system. The standard does not in-
form on a clear process of structuring the system, and
what to consider as a part of the system or not. It re-
sults lengthy documents defining a general architec-
ture of the system with its main components. Then,
the system already known functions are described in
detail; they are separately described with a refinement
into sub-functions and requirements allocated to func-
tions. These definitions involve a large collection of
implicit concepts, such as the components involved in
functions, the inputs and outputs of each function and
the requirements allocated to each part of the system.

Moreover, functions often include sub-functions
that are shared with other functions, thus multiple re-



dundancies occur that affects the documents size and
comprehension.

The process has the advantage of using the natu-
ral language that expresses more than any model or
drawing can do. Moreover, engineers have been us-
ing this process for decades and developed multiple
systems. This process has been spread to the different
entities in the rest of the life-cycle which adapted their
activities given these inputs. However, systems be-
coming bigger and more complex, multi-domain and
multi-cultural engineers were asked to work together,
pointed out system specifications issues. Today, the
system engineering process is complex and based on
the knowledge of experts. It takes more and more time
to develop new functions because multiple verifica-
tions have to be done in order to ensure all the inter-
faces have been taken into account within the exist-
ing system. In addition, the en50126 standard requires
the system validation to be launched in parallel with
the system engineering but it is rarely true because of
the background differences between teams, the miss-
ing information and the complexity of the documents
produced.

2.2 Safety analysis process in railway systems

According to the standard EN50126(EN50126 1999),
the RAMS(Reliability Availability Maintainability
Safety) activities have to be performed in parallel with
the engineering and design phases.

As depicted in figure 1. RAMS activities focus on
a review of achieved RAM and safety performances
starting with a preliminary hazard analysis. Safety re-
lated and functional requirements are produced. Then,
the requirements are refined and allocated to compo-
nents and sub-components. Finally, the safety plan is
produced and applied during the next development
and production phases.

In the railway industry, and in particular CBTC sys-
tems, the safety analysis phase cannot process until
late in the design phase. It is due to the lack of cooper-
ation between teams in terms of common techniques
and methods.

The safety analysis is divided into three succes-
sive parts: the PHA (Preliminary Hazard Analysis),
the FMEA (Failure Modes and Effects Analysis) and
finally the FSA (Functional Safety Analysis).

The PHA is used as a safety overview of the system
to identify the sensitive parts that shall be analyzed. It
results the identification of the hazardous events that
may lead to an accident, the potential causes for each
accidental event, the ranking of the identified events
according to their severity, the system functions and
equipments that are involved.

The FMEA is a systematic pro-active method for
evaluating a process to identify where and how it
might fail and to assess the relative impact of different
failures. The main result is the qualification (safety
relevant or not) of system requirements (functional

and data flow).

Finally, the FSA is produced with the results from
the previous phases, and looks for failure scenarios
causing the hazardous events highlighted in the PHA.
Then scenarios are checked whether they are covered
by system requirements or if there is no chance for
them to occur in the given configuration of the system.
Otherwise, safety requirements are defined and cor-
rection are requested. FMEA is an inductive approach
which evaluates the impact of every failure mode of a
function and a data fault on the system, whereas FSA
is a deductive approach. From a potential cause that
occurs in a main function, we try to find backwards
the errors and faults that can lead to it.

Standard EN50126 has been written by experts
aware of the difficulties met in railway systems. In-
dustrials can spend a decade conceptualizing, devel-
oping, validating and delivering a CBTC solution.
Thus, early detection of errors and systematic tech-
niques for system conception and also a rigorous
management of the requirements is crucial. In the
following, we introduce ScOLA, a scenario oriented
modeling language that aims at reducing the gap be-
tween specifications used for the comprehension of
the system and the models used for tool-based safety
analysis.

3 SCOLA: A SCENARIO ORIENTED
MODELING LANGUAGE FOR RAILWAY
SYSTEMS

In order to describe a complex system and more
specifically railways, two elements are important: the
system architecture and its behavior.

In practice, multiple steps are discarded. The sys-
tem architecture is defined in specifications with the
hierarchical decomposition of the physical compo-
nents and an informal description of the system func-
tions. The behavior is implicit in the functions defini-
tion, and a list of operational scenarios are described.

With ScOLA, we focus on gathering the CBTC sys-
tem concepts and formalizing their description. The
systems description is based on the functional scenar-
i0s.

In this paper, we present an overview of the ScOLA
language, we intentionally did not fully present the
language because of the paper length limitation.

3.1 Definition of ScOLA

ScOLA is an extension of the formalism of
SDLg(Issad et al. 2014). It introduces a novel ap-
proach for system specifications. It is based on nu-
merous concepts that contain the system structure and
its behavior. These concepts have been determined
through the system architecture and its multiple views
(functional, structural and event-based). In order to
define those concepts, ScOLA relies on the informa-



tion provided by the different views of the system and
its operational scenarios.

Definition 1. M is a model in SCOLA, it is repre-
sented in the quadruplet < S, AC, L, Op > where:
o S is the finite set of scenarios that describe the
behavior of the system;
o A is the finite set of atomic actions the scenarios
are built of ;
o C is the set of physical components that build the
structural architecture of the system;
o L is the set of possible abstraction levels of the
system;
o Op is the finite set of operators that describe the
behavior of the previous concepts.

1. Concept of component:
Let ¢ € C be a system component. It is charac-
terized using the triplet < Id¢, A(c),C(c), L. >
where:
e [dc is the unique identifier of ¢;
e A(c) is the set of actions allocated to the com-
ponent c;
e (C(c) is the set of the components children if it
applies, empty otherwise.
e L. is the level of abstraction where the com-
ponent is defined.
Given its complexity, c can either be:
e basic: when c represents an atomic compo-
nent that cannot be decomposed;
e complex: when it still can be decomposed into
multiple elements.
2. Concept of scenario:

A scenario describes a step in the behavior of
the system. It encapsulates multiple scenarios or
atomic actions. Each scenario describes a partial
view of the system behavior. A scenario s € S is
defined as s = < Idy, Ly, F(s) >, where:

e [d,: is the unique identifier of the scenario

e [, is the s’s corresponding abstraction
level;
e F(s) is the set of scenarios or actions en-
capsulated in s.
3. Concept of action:

In ScOLA, we define actions in interaction as the
behavior of the system. An action a € A is de-
fined as atomic, it cannot be decomposed.
a is defined using the following triplet a = <
Id,,C(a),l;, T (a) > where:
e [d,: is the unique identifier of a;
e (C(a): is the components realizing a;
e [,:1s the abstraction level of a, 7 € IN ;
e 7 (a): is the corresponding type of the action.
Moreover, as ¢ may require input data and/or
produce results, such an action when atomic may
be one of the following types:
e Simple action when it requires the resources
of a single component to be completed. This type
of action may require input data, that may be pro-

vided by one or several other actions. The input
data, if there are any, are analyzed in order to
generate an output result, after some process and
calculation. Formally, let A, be the set of simple
actions.
If a € A, then 3¢ € C such as a € A(c).
e Transfer action when an action is shared be-
tween two or more components. Such an action
can be a data transmission between two compo-
nents of the system, and thus requires the coop-
eration of both components. Let A; be the set of
transfer actions. If a € A; then Jcq, ¢y € C such
asa € A(cy) N Alea).
e Question action when it allows a allows the
system to choose between two or more alterna-
tive behaviors. Typically, a question action can
be a test on data in order to choose which ac-
tion to proceed within the next step. Let A,
be the set of question actions. If a € A, then
daq,as, ..., a, € A such as executing a leads to
the execution of a; or ay or . ..or a,.
Assuming that each component in C has its own
resource to realize an action, a transfer action a,
a € A (A being the set of all system actions),
between two components ¢; and ¢, € C is an ac-
tion that requires the resources of both compo-
nents to be completed, thatis a € A(c;) NA(es),
where A(c;) and A(cy) are the set of actions exe-
cuted by ¢; and c,, respectively. We can say that
c1 and ¢y are in cooperation for a. However, if
a requires the resource of component ¢; solely,
then a is not a transfer action and ¢, is assigned
to a.

4. Concept of refinement
Because the different views of the system ar-
chitecture may provide too detailed functions
(functional view), components (organic view)
and events (event-based view), it becomes nec-
essary, during the system engineering process, to
structure these information and introduce a cer-
tain hierarchy between them. Thus, we introduce
the notion of refinement as one of our main lan-
guage element.

3.2  ScOLA operators

ScOLA provides a small but effective set Op of oper-
ators. Operators are provided to describe the relation-
ships between scenarios or actions. Their idiomatic
textual and graphical representations are presented
along with the case study in section 5.

e Precedence (—) models the sequential completion
of the actions or scenarios.

If ay,a2 € A, a1 and a, follow a precedence order if
to(az) > t1(ay). t1(ay) is the starting time of action a;
and t((az) is the end time of action a;.

e Parallelism (||) models the independency in the
actions or scenarios realization.

If a1,a9 € A, 3 [tl, tg] such that to(CLl), tl(al) €



[tl,tz], then to(CZQ), tl(ag) € [tl,tg]. In ScOIA, par-
allelism represents a particular case of precedence
where to(ag) > tl ((ll) or to(al) > tl (CLQ).
e Preemption (+) models the choice between two
actions or scenarios of the system. If a,a;,a; € A:
a is followed by a; if ais true
a is followed by as  otherwise
¢ Refinement models the the refinement of an action
ay of abstraction level [,, to an action a of abstraction
level l,,41.
In the textual and graphical notation, we use the en-
capsulation.
Others are defined to model the relationship between
actions/scenarios and components:

e Assignment models a component ¢ € C that real-
izes an action a € A or a scenario s € S.

e Cooperation models a transfer action a from
component ¢; to component cs.

e Access models the access to sub-component ¢; of
component c.

4 SAFETY ANALYSIS AND SCOLA

Safety analysis is defined in (Bahr 2014) as the ap-
plication of engineering and management principles,
criteria, and techniques to achieve acceptable mishap
risk, within the constraints of operational effective-
ness and suitability, time, and cost, throughout all
phases of the system life cycle .

More recently, Model Based Safety Analysis
(MBSA) approaches have been proposed((Arnold
et al. 1999)(Papadopoulos et al. 2011)(Yakymets et al.
2013)). Their goal is to introduce mathematical ar-
tifacts in which system and safety engineers use the
same system models.

Because of the systems and models complexity and
differences, safety analysis cannot be automatically
generated from the systems description models. It is
even prohibited in certain domains like aeronautics
where system and safety engineers must work sepa-
rately to make the analysis viable. The most realis-
tic objective is a contribution to safety analysis with
complete and formal system models. This is the ob-
jective of ScOLA whose perspectives towards safety
can be conducted starting from the language. We
identify a technique that can help the synchroniza-
tion between system and safety models. Being at the
methodological phase, we roughly present them, and
apply them on a concrete case study.

Failure scenarios creation: Safety analysis tech-
niques in the railway industry are based on potential
accidents that are refined until identifying the Failure
scenarios that lead to the accident. The approach is
deductive, it is railway oriented since the potential ac-
cidents in this field are not numerous and represent an
input to the analysis. It is depicted in figure 2.

In this paper, we propose an inductive approach to

Failure modes

Safety
elated

component:

System
Accidents

System Outputs

PHA Identified hazards . FMEA

Hazard
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*Safety requirements
*Safety report B FTA

. Hazaid
Rate
Figure 2: Functional Safety Analysis of a CBTC system

identify Failure scenarios starting from the functional
ones in the specifications, taking into account the fol-
lowing inputs:

e The system specifications and requirements.

e The failure modes: Data corruption (Action failure,
interface failure), non-transmitted data.

The methodology, which is similar to a fault propa-
gation technique, can be summarized in the following
steps:

e Safety relevance of actions: each requirement in
the system specification is followed by a safety rel-
evance information. Since requirements are associ-
ated with every step of a scenario, the information is
spread over the actions.

Example: if we consider the step; in a scenario de-
scribed in the specification, req; is its corresponding
requirement. Req; is defined as being safety relevant,
thus step; is safety relevant, as for the actions encap-
sulated in step;.

e Safety relevant data: at this point of the analy-
sis, we consider the different safety relevant inputs
and outputs of the actions, and their respective fail-
ure modes. We process as for the actions.

e Failure actions creation: every action can have,
given its type and inputs/outputs, corresponding fail-
ure:

— Simple action: typically, the action can fail. Thus,
it can produce a corrupted or wrong data.

— Transfer action: components share an information,
this information can simply not arrive because of an
interface failure, or be corrupted.

— Test action: in this case, we can consider the wrong
decision in the choice process.

e Failure scenarios creation: Using the actions cre-
ated in the previous phase, engineers can choose to
insert one or multiple wrong actions and thus create
Failure scenarios.

The advantage with this technique is that, consid-
ering the system complete, all the hazardous actions
can be discovered. Using the already-known failure
modes, the safety relevance of actions and the func-
tional scenarios, it is easy to place each action in
its context. The use of ScOLA models for scenarios
helps applying failure modes in a systematic modes
since each action possesses a specific type. Solely, the
amount of possible Failure scenarios might be impor-



tant and requires a decision process on how to effec-
tively choose them.

In the next section, we present a CBTC system case
study constructed using the system specifications of
the TGMT product of Siemens.

5 CASE STUDY

In order to understand how we build a ScOLA model
starting from the existing textual specifications. we
present the scenario S = the train doors supervision
under driver’s responsibility. Then, starting from a
ScOLA model, we will apply the safety technique in-
troduced in the previous section.

S requires the train doors to be opened and closed
under the drivers responsibility after the driver has en-
forced a door release. In the continued scenario, when
the driver closes the doors, they are not reported as
closed by the wayside. The driver overrides the door
closed and locked supervision to continue the train
run. In S, the initialization for closing and opening
the doors from the train and the communication with
the wayside components are optional and not shown
in detail. The supervisions of the doors are equally
described scenarios.

First, we define the physical components that in-
tervene in the S. The system is composed of a
Train, a Wayside and a driver. The train has three
basic-components (OBCU, HMI, Train control) and
the Wayside has two basic-components (WCU_ATP,
WCU_TTS). The driver is already basic.

According to the specification, S is composed of
the following steps :

e Step 1: The train detects standstill but train doors
are not released by the on-board subsystem because
the train has not stopped correctly. HMI does not dis-
play the door release.

e Step 2: The driver selects an enforced door release
on the HMI for one side of the train and presses the
acknowledge button to acknowledge his selection.

e Step 3: The enforced door release activates the
door release on the selected side. The train transmits
the release status to the wayside. The HMI displays
the enforced door release status.

e Step 4: The driver initiates the door opening pro-
cess for a specific side by pushing the open button.

If the train has recognized the stop at platform, the
train now sets a door open authorization to the way-
side and revokes propulsion release. The train contin-
ues to indicate an undefined platform stopping point
because the train has not stopped correctly.

e Step 5: If the train recognizes stop at platform, the
train sends a doors open command for the side se-
lected by the driver to the wayside. With a delay, the
train also opens the train doors on that side. The doors
do not open because the wayside does not know at
which stopping point the train has stopped. If the train
has not recognized stop at platform, the train opens
the train doors on the side selected by the driver.

e Step 6: The train doors open. The train becomes
inactive. The train indicates the train doors opening
to the HMI and to the wayside. The train indicates the
speed as zero to the HMI.

e Step 7: If stop occurs at platform, the driver opens
the doors manually. As soon as doors open, the
wayside sets a restrictive RAUZ(Run AUthorization
Zone) and sends this information to the wayside. The
train receives the RAUZ and indicates the doors as
open to the HMI.

S as it is described in the system specification, is a
low level description reserved for experts. Thus, fol-
lowing the ScOLA semantics and syntax, the scenario
i1s decomposed regarding the fact that a scenario rep-
resents a set of actions of scenarios executed by one or
two components using multiple refinements. We use
the following notation for actions: a, g: where « is
the corresponding abstraction level of a and f is the
sequence number of the action in S, same for scenar-
10s.
® q : The train detects standstill
e 5p2: The driver selects the doors release side and
acknowledges the selection to the train
e 5p3: The train transmits the door release to the
wayside
® so4: The train displays the door release status
® sy 5: The driver initiates the door opening process
for the specific side
e 5o ¢: If the train has recognized the stop at platform.
S0,6 being a test scenario, it is followed by the
sequence (S0,74>50,8a> 50,9a> 50,10« and Sg114) OF
(50,76550,8a> 50,94 and S0, 10a)
® 507,: The train sets a door open authorization to
the wayside.
® 503, The train revokes the propulsion release.
® 509, The train continues to indicate an undefined
platform stopping point.
® 5010q: The train opens the train doors.
® 50114: The wayside does not open the platforms.

e 5o 7: The train opens the doors on the side selected
by the driver.

e 50g: The train indicates the doors opening to the
passengers.

® 5o The train indicates the doors opening to the
wayside.

50,100: The train revokes the propulsion release.
50,12: If the train stops at platform

50,13¢: The driver opens the platforms manually.
50,14 The wayside sets a restrictive RAUZ.

50,15¢: The wayside transmits the information to
the train.

® 50.16e: The train informs the passengers of the plat-
form opening.

Figure 3 depicts the graphical level [ description of
the door supervision under driver responsibility sce-
nario. It is characterized by the multiple tests.

Figure 4 represents the textual level [y scenario of
the door supervision under driver responsibility. The
system architecture is defined using the keyword ar-
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chitecture. Instances of components are declared in
blocks and finally the scenarios are described. Their
order of completion is defined in the scriptlf we de-
cide to have a more concrete view of the system, the
different scenarios must be refined.

As an example of the refinement process, we con-
sider scenario s 2: At [y, it involves solely the driver
and the train. At [y, the allowed components are the
driver, the OBCU, the HMI and the Train Control.
Thus, s 2 becomes:

e q; ;: the driver selects enforced door release on the
HMI

e a;: the HMI transmits the enforced door release
to the train

e q; 3: the driver presses the acknowledge button on
the HMI

e a; 4: the HMI transmits the acknowledgment to the
OBCU

Safety Analysis of S:

We consider the scenario s .

1. Failure scenarios creation:

Regarding its corresponding requirement in the sys-
tem specifications, the scenario is safety related, thus
it is fully part of the analysis.

The four actions of s 5 have basically two inputs:

e HMI I Enforced_Door_Release: it represents a sig-
nal sent to the hmi then the train. Its only failure mode
is the non-transmission.

o CAB_I Acknowledge _Button: it represents a signal
sent to the hmi then the train. Its only failure mode is
the non-transmission.

Figure 5 shows the interfaces created between basic
components. In the scenarios definition, we can ex-
plicit the data transmission using the interfaces previ-
ously defined in the architecture and initialized in the
blocks.

Regarding the actions themselves, they are typed as
transfer actions. Therefore, their respective possible

failure modes can be a components failure causing a
non-transmission of the information or its corruption,
or a failure in the interface between the components
causing a non-arrival of the information. In the first
case we consider that every following action realized
by that specific component will fail, and in the second
case, every similar interface will fail. In any case, the
information will not arrive.

Considering the relationship between actions, a; i,
a2, a1z and a;4 have a precedence relationship.
Meaning that a single failure in one action causes the
failure of the entire scenario because it cannot pro-
ceed.

Using the previous information about the actions and
their interfaces, we can identify the following Failure
scenarios built on s 5:

(a) Failure of ay 1 because of an interface failure: the
driver fails at sending the enforced door release to
the HMI, a; »: the HMI sends an outdated enforced
door release to the OBCU. The driver presses the ac-
knowledgment button to the HMI, the HMI transmits
the acknowledgment to the train. The result of the sce-
nario is the transmission of a wrong information to the
train about the doors release which can cause an un-
expected train doors opening for example.

(b)Failure of ai1 because of a driver failure: the
driver fails at sending the enforced door release to the
HMLI, a, »: the HMI sends an outdated enforced door
release to the OBCU. The driver fails at sending the
acknowledgment button to the HMI, the HMI fails at
transmitting the acknowledgment to the train. The re-
sult is an unexpected stop in the overall progress of
the scenario.

6 CONCLUSION

In this paper, we address issues on system safety
analysis in railway systems. In order to have system



System TGMT {
Architecture TGHT {
Component Train {
Basic-Component 0BCU (in : hmi2obcu ; out : obcuZhmi) ;
Basic-Component HMI (in : driver2hmi, obcu2hmi ; out : hmi2driver, hmiZobcu);
Basic-Component TrainControl

= System TGMT {

= Architecture TGMT {

0 Component Train {
Basic-Component 0BCU (in : hmi2obcu ; out : obcu2hmi) ;
Basic-Component HMI (in : driver2hmi, obcu2hmi ; out : hmi2driver, hmi2obcu);
Basic-Component TrainControl

0 Component Wayside {
Basic-Component WCU_ATP Component Wayside {
Basic-Conponent WCU_TTS Basic-Component WU ATP

. b . - . . Basic-Component WCU_TTS
Basic-Component Driver (in : hmi2driver ; out : driver2hmi); } -

3 } Block Scenariol { Basic-Component Oriver (in : hmi2driver ; out @ driver2hmi);
TGMT.Train train ; }
TGMT.Train.0BCU obcu ;

TGMT.Train. HMI hmi ;

TGMT.Driver driver ;

TGMT.Train.TrainControl trainControl ;

Block Scenariol {
TGMT. Train train ;
TGMT. Train.0BCU obcu ;
TGMT. Train WML hmi ;
} TGHT.Driver driver ;
TGMT. Train.TrainControl trainControl ;
Scenario sl with Scenariol {
Action 2@l = "The train detects standstill" by Scenariol.train ; }
Scenario 582 = "The driver selects the door release side and acknowledges the selection to the train®
Scenario sl with Scenariol {
Action a0l = "The train detects standstill" by Scenariol.train ;
Scenario 582 = "The driver selects the door release side and acknowledges the selection to the train” {
Transfer all = "the driver selects the enforced door release to the HMI" from Scenariol.driver to Scenariol.hmi {
driver.driver2hmi = HMI_I_Enforced_Door_Release ;

Scenario 583 = "The train transmits the door release to the wayside"
Scenario s84 = "The train displays the door release status”
Scenario s@85 = "The driver initiates the door opening process for the specific side”
Test 586 = "the train has recognized the stop at platform” {
Scenario s87a = "The train sets a door open authorization to the wayside”
Scenario s88a = "The train revokes the propulsion release”
Scenario s@% = "The train continues to indicate an undefined platform stopping point”
Scenario s@l@a = "The train opens the train doors”
Scenario s@lla = "The wayside does not open the platforms”

Transfer al2 = "the HMI transmits the enforced door release to the 0BCU" from Scenariol.hmi to Scenariol.obcu

T+ obcu.hmi2ebeu = HMI_I_Enforced Door Release ;
Scenario s@7b = "The train opens the doors on the side selected by the driver” }
Scenir?o segb - ..The tﬁ}” ?”d?“““ the doors Opening o the PasSENgers Transfer al3 = "The driver presses the acknowledgment button on the HMI" from Scenariol.driver to Scenariol.hmi
Scenario s@9b = "The train indicates the doors opening to the wayside
Scenario s@1éb = "The train revokes the propulsion release” { ) )
driver2hmi = CAB I Acknowledge Button ;
Test 5012 = "the train stops at platforn” { }
Scenario sB13z = "The driver opens the platforns manually” Transfer ald = "The WM transmits the acknowledgnent to the 0BCU" from Scenariol.hmi to Scenariol.obeu

Scenario s@l4a = "The wayside sets a restrictive RAUZ" {
Scenario s@15a = "The wayside transmits the information to the train"
Scenario s@l6a = "The train informs the passengers of the platform opening” }
}
Script adl -> 82 -> sB3 -> sB4 -> sB5 -> 5B -> Script a1l -» (al2 -» (13 - ald)) ;
((s06.507a -> (s@6.508a -> (506.509a -> (s06.5010a -> sB6.s@1la)))) + (sB6.5@7b -> (s@6.5B8b -» (s@6.5B9b -» s@6
! !

hmizobcu = CAB_I Acknowledge Button ;

Figure 4: Textual representation of the scenario Figure 5: Textual representation of the scenario with the data
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and safety engineers to communicate, it is important
to structure and formalize the way systems are de-
signed. In this perspective, we designed ScOLA; a for-
mal modeling language based on scenarios describ-
ing the system architecture and behavior. We explain
how; starting from formal but explicit models of the
system, safety analysis could be performed more ef-
ficiently. We introduced some identified safety tech-
niques and their application to a cbtc railway case
study.

We are currently implementing those techniques.
We are also working on how ScOLA models could be
used with existing model based safety analysis exist-
ing tools and languages.
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