N

N
N

HAL

open science

Forty Years of Text Indexing
Alberto Apostolico, Maxime Crochemore, Martin Farach-Colton, Zvi Galil, S.
Muthukrishnan

» To cite this version:

Alberto Apostolico, Maxime Crochemore, Martin Farach-Colton, Zvi Galil, S. Muthukrishnan. Forty
Years of Text Indexing. CPM 2013, Jun 2013, Bad Herrenalb, Germany. pp.1-10, 10.1007/978-3-642-

38905-4_1. hal-01246128

HAL Id: hal-01246128
https://hal.science/hal-01246128
Submitted on 18 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01246128
https://hal.archives-ouvertes.fr

Forty Years of Text Indexing

Alberto Apostolico*, Maxime Crochemore**, Martin Farach-Colton** *, Zvi
Galilf, and S. Muthukrishnan

Abstract. This paper reviews the first 40 years in the life of textual
inverted indexes, their many incarnations, and their applications. The
paper is non-technical and assumes some familiarity with the structures
and constructions discussed. It is not meant to be exhaustive. It is meant
to be a tribute to a ubiquitous tool of string matching — the suffix tree
and its variants — and one of the most persistent subjects of study in
the theory of algorithms.

Keywords: pattern matching, string searching, bi-tree, suffix tree, dawg, suffix
automaton, factor automaton, suffix array, FM-index, wavelet tree.

1 Prolog

When William Legrand finally decrypted the string;:

53111305))6*,482641.)41);806” ,4818P60))85; 1% (;:1*8183(88)5%1,46(;88%96
*2:8)%1(;485);5%12:%1 (;4956%2(5*4)8P8*;4069285);)618)411;1(19;48081;8:8
11;48 85;4)4851528806*81 (ddag9;48;(88;4(1734;48)41;161;:188;17;

it did not seem to make much more sense than it did before. The decoded message
read: “A good glass in the bishop’s hostel in the devil’s seat forty-one degrees
and thirteen minutes northeast and by north main branch seventh limb east side
shoot from the left eye of the death’s-head a bee line from the tree through the
shot fifty feet out.” But at least it did sound more like natural language, and
eventually guided the main character of Edgar Allan Poe’s “The Gold Bug” [56]
to discover the treasure he had been after. Legrand solved a substitution ci-
pher using symbol frequencies. He first looked for the most frequent symbol and
changed it into the most frequent letter of English, then similarly treated the
second most frequent symbol, and so on.

* College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta,
GA 30318, USA axa@cc.gatech.edu
** King’s College London, London WC2R, 2LS, UK and Université Paris-Est, France
maxime.crochemore@kcl.ac.uk
*** Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA
farach@cs.rutgers.edu
T College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta,
GA 30318, USA galil@cc.gatech.edu
 Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA
muthu@cs.rutgers.edu

Both before and after 1843, the natural impulse when faced with some myste-
rious message has been to count frequencies of individual tokens or subassemblies
in search of a clue. Perhaps one of the most intense and fascinating subjects for
this kind of scrutiny has been bio-sequences. As soon as some such sequences
became available, statistical analyses tried to link characters or blocks of char-
acters to relevant biological function. With the early examples of whole genomes
emerging in the mid 90’s, it seemed natural to count the occurrences of all blocks
of size 1, 2, etc. up to any desired length, looking for statistical characterizations
of coding regions, promoter regions, etc. [67].

This review is not about cryptography. It is about a data structure and its
variants, and the many surprising and useful features it carries. Among these is
the fact that, to set up a statistical table of occurrences for all substrings, of any
length, of a text string of n characters, it only takes time and space linear in the
length of the text string. While nobody would be so foolish to solve the problem
by generating all exponentially many possible substrings and then counting their
occurrences one by one, a text string may still contain O(n?) distinct substrings,
so that tabulating all of them in linear space, never mind linear time, seems
already puzzling.

Over the years, such structures have held center stage in text searching,
indexing, statistics, and compression as well as in the assembly, alignment and
comparison of biosequences. Their range of scope extends to areas as diverse as
detecting plagiarism, finding surprising substrings in a text, testing the unique
decipherability of a code, and more. Their impact on Computer Science and I'T
at large cannot be overstated. Text and Web searching and Bioinformatics would
not be the same without them. In 2013, the Combinatorial Pattern Matching
symposium celebrates the 40th anniversary of the appearance of Wiener’s paper
with a special session entirely dedicated to that event.

2 History Bits and Pieces

At the dawn of “stringology”, Don Knuth conjectured that the problem of find-
ing the longest substring common to two long text sequences of total length n
required 2(nlogn) time. An O(nlogn)-time had been provided by Karp, Miller
and Rosenberg [40]. That construction was destined to play a role in paral-
lel pattern matching [6,24, 31, 32], but Knuth’s conjecture was short lived: in
1973, Peter Weiner showed that the problem admitted an elegant linear-time
solution [68], as long as the alphabet of the string was fixed. Such a solution
was actually a byproduct of a construction he had originally set up for a differ-
ent purpose, i.e., identifying any substring of a textfile without specifying all of
them. In doing so, Weiner introduced a notion of a textual inverted index that
would elicit refinements, analyses and applications for forty years and counting,
a feature hardly shared by any other data structure.

Weiner’s original construction processed the textfile from right to left. As
each new character was read in, the structure, which he called a “bi-tree”, would
be updated to accommodate longer and longer suffixes of the textfile. Thus this

was an inherently offline construction, since the text had to be known in its
entirety before the construction could begin. Alternatively, one could say that
the algorithm would build online the structure for the reverse of the text. About
three years later, Ed McCreight provided a left-to-right algorithm and changed
the name of the structure to “suffix tree”, a name that would stick [52]. In
unpublished lecture notes of 1975, Vaughan Pratt displayed the duality of this
structure and Weiner’s “repetition finder” [57]. McCreight’s algorithm was still
inherently offline, and it immediately triggered a craving for an online version.
Some partial attempts at an on-line algorithm were performed [42,49], but such
a variant had to wait almost two decades for Esko Ukkonen’s paper in 1995 [65].
In all linear constructions, linearity was based on the assumption of a finite
alphabet and took O(nlogn) time in general. In 1997, Martin Farach introduced
an algorithm that abandoned the one-suffix-at-time approach prevalent until
then; this algorithm gives a linear-time reduction from suffix-tree construction
to character sorting, and thus runs in linear time, for example, even when the
alphabet is of size polynomial in the input size [26].

Around 1984, Anselm Blumer, et al. [12-14] and Maxime Crochemore [19]
exposed the surprising result that the smallest finite automaton recognizing all
and only the suffixes of a string of n characters has only O(n) states and edges.
Initially coined as a directed acyclic word graph (DAWG), it can even be reduced
if all states are terminal states. It then accepts all subsstrings of the string and
is called the factor/substring automaton. Although it has never been fully eluci-
dated, it seems that Anatoli Slissenko [59,60] ended up with a similar structure
for his work on the detection of repetitions in strings. These automata provided
another more efficient counterexample to Knuth’s conjecture when they are used,
against the grain, as pattern matching machines (see [20]).

The appearance of suffix trees dovetailed with some interesting and indepen-
dent developments in information theory. In his famous approach to the notion of
information, Kolmogorov [45] equated the information or structure in a string to
the length of the shortest program that would be needed to produce that string
by a Universal Turing Machine. The unfortunate thing is that this measure is
not computable and even if it were, most long strings would be incompressible
(would lack a short program producing them), since there are increasingly many
long strings and comparatively much fewer short programs (themselves strings).

The regularities exploited by Kolmogorov’s universal and omniscient machine
could be of any conceivable kind, but what if one limited them to the syntac-
tic redundancies affecting a text in form of repeated substrings? If a string is
repeated many times one could profitably encode all occurrences by a pointer
to a common copy. This copy could be internal or external to the text. In the
latter case one could have pointers going in both directions or only in one, al-
low or forbid nesting of pointers, etc. In his doctoral thesis, Jim Storer [61-63]
showed that virtually all such “macro schemes” are intractable, except one. Not
long before that, in a landmark paper entitled “On the Complexity of Finite Se-
quences” [48], Abraham Lempel and Jacob Ziv had proposed a variable-to-block
encoding based on a simple parsing of the text and with the feature that the

compression achieved would match in the limit that produced by a compressor
tailored to the source probabilities. Thus, by a remarkable alignment of stars,
the compression method brought about by Lempel and Ziv was not only optimal
in the information theoretic sense; it found an optimal, linear-time implementa-
tion by the suffix tree, as was detailed immediately by Michael Rodeh, Vaugham
Pratt and Simon Even [58].

In his original paper, Weiner listed a few applications of his “bi-tree”, includ-
ing most notably off-line string searching: preprocessing a text file to support
queries that return the occurrences of a given pattern in time linear in the length
of the pattern. And of course, the “bi-tree” addressed Knuth’s conjecture, by
showing how to find a longest substring common to two files in linear time for
finite alphabet. There followed unpublished notes by Pratt entitled “Improve-
ments and Applications for the Weiner Repetition Finder” [57]. A decade later,
Alberto Apostolico would list more applications in a paper entitled “The Myriad
Virtues of Suffix Trees” [3], and two decades later suffix trees and companion
structures elicited with their applications several chapters in reference books
by Crochemore and Rytter [25], Dan Gusfield [35], and Crochemore, Hancart,
Lecroq [21].

The space required by suffix trees has been a nuisance in applications where
they were needed the most. With genomes in the order of gigabytes, for instance,
it makes a big difference to need space 20 times bigger than the source versus,
say, only 11 times that big. For a few lusters, Stefan Kurtz and his co-workers
devoted their effort to cleverly allocating the tree and some of its companion
structures [46]. In 2001 David R. Clark, J. Ian Munro proposed one of the best
space-saving methods on secondary storage [18]. Clark and Munro’s “succinct
suffix tree” sought to preserve as much of the structure of the suffix tree as
possible. Udi Manber and Eugene W. Myers took a different approach, however.
In 1990 [50,51], they introduced the “suffix array,” which eliminated most of
the structure of the suffix tree, but was still able to implement many of the
same operations, at a cost of only twice the input size. Although the suffix array
seemed at first to be a different data structure than the suffix tree, over time
they have come to be more and more similar. For example, Manber and Myers’s
original construction of the suffix array took O(nlogn) time for any alphabet,
but the suffix array could be constructed in linear time from the suffix tree for
any alphabet. In 2001, Toru Kasai et al. [41] showed that the suffix tree could be
constructed in linear time from the suffix array. The suffix array was shown to
be a succinct representation of the suffix tree. In 2003, three groups [39,43,44]
modified in three different ways Farach’s algorithm for suffix tree construction to
give the first linear-time algorithms for directly constructing the suffix array, that
is, the first linear-time algorithms for computing suffix arrays that did not first
compute the full suffix tree. With fast construction algorithms and small space,
the suffix array is the suffix-tree variant that has gained the most widespread
adoption in software systems.

Actually, the history of inverted indexes and compression is tightly inter-
twined. This should not come as a surprise, since the redundancies that pattern

discovery tries to unearth are ideal candidates to be removed for purposes of
compression. In 1994, M. Burrows and D. J. Wheeler proposed a puzzling data
compression method in a report that “as it happens sometimes to results that
are just too simple and elegant” ended it up never finding an archival venue [16].
Circa 1995, Amihood Amir, Gary Benson and Martin Farach posed the problem
of searching in compressed texts [1,2]. In 2000, Paolo Ferragina and Giovanni
Manzini introduced a compressed full text index based on the Burrows-Wheeler
transform [29,30]. In the same year, Roberto Grossi and Jeffrey Scott Vitter
presented compressed versions of suffix trees and suffix arrays [34]. These struc-
tures supported searching without decompression while being possibly smaller
than the source file. This was extended to compressed tree indexing problems
in [28] using a modification of the Burrows-Wheeler transform.

3 Fallout, Extensions and Challenges

As highlighted in our prolog, there has been hardly any application of text pro-
cessing that did not need these indexes at one point or another. A prominent
case has been searching with errors, a problem first efficiently tackled in 1985
by Gad Landau in his PhD thesis [47]. In this kind of searches, one looks for
substrings of the text that differ from the pattern in a limited number of errors
such as a single character deletion, insertion or substitution. To efficiently solve
this problem, Landau combined Suffix Trees with a clever solution to the so-
called lowest common ancestor (LCA) problem. The LCA problem assumes that
a rooted tree is given and then for any pair of nodes, it seeks the lowest node
in the tree that is an ancestor of both [37] (see [11] and references therein for
subsequent, simpler constructions). It is seen that following a linear time pre-
processing of the tree any LCA query can be answered in constant time. Landau
used LCA queries on Suffix Trees to perform contant-time jumps over segments
of the text that would be guaranteed to match the pattern. When k errors are
allowed, the search for an occurrence at any given position can be abandoned
after k such jumps. This leads to an algorithm that searches for a pattern with
k errors in a text of n characters in O(nk) steps.

Among the basic primitives supported by suffix trees and arrays one finds of
course searching for a pattern in a text in time proportional to the length of the
pattern rather than the text. In fact, it is even possible to enumerate occurrences
in time proportional to their number and, with trivial preprocessing of the tree,
tell the total number of occurrences for any query pattern in time proportional
to the pattern size. The problem of finding the longest substring appearing twice
in a text or shared between two files has been already mentioned: this is probably
where it all started. A germane problem is that of detecting squares, repetitions
and maximal periodicities in a text, a problem rooted in work by Axel Thue
dated more than a century ago [64], a problem with multiple contemporary
applications in compression and DNA analysis. A square is a pattern consisting
of two consecutive occurrences of the same string. Suffix trees have been used to
detect in optimal O(nlogn) time all squares (or repetitions) in a text, each with

its set of starting positions [7], and later to find and store all distinct square
substrings in a text in linear time [36]. Squares play a role in an augmentation
of the suffix tree suitable to report, for any query pattern, the number of its
non-overlapping occurrences [8,15].

There are multiple uses of suffix trees in setting up some kind of signature
for texstrings, as well as measures of similarity or difference. Among the latter,
there is the problem of computing the forbidden or absent words of a text,
which are strings that do not appear in the text while all of their substrings
do [10,22]. Such words subtend, among other things, to an original approach
to text compression [23]. Once regarded as the succinct representation of the
“bag-of-words” of a text, suffix trees can be used to assess the similarity of
two textfiles, thereby supporting clustering, document classification and even
phylogeny [5,17,66]. Intuitively, this is done by assessing how much the trees
relative the two input sequences have in common. Suitably enriched with the
probability affecting the substring ending at each node, a tree can be used to
detect surprisingly over-represented substrings of any length [4], e.g., in the quest
of promoter regions in biosequences [67].

The suffix tree of the concatenation of say, k > 2 texfiles, supports efficient
solutions to problems arising in domains ranging from plagiarism detection to
motif discovery in biosequences. The need for k distinct end-markers poses some
subtleties in maintaining linear time, for which the reader is referred to [35]. In
its original form, the problem was called “color problem” and seeks to report,
for any given query string and in time linear in the query, how many documents
out of the total of k contain each at least one occurrence of the query. A simple
and elegant solution was given in 1992 by Lucas C. K. Hui [38]. More recently,
it was extended to a variety of document listing problems, where once a set of
text documents are preprocessed, one can return the list of all documents that
contain a query pattern in time proportional to the number of such documents,
not the total number of occurrences [53].

One surprising variant of the suffix tree was introduced by Brenda Baker for
purposes of detection of plagiarism in student reports as well as optimization
in software development [9] . This variant of pattern matching, called “param-
eterized matching”, enables to find program segments that are identical up to
a systematic change of parameters, or substrings that are identical up to a sys-
tematic relabeling or permutation of the characters in the alphabet.

One obvious extension of the notion of a suffix tree is to more than one
dimension, albeit the mechanics of the extension itself is far from obvious [54,55]
Among more distant relatives, one finds “wavelet trees”. Originally proposed as
a representation of compressed suffix arrays [33], wavelet trees enable to perform
on general alphabets the ranking and selection primitives previously limited to
bit vectors, and more [27].

The list could go on and on, but the scope of this paper was not meant
be exhaustive. Actually, after forty years of unrelenting developments, it is fair
to assume that the list will continue to grow. On the other hand, many of the
observed sequences are expressed in numbers rather than characters, and in

both cases are affected by various types of errors. While the outcome of a two
character comparison is just one bit, two numbers can be more or less close,
depending on their difference or some other metric. Likewise, two textstrings
can be more or less similar, depending on the number of elementary steps nec-
essary to change one in the other. The most disruptive aspect of this framework
is the loss of the transitivity property that subtends to the most efficient ex-
act string matching solutions. And yet indexes capable of supporting fast and
elegant approximate pattern queries of the kind just highlighted would be im-
mensely useful. Hopefully, they will come up soon and, in time, get their own
40th anniversary celebration.

References

1. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. In Proceedings of the 5th ACM-SIAM Annual Symposium on
Discrete Algorithms, pages 705-714, Arlington, VA, 1994.

2. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. J. Comput. Syst. Sci., 52(2):299-307, 1996.

3. A. Apostolico. The myriad virtues of suffix trees. In A. Apostolico and Z. Galil, ed-
itors, Combinatorial Algorithms on Words, volume 12 of NATO Advanced Science
Institutes, Series F, pages 85-96. Springer-Verlag, Berlin, 1985.

4. A. Apostolico, M. E. Bock, and S. Lonardi. Monotony of surprise and large-scale
quest for unusual words. Journal of Computational Biology, 10(3/4):283-311, 2003.

5. A. Apostolico, O. Denas, and A. Dress. Efficient tools for comparative substring
analysis. Journal of Biotechnology, 149(3):120-126, 2010.

6. A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin. Parallel
construction of a suffix tree with applications. Algorithmica, 3:347-365, 1988.

7. A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theor. Comput. Sci., 22(3):297-315, 1983.

8. A. Apostolico and F. P. Preparata. Data structures and algorithms for the strings
statistics problem. Algorithmica, 15(5):481-494, May 1996.

9. B. S. Baker. Parameterized duplication in strings: Algorithms and an application
to software maintenance. STAM J. Comput., 26(5):1343-1362, 1997.

10. M.-P. Béal, F. Mignosi, and A. Restivo. Minimal forbidden words and symbolic
dynamics. In STACS 96, 13th Annual Symposium on Theoretical Aspects of Com-
puter Science, Grenoble, France, February 22-24, 1996, Proceedings, volume 1046
of Lecture Notes in Computer Science, pages 555—566. Springer, 1996.

11. M. A. Bender and M. Farach-Colton. The lca problem revisited. In LATIN 2000:
Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay,
April 10-14, 2000, Proceedings, volume 1776 of Lecture Notes in Computer Science,
pages 88-94. Springer, 2000.

12. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.,
40(1):31-55, 1985.

13. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. Building
a complete inverted file for a set of text files in linear time. In Proceedings of the
16th ACM Symposium on the Theory of Computing, pages 349-351, Washington,
D.C., 1984. ACM Press.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. Mcconnell. Complete
inverted files for efficient text retrieval and analysis. J. Assoc. Comput. Mach.,
34(3):578-595, 1987.

G. S. Brodal, R. B. Lyngsg, A. Ostlin, and C. N. S. Pedersen. Solving the string
statistics problem in time o(n log n). In Automata, Languages and Programming,
29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002,
Proceedings, volume 2380 of Lecture Notes in Computer Science, pages 728-739.
Springer, 2002.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipments Corporation, May 1994.

S. Chairungsee and M. Crochemore. Using minimal absent words to build phy-
logeny. Theoretical Computer Science, 450(1):109-116, 2012.

D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In
Proceedings of the 7th ACM-SIAM Annual Symposium on Discrete Algorithms,
pages 383-391, Atlanta, Georgia, 1996.

M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63-86,
1986.

M. Crochemore. Longest common factor of two words. In Ehrig, Kowalski, Levi,
and Montanari, editors, TAPSOFT’87 (Pisa, 1987), number 249 in LNCS, pages
26-36. Springer-Verlag, 1987.

M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, Cambridge, 2007.

M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words.
Information Processing Letters, 67(3):111-117, 1998.

M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Data compression using
antidictonaries. Proceedings of the . E.E.E., 88(11):1756—-1768, 2000. Special issue
Lossless data compression edited by J. Storer.

M. Crochemore and W. Rytter. Usefulness of the Karp-Miller-Rosenberg algorithm
in parallel computations on strings and arrays. Theor. Comput. Sci., 83(1):59-82,
1991.

M. Crochemore and W. Rytter. Tezt algorithms. Oxford University Press, 1994.
M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings
of the 38th IEEE Annual Symposium on Foundations of Computer Science, pages
137-143, Miami Beach, FL, 1997.

P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of wavelet trees.
Inf. Comput., 207(8):849-866, 2009.

P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and
indexing labeled trees, with applications. J. ACM, 57(1), 2009.

P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
FOCS, pages 390-398, 2000.

P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552-581,
2005.

Z. Galil. Optimal parallel algorithms for string matching. In Proceedings of the
16th ACM Symposium on the Theory of Computing, pages 240-248, Washington,
D.C., 1984. ACM Press.

Z. Galil. Optimal parallel algorithms for string matching. Inf. Control, 67(1-
3):144-157, 1985.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In SODA, pages 841-850, 2003.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching. In Proceedings ACM Symposium on
the Theory of Computing, pages 397-406, Portland, Oregon, 2000. ACM Press.
D. Gusfield. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, Cambridge, 1997.

D. Gusfield and J. Stoye. Linear time algorithms for finding and representing all
the tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525-546, 2004.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338-355, 1984.

L. C. K. Hui. Color set size problem with applications to string matching. In
A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Proceedings of
the 8rd Annual Symposium on Combinatorial Pattern Matching, number 644 in
Lecture Notes in Computer Science, pages 230-243, Tucson, AZ, 1992. Springer-
Verlag, Berlin.

J. Kérkkéinen and P. Sanders. Simple linear work suffix array construction. In
J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Automata,
Languages and Programming, 30th International Colloquium, ICALP 2003, Eind-
hoven, The Netherlands, June 30 - July 4, 2008. Proceedings, volume 2719 of Lec-
ture Notes in Computer Science, pages 943-955, 2003.

R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated
patterns in strings, trees and arrays. In Proceedings of the 4th ACM Symposium
on the Theory of Computing, pages 125-136, Denver, CO, 1972. ACM Press.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In CPM, pages
181-192. Springer-Verlag, 2001.

M. Kempf, R. Bayer, and U. Glntzer. Time optimal left to right construction of
position trees. Acta Inform., 24(4):461-474, 1987.

D. K. Kim, J. S. Sim, H. Park, and K. Park. Constructing suffix arrays in linear
time. J. Discrete Algorithms, 3(2-4):126-142, 2005.

P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. J.
Discrete Algorithms, 3(2-4):143-156, 2005.

A. N. Kolmogorov. Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1(1):1-7, 1965.

S. Kurtz. Reducing the space requirements of suffix trees. Softw. Pract. Ezp.,
29(13):1149-1171, 1999.

G. M. Landau. String matching in erroneus input. Ph. D. Thesis, Department of
Computer Science, Tel-Aviv University, 1986.

A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Trans. Inf.
Theory, 22:75-81, 1976.

M. E. Majster and A. Ryser. Efficient on-line construction and correction of posi-
tion trees. SIAM J. Comput., 9(4):785-807, 1980.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of the 1st ACM-SIAM Annual Symposium on Discrete Algorithms,
pages 319-327, San Francisco, CA, 1990.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, 1993.

E. M. McCreight. A space-economical suffix tree construction algorithm. J. Algo-
rithms, 23(2):262-272, 1976.

S. Muthukrishnan. Efficient algorithms for document listing problems. In Proceed-
ings of the 18th ACM-SIAM Annual Symposium on Discrete Algorithms, pages
657-666, 2002.

54

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

J. C. Na, P. Ferragina, R. Giancarlo, and K. Park. Two-dimensional pattern
indexing. In Encyclopedia of Algorithms. 2008.

J. C. Na, R. Giancarlo, and K. Park. On-line construction of two-dimensional
suffix trees in o(n2 log n) time. Algorithmica, 48(2):173-186, 2007.

E. A. Poe. The Gold-Bug and Other Tales. Dover Thrift Editions Series. Dover,
1991.

V. Pratt. Improvements and applications for the Weiner repetition finder.
Manuscript, 1975.

M. Rodeh, V. Pratt, and S. Even. Linear algorithm for data compression via string
matching. J. Assoc. Comput. Mach., 28(1):16-24, 1991.

A. O. Slisenko. Determination in real time of all the periodicities in a word. Sowv.
Math. Dokl., 21:392-295, 1980.

A. O. Slisenko. Detection of periodicities and string matching in real time. J. Sov.
Math., 22:1316-1386, 1983.

J. A. Storer. NP-completeness results concerning data compression. Report 234,
Princeton University, 1977.

J. A. Storer and T. G. Szymanski. The macro model for data compression. In
Proceedings of the 10th ACM Symposium on the Theory of Computing, pages 30—
39, San Diego, CA, 1978. ACM Press.

J. A. Storer and T. G. Szymanski. Data compression via textual substitution. J.
Assoc. Comput. Mach., 29(4):928-951, 1982.

A. Thue. Uber die gegenseitige lage gleicher teile gewisser zeichenreichen. Nor-
Vidensk. Selsk. Skr. Mat. Nat. Kl., 1:1-67, 1912.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

I. Ulitsky, D. Burstein, T. Tuller, and B. Chor. The average common substring
approach to phylogenomic reconstruction. Journal of Computational Biology,
13(2):336-350, 2006.

J. van Helden, B. André, and J. Collado-Vides. Extracting regulatory sites from the
upstream region of the yeast genes by computational analysis of oligonucleotides.
J. Mol. Biol., 281:827-842, 1998.

P. Weiner. Linear pattern matching algorithm. In Proceedings of the 14th Annual
IEEE Symposium on Switching and Automata Theory, pages 1-11, Washington,
DC, 1973.

