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Solving Geometric Constraints by Homotopy

Hervé Lamure & Dominique Michelucci

Abstract-Numerous methods have been proposed in order to solve geometric constraints, all of them having their own
advantages and drawbacks. In this article, we propose an enhancement of the classical numerical methods, which are,

up to now the only ones that apply to the general case.
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1 INTRODUCTION

OMOTOPY (also called the continuation method) has

long served as useful theoretical tools in modern
mathematics. Because of their versatility and robustness,
numerical continuation methods have now been finding
ever wider use in scientific applications. In Computer
Graphics, Dobkin, Levy, Thurston, and Wilks [8] trace
curves in R" with a method inspired by a special kind of
homotopy, i.e., piecewise linear approximations. In CAD,
this method is used in robotics and kinematics, in particular
by Morgan, Wampler, and Sommese [16], [27] who find all
complex solutions of polynomial systems arising in these
areas. In geometric modeling with free form surfaces, a spe-
cial case of homotopy (‘marching method’) is also often
used to follow intersection curves between surfaces in IR’
[20]. But, as far as we know, it has not been used in the area
of geometric modeling, except in a restricted way (see Sec-
tion 2.1.3).

Here is a brief introduction to homotopy (see Appendix
A for more details about continuation methods). Suppose
you have to solve G(X) = 0, a system of n equations with n
unknowns, Suppose, also, that you know the solution S of
another system F(X) = 0, and that F is, in a certain sense,
close to G, you can define an interpolation between F and
G: H(t, X) = IG(X) + 1 — t)F(X) called homotopy. H(t, X} = 0
defines a curve in R™1 , parameterized by f, that you can
follow from (0, S) to a solution of H such that £ = 1.

The need of an initial solution is a constant for numerical
methods, but homotopy has some great advantages over
the classical Newton-Raphson method. Section 2 also pres-
ents a comparison with other methods used to solve the
geometric constraints: decomposition methods and sym-
bolic computation.

Section 3 presents the implementation that we have done
of a homotopy in a constraint-based modeler. Numerous
extensions of the basic method are also presented here.
Some of them have already been done, while the others are
only in preparation. Section 4 summarizes homotopy in
constraint-based geometric modelers.

2 HOMOTOPY AGAINST OTHER METHODS

In CAD, geometric modeling by constraints enables users to
describe geometric objects such as points, lines, circles,
conics, Bézier curves, etc. in 2D and planes, quadrics, tori,
Bézier patches, etc. in 3D, by geometric constraints, ie.,
distances or angles between elements, incidence, or tan-
gency relations.... This modeling yields large systems of
equations, typically algebraic ones. The problem is then to
solve such constraints systems.

Since the seminal work of Sutherland [23], a lot of research
has been done on the topic of solving constraints. We roughly
classify resolution methods for constraint systems in three
(nonexclusive) categories: numerical algorithms, symbolic
computations, and decomposition methods.

2.1 Numerical Methods

Numerical methods are essential to” solve big constraint
systems met in the ‘real world’ of CAD. Numerical meth-
ods are used, amongst others, by Borning [3], Nelson [18],
and Light, Lin, and Gessard [15]. The most popular nu-
merical method is Newton-Raphson's iteration and its vari-
ants; it needs an initial guess of the solution, typically given
by the user thanks to some interactive tools. In an interac-
tive application, the need for an initial guess is not really a
drawback. On the contrary, it allows us to select in a natu-
ral and interactive way the desired solution among an ex-
ponential number of possibilities. By Bezout's theorem, a
polynomial system of total degree d, in n unknowns and
equations, has O(d") solutions. Moreover, Newton-

'Raphson’s method is fast and works in polynomial time.

Last, its use is compatible with decomposition methods (see
[1] for instance) that speed up resolution,
If Newton-Raphson’s method often works fine, some-

-times—too often!—it does not converge; or it converges to

an unwanted solution after a ‘chaotic’ behavior. In such a
case, the user does not know what to do, apart from slightly
changing his initial guess, until Newton-Raphson’s method
works—if it does! This section intends to show that the ho-
motopic method is much more satisfactory in these situa-
tions. Its behavior is very easy to predict, intuitive, and self-
explanatory. o



2.1.1 Homotopy Convergence

Fig. 1 shows a typical failure of Newton-Raphson’s itera-
tion, and Fig. 2 shows the behavior of homotopy on the same
example; the 10 circles must be tangent to each other, and must
be tangent to the triangle. These images are extracted from
those interactively displayed during the resolution process.

Fig. 1. Failure of Newton-Raphson's method.

Fig. 2. Homotopy success.

2.1.2 Homotopy is Predictible

Another argument uses equation Z-1=0inC Of course,
we do not generally need to work in C" for CAD, and this
equation is just a short cut for the system with two un-
knowns: x, y € IR*, and two equations: x° - 3xy’ = y* — 3yx” =
0. Fig. 3 shows atfraction basins for Newton-Raphson’s
method and for homotopy. Basins for Newton-Raphson’s
method are fractals [21]. This explains why it is so difficult for
users to predict which solution this method will converge to.
On the contrary, homotopy converges to the closest' solution.
Homotopy basins have smooth frontiers: they are semi-
algebraic sets’ when the system to be solved is algebraic. This
point is detailed further in -E. Generally, homotopy con-
verges much more often than Newton-Raphson'’s iteration to
the solution intuitively closest to the initial guess, though, of
course, this claim cannot be proven in a rigorous way, since
“intuitively close’ has no mathematical definition.

It is well known that attraction basins of the Newton-
Raphson’s resolution are fractals [21] (see Fig.3 for in-
stance). This explains the ‘chaotic’ behavior of this method.
Semi-algebraic sets are less beautiful than fractals, but
much smoother.

2.1.3 A Restricted Homotopic Method

Sometimes, people in constraints-based modeling use the
following restricted homotopy [24]. Suppose a first solution

1. In this example, attraction basins for homotopy are the cells of the
Voronoi's diagram of the solution points, but this is not true in general.

2. A semi-algebraic set is the projection of an algebraic set. An algebraic
set is the solution set of a polynomial system.

Xy to a constraint system c; is known, but the value of some
parameter p € IR (a length, an angle, a radius...) has to be
changed, say from p, to p;. It is convenient to see the
constraint system ¢ as a function of p, say: ¢ = C(p) and so
co = C(po), and we want to solve ¢; = C(p;). When directly
solving C(p,) by Newton-Raphson’s iteration with X, as an
initial guess, there is a risk of divergence. So a natural idea
is to first solve, say, C(0.9 pg + 0.1 p;) with starting guess X,
to get Xy; by using Newton-Raphson’s method or Secant
method, then to solve C(0.8 p, + 0.2 p;) with the starting
guess X, to get Xj, and so on, until solution X; of C(p,) =
0 is found. Of course, this method can be generalized to any
number of steps (not only 10), and for changing any num-
ber of parameters. It is a kind of naive climbing homotopy.
This method has a serious limitation; it only works when
the followed path has no turning points, Since turning points
are found even with very simple examples, the climbing ho-
motopy is relevant only in the field of complex numbers (and
with some kind of perturbation to avoid bifurcation points).

Fig.3. 2 - 1 =0, z «C; Affraction basins with Newton-Raphson's
method and homotopy. The +'s represent the three roots of unity.

2.1.4 Homotopy Limitations

Of course, homotopy has some limitations, but it appears
that they have not a great importance in the interactive con-
text. Roughly speaking, homotopy is on average 10 to 20
times slower than Newton-Raphson’s method, which it
calls about 10 to 20 times.

2.2 Homotopy and Symbolic Computation

Symbolic computation is used, for instance, by Ericson and
Yap [9], and by Kondo [12]. This method typically uses
Gribner bases, some kind of resultants, or other elimination
techniques. It is exact but very slow for our purpose of an
interactive modeler. Moreover, according to Lazard [13], it
is definitely impossible to compute the Grébner bases of an
irreducible polynomial system of degree 2 in 10 unknowns
and variables. In CAD we often have to handle hundreds of
equations with higher degree. This kind of method seems to
be more suited for automatic demonstrations of geometric
theorems, like for example in [7], [28].

2.3 Homotopy and Decomposition Methods

Decomposition methods reduce constraint systems into sim-
pler ones; solutions of irreducible subsystems are then
merged. In 2D, typical irreducible systems are triangles, of



which the relative location of vertices is defined by three
constraints (e.g., three distances, or one distance and two an-
gles, ...) or systems soluble by ‘ruler and compass’ like
Appolonius’s problem; here an explicit formula does the job.

The decomposition is performed either by the inference

engine of some expert system like in Buthion’s work [6] or
~ Verroust, Schonek, and Roller’s work [25] to cite a few, ei-
ther by the matching mechanism provided by some pro-
gramming language such as Prolog, as for example in
Briiderlin [5], or by searches in graphs, like in Owen [19],
Bouma, Fudos, Hoffmann, Cai, and Paige [4], Ait-Aoudia,
Jegou, and Michelucci [1], and many others.

Decomposition methods are fast but, since the pro-
grammer cannot predict all possible cases, complex irre-
ducible subsystems have to be solved by symbolic or nu-
merical computations. As we will see in Section 3.1.5 it is
possible to use decomposition to accelerate the resolution
by homotopy.

3 A 2D ConNSTRAINT-BASED MODELER
3.1 Description
3.1.1 General Points

We have implemented in Lelisp an experimental 2D
constraint-based modeler to compare behavior of resolution
by Newton-Raphson’s method and by homotopy. The user
creates points, edges, circles in an interactive way, as with,
say, MacDraw or XFig. Moreover, he can specify con-
straints. Predefined constraints are: distance between two
points or between a point and a line, angle between two
edges, tangency between a line and a circle or between two
circles, incidence between a point and a line or a circle. He
can also specify (with an algebraic formula) any algebraic
equation. He can declare coordinates and radius circles to
be ‘movable,” or not; the modeler can only modify movable
parameters. They are unknowns, and their numerical value
(interactively provided by the user) are used as the initial
guess by resolution methods. The user may call resolution
by Newton-Raphson’s method, or by homotopy. Our reso-
lution methods need constraint systems to be well- or un-
der-constrained. So the user can incrementally add con-
straints and solve the system. Homotopy with an under-
constrained system is explained in Section 3.1.2. For the
moment, the modeler considers over constrained systems as
mistakes from the user, and gives him a warning.

When a Newton-Raphson’s resolution fails or converges
to an unwanted solution, the user recovers the previous
state, and uses homotopy. Generally it works much better.
However, sometimes, homotopy may also converge to an
unwanted solution. * But homotopy is really self-
explanatory. During the resolution process, intermediate
states are displayed (see Fig. 2), so the user can easily see
what is wrong in his initial guess. For instance, when he
sees some circle going to the wrong side of some line, he
interrupts the resolution (or waits for its end), restores the
previous state, moves the circle or the line, and then calls
for the resolution again; it works.

In our very first experiments, homotopy nearly always
worked at the first try. Then, failures became more and
more usual. The reason is that, seeing homotopy work so
well, we became more and more lazy and we gave initial

guesses further and further away from the solution....

We have not met problems with bifurcation, points, ex-
cept when we do it on purpose, to test the software. Typi-
cally, these situations occur when there are several sym-
metrical solutions for a constraint system, and when the
initial guess has the same symmetry. For instance, if a mov-
able point P has two symmetrical solutions P; and P, rela-
tive to some line L. If the initial guess for P belongs to L,
then the homotopy method cannot ‘choose” between the -
two symmetrical paths, one leading to P; and the other to
P;. The initial guess is itself a bifurcation point. A slight
perturbation of the initial guess is sufficient to break the
symmetry and to remove the bifurcation point.

3.1.2 Under-Constrained Homotopy

For a 2D constraint-based modeler to be truly user-friendly
and interactive, we also wanted to solve under-constrained
systems, and not only well-constrained ones. But, if there
are n unknowns (without ) and u missing equatlons, homo-
topy H(#, X) = 0 does not describe anymore a curve in R™,
but a ‘hypersurface’ with dimension 1 + u.

At the stérﬁng point Mg = (0, S), we project the “upward’
vector V = (i =1, x; = %, ... = x, = 0) on the tangent space of
this hypersurface to get Ty (see Fig. 4); the predicted point is
then My+ € Tg/ 1 Tyl and a correction step gives M;. At M;,
we project the previous tangent vector T, , on the tangent
space of H(M;) = 0 to get the tangent vector T, and the pre-
dicted pointis M, + € Tp/ | T} |, etc.

N\

t=0

Fig. 4 An example of under-constrained system.

In other words, we try to follow the path that has an
‘upward’ tangent T, at the point (0, S) and that is as straight
as it can be while remaining in the homotopy surface. Up to
errors (due to the fact that our € is not infinitesimal), we thus
follow a geodesic curve of the surface: in all points of such a
curve, the principal normal to the curve coincides with the
normal to the surface. Due to the accumulation of errors, the
followed path progressively diverges from the ‘true’ geodesic
curve; despite this limitation, the homotopy defined in this
fashion has an intuitive behavior. For instance, suppose an
unknown point P must belong to a given line L, but the initial
guess Py for P does not. Then the user sees the point getnng
closer to the line by following the shortest path.

3.1.3 Solution at Infinity

Solutions at infinity (for instance xy = 1, ¥ = 0 has solution
X = co) pose a problem with the homotopy method, since
paths to these solutions have infinite length.... We have not
met this problem during our experiments; anyway, it is
easily (and classically) solved by homogenization. Suppose



for instance unknowns are the (x, y) coordinates of some
point. Just use homogenized coordinates (X, Y, H) for this

point, i.e., xH = X, yH = Y, translate constraints g;(x, y) =0
into G(X, Y, H) = H*¥$7¢.(X/H, Y/H) =0, add a new

constraint like, say: XY+ H = 1, and solve. All solu-
tions of the homogenized system are finite; in the previous

example, the homogenized system is XY = H,Y=0,X+Y
+ H* =1, the solution is X = +1, Y = H = 0. See [2], [17].

3.1.4 Inequalities

Inequalities are a convenient way to select a solution.
Among others, for instance, there are two circles tangent to
a given circle and passing through two given points; an
inequality can be used to select the wanted circle. Our ap-
plication assumes that the choice is implicitly performed by
the user through his initial guess. Cur constraints only lead
to equations and not to inequalities.

However, providing explicit inequalities is perhaps useful
for some applications. It is possible, at least theoreticail;, to
translate inequal%ties into equations: fiX) 20 fiX)-a =0
and f(X) > 0 < V{X) — 1 = 0 where 4 and b are auxiliary real
unknowns. In this case we obtain an under-constrained sys-
tem that we already know how to solve by homotopy.

Though further studies are needed, our present tests
show that, for imprecision reasons inherent to numerical
methods, it is not possible to distinguish the cases f(X) > 0
and f(X) =2 0. The best2 results are obtained with the inequal-
ity AX) 20 < A(X) —a” =0 where we use

_ |0 when f(X;)<0
f =1 JHX,) when f(X,)>0

as the initial numerical value of the auxiliary unknown a
since here the user has no way to interactively provide it.

3.1.5 Diagnosis and Decomposition

Our modeler provides some tools for diagnosis of constraint
systems: recognition of under-, well-, or over-constrained un-
knowns by computing the Dulmage-Mendelsohn’s decomposi-
tion of the bipartite graph associated to constraint systems [1],
or diagnosis of rigidity like in [10] for instance. These tools are
essential to help users ‘debug’ complex constraint systems.
Moreover, they allow us to decompose huge constraint systems
into smaller ones (by using the Konig-Hall’s decomposition
[1]), and so to speed up resolution. The homotopy method (like
the Newton-Raphson’s method, incidentally) is compatible
with such decomposition methods.

3.2 Open Problems
3.2.1 Control

When a constrained system has no solution, it is easily seen.
The homotopy enters in a loop (supposing a homogeniza-
tion is used to handle solution at infinity, and so to avoid
infinite paths). Though feasible [22], the automatic detec-
tion of loops is not implemented just now. The user has to
interrupt the endless homotopy process (his work is not
lost!), or wait for the automatic stop of the process after a
fixed number of steps.

3.2.2 Speed

Our homotopy method is not as fast as it could be (though
the constraints resolution always remains faster than their
interactive specification), especially with more than 40 or 50
unknowns. When implementing, our first goal was to ver-
ify the relevance of the homotopy method, not speed... So
the slowness of our implementation is not relevant. More
relevant is the number of correction-prediction steps
needed on average. Most often, about 20 steps are enough;
60 or 70 iterations may be needed, when the followed path
is very close to. another homotopy curve, i.e., at ‘quasi-
bifurcations points’ (see Fig. 5). Thus, in practice and in
average, homotopy will be 20 times slower than the secant
method, used in each step.

3.2.3 Imprecision

Looking closely to attraction basins in Fig. 3, one can see
some little errors on the frontiers. Ideally, frontiers would be
straight lines (in this example). This problem is mainly due to
imprecision. In some areas, this kind of problem is a severe
drawback of homotopic methods, because the confusion be-
tween distinct (and very close) paths may lead to logical or
topological inconsistencies; however, for our applications,
and in an interactive use, this is not a serious problem.

3.2.4 Nonalgebraic Equations

Homotopy is only used with algebraic constraints for the
moment, though it may work with transcendental ones.

4 CONCLUSION

We are convinced homotopy will soon become very popular in
constraint-based geometric modelers. It is not very difficult to
implement, and its behavior is much more intuitive, predict-
able, and self-explanatory than those of the Newton-Raphson’s
method. Finally our implementation shows that it is compati-
ble with interactivity, and with decomposition methods.

APPENDIX A

A recent survey on homotopy theory is [2].

A.1 Homotopy Definition

Let G(X) = 0 be a system of n independant (say) polynomial
equations, in n unknowns, that is X = (x;, x, .., x,) and
G = (g1, §2 - §n)- Suppose now a solution S = (5, 5; ..., 5,) of
another system F(X) = 0 is known, with F = (f, f, ..., f,), and
that F is, in a certain meaning, ‘close’ to G. In our applica-
tion, S is nothing else but the vector of values (vertices co-
ordinates and circles radius) defining the initial guess inter-
actively provided by the user, and system F(X) is defined
by F(X) = G(X) — G(S); by construction, S is a solution of
F(X)=0. F and G are then embedded in a homotopy:

H(t, X) = tG(X) + (1 - HF(X)

such that H(0, X) = F(X) and H(1, X) = G(X). System H is a
linear interpolation between F and G; some homotopies use
nonlinear interpolation, but they are beyond the scope of
this paper, see [2].



System H has n + 1 unknowns and # equations. If P
= (t,, X,) is such that H(P) = 0, and if P is a regular point of
H =0 (i.e., the jacobian H'(P) has maximal rank) then, from
the implicit function theorem, H '(0) is locally parame-
terizable by ¢ at P. In more geometric words, H(, X) = 0
defines a curve (the homotopy curve) in n + 1 dimensional
space, passing through P and parameterized by t. Such a
point P is known: itis P = (0, S).

The main idea of resolution by homotopy is to follow the
homotopy curve (also called homotopy path), starting from £ =0,
X = 5. If the homotopy path passes through a point (f, X) with ¢
=1, then a solution to H(1, X) = 0, and thus to G(X) = 0, has
been found. Methods for following’ homotopy curves are
summarized below. Fig. 5 shows a samp]mg of 127 homotopy
3D paths corresponding to our example: Z~1=0,ze Cof Fig.
3. The checkerboard is in the plane t = 0.

Fig. 5. 21 = 0, ze C: Homotopy curves in 3D,

A.2 Topologic Considerations

If a homotopy curve only contains regular points, its topol-
ogy is either that of a circle (i.e., the curve is a loop), or that
of a line (i.e., it comes from infinity, and goes back to infin-

. ity). Of course, in each case, it may cross, or not, hyperplane
with equation t = 1. See Fig. 6.

0N

Fig. 6. Some examples of hamotopy curves.

N

A homotopy curve may contain singular poinis, i.e., points
~ where the jacobian has a nonmaximal rank. In the homotopy
context, such points are called bifurcation points: two (or more)
homotopy curves collide. The simplest and more frequent
bifurcation points are quadratic bifurcation points, ie., two
curves in IR x C" meet in a point Q = (f,, Xg) € RxC"
where  is a regular solution of H(Q) = 0 and
det(HL(Q)) = 0. If ¢ is a vector tangent to one of the two
curves at a quadratic bifurcation pomt then ig is the tangent
vector to the second curve, where i = ~1 as usual. Moreover,
the two tangent vectors have a vanishing # component. See
[14] for a full characterization of quadratic bifurcation points.

Turning points are a special case of quadratic bifurcation
points. They arise with real systems F and G; at a t'umj_ng
point, one of the two curves is real, and the other is imaginary
or complex. Fig. 7 shows a typical example of turhing points.
Turning points arise even in very simple problems, so homo-
topoy methods must take them into account. Moreover, after -
[14], they are the only bifurcation points that arise in real sys-
tems, in the generic case.

Fig. 7. A real homotopy curve, in thick line, with two turning points A
and B: tangent vector has vanishing ¢ component. In thin lines, corre-
sponding complex branches (here, imaginary). Equations are {(say):
F(X) = 8X° ~X+1
GX)=3X -X-1

H(t, X) = 3X° - X + 2 -t

4-%
Ax:‘%
Br=%
BX=%-.

A.3 Homotopy Method

In our case, a starting point for homotopy is known; we are
only interested in the homotopic curve crossing this point.

However, in a more general setting, people want to find all
(maybe complex} solutions of a given system, and have no
starting points. Thus, they typically proceed in two steps [2].

First they build a starting system of equations; it must be easily
solved, and it must have at least as many solutions as the sys-
tem to be solved. This number of solutions may be bounded,
classically, by the product of degrees, after Bezout’s theorem,
or, more closely, with Newton’s polytope and BKK bounds
{26]). Secondly, paths are followed from starting points.

A.4 Methods for the Following Paths
A.4.1 Climbing Complex Homotopy

For constraint systems in CAD modeling, only real roots of
system G are relevant, and the followed paths are curves in
R™. In other areas, complex roots Z of system G are
needed, and homotopy paths are curves in IR x C" (since,
usually, ¢ goes from 0 to 1, staying in IR ). In this last case, itis
possible to ‘climb’ along homotopy paths, starting with (¢ = 0,

Z = Z(0)), and tracking Z(t) as t monotonously increases from

0 to 1. By linearization of H at a known point (£, Z) on the'
curve, we get:

H({t + A, Z + AZ) = Hit, Z}+ HIAE + H’AZ



We use the prediction: AZ = — (H)™ H/At where At may
possibly be scaled to control the step size |(At, AZ)|. Then,
leaving { constant (so At = 0), we correct several times Z by
iterating: AZ := — (H,)" H(t, Z), Z:= Z + AZ, until |AZ] is
sufficiently close to 0.

This method faces a difficulty when a turning point, or a
bifurcation point, is met. One possible solution (among oth-
ers) is to use the perturbed homotopy:

H(t, Z) = tyG(Z) + (1 - £) F(Z)

where y= p ¢? is a random complex number: it is proven
that there is only a finite number of 8 for which H has bi-
furcation points in t € [0, 1). So, with probability 1, per-
turbed homotopy removes turning and bifurcation points.
Of course, this perturbation cannot remove possible singu-
lar solutions of G = 0, and corresponding bifurcation points
when H=G, i.e., when t =1.

A.4.2 Predictor-Corrector

To follow the homotopic path from a given point M, the so
called predictor-corrector method first computes Ty, the tan-
gent vector (or an approximation) to the curve in My, pre-
dicts that the point P = M + € T,/ | T, | (see Fig,. 8) is close to
the curve, and corrects P by some variant of the Newton-
Raphson’s iteration (for instance using the secant method,
or using the Moore-Penrose’s pseudo-inverse) or some gra-
dient method to obtain M,,,, the point on the curve closest
to P, and so on restarting from M,,;. Material about nu-
merical linear algebra can be found in [2]. We do not detail
this method further, very similar to marching methods
used in CAD for following intersection curves between sur-
faces in 3D geometric modeling [20], [11].

P = M + €I}/ | Tk

My
Fig. 8. The principle of the predictor-corrector method.

A practical difficulty (and a difficult theoretic problem of
numerical analysis) is the choice of a good e. If it is too big,
-the correction-step may fail; if it is too small, path following
is slowed down (moreover, some numerical problems due
to imprecision sometimes appear). Research has been done
for safely and automatically choosing e [2], [29].

However, we have found the following heuristic good
enough for our limited needs and easy to implement. At each
correction-prediction step, we update the pseudo-inverse of
H’ and choose € = 0.05; if the correction step does not con-
verge fast enough (i.e., in at most four iterations), we divide €
by 2 and try again. Let d the distance between the starting
point M; and the predicted point Py; let P, Py, P;, and P, the
successive corrections of the point P, As soon as distance
|[FoFy| is greater than 4, the system is said to diverge. It con-

vergences when |P.P_,[is less than 0.02 d, and the angle be-

tween tangent vectors at M, and at P, is less than 10 degrees.
Our experimental constraint-based 2D modeler uses the

predictor-corrector method, mainly because we already
need a Newton-Raphson's iteration to compare the behav-
iors of the latter and of the homotopic method. However,
this method requires the computation and (some kind of)
inversion of the jacobian® H’. The next method only requires
to evaluate H at some points.

A.4.3 Piecewise Linear Approximation

Another method for following homotopy paths is known as
piecewise linear approximation. In Computer Graphics, a vari-
ant of this method has been used for tracing curves in R"
by (at least) Dobkin, Levy, Thurston, and Wilks [8].

In IR?, this method is very mmgle (see Fig. 9). To trace
the homotopy curve H(t, x) = 0, IR"is triangulated by, say,
equilateral triangles with side €. Assume a first triangle
ABC traversed by H is known. H enters by the edge AB and
leaves by AC because H(A) > 0, H(B) < 0, H(C) < 0, or the
contrary. So the next triangle cut by H is ACB’, where B’ = A
- B + C is the point symmetrical to B relatively to the line
AC. In ABC, H is approximated by the unique linear map
L(t, x) from IR to IR such that L(A) = H(A), L(B) = H(B) and
L(C) = H(C), and the curve in ABC is approximated by the
edge {L(x, y) = 0} N ABC.

\

>%/\/\/
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Fig. 9. An example of piecewise linear approximation.

HC)<0 B

H{A)>0

~In R™", the space is triangulated by ‘hyper tetrahedrons,
i.e,, simplices. Assume we know a starting simplex T traversed
by the homotopy path; suppose also that values of the 7 func-
tions defining the homotopy H are available at the vertices of T.
They define a unique linear map L from R"*" to R"; in T, ap-
proximate H by L and the homotopy curve by the edge {L(t, xq,
x,) = 0} N T. Deduce the hyperfacet of T by which this edge
leaves T, and follow it in the neighboring simplex.

A.4.4 Attraction Basins -

An attraction basin for homotopy is a maximal connected
points set S € IR" leading to the same solution (t = 1, X;), or
to no solution, when the homotopic method is applied with
the starting point: (t = 0, S). Two neighboring basins
are separated by points leading to bifurcation points.
The latter are solutions of the algebraic system:
H(t, X) = det(Hy(t, X)) =0 in n + 1 equations and un-
knowns, and constitute by definition an algebraic set
(assuming G to be algebraic). The projection on the hyper-
plane having equation: ¢ = 0 then gives a semi-algebrai;: set.
The reader can easily verify that, with the example: z'-1 =
0, z = x + iy, frontiers between basins are (part of) lines: y =
0,y==« x% .

3. The jacobian H' is symbolically computed for each constraint system.
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