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& Université Nice Sophia Antipolis, CNRS, & Laboratoire J. A. Dieudonné, UMR 7351,
Parc Valrose, 06108 Nice cedex 02, France

Abstract

This presentation is an overview on the development of numerical methods for
the simulation of non homogeneous flows with incompressibility constraints.
We are particularly interested in systems of partial differential equations de-
scribing certain mixture flows, like the Kazhikhov–Smagulov system which
can be used to model powder–snow avalanches. It turns out that the In-
compressible Navier–Stokes system with variable density is a relevant step
towards the treatment of such models, and it allows us to bring out some
interesting numerical difficulties. We should handle equations of different
types, roughly speaking transport and diffusion equations. We present two
strategies based on time–splitting. The former relies on a hybrid approach,
coupling finite volume and finite element methods. The latter extends dis-
crete duality finite volume schemes for such non homogeneous flows. The
methods are confronted to exact solutions and to the simulation of Rayleigh–
Taylor instabilities.

Keywords: Non homogeneous viscous flows, Navier–Stokes equations,
Mixtures, Multifluid flows, Finite volume methods.

1. Introduction

The motivation of this work comes from the mathematical modelling of
mixtures or multifluid flows. In fact, there exists a large variety of partial
differential equations (PDEs) systems intended to describe such flows, and,
of course, we will focus on some specific models. The situations we are
interested in can be characterized by the following features:

Preprint submitted to Mathematics and Computers in Simulation April 3, 2016



• There are strong density variations in the flows, and the numerical
challenge is to capture and to follow with accuracy the strong gradients
and the fronts of density variations.

• The set of equations involves a constraint on the divergence of the
velocity field, hereafter denoted by u. The simplest of these constraints
is the solenoidal condition divx(u) = 0, but we shall see more intricate
situations.

Our objective consists in designing dedicated numerical methods for the sim-
ulations of these models. The difficulty comes from the fact that the system
couples equations of different type, and the constraint mentioned above. The
constraint relies on modelling assumptions. In order to set up performing
methods, it could be helpful to understand the origin of this relation. We
will give some hints in this direction. The discussion should be taken with
full awareness that many aspects in the derivation of the equations are not
that neat, and can be considered as questionable: mathematical models in
this field remain under debate. According to prescriptions in [60], our view-
point is therefore fully pragmatic: let us say that we are just picking a set
of equations, and we try to discuss some mathematical properties, and to
set up specific numerical schemes that allow us to investigate the sensitiv-
ity of the model with respect to variations of the (physical and numerical)
parameters. However, we should bear in mind that the robustness of the
conclusion should be considered with caution: changing a “detail” in the
modelling assumptions might dramatically affect the mathematical structure
of the model, which thus would require another approach.

Let us end this introduction with a few words about potential applications
of our approaches. Powder–snow avalanches is a relevant example of the kind
of fluid mixtures we are considering and variations about the Navier–Stokes
system have been used successfully to reproduce certain features of labora-
tory avalanches [26, 27, 28]. These complex models also naturally arise in
combustion theory; nuclear safety engineering provides further relevant ex-
amples of applications, see for instance the works [24, 6, 59] motivated by
security computations for PWR reactors. Finally, we mention that the rea-
sonings of mixture theory have been developed to derive models describing
biofilms formation [17].

The paper is organized as follows. We start by discussing a few relevant
mathematical models that couple transport, diffusion and constraint equa-
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tions. In Section 3 we present the hybrid finite volume (FV)–finite element
(FE) scheme developed in [14, 12, 15]. The method is designed to reach
the second order accuracy, at least for smooth solutions, owing to a suitable
adaptation of Monotonic Upstream-Centered Scheme for Conservation Laws
(MUSCL) techniques for the transport equation. Here, we pay attention to
the treatment of the boundary conditions. Proceeding naively might lead
to spurious instabilities when the geometry of the mesh and of the compu-
tational domain is non trivial. An alternative numerical method based on
the Discrete Duality Finite Volume (DDFV) framework is introduced in Sec-
tion 4. The DDFV framework is an attempt to cope with the difficulty in
defining diffusion fluxes on interfaces without imposing geometric restrictions
on the mesh construction, see [42, 43, 25]. The method has been extended to
deal with Stokes and homogeneous Navier–Stokes equations [22, 47, 49, 48].
Dealing with non homogeneous flows requires a specific attention to design a
relevant treatment of the convection terms of the system [33]. Section 5 offers
a set of numerical experiments where we compare the performances of the
two methods. In particular, we bring out difficulties related to the treatment
of the boundary terms and the sensitivity to the mesh construction.

2. Examples of non–homogeneous flows involving constraints on
divx(u)

2.1. Incompressible flows

Let us start by recalling a few facts about the simplest situation of in-
compressible flow which means that the velocity is required to satisfy

divx(u) = 0. (1)

Neglecting any difficulty associated to a possible lack of regularity of u :
R×RN → RN , let us consider the characteristic curves, defined by the ODE
system

d

dt
X(t, x) = u(t,X(t, x)), X(0, x) = x.

The quantity X(t, x) ∈ RN is nothing but the position at time t ≥ 0 of a
particle, driven by the velocity field u, which starts at time t = 0 from the
position x ∈ RN . Let us consider a fixed domain D0, and consider its image
at a latter time t > 0

D(t) = {X(t, x0), x0 ∈ D0}.
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D0 •
x

D(t)
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X(t, x)

u(t,X(t, x))

Figure 1: Evolution of the domain D0.

(See Figure 1.) This is a simple exercice (see [32, Chap. 4]) to check that
(1) implies

d

dt

(∫
D(t)

dx

)
= 0.

In other words, volumes are conserved by the flow.
Next, let ρ : R× RN → [0,∞) stand for the mass density of the fluid. It

obeys the mass conservation equation

∂tρ+ divx(ρu) = 0.

Expanding the space derivative, and taking into account (1), we find

∂tρ+ u · ∇xρ+ ρ divx(u) = ∂tρ+ u · ∇xρ = 0.

Accordingly, the chain rule leads to

d

dt

[
ρ(t,X(t, x))

]
= 0.

The density is conserved along the characteristic curves, and we deduce that

ρ(t,X(t, x)) = ρ0(x).
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As a particular case, an homogeneous fluid, satisfying ρ0(x) = ρ̄ > 0 for any
x, remains homogeneous for ever. Coupled to the momentum equation, say1

∂t(ρu) + Divx(ρu⊗ u) +∇xp = µ∆u + ρf ,

where ρf is the density of applied forces and µ > 0 is the dynamic viscosity
of the fluid, this is the case which is usually referred to as the Incompressible
Navier–Stokes system. The third unknown, the pressure p : R × RN →
R, can be seen as a Lagrange multiplier associated to the constraint (1).
However, there is no reason to restrict to homogeneous flows and we can
deal with variable initial density as well. Compared to the huge literature on
the homogeneous Navier–Stokes system, there are only a few results on the
analysis of the Incompressible Navier–Stokes system with variable density,
see e. g. [8, 20, 53] and a few attempts of numerical simulations of such
flows [14, 12, 37, 38, 44, 61]. Let us now discuss further models where more
intricate constraints appear.

2.2. Zero–Mach flows

The starting point of the discussion is the compressible Navier-Stokes
system

∂tρ+ divx(ρu) = 0,
∂t(ρu) + Divx(ρu⊗ u) +∇xP = Divx(τ) + ρf ,
∂t(ρE) + divx((ρE + P )u) = divx(k∇xT ) + divx(τu) + ρf · u,

with τ = µ(∇u +∇uᵀ− 2
3
divx(u)I). Additionally to the mass density ρ and

the velocity field u, the unknowns involve the total energy E ≥ 0, which

splits into kinetic energy and internal energy E = |u|2
2

+ e with a state law
relating e, P and ρ: P = RρT = (γ − 1)ρe, R being the constant of perfect
gases and γ > 1 an exponent that characterizes the fluid under consideration.
In order to write the equations in dimensionless form, we introduce density,
time, length and velocity units ρ?,T,L, U = L/T respectively. Let E be the
energy unit and we define the temperature unit as γ−1

R
E and the pressure

unit is P = ρ?E . We can now introduce the Mach number

Ma =
U√
E

=

√
ρ?U

2

P
.

1Here we adopt different notations for the divergence of a vector field divx(u) =∑N
j=1 ∂xj

uj and the divergence of a matrix-valued function [Divx(A)]i =
∑N
j=1 ∂xj

Aij .
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We assume that all the other dimensionless parameters — namely the Rey-
nolds, Froude and Prandtl numbers2 — that characterize the flow have the
same order of magnitude and we consider the regime where the Mach number
is small:

Ma� Re ' Fr ' Pr.

Keeping only Ma in the dimensionless form of the equation, we are led to

∂tρMa + divx(ρMauMa) = 0,

∂t(ρMauMa) + Divx(ρMauMa ⊗ uMa) +
1

Ma2∇xPMa = Divx(τMa) + ρMaf ,

∂t(ρMaEMa) + divx((ρMaEMa + PMa)uMa)
= divx(k∇xTMa) + Ma2(divx(τMauMa) + ρMaf · uMa).

Furthermore, the Mach number also enters into the definition of the total
energy

EMa =
Ma2

γ − 1

|uMa|2

2
+

TMa

γ − 1
, PMa = ρMaTMa. (2)

Let us assume that all unknowns admit limit ρ,u, T , etc... in a strong
enough sense so that we can deal with the non linear terms. As Ma →
0 the momentum equation degenerates to ∇xP = 0. Up to a convenient
assumption on the boundary condition, we infer that the pressure does not
depend on time and space, namely we have ρT (t, x) = P? (constant). The
mass conservation equation becomes ∂tρ + divx(ρu) = 0. Next, we multiply
the momentum equation by a divergence free trial function — namely a
vector valued function ϕ ∈ C∞c , with divx(ϕ) = 0 — in order to get rid of
the stiff term (since

∫
∇xPMa ·ϕ dx = −

∫
PMadivx(ϕ) dx). Letting Ma→ 0

yields ∫ (
∂t(ρu) + Divx(ρu⊗ u))− ρf −Divx(τ)

)
·ϕ dx = 0, (3)

for any such trial function. Accordingly, we obtain

∂t(ρu) + Divx(ρu⊗ u) +∇xπ = ρf + Divx(τ),

2We remind the reader that these numbers are defined by Re = ρ?UL
µ̄ , Fr = U√

‖f̄‖L
,

Pr = µ̄
ρ?k̄

respectively, with µ̄, k̄ and f̄ typical values for the dynamic viscosity, the thermal

diffusivity and the force density (in most cases the latter is the gravity acceleration).
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where the multiplier π appears as a consequence of the fact that (3) only
holds for a restricted set of trial functions. We turn to the energy equation,
bearing in mind (2). In particular ρMaEMa tends to 1

γ−1
ρT = P?

γ−1
. Therefore

the limiting energy equation reads

γP?
γ − 1

divx(u) = divx(k∇xT ) = P?divx(k∇x(1/ρ)).

Namely, we obtain a constraint where the divergence of the velocity is related
to derivatives of a function of the density. The analysis of such an asymptotic
regime is quite challenging; we refer the reader to [2, 1].

Note that it is a different question to search for a numerical scheme
for the limiting system only or to construct a method for the compress-
ible model which is able to handle correctly the regime Ma � 1 and which
avoids prohibitive stability conditions. On this aspect we refer the reader to
[62, 23, 39, 40, 41, 65]. We also mention the derivation of further models
corresponding to the Zero–Mach regime in [24, 6, 59].

2.3. Modelling of mixtures: the Kazhikhov–Smagulov system

We are interested in flows that can be seen as a mixture of a disperse phase
and a carrying phase, with respective mass densities ρd, ρf . Let ud,uf stand
for their respective velocities. We start by writing the mass conservation
equation for both phases:

∂tρd,f + divx(ρd,fud,f ) = 0. (4)

Adding these equations, we obtain

∂tρ+ divx(ρu) = 0, (5)

where
ρ = ρd + ρf , ρu(t, x) = (ρfuf + ρdud)(t, x),

define the mean mass density ρ and the mean mass velocity u respectively.
Next, we write the following momentum balance equation for ρu

∂t(ρu) + Divx(ρ u⊗ u) +∇xp = ρg + Divx(µD(u)),

with D(u) = ∇xu+∇xu
ᵀ. In the right side the force term ρg is proportional

to the gravitational field g. In order to close the equations, we need to explain
how the pressure field p is defined.
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We bear in mind that we adopt an averaged description of the flow, where
we consider that at each time t and each position x, the two phases can be
present. The local amount of the disperse phase is evaluated through the
volume fraction 0 ≤ φ(t, x) ≤ 1, which can be intuitively thought of through
the formula

φ(t, x) = lim
r→0

Volume occupied by the disperse phase in B(x, r)

|B(x, r)|
.

The system is closed by specifying the modelling assumption. Here and
below we assume the incompressibility of both phase, in the sense that, if a
single phase were occupying a given location, then its mass per unit volume
is constant (given by ρ̄d, ρ̄f ). Accordingly, we simply have

ρd(t, x) = ρ̄dφ(t, x), ρf (t, x) = ρ̄f (1− φ(t, x)).

Let us go back to (4) with this assumption. It yields

∂t

(ρf
ρ̄f

+
ρd
ρ̄d

)
= ∂t(1− φ+ φ) = 0 = −divx

( ρfuf
ρ̄f

+
ρdud
ρ̄d︸ ︷︷ ︸

:=v

)
.

It means that the mean volume velocity

v(t, x) =
(
1− φ(t, x)

)
uf (t, x) + φ(t, x)ud(t, x),

is divergence-free.

Remark 2.1. The distinction between the mean volume velocity and the
mean mass velocity can be crucial in fluid mechanics: in a series of papers
Howard Brenner [9, 10] proposed to revisit the derivation of Navier–Stokes
equations based on this distinction. It turns out that this approach is highly
controversial, see e. g. [54]. However, we point out that Brenner’s models
have been showed to exhibit nice mathematical structure and stability prop-
erties [29]. Moreover, similar corrections to the standard Navier–Stokes sys-
tems have been proposed recently motivated by numerical purposes [36].

Having observed this fact, the system of PDEs is closed by assuming a
Fick’s law that relates the mean mass velocity u, the mean volume velocity
v and gradient of the density ρ:

u = v − κ∇x ln(ρ), (6)
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with a certain coefficient κ > 0. This assumption together with the fact that
v is solenoidal yields

divx(u) = −divx(κ∇x ln(ρ)).

It is worth remarking that the closure relation can be expressed equivalently
on the carrier fluid velocity uf = u− κ1∇x ln(ρf/ρ) or as an evolution equa-
tion, of convection–diffusion type, for the disperse volume fraction

∂tφ+ divx(φu) = divx(κ2∇x ln(ρ̄f + (ρ̄d − ρ̄f )φ),

with positive coefficients κ1 or κ2. These observations lead to different op-
tions to choose the numerical unknowns. However, the equivalence between
different formulations, which is clear for the continuous equations, might fail
for the corresponding discrete systems, see [7].

For the introduction of such models for mixtures, and application to pol-
lution spreading, we refer the reader to Kazhikhov–Smagulov [46], see also
[30, 31, 35, 45]. The analysis of this system dates back to [3, 4, 63]. Impos-
ing a specific relation between the viscosity µ and the diffusion coefficient κ
further estimates (roughly speaking that control ∇xρ) can be derived which
are useful to justify the existence of solutions [11, 51, 52]. In [15, 34], we
reinterpret the derivation of the KS equations by means of hydrodynamic
regimes, starting from a coupled fluid–kinetic system. This viewpoint allows
us to derive a new model which can be interpreted as a generalized KS system
and which has remarkable dissipation properties.

2.3.1. A hierarchy of models

It looks tempting to get rid of u and to make use of the relation divx(v) =
0, which is a more usual constraint. We plug (6) into (5); it makes a diffusion
term appear since

divx
(
ρ κ∇x ln(ρ)

)
= κdivx

(
ρ
∇xρ

ρ

)
= κ∆xρ.
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Similarly, we rewrite the momentum equation with the mean volume velocity
v instead of u, see [15]. We obtain the following system for ρ,v and p

∂tρ+ divx(ρv) = κ∆xρ,

ρ
(
∂tv + (v · ∇x)v

)
+∇xp = ρg + Divx(µD(v))

+κ(∇xv −∇xv
ᵀ)∇xρ

+κ2
(
∇x∆xρ−Divx

(∇xρ⊗∇xρ

ρ

))
−κDivx

(
µD2

x ln(ρ)
)
.

Choosing the mean volume velocity v instead of the mean mass velocity
u has, at least, two consequences. Firstly, it changes the mass conserva-
tion equation, which becomes a convection–diffusion equation instead of a
mere transport equation. Secondly it makes several ugly terms appear in
the momentum equation, that involve high–order derivatives of the density.
Furthermore, in this form, we also realize that the “additional terms” induce
intricate boundary conditions: in fact the Fick law hides further modelling
issues related to the definition of the boundary conditions.

Let us point out that various simplifications are relevant:

• Assume a simple expression for µ, say constant or an affine function of
ρ,

• Get rid of higher order terms by an asymptotic argument; as it appears
in [46],

• Assume an ad hoc relation between µ and κ: with µ = µ0 + µ̃ρ and
κ = µ̃, the higher order terms cancel out and, furthermore a remarkable
energy identity can be established, as observed in [26, 11, 21, 52].

2.3.2. Example: simulations of powder–snow avalanches

Before entering into details of the numerical methods, let us discuss appli-
cations of Kazhikhov–Smagulov (KS) equations to the description of powder–
snow avalanches. To this end, we rewrite the system in the following dimen-
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sionless form:

∂t ρ+ divx(ρv) =
1

Re Sc
∆x ρ,

ρ
(
∂tv + (v · ∇x)v

)
+∇xp

=
1

Fr2ρg +
1

Re
Divx(µ(ρ)D(v)) +

1

Re Sc
(∇xv −∇xv

ᵀ)∇xρ,

divx(v) = 0,

where we make the following dimensionless parameters appear:

Reynolds number: Re =
U L

ν̄
,

Froude number: Fr = U(gL)−1/2,

Schmidt number: Sc =
ν̄

κ
.

Here, L and U stand for length and velocity units, respectively, g gives the
value of the gravitational acceleration, while ν̄ is a typical value of the kine-
matic viscosity of the flow. Engineers also introduce the densimetric Froude
number

Frd = U
(
gL

∆ρ

ρ̄d

)−1/2

,

which also depends on the extreme densities within the flow ρ̄d, with ∆ρ =
ρ̄f−ρ̄d. Note that we have adopted the simplifying assumptions that allow us
to get rid of terms with higher-order derivatives of the density. As a matter
of fact, we remark that Sc = +∞ gives the usual Incompressible Navier–
Stokes system. As said above, the system requires boundary conditions, on
the density and the velocity; in what follows, simulations are presented with

v
∣∣
∂Ω

= 0, ∇xρ · ~ν
∣∣
∂Ω

= 0,

where ~ν is the unit outward normal of the domain.

The mathematical modelling of powder–snow avalanches, like many other
mixture flows, is still widely open. Nevertheless, we have at hand experi-
mental data and numerical simulations (based on different systems of PDEs
though), which can be used to discuss the relevance of the results and the role
of the different parameters. We use experimental data obtained at Cemagref-
IRSTEA [56, 57, 55, 19]. For real avalanches, we have Re ' 108, and Frd ' 1
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which make this situation not affordable for simulation. But laboratory
avalanches have been produced with less extreme parameters: Re ' 103−104,
Frd ' 1. Data are available but the comparison should still be considered
with caution since many crucial parameters are not really well-known like
the Schmidt number Sc, the mass densities of the constituents, the viscos-
ity coefficient of the mixture, etc. Further discussions would be necessary
on the boundary conditions to decide whether or not it is necessary to con-
sider friction effects. Finally, the method and the quality of measurements
could be also questionable, with several sources of uncertainties. The ex-
perimental results have been compared to simulations, performed on a k/ε
model, with tuned parameters, by using the Fluent software packages, on
fixed Cartesian grids. Another set of simulations appeared in [27, 28], based
on a version of the KS system, with a Finite Element scheme coupled to char-
acteristic methods for the convection terms; the simulations also use mesh
refinements strategies in order to follow the advance of the front. Finally [26]
uses OpenFoam, on a fixed Cartesian mesh to produce numerical avalanches
by using the KS system.

In [15], we simulate the KS system on the initial configuration represented
in Figure 2. We use the hybrid FV-FE method described in Section 3, coupled
to a mesh refinement method: see Figure 3 for a typical example of mesh
adapted to the displacement of the avalanche. We deal with different sets of
parameters:

• From numerical experiments in [26]

– Frd = 1, Fr = 4.3589, Re = 2242, Sc = 1.0.

– Mesh refinements go up to 15.000 triangles, with smallest convex
radius hmin ≈ 7× 10−4m (the domain size is 2.7× 0.8m and the
initial avalanche size 0.3× 0.3m).

– We obtain very similar results (up to a slight change of units which
need to be corrected in [26]).

• From laboratory experiments in [56, 57, 55, 19]

– Frd = 0.83, Fr = 0.3725, Re = 1000, Sc = 1.

– Mesh refinements go up to 50.000 triangles, with smallest convex
radius hmin ≈ 1.5 × 10−4m and maximum length of the edges
hmax ≈ 10−2m (domain size 2 × 0.5m and initial height of the
avalanche L= 0.09m).
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– The order of magnitude of the horizontal velocity agrees with the
value recorded form the experiments (0.35ms−1).

The simulations permit us to bring out the following qualitative results:

• Variations of Sc do not change significantly the velocity of the front.
But the density profiles are modified: the KS model produces results
noticeably different from the mere incompressible system.

• Numerical difficulty increases as Re increases or Fr decreases.

• Numerical results are qualitatively consistent with the experiments.

• The Reynolds number affects the details of the flow, but does not sig-
nificantly influence the speed of the front.

• The Froude number greatly influences maximal speeds.

• The maximal velocity exceeds the front speed by 30% to 40%.

h

l0
ds

l

ls
hs

h0

θ

~g

ρ+, ν+

ρ−, ν−

ρ̃, ν̃

Figure 2: Domain and initial data configurations.

In the following sections, we are going to describe numerical strategies to
deal with such equations, restricting to the simpler case of incompressible,
but non–homogeneous, flows.

13



Figure 3: An adapted mesh that follows the avalanche front.

3. A hybrid finite volume–finite element scheme

3.1. Principles of the method

Let us start by discussing the numerical simulation of the incompressible
Navier–Stokes system in a two-dimensional domain Ω. We work with a (con-
formal) tessellation τh made of triangles T , and we define Ωh = ∪T∈τhT . Let
us note that in the case where Ω is a polygonal domain, then τh is defined
such that Ωh = Ω whatever the tessellation τh chosen. We associate to this
primal mesh a dual mesh: the vertices of the primal mesh are considered
as the centers of the cells of the dual mesh. As we shall see below, there
are several options to construct the dual mesh: in Figure 4 it is obtained by
joining the barycenters of the triangles to the middle of the edges.

Our scheme works by time–splitting the mass conservation and the mo-
mentum balance equation and by dealing with the equations on staggered
grids defined on Ωh :

• The mass conservation

∂tρ+ divx(ρu) = 0, (7)

is treated by a finite volume method, with cells defined by the dual
mesh;
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2

Γ−3

Γ+
3

Γ−4 Γ+
4

Γ−5

Γ+
5

n

Figure 4: Primal and dual meshes for the FV-FE method.

• The momentum equation, together with the divergence free constraint

∂t(ρu) + Divx(ρu⊗ u)− µ∆xu +∇xp = ρf , divx(u) = 0, (8)

is treated by a Finite Element method defined on the primal mesh (fol-
lowing the quite usual framework used for homogeneous flows). Hence
(u, p) are approached by continuous and piecewise polynomials func-
tions (say u is P2, and p is P1 over the triangles).

Both parts use well–established techniques, but the difficulty consists pre-
cisely in the transmission between the two steps and the management of
the unknowns defined on different grids and updated with different methods.
This viewpoint allows us to make use of performing methods, that can be
developed independently, for the two equations which have a different type.

Therefore, the velocity and the pressure are updated by solving the (lin-
ear) system

ρ?

δt
(uk+1 − uk) + ρ?uk · ∇xu

k+1 − µ∆xu
k+1 +∇xp

k+1 = ρ?fk+1,

divx(u
k+1) = 0,

(9)
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where we are faced the question of how to define the density ρ? to be used in
the FE scheme to compute u. To this end, we have at hand a density field
which is constant over the control volumes. Thus, given a triangle, we know 3
values of densities (ρk+1); hence we can naturally define a P1 reconstruction:
this is the ρ? that arises in (9).

The update of (u, p) can be seen as a saddle point problem which, once
discretized with respect to space, is expressed in the following matrix form(

A B
BT 0

)(
uk+1

pk+1

)
=

(
ρ?fk+1

0

)
.

We point out that non homogeneities of the flows make the structure of the
matrix A more complicated since ρ? varies from place to place. If we think
in terms of the underlying elliptic equation for the pressure (as usual when
using projection methods), this equation is now with variable coefficients,
which might lead to preconditioning issues, see [13].

The discussion of the mass conservation equation is more subtle. We
consider a control volume CA with center A (see Figure 4). The numerical
unknown ρkA is intended to approximate 1

|CA|

∫
CA
ρ(tk, x) dx. Integrating the

the mass conservation equation over CA yields

ρk+1
A − ρkA
δt

+
1

|CA|
∑
i

∫
Γi

ρku · n dσ(x) = 0,

where ∂CA = ∪nbi=1Γi, with Γi = Γ+
i ∪ Γ−i , nb the number of neighbour nodes

of A (respectively denoted Ai, 1 ≤ i ≤ nb), and n the unit outward normal
to ∂CA. Here, we address the question, given u piecewise polynomial on the
triangles, to define a suitable u?, piecewise constant on ∂CA, to obtain a
relevant approximation of u? · n on ∂CA.

To construct the numerical flux, the basic requirement is to preserve
homogeneous states: if ρ is constant over the whole computational domain,
it should remain constant forever. The naive construction which simply uses
the evaluation of the FE function u, P2 per triangle, on the interface ∂CA,
fails to meet this objective, and we propose another construction. We bear
in mind that the divergence free condition for the FE method actually reads∫

ωA

divx(u)ψA dx = 0 =
∑
i

∫
Ti

divx(u)ψA dx,
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for all P1 basis function ψA associated to the node A with supp(ψA) = ωA =
∪nbi=1Ti. It turns out that this formula does not involve the value of u at the
nodes Ai, but only at the nodes A′i and Aii+1 (1 ≤ i ≤ nb), corresponding to
the degrees of freedom associated to the middle of the edges. Thus, we seek
u?+i =u?−i+1 the velocity on Γ+

i ∪ Γ−i+1 , as a convex combination of ui,i+1 , u′i
and u′i+1 such that :∑

i

(
|Γ−i |u?−i · n|Γ−i + |Γ+

i |u?+i · n|Γ+
i

)
= 0,

this expression corresponding to the finite volume interpretation of the di-
vergence free condition. It yields some algebraic relations and we end up
with

u?+i = u?−i+1 =
1

3

(
u′i + ui,i+1 + u′i+1

)
.

As a matter of fact it is worth observing that

• u?+i 6= u(A′i i+1),

• The formula for u?+i coincides with a linear interpolation at A′i i+1 from
u at the nodes A′i, A

′
i+1 and Ai i+1.

With the value of u?+i at hand, a simple upwind finite volume scheme
would naturally lead to

∫
Γ+
i

ρku · n dσ(x) =


ρkA |Γ+

i |u?+i · n if u?+i · n > 0,

ρkAi |Γ
+
i |u?+i · n if u?+i · n < 0,

(10)

and ∫
Γ−i+1

ρku · n dσ(x) =


ρkA |Γ−i+1|u?−i+1 · n if u?−i+1 · n > 0,

ρkAi+1
|Γ−i+1|u?−i+1 · n if u?−i+1 · n < 0.

(11)

3.2. Extension: MUSCL scheme on unstructured meshes, maximum princi-
ple and multislope methods

Using upwind fluxes such as (10) and (11) restricts the method to first
order accuracy. To improve the accuracy, fluxes can be designed based on
MUSCL strategies. While the method is completely clear in 1D or on Carte-
sian grids, difficulties arise when dealing with general unstructured meshes.
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Following ideas introduced in [18, 16] for Cell–Center methods, we design
a multislope method for Vertex–Based methods, defining directional deriva-
tives and limiters on each interfaces. We refer the reader to Figure 5, and we
focus on the treatment to be done on Γ+

1 . A similar reasoning applies to all
the other components of ∂CA. Let us denote n+

1 the unit outward normal of
CA on Γ+

1 and let us suppose that u?+1 · n+
1 > 0. Let A+

1 be the mid–point of
[A′1A

′
12]. Our goal is to derive the value of ρk

A+
1

, to be used instead of ρkA in

the definition of the flux (10), in order to increase the accuracy of the Finite
Volume scheme. Let M+

1 and N+
1 be the two intersection points between

(AA+
1 ) and ∂ωA (see Figure 5). We define

pup,+
1 =

ρA − ρN+
1

‖AN+
1 ‖

,

and

pdown,+
1 =

ρM+
1
− ρA

‖AM+
1 ‖

.

Then the density is evaluated at node A+
1 by

ρA+
1

= ρA + p+
1 ‖AA+

1 ‖,

with

p+
1 = pup,+

1 Lim
(pdown,+

1

pup,+
1

)
,

where Lim is a so-called ”τ -limiter”. For the convection equation, the L∞

stability of the scheme can be established and improved accuracy is observed
on numerical validations, see [12]. Eventually, the method can be coupled to
mesh-refinement algorithms in order to follow strong density gradients. This
scheme has been adapted to handle the additional terms of the KS system
and to perform the computations of the numerical avalanches, see [15].

3.3. Boundary conditions

The treatment of boundary conditions is seldom addressed in details.
However, it gives rise to important practical issues, in particular when we
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Figure 5: Construction of the upstream and downstream gradients for the definition of
multislope limiters.

wish to maintain a high-order accuracy. We distinguish the cases of “Dirich-
let” or “Neumann” boundary conditions to be imposed on the density. The
former refers to the usual situation where the inflow density is imposed:

ρ(t, x) = ρb(t, x) for (t, x) ∈ (0, T )× ∂Ω such that u · ~ν < 0.

In this case, we just specify the prescribed value at the boundary ∂Ωh. As
classically known, the approximation of the exact value of ρb on ∂Ω given
by an interpolated value ρh on ∂Ωh introduces an additional error of or-
der O(h2). The latter refers to another common situation where either the
boundary condition is intended to describe the reflection of the fluid by the
boundary ∂Ω (wall boundary conditions) or it accounts for symmetry con-
ditions, which are used to reduce the computational domain. This situation
occurs for instance with the simulation of Rayleigh–Taylor instabilities, that
will be presented in Section 5. We are going to discuss how the numerical
fluxes should be adapted to this situation, in the MUSCL framework pre-
sented above.

We refer the reader to Figure 6: we focus on the cell with center A ∈
∂Ωh, where the segments [A2A] and [AA5] of the primal mesh belong to the
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boundary ∂Ωh. The flux through ∂Ωh ∩ ∂CA is evaluated as mentionned in
[14]. In particular, the normal velocity at the boundary has to be carefully
evaluated, see [14, Section 2.4.3]. According to its sign, the normal flux of
the density is evaluated from the numerical solution (outgoing flux) or by
using the boundary condition (incoming flux). Obviously, in the degenerate
case u? · nA = 0, no flux is added. However, it remains to evaluate the
flux density on the interior interfaces of ∂CA: for instance on Γ+

1 we need to
define the value of ρA+

1
. Going back to the construction in Section 3.2, the

difficulty comes from the definition of the upstream gradient pup,+1 since the
node N+

1 does not exist. A first solution is to let the scheme degenerate at
order one, by simply setting ρA+

1
= ρA. We will see in Section 5 that this loss

of accuracy can generate instabilities in the close vicinity of the boundary,
leading for some configurations to unphysical phenomena. This effect is
sensitive to the geometry of the domain and the shape of the mesh. As an
alternative, we propose a reflection technique, which uses a suitable definition
of “ghost cells”, see Figure 6 which can be easily generalized for other mesh
configurations. This method preserves the second order accuracy, as it will
be shown by the numerical experiments. Let nA be the unit outward vector
to ∂Ω at A, and let (NA) be its orthogonal line at A. We define Ã2, Ã1 and
Ã5 as the points orthogonally symmetric with respect to (NA) of A2, A1 and
A5 respectively. Consequently this construction defines the ghost triangles
T̃1 and T̃5. In order to enforce homogeneous Neumann boundary conditions
for ρ on ∂Ω, we set ρÃ2

= ρA2 , ρÃ1
= ρA1 and ρÃ5

= ρA5 . Going back to the
definition in Section 3.2, it allows us to define an upstream gradient, by using
now the value of the density defined by linear interpolation at the fictitious
node Ñ+

1 .

Remark 3.1. The geometry of the domain and the shape of the control vol-
ume are important in this discussion. In [14] some simulations are performed
by considering a mesh obtained by cutting through diagonals a preliminary
tessellation made of squares, see Figure 12 below. On this structured mesh,
control volumes of the dual mesh can be obtained by joining directly the mid-
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Figure 6: Definition of the boundary condition.

points of the vertices of the triangles, see [14, Fig. 2-(b)]. For this very
specific mesh, the two options actually coincide. Indeed, using the ghost
cells, we find that the upstream and downstream gradients, in the normal
direction, are exactly the opposite of each other, and the limiter makes the
scheme degenerate to first order.

4. A DDFV method for non homogeneous viscous flows

Still having in mind the possible adaptations to handle complex models
with non homogeneous constraints, let us describe another approach, where
the mass conservation and the momentum balance equations are both treated
by a finite volume method. It offers the advantage of a unified viewpoint in
the discretization method. To this end we adopt the Discrete Duality Finite
Volume (DDFV) framework, which, again, leads to consider unknowns on
staggered grids. When approximating diffusion equations by a finite volume
approach, we face the difficulty of defining the normal derivative at the in-
terfaces of the control volumes. Except in very specific geometric situations,
the information stored at the center of the volumes is not enough for that
purpose. After a pioneering attempt of Y. Coudière, J.-P. Vila, P. Villedieu,
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the basis of the DDFV method has been set up by F. Hermeline [42, 43] and
K. Domelevo, P. Omnes [25]. The idea is two–fold: we increase the number
of numerical unknowns so that a full discrete gradient can be defined, and we
define discrete operators so that the usual duality formula that are obtained
by integration by parts at the continuous level, are preserved. Since then,
it has been the object of many extensions, including for the Stokes system
[22, 47, 49, 48]. There exists also 3D versions of the method [50], which opens
perspectives to deal with our scheme for non homogeneous flows in higher
dimension as well.

4.1. Definition of the meshes and discrete operators

We refer the reader to [47, 48] for an exhaustive description of the nota-
tions of the DDFV method. Let us explain the construction of the meshes.
We start with a tessellation, the so-called primal mesh denoted by M. Its
construction can be quite general: we can mix triangles and quadrangles, pos-
sibly with non–conformal elements, etc: see Figure 7-(a). With unknowns
stored at xK and xL (the center of the control volume K and L) we can con-
struct a discrete gradient, in the direction xK, xL; but since xK, xL is not
assumed to be orthogonal to the interface of the control volume, this is
not enough to define the normal derivative at the interface. Therefore, we
additionally consider numerical unknowns stored at the vertices xK∗ , see Fig-
ure 7-(b). Now, the subdomain defined by the four vertices xK, xK∗ , xL, xL∗

defines another control volume, the so–called diamond cell D. The tessella-
tion obtained this way is referred to as the diamond mesh D; it is represented
on Figure 7-(c). Finally, since we are dealing with unknowns stored at the
vertices xK∗ of the primal mesh, we need to construct a control volume K∗

associated to these points. This is the dual mesh M∗ that can be obtained
either by joining the centers xK of the primal mesh, see Figure 7-(d), or by
joining the centers xK to the mid-point of the edges.

In what follows, we denote by T = (M,M∗) the sets of primal and dual
cells. Given a cell C (resp. an edge), mC stands for the volume of this cell
(resp. the length of the edge). The velocity unknowns will be stored on
the primal uM = (uK)K∈M and dual uM∗ = (uK∗)K∗∈M∗ meshes: we shall
denote uT = (uM,uM∗). The pressure and density unknowns will be stored
on the diamond mesh: ρD = (ρD)D∈D and pD = (pD)D∈D respectively. Next,
we introduce discrete differential operators. Given a diamond cell D whose
vertices are xK, xK∗ , xL, xL∗ , we can define discrete derivatives in the directions
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Figure 7: Construction of the primal, dual and diamond meshes

23



xK, xL and xK∗ , xL∗ :

∇DuT (xL − xK) = uL − uK,
∇DuT (xL∗ − xK∗) = uL∗ − uK∗ .

Since the vectors xK, xL and xK∗ , xL∗ are not colinear, we can reconstruct,
from uT defined on the dual and primal meshes, a full discrete Jacobian
matrix, defined on the diamond mesh:

∇DuT =
1

2mD

[
mσ(uL − uK)⊗~nσK +mσ∗(uL∗ − uK∗)⊗~nσ∗K∗

]
,

with mσ (resp. mσ∗) the length of (xK∗ , xL∗) (resp. (xK, xL)), ~nσK the unit
vector orthogonal to the oriented edge σ = [xK∗ , xL∗ ], etc. The viscous term
in the Navier–Stokes equation involves the symmetric part of this matrix,
and the divergence can be defined as the trace:

DDuT = 1
2

(∇DuT + (∇DuT )ᵀ) ,
divDuT = Tr

(
∇DuT

)
.

Next, in order to obtain a discrete analog of the Stokes formula we introduce
the discrete dual operator

divKξD :=
1

mK

∑
D∈DK

mσξD~nσK,

which picks a matrix–valued quantity defined on the diamond mesh, and
returns a vector defined on the primal and dual cells.

4.2. Treatment of the convection equation

Let us start by explaining how we handle the mass conservation equation.
We remind the reader that the discrete mass density is intended to be an
approximation of the average over the diamond cells

∫
D ρ(t, x) dx. Therefore,

we wish to mimic the flux∫
D

div(ρu) =
∑

s∈∂D

∫
s

ρu ·~nsD.

By using the simplest upwind fluxes, we introduce the operator

divcD : RD ×
(
R2
)T → RD,
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Figure 8: The definition of the gradient on the diamond mesh uses the unknowns stored
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which depends on a density field given on D and a velocity field given on T ,
defined by

mDdivcD(ρD,uT ) =
∑

s∈∂D
Fs,D

Fs,D = ms

(
(us,D)+ ρD − (us,D)− ρD′

)
where

us,D =
uK + uK∗

2
·~nsD for s = [xK, xK∗ ] ∈ ∂D,

with the standard notation x+ = max(x, 0), x− = −min(x, 0).
Going back to the definition of the previous section, we observe that

divDuT =
1

mD

∑
s∈∂D

msus,D.

We deduce that the following consistency relation holds

divDuT = divcD(1D,uT ). (12)

The scheme for the mass conservation equation then reads

ρn+1
D − ρnD
δt

+ divcD(ρnD,u
n
T ) = 0. (13)

Let us bring out two crucial properties of the scheme:
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• We can identify a stability condition in order to preserve the positivity
of the discrete density:

if ρnD ≥ 0 and δt ≤
(
‖uT ‖∞

1

mD

∑
s∈∂D

ms

)−1

then ρn+1
D ≥ 0.

• As a consequence of (12), we notice that divergence free velocity fields
preserve homogeneous states: if ρnD ≡ 1 and divDunT = 0 then ρn+1

D ≡ 1.

Having at hand the discrete density piecewise constant on the diamond
mesh D, we can naturally define the density on the primal and dual meshes
by projection:

ρn+1
K =

1

mK

∑
D∈DK

m(D ∩ K)ρn+1
D , ρn+1

K∗ =
1

mK∗

∑
D∈DK∗

m(D ∩ K∗)ρn+1
D ,

for all K ∈ M, K∗ ∈ M∗. These quantities will be useful to deal with the
momentum equation.

4.3. Treating the convection term in the momentum equation by taking into
account the constraint

The viscous term in the momentum equation is handled by standard
definition of the DDFV framework for diffusion operator, see Section 4.1;
similarly, for the pressure term, we refer the reader to [47, 48]. What is
original in this approach is the treatment of the convection term∫

K
div(ρu⊗ u) =

∑
σ∈∂K

∫
σ

(ρu · ~n)u.

It looks like “the transport of u by ρu”: this intuition guides the upwinding
strategy. At the discrete level, bearing in mind upwinding principles, we are
led to introduce bT : RD × (R2)

T × (R2)
T 7→ (R2)

T

bK(ρD,vT ,uT ) =
1

mK

∑
σ∈∂K

((
FK,σ(ρD,vT )

)+
uK −

(
FK,σ(ρD,vT )

)−
uL

)
with the momentum flux

FK,σ = −m(D ∩ L)
mD

∑
s∈∂D,s⊂K

Fs,D +
m(D ∩ K)

mD

∑
s∈∂D,s⊂L

Fs,D.
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Figure 9: Definition of the momentum fluxes from the mass fluxes known on the edges of
the diamond mesh

We adopt the same definition on the dual cells.
The definition of the momentum flux FK,σ is based on the following re-

quirement: from (13), we wish a similar conservation relation on the primal
cells K ∈M

mK
ρn+1
K − ρnK
δt

+
∑
σ∈∂K

(FK,σ)
n = 0.

(and on the dual cells K∗ ∈ M∗ as well). The construction relies on the
definition of the Nagtegaal Finite Element [58], see [33]. Eventually, the
scheme for the momentum equation reads

Find un+1
T ∈ E0 and pn+1

D ∈ RD such that

ρn+1
T un+1

T − ρnT unT
δt

+ bT (ρnD,u
n
T ,u

n+1
T )

+divT (−2ηDDDun+1
T + pn+1

D Id) = ρn+1
T fn+1

T ,

divDun+1
T = 0,

∑
D∈D

mDp
n+1
D = 0,

Here E0 ⊂ (R2)
T

is the space of discrete velocities that accounts for the
boundary conditions imposed on the velocity (typically the no–slip condi-
tion). As far as we are concerned with the numerical analysis of the scheme,
we can draw the following conclusions:

• For incompressible flows, the scheme is energy–stable in the sense that
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it satisfies the following analog of the energy inequality

1

2δt
‖
√
ρn+1
T un+1

T ‖
2
T −

1

2δt
‖
√
ρnT unT ‖2

T +
1

2δt
‖
√
ρnT (un+1

T − unT )‖2
T

+Cη|||∇Dun+1
T |||

2
2 ≤ Jρn+1

T fn+1
T ,un+1

T KT .

• The scheme is semi–implicit, and to update the velocity and pressure
requires to solve a linear system: the invertibility of the system can be
established and the solution (un+1

T , pn+1
D ) is indeed uniquely defined.

• The approach does not use the fact that u is solenoidal and it can be
adapted to any constraint that prescribes the divergence of the velocity
field.

Remark 4.1. Note that the treatment of the momentum equation differs
from the viewpoint adopted with the hybrid VF-FE scheme: in (9), we dealt
with the discretization of the non–conservative form of the equation, involving
ρ(∂tu + u · ∇u), while the DDFV scheme approaches the conservative term
∂t(ρu) + Divx(ρu⊗ u).

5. Numerical validation

Before starting the discussion on numerical grounds, it is worth comparing
the degrees of freedom of the two methods, for 2D simulations. We consider
tessellations made of triangles, with unknowns stored at the edges E, the
vertices V and the barycenters T according to the following table

Hybrid DDFV
Velocity V & E V & T
Pressure V E
Density V E

Asymptotically we have #E ' 3
2

#T and #V ' 1
2
#T . Since we deal with

two components for the velocity we get

DoFHybrid ' 5#T, DoFDDFV ' 6#T.
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5.1. Analytical test

We first evaluate the abilities of the schemes to recover an analytical
solution and we check the rate of convergence for the two methods. Let Ω
be the unit disk of R2. We consider the function defined in polar coordinates
(r, θ) by 

ρex(t, r, θ) = 2 + (2r − r2)e0.1(r2−2r) cos(θ − sin t),

uex(t, r, θ) =

(
−r sin θ cos t
r cos θ cos t

)
,

pex(t, r, θ) = sin(r cos θ) sin(r sin θ) sin(t).

It is an exact solution of the variable density incompressible Navier-Stokes
system (7)-(8) on Ω (with source term chosen accordingly). Compared with
the analytical solution used in [14] and [37], it should be noted that this
solution obeys now

∂ρex
∂r

(t, r, θ) = 0 on ∂Ω.

This manufactured solution permits us to evaluate the efficiency of the method
developed in Section 3.3 in order to take into account the homogeneous Neu-
mann boundary condition.

We consider the disk Ω approximated by a polygonal domain Ωh and
discretized with two isotropic unstructured meshes :

(A) either the mesh has some symmetry properties (Figure 10, left),

(B) or the unstructured mesh is more general (Figure 10, right).

For this solution, we have u · ~ν = 0 on ∂Ω where ~ν is the unit outward
normal to Ω, but u · ~ν 6= 0 on ∂Ωh, and the normal flux of the density
should be evaluated on the interfaces that intersect the boundary ∂Ωh. For
the results discussed below, with the hybrid FV-FE method the dual mesh
is constructed as in Figure 12 (barycentric mesh, joining barycenters of the
primal mesh to midpoints of the edges). For the DDFV scheme we use as
dual mesh either the barycentric mesh in Figure 12 or the classical mesh in
Figure 15 (joining directly the barycenters of the primal cells); the results
are not substantially different.

We plot the maximum error in time evaluated in L2(Ω) norm in space
versus the number of cells (a half of the number of triangles) on the density,
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velocity and pressure. The top of Figure 11 corresponds to simulations made
using the mesh (A) and the bottom of Figure 11 to those made using the mesh
(B). The errors are plotted for the DDFV scheme and for the two different
strategies on the boundary when we use the hybrid FV-FE method. The lines
corresponding to a rate of convergence of order one (slope 1) and order two
(slope 2) are also displayed. The computations are performed until the final
time T = 1. In the FV-FE scheme, we choose δtFE = hmax and we compute
δtFV ≤ δtFE in order to verify the CFL condition, see [12, Section 3.2]. In
the DDFV scheme, the time step is similarly driven by the stability condition
of the convection operator.

In particular, for the FV-FE scheme, we compare the treatment of the
boundary conditions using the ”ghost cells” or letting the MUSCL scheme
degenerate at order one. For the density, the convergence rates (obtained
by linear regression) are respectively of order 1.69 for cases (A) and 1.76 for
case (B) if we adopt the strategy presented in Section 3.3. With the naive
approach, the convergence rates decrease at order 1.42 for case (A) and 1.53
for case (B). Despite this loss of accuracy on the density, we observe that
the convergence rates for velocity and pressure remain optimal (order 2, and
the error curves for the degenerate and the ghost cells methods coincide).
The degradation of the rates of convergence for the density, which are always
smaller than 2, is also due to the topology of the unstructured meshes and
the phenomenon is well known in the finite volume literature. On the one
hand, the orders remains very satisfactory when we introduce the ”ghost
cells” and they are very similar to those obtained in [14] for an analytical
solution with Dirichlet boundary conditions. One the other hand, we note
that a loss of accuracy in the close vicinity of the boundary eventually leads
to a degraded performance of the scheme, even if the order remains higher
than one. The DDFV scheme is of order 1 for both the density and the
velocity, and a surprisingly higher accuracy for the pressure. In fact we note
that the rates are slightly better on coarse grids.

5.2. Rayleigh-Taylor instability

This Section is concerned with the numerical simulation of a Rayleigh-
Taylor instability. This problem has been considered in numerous papers (see
[64] for the inviscid case or [5, 37, 38, 14] for viscous fluids). We consider the
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Figure 10: Unstructured meshes for a disk Ω : symmetric one (left) and non-symmetric
one (right).

Incompressible Navier–Stokes system

∂tρ+ divx(ρu) = 0,
∂t(ρu) + Divx(ρu⊗ u) +∇xp− µ∆xu = ρg,
divx(u) = 0,

in the two–dimensional domain

Ω = (−d/2, d/2)× (−2d, 2d),

where µ > 0 is the dynamical viscosity, supposed to be constant. The fluid,
initially at rest, is subjected to gravity and g = G(0,−1) (G = 9.81 ms−2

is the gravitational acceleration and for the length of the domain we set
d = 1 m). The domain splits into two regions with noticeably different
densities, the heavier fluid being initially above the light fluid. The interface
is slightly smoothed since we set at time t = 0

ρ0(x, y) =
ρm + ρM

2
+
ρM − ρm

2
tanh

(y − η cos(2πx/d)

0.01d

)
,

with ρM > ρm > 0, and η > 0 the amplitude of the initial perturbation. Due
to the perturbation of the flat interface, the heavy fluid falls down, the light
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Figure 11: Rates of convergence for hybrid FV-FE and DDFV schemes on the symmetric
unstructured mesh (top) and the non-symmetric mesh (bottom).
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fluid moves up, with the formation of a typical mushroom shape. Let us
rewrite the equation in dimensionless form. To this end we choose d as the
length scale, while the time unit is defined by

T =

√
d

G
.

For the velocity unit we set U =
d

T
. The Reynolds number is then given by

Re =
ρmd

3/2G1/2

µ
.

Up to an obvious change of notations, we arrive at

∂tρ+ divx(ρu) = 0,

∂t(ρu) + Divx(ρu⊗ u) +∇xp−
1

Re
∆xu = −ρ

(
0
1

)
,

divx(u) = 0,

in the two–dimensional domain Ω = (−1/2, 1/2) × (−2, 2). The problem is
supplemented by no-slip boundary conditions on the horizontal boundaries.
Actually, the solution has symmetries and we compute the solution on the
half domain (0, 1/2)× (−2, 2) with the following boundary conditions for the
velocity field: denoting u = (u, v), we impose{

On the horizontal boundaries: u = 0, v = 0,
On the vertical boundaries: u = 0, ∂xv = 0.

The symmetry implicitly induces the Neumann boundary condition for the
density. The difficulty of the problem essentially depends on

• the Reynolds number,

• the density ratio between the light and the heavy fluid, which is mea-
sured by the so-called Atwood number

At =
ρM − ρm

ρM + ρm

.
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The larger Re and At, the more difficult the simulation. As it is reported
in [14], instabilities of numerical nature might appear, and the simulation is
highly sensitive to mesh orientation and treatment of the boundary terms.
We go back to this delicate issue in the results presented here, for both the
hybrid FV-FE method and the DDFV scheme, comparing the performances
of the two schemes on this benchmark. We define the parameters as follows:

Re = 1000, ρm = 1, ρM = 7 (so that At = 0.75).

For the initial data, the regularization parameter is η = 10−2. The primal
mesh is made of 50 × 400 squares which have been cut in two triangles, as
displayed in Figure 12. Convergence grid tests was performed in order to
ensure that the mesh as well as the FE time step are fine enough to reach
the grid convergence.

Primal mesh

Dual mesh

∂Ω

Figure 12: Barycentric mesh: the dual mesh is constructed by joining the barycenters of
the primal mesh to the midpoints of the edges.

The hybrid FV-FE method runs with the MUSCL scheme described in
Section 3, where we use a modified Van-Leer τ -limiter (see [12]) and star–
shaped control volumes of Figure 12. We compare the results obtained by
the scheme which degenerates at order 1 in the vicinity of the boundary
(see Figure 13) with the “ghost cell” approach described in Section 3.3 (see
Figure 14). We observe that the degenerate scheme produces spurious in-
stabilities which emerge at the right vertical boundary, and then spread in
the domain as time increases. With the “ghost cells” technique we take into
account the homogeneous Neumann boundary condition on ρ and the un-
physical instabilities are smoothed out. In this case, the simulation is far
more faithful to other results obtained in the literature [5, 37, 14, 38]. This
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effect relies on the shape of the control volumes: the simulation in [14, see
Figure 14, based on a 40 × 320 mesh] used square–shaped control volumes
and was free of these instabilities. This is due to the fact that, in this case,
the homogeneous Neumann boundary condition on ρ is implicitly taken into
account, owing to the symmetries of the mesh, see Remark 3.1.
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Figure 13: Rayleigh–Taylor instability. Simulation by the Hybrid FV-FE method, MUSCL
scheme that degenerates at the boundary. Density contours 2 ≤ ρ ≤ 4 at times T = 1,
1.5, 2, 2.5, 3, 3.25, 3.5, 3.75 and 4 (in Tryggvason’s scale).

We treat the same problem by using the DDFV scheme (which is only
first order accurate). The primal mesh is the same as above. We compare
results obtained by using

• either the dual mesh represented in Figure 12,

• or the dual mesh displayed in Figure 15, where the control volumes are
simply built by joining directly the barycenters of each triangle.

The latter dual mesh contains square or octagonal control volumes. At first
sight the mesh in Figure 15 has much more structure than the barycentric
mesh in Figure 12, and one would naively bet it produces more stable simu-
lations. The results can be found in Figures 16 and 17 respectively. Again,
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Figure 14: Rayleigh–Taylor instability. Simulation by the Hybrid FV-FE method, MUSCL
scheme with “ghost cells” for the boundary. Density contours 2 ≤ ρ ≤ 4 at times T = 1,
1.5, 2, 2.5, 3, 3.25, 3.5, 3.75 and 4 (in Tryggvason’s scale).
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we observe the sensitivity to the mesh construction: the dual mesh Figure 15
produces spurious instabilities that develop on the right vertical boundary,
where the light fluid moves to the top. The role of the mesh construction
can be understood by performing the same simulations on the entire domain
[0, 1]: the instabilities disappear (not reproduced here). This is due to the
fact that the mesh in Figure 15, when working on the half–domain [0, 1/2],
adopts a specific treatment of the boundary cells that breaks the natural
symmetries of the problem. Conversely, the barycentric mesh preserves the
symmetry of the domain. It is remarkable that an a priori harmless variation
in the mesh construction produces such a sensitive effect.

We also compare the results with a first order version of the hybrid FV-
FE scheme, where the MUSCL scheme for the transport equation is replaced
by a mere upwind scheme, see (10) and (11); results are given in Figure 18
(the mesh is still given as in Figure 12). The upwind scheme is more dif-
fusive and the interface spreads over a larger number of cells. The smallest
structures in the domain do not appear. In turn, the diffusion slows down
the fall of the mushroom, which is clearly delayed compared to the other
results. Using a more refined mesh (composed by 70 × 560 squares, for in-
stance) the interface is only slightly accelerated. The DDFV is less subjected
to numerical diffusion; it is also robust in reducing the apparition of spurious
instabilities in the foot of the mushroom. The Hybrid-MUSCL scheme has a
better resolution of the interfaces. The experiments on the Rayleigh–Taylor
instabilities are in full agreement with the analytical test-case. Finally, while
we use different methods to address the same problem, we remark that the
simulation is highly sensitive to mesh effects and treatment of the boundary
conditions. As reported elsewhere, we point out that results for the larger
times of simulation should always be considered with caution since it be-
comes difficult to distinguish between physical and numerical instabilities.
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Primal mesh

Dual mesh

∂Ω

Figure 15: Classical mesh: the dual mesh is constructed by joining directly the barycenters
of the primal mesh.

Figure 16: Rayleigh–Taylor instability. Simulation by the DDFV method. The dual mesh
is constructed as in Figure 12. Density contours 2 ≤ ρ ≤ 4 at times T = 1, 1.5, 2, 2.5, 3,
3.25, 3.5, 3.75 and 4 (in Tryggvason’s scale).
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3.25, 3.5, 3.75 and 4 (in Tryggvason’s scale).
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