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Abstract Numerous variable selection methods rely on a
two-stage procedure, where a sparsity-inducing penalty is
used in the first stage to predict the support, which is then
conveyed to the second stage for estimation or inference pur-
poses. In this framework, the first stage screens variables to
find a set of possibly relevant variables and the second stage
operates on this set of candidate variables, to improve es-
timation accuracy or to assess the uncertainty associated to
the selection of variables. We advocate that more informa-
tion can be conveyed from the first stage to the second one:
we use the magnitude of the coefficients estimated in the
first stage to define an adaptive penalty that is applied at the
second stage. We give the example of an inference proce-
dure that highly benefits from the proposed transfer of in-
formation. The procedure is precisely analyzed in a simple
setting, and our large-scale experiments empirically demon-
strate that actual benefits can be expected in much more gen-
eral situations, with sensitivity gains ranging from 50% to
100% compared to state-of-the-art.

Keywords Linear model · Lasso · Variable selection ·
p-values · False discovery rate · Screen and clean

1 Introduction

The selection of explanatory variables has attracted much
attention these last two decades, particularly for high-
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dimensional data, where the number of variables is greater
than the number of observations. This type of problem arises
in a variety of domains, including image analysis (Wang et al
2008), chemometry (Chong and Jun 2005) and genomics
(Xing et al 2001; Ambroise and McLachlan 2002; Anders
and Huber 2010).

1.1 Motivations

Since the development of the sparse estimators derived from
`1 penalties such as the Lasso (Tibshirani 1996) or the
Dantzig selector (Candès and Tao 2007), sparse models have
been shown to be able to recover the subset of relevant vari-
ables in various situations (see, e.g. Candès and Tao 2007;
Verzelen 2012; Bühlmann 2013; Tenenhaus et al 2014).

However, the conditions for support recovery are quite
stringent and difficult to assess in practice. Furthermore, the
strength of the penalty to be applied differs between the
problem of model selection, targeting the recovery of the
support of regression coefficients, and the problem of es-
timation, targeting the accuracy of these coefficients. As a
result, numerous variable selection methods rely on a two-
stage procedure, where the Lasso is used in the first stage to
predict the support, which is then conveyed to the second
stage for estimation or inference purposes. In this frame-
work, the first stage screens variables to find a set of possi-
bly relevant variables and the second stage operates on this
set of candidate variables, to improve estimation accuracy or
to assess the uncertainty associated to the selection of vari-
ables.

This strategy has been proposed to correct for the esti-
mation bias of the Lasso coefficients, with several variants
in the second stage. The latter may then be performed by
ordinary least squares (OLS) regression for the LARS/OLS
Hybrid of Efron et al (2004) (see also Belloni and Cher-
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nozhukov 2013), by the Lasso for the Relaxed Lasso of
Meinshausen (2007), by modified least squares or ridge re-
gression for Liu and Yu (2013), or with “any reasonable
regression method” for the marginal bridge of Huang et al
(2008).

The same strategy has been proposed to perform vari-
able selection with statistical guarantees by Wasserman and
Roeder (2009), whose approach was pursued by Mein-
shausen et al (2009). The first stage performs variable se-
lection by Lasso or other regression methods on a subset of
data. It is followed by a second stage relying on the OLS, on
the remaining subset of data, to test the relevance of these
selected variables. 1

To summarize, the first stage of these approaches screens
variables and transfers the estimated support of variables to
the second stage for a more focused in-depth analysis. In
this paper, we advocate that more information can be con-
veyed from the first stage to the second one, by using the
magnitude of the coefficients estimated in the first stage. Im-
proving this information transfer is essential in the so-called
large p small n designs which are typical in genomic appli-
cations. The magnitude of regression coefficients, which is
routinely interpreted as a quantitative gauge of relevance in
statistical analysis, can be used to define an adaptive penalty,
following alternative views of sparsity-inducing penalties.
These views may originate from variational methods regard-
ing optimization, or from hierarchical Bayesian models, as
detailed in Section 1.2. In Section 2, we give an example of
procedure that highly benefits from the proposed transfer of
magnitude. This benefit is thoroughly analyzed in Section 3
for the orthonormal setting. The actual benefits are empiri-
cally demonstrated in diverse situations in Section 4.

1.2 Beyond Support: Magnitude

We consider the following high-dimensional sparse linear
regression model:

y = Xβ
?+ ε ,

where y = (y1, · · · ,yn)
t is the vector of responses, X is

the n × p design matrix with p � n, β
? is the sparse

p-dimensional vector of unknown parameters, and ε is a
n-dimensional vector of independent random variables of
mean zero and variance σ 2.

We discuss here two-stage approaches relying on a first
screening of variables based on the Lasso, which is nowa-
days widely used to tackle simultaneously variable estima-

1 In their two-stage procedure, Liu and Yu (2013) also proposed
to construct confidence regions and to conduct hypothesis testing by
bootstrapping residuals. Their approach fundamentally differs from
Wasserman and Roeder (2009), in that inference does not rely on the
two-stage procedure itself, but on the properties of the estimator ob-
tained in the second stage.

tion and selection. 2 The original Lasso estimator is defined
as:

β̂ (λ ) = argmin
β∈Rp

J(β )+λ ‖β‖1 , (1)

where λ is a hyper-parameter, and J(β ) is the data-fitting
term. Throughout this paper, we will discuss regression
problems for which J(β ) is defined as

J(β ) =
1
2
‖Xβ −y‖2

2 ,

but, except for the numerical acceleration tricks mentioned
in Appendix B, the overall feature selection process may be
applied to any other form of J(β ), thus allowing to address
classification problems.

Our approach relies on an alternative view of the Lasso,
seen as an adaptive-`2 penalization scheme, following a
viewpoint that has been mostly taken for optimization pur-
poses (Grandvalet 1998; Grandvalet and Canu 1999; Bach
et al 2012). This view is based on a variational form of the
Lasso:

min
β∈Rp,τ∈Rp

J(β )+λ

p

∑
j=1

1
τ j

β
2
j

s. t.
p

∑
j=1

τ j−
p

∑
j=1
|β j| ≤ 0

τ j ≥ 0 , j = 1, . . . , p .

(2)

The variable τ introduced in this formulation, which adapts
the `2 penalty to the data, can be shown to lead to the fol-
lowing adaptive-ridge penalty:

p

∑
j=1

λ

|β̂ j(λ )|
β

2
j , (3)

where the coefficients β̂ j(λ ) are the solution to the Lasso
problem (1).

Using this adaptive-`2 penalty returns the original Lasso
estimator (see proof in Appendix A). This equivalence is in-
strumental here for defining the data-dependent penalty (3),
implicitly determined in the first stage through the Lasso es-
timate, that will also be applied in the second stage. In this
process, our primary aim is to retain the magnitude of the
coefficients of β̂ (λ ) in addition to the support Sλ = { j ∈
{1, ..., p}|β̂ j(λ ) 6= 0}: the coefficients estimated to be small
in the first stage will thus also be encouraged to be small in
the second stage, whereas the largest ones will be less pe-
nalized.

The variational form of the Lasso can be interpreted as
stemming from a hierarchical model in the Bayesian frame-
work (Grandvalet and Canu 1999). In this interpretation, to-
gether with λ and the noise variance, the τ j parameters of

2 Though many sparsity-inducing penalties, such as the Elastic-Net,
the group-Lasso or the fused-Lasso lend themselves to the approach
proposed here, the paper is restricted to the simple Lasso penalty.
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Problem (2) define the diagonal covariance matrix of a cen-
tered Gaussian prior on β (assuming a Gaussian noise model
on y). Hence, “freezing” the τ j parameters at the first stage
of a two-stage approach can be interpreted as picking the pa-
rameters of the Gaussian prior on β to be used at the second
stage.

2 A Two-Stage Inference Procedure: Screen and Clean

When interpretability is a key issue, it is essential to take
into account the uncertainty associated to the selection of
variables inferred from limited data. Indeed, this assessment
is critical before investigating possible effects, since there is
no way to ascertain that the support is identifiable. Indeed, in
practice, the irrepresentable condition and related conditions
cannot be checked (Bühlmann 2013).

A classical way to assess the predictor uncertainty con-
sists in testing the significance of each predictor by statis-
tical hypothesis testing and the derived p-values. Although
p-values have a number of disadvantages and are prone to
possible misinterpretations, it is the numerical indicator that
most end-users rely upon when selecting predictors in high-
dimensional context. In multiple testing, the most common
measures of type-I error are the Family Wise Error Rate
(FWER) and the False Discovery Rate (FDR). The FWER
is the probability of having at least one false discovery and
the FDR is the expected proportion of false discovery among
all discoveries. Both criteria, which require reliable p-values
as input, are classical alternative, but in applications where
numerous tests are performed and where a fairly large pro-
portion of null hypotheses are expected to be false, one is
usually prepared to tolerate some type-I errors. Testing with
FWER is thus usually considered unduly conservative in
biomedical and genomic research, and FDR, which tolerates
a proportion of false positives, is appealing in this context
(Dudoit and Van der Laan 2008).

Well-established and routinely used selection methods
in genomics are univariate (Balding 2006). Although more
powerful, multivariate approaches suffer from instability
and lack of usual measure of uncertainty. The attempts to
assess uncertainty of the Lasso coefficients follow different
paths. A first greedy method consists in running permuta-
tion tests, mimicking the null hypothesis that the data set is
non-informative. This approach may prove computationally
heavy and is not trivial to justify from a theoretical point
of view (Chatterjee and Lahiri 2013). Bayesian approaches
(Kyung et al 2010) provide an alternative by means of cred-
ible intervals for each coefficient. Zhang and Zhang (2014)
define a low-dimensional projection estimator, following
the efficient score function approach from semi-parametric
statistics. Lockhart et al (2014) propose a test statistic based
on Lasso fitted values. This so-called covariance statistic

relies on the estimation of the noise variance, whose esti-
mation is problematic for high-dimensional data. Here, we
build on Wasserman and Roeder (2009), whose procedure,
detailed below, was later extended by Meinshausen et al
(2009) using resampling and an aggregation of p-values for
the FWER control. We propose to introduce adaptive ridge
in the cleaning stage to transfer more information from the
screening stage to the cleaning stage, and thus to make a
more extensive use of the subsample of the original data
reserved for screening purposes. From a practical point of
view, these developments are essential for convincing practi-
tioners of the benefits of multivariate sparse regression mod-
els (Boulesteix and Schmid 2014).

2.1 Original Screen and Clean Procedure

The procedure considers a series of sparse models
{Fλ}λ∈Λ

, indexed by a parameter λ ∈ Λ , which may rep-
resent a penalty parameter for regularization methods or a
size constraint for subset selection methods. The screening
stage consists of two steps. In the first step, each model Fλ

is fitted to (part of) the data, thereby selecting a set of pos-
sibly relevant variables, that is, the support of the model
Sλ . Then, in the second step, a model selection procedure
chooses a single model F

λ̂
with its associated S

λ̂
. Next, the

cleaning stage eliminates possibly irrelevant variables from
S

λ̂
, resulting in the set Ŝ that provably controls the type

one error rate. The original procedure relies on three inde-
pendent subsamples of the original data D = D1∪D2∪D3,
so as to ensure the consistency of the overall process. The
following chart summarizes this procedure, showing the ac-
tual use of data that is made at each step:

screening stage︷ ︸︸ ︷
step I step II

{1, . . . , p} fit model−−−−→
(D1)

{Sλ}λ∈Λ

select model−−−−−−→
(D1,D2)

S
λ̂

cleaning stage︷ ︸︸ ︷
step III

test support−−−−−−→
(D3)

Ŝ .

Under suitable conditions, the screen and clean procedure
performs consistent variable selection, that is, it asymptot-
ically recovers the true support with probability one. The
two main assumptions are that the screening stage should
asymptotically avoid false negatives, and that the size of the
true support should be constant, while the number of can-
didate variables is allowed to grow logarithmically in the
number of examples. These assumptions are respectively de-
scribed in more rigorous terms as the “screening property”
and “sparsity property” by Meinshausen et al (2009).

Empirically, Wasserman and Roeder (2009) tested the
procedure with the Lasso, univariate testing, and forward
stepwise regression at step I of the screening stage. At
step II, model selection was based on ordinary least squares
(OLS) regression. The OLS parameters were adjusted on the
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“training” subsample D1, using the variables in {Sλ}λ∈Λ ,
and model selection consisted in minimizing the empirical
error on the “validation” subsample D2 with respect to λ .
Cleaning was then finally performed by testing the nullity of
the OLS coefficients using the independent “test” subsample
D3. Wasserman and Roeder (2009) conclude that the vari-
ants using multivariate regression (Lasso and forward step-
wise) have similar performances, way above univariate test-
ing.

We now introduce the improvements that we propose
here at each stage of the process. Our methodological con-
tribution lies at the cleaning stage, but we also introduced
minor modifications at the screening stage that have consid-
erable practical outcomes.

2.2 Adaptive-Ridge Cleaning Stage

The original cleaning stage of Wasserman and Roeder
(2009) is based on the ordinary least square (OLS) estimate.
This choice is amenable to efficient exact testing procedure
for selecting the relevant variables, where the false discov-
ery rate can be provably controlled. However, this advantage
comes at a high price:

– first, the procedure can only be used if the OLS is appli-
cable, which requires that the number of variables

∣∣S
λ̂

∣∣
that passed the screening stage is smaller than the num-
ber of examples |D3| reserved for the cleaning stage;

– second, the only information retained from the screening
stage is the support S

λ̂
itself. There are no other statis-

tics about the estimated regression coefficients that are
transferred to this stage.

We propose to make a more effective use of the data re-
served for the screening stage by following the approach de-
scribed in Section 1.2: the magnitude of the regression coef-
ficients β̂ (λ̂ ) obtained at the screening stage is transferred to
the cleaning stage via the adaptive-ridge penalty term. Adap-
tive refers here to the adaptation of the penalty term to the
data at hand. The penalty metric is adjusted to the “training”
subsample D1, its strength is set thanks to the “validation”
subsample D2, and cleaning is eventually performed by test-
ing the nullity of the adaptive-ridge coefficients using the
independent “test” subsample D3.

The statistics computed from our penalized cleaning
stage improve the power of the procedure: we observe a
dramatic increase in sensitivity (that is, in true positives)
at any false discovery rate (see Figure 3 of the numeri-
cal experiment section). With this improved accuracy also
comes more precision: the penalization at the cleaning stage
brings the additional benefit of stabilizing the selection pro-
cedure, with less variability in sensitivity and false discov-
ery rate. Furthermore, our procedure allows for a clean-

ing stage remaining in the high-dimensional setup (that is,∣∣S
λ̂

∣∣� |D3|).
However, using penalized estimators raises a difficulty

for the calibration of the statistical tests derived from these
statistics. We resolved this issue through the use of permu-
tation tests.

2.3 Testing the Significance of the Adaptive-Ridge
Coefficients

Student’s t-test and Fisher’s F-test are two standard ways of
testing the nullity of the OLS coefficients. However, these
tests do not apply to ridge regression, for which no exact
procedure exists.

Halawa and El Bassiouni (1999) proposed a non-exact t-
test, but it can be severely off when the explanatory variables
are strongly correlated. For example, Cule et al (2011) report
a false positive rate as high as 32% for a significance level
supposedly fixed at 5%. Typically, the inaccuracy aggravates
with high penalty parameters, due to the bias of the ridge
regression estimate, and due to the dependency between the
response variable and the ridge regression residuals.

The F-test compares the goodness-of-fit of two nested
models. Let ŷ1 and ŷ0 be the n-dimensional vectors of pre-
dictions for the larger and smaller model respectively. The
F-statistic

F =
‖y− ŷ0‖2−‖y− ŷ1‖2

‖y− ŷ1‖2 , (4)

follows a Fisher distribution when ŷ1 and ŷ0 are estimated
by ordinary least squares under the null hypothesis that the
smaller model is correct. Although it is widely used for
model selection in penalized regression problems (for cal-
ibration and degrees of freedom issues, see Hastie and Tib-
shirani 1990), the F-test is not exact for ridge regression, for
the reasons already mentioned above – estimation bias and
dependency between the numerator and the denominator in
Equation (4). Here, we propose to approach the distribution
of the F-statistic under the null hypothesis by randomiza-
tion. We permute the values taken by the explicative vari-
able to be tested, on the larger model, so as to estimate the
distribution of the F-statistic under the null hypothesis that
the variable is irrelevant. This permutation test is asymptoti-
cally exact when the tested variable is independent from the
other explicative variables, and is approximate in the gen-
eral case. 3 It can be efficiently implemented using block-
wise decompositions, thereby saving a factor p, as detailed
in Appendix B.

Table 1 shows that, compared to the standard t-test and
F-test (see e.g. Hastie and Tibshirani 1990), the permutation

3 Note that there is no finite-sample exact permutation test in mul-
tiple linear regression (Anderson and Robinson 2001). A test based on
partial residuals (under the null hypothesis regression model) is asymp-
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Table 1 Average false positive rate FPR (or type-I error) and sensi-
tivity SEN (or power) computed on 500 simulations over the set of
variables passing the screening stage. The prescribed significance level
is 5%. The IND, BLOCK, GROUP and TOEP− designs are fully de-
scribed in Section 4.1.

Design IND BLOCK GROUP TOEP−

FPR SEN FPR SEN FPR SEN FPR SEN

permutation F-test 5.1 92.4 3.9 86.7 3.9 62.3 4.7 81.9
standard F-test 9.9 93.1 11.8 89.6 14.8 73.0 15.4 87.1
standard t-test 8.0 94.0 12.4 93.1 5.8 95.7 7.9 85.1

test provides a satisfactory control of the significance level.
It is either well-calibrated or slightly more conservative than
the prescribed significance level, whereas the standard t-test
and F-test result in false positive rates that are way above
the asserted significance level, especially for strong corre-
lations between explanatory variables. These observations
apply throughout the experiments reported in Section 4.1.

Testing all variables results in a multiple testing prob-
lem. We propose here to control the false discovery rate
(FDR), which is defined as the expected proportion of false
discoveries among all discoveries. This control requires to
correct the p-values for multiple testing (Benjamini and
Hochberg 1995). The overall procedure is well calibrated
as shown in Section 4.

2.4 Modifications at Screening Stage

Wasserman and Roeder (2009) propose to use two subsam-
ples at the cleaning stage in order to establish the consis-
tency of the screen and clean procedure. Indeed, this consis-
tency relies partly on the fact that all relevant variables pass
the screening stage with very high probability. This “screen-
ing property” (Meinshausen et al 2009) was established us-
ing the protocol described in Section 2.1. To our knowledge,
it remains to be proved for model selection based on cross-
validation. However, Wasserman and Roeder (2009) men-
tion another procedure relying on two independent subsam-
ples of the original data D = D1 ∪D2, where model selec-
tion relies on leave-one-out cross-validation on D1 and D2 is
reserved for cleaning. The following chart summarizes this
modified procedure:

screening stage︷ ︸︸ ︷
step I step II

{1, . . . , p} fit model−−−−→
(D1)

{Sλ}λ∈Λ

select model−−−−−−→
(D1)

S
λ̂

cleaning stage︷ ︸︸ ︷
step III

test support−−−−−−→
(D2)

Ŝ .

Hence, half of the data are now devoted to each stage of the
method. We followed here this variant, which results in im-

totically exact for unpenalized regression, but it does not apply to pe-
nalized regression.

IND BLOCK

SE
N

SE
N

Validation set Cross-validation Validation set Cross-validation

Fig. 1 Sensitivity of the screen and clean procedure (the higher, the
better), for the two model selection strategies at the screening stage,
and FDR controlled at 5% based on the permutation test. Lasso regres-
sion is used in the screening stage and adaptive-ridge regression in the
cleaning stage. Each boxplot is computed based over 500 replications
for the IND and BLOCK simulation designs, with n = 250, p = 500,
|S ∗|= 25 and ρ = 0.5 (see Section 4.1 for full description).

portant sensitivity gains for the overall selection procedure,
as illustrated in Figure 1.

We slightly depart from (Wasserman and Roeder 2009),
by selecting the model by 10-fold cross-validation, and,
more importantly, by using the sum of squares residuals
of the penalized estimator for model selection. Note that
Wasserman and Roeder (2009), and later Meinshausen et al
(2009) based model selection on the OLS estimate using
the support Sλ . This choice implicitly limits the size of the
selected support |S

λ̂
| < n

2 , which is actually implemented
more stringently as |S

λ̂
| ≤
√

n and |S
λ̂
| ≤ n

6 by Wasser-
man and Roeder (2009) and Meinshausen et al (2009) re-
spectively. Our model selection criterion allows for more
variables to be transferred to the cleaning stage, so that the
screening property is more likely to hold.

3 Analysis of the Orthonormal Design

Here, we propose a detailed analysis of the benefits of the
procedure in the orthonormal design, where we assume that
we have two samples D1 and D2 of size n with design matri-
ces n−1XTX = I. In this situation, the screening stage based
on the Lasso provides

β̂
screen
j (λ ) =

(
1− λ

n|β̂ ols
j |

)
+

β̂
ols
j ,

where β̂ ols is the ordinary least squares estimator (Tibshi-
rani 1996). Assuming additionally a Gaussian noise in the
model, ε ∼N (0,σ 2In), the probability that variable j does
not pass the screening stage is:

P(β ?
j ,λ ) = P

[
β̂

screen
j (λ ) = 0

]
= Φ

(
n1/2

σ

(
λ

n
−β

?
j

))
−Φ

(
−n1/2

σ

(
λ

n
+β

?
j

))
,

where Φ is the cumulative distribution of the standard nor-
mal distribution. Then, as the cleaning stage operates on an
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independent sample, the distributions for the cleaning stage
estimators are:

f (β̂ clean
j ) = P(β ?

j ,λ )δ (β̂ clean
j )+(1−P(β ?

j ,λ ))g(β̂ clean
j ) ,

with

g(β̂ clean
j ) =

n1/2

σ
ϕ

(
n1/2

σ
(β̂ clean

j −β
?
j )

)
for the OLS estimator, and

g(β̂ clean
j ) =

n1/2

σ

∫ 1

0
x−1

ϕ

(
x−1 n1/2

σ
(β̂ clean

j −β
?
j )

)
h j(x)dx

for the Adaptive-Ridge estimator (AR), where δ is the Dirac
delta function, ϕ is the standard normal distribution, and
h j is the distribution of the shrinkage coefficient that is
applied to variable j by AR, that is, the distribution of
|β̂ screen

j |/(|β̂ screen
j |+ n−1λ ). There is no simple analytical

form of the overall distribution for the adaptive-ridge esti-
mator, but these formulas are however interesting, in that
they exhibit the three parameters of importance for the dis-
tribution of the cleaning estimators, namely β ?

j , n1/2σ−1,
and n−1λ . Furthermore, in all expressions, n1/2σ−1 acts as a
scale parameter. We can therefore provide a scale-free anal-
ysis by studying the role of the normalized penalty param-
eter n−1/2σ−1λ on the normalized estimator n1/2σ−1β̂ clean

j ,
when the normalized true parameter n1/2σ−1β ?

j varies.
We now make use of these observations to compare the

power of the statistical testing of the nullity of β ?
j from the

OLS and from the AR cleaning estimator. First, the expected
type-I-error is fixed to 1% using the distributions of β̂ clean

j
for the OLS and the AR estimator for β ?

j = 0, and we then
compute the expected type-II-error according to n1/2σ−1β ?

j .
A significance level of 1% roughly corresponds to the effec-
tive significance level for unitary tests in our experiments of
Section 4.2 aiming at controlling the FDR at 5% using the
Benjamini-Hochberg procedure.

Figure 2 represents graphs spanning the possible val-
ues of n−1/2σ−1λ . For readability, we indexed subfigures
by P(0,λ ), the probability that a null variable is filtered at
screening stage. We observe that, for any λ value, the test
based on the AR estimator has uniformly higher power than
the one based on the OLS estimator. Furthermore, for most
λ values, AR cleaning performs better than the best λ set-
ting for OLS cleaning. This means that AR cleaning often
brings more than having an oracle for selecting λ at the
screening stage.

4 Numerical Experiments

Variable selection algorithms are difficult to assess objec-
tively on real data, where the truly relevant variables are un-
known. Simulated data provide a direct access to the ground

Fig. 2 Power (or sensitivity) as a function of n1/2σ−1β ?
j , for a uni-

variate test at the 1% level based on OLS cleaning (dashed) or AR
cleaning (plain). The light gray area in the bottom displays the differ-
ence between the two curves, and the boundary of the very light blue
area, included for cross-reference, represents the best result achieved
using the OLS cleaning estimator, for P(0,λ ) = 90%.

truth, in a situation where the statistical hypotheses hold. In
this section, we first analyze the performances of our vari-
able selection method on simulations, before presenting an
application to a Genome Wide Association case Study on
HIV-1 infection.

4.1 Simulation Models

We consider the linear regression model Y =Xβ
?+ε , where

Y is a continuous response variable, X = (X1, . . . ,Xp) is a
vector of p predictor variables, β

? is the vector of unknown
parameters and ε is a zero-mean Gaussian error variable
with variance σ 2. The parameter β

? is sparse, that is, the
support set S ? =

{
j ∈ {1, ..., p}|β ?

j 6= 0
}

indexing its non-
zero coefficients is small |S ?| � p.

Variable selection is known to be affected by numerous
factors: the number of examples n, the number of variables
p, the sparseness of the model |S ?|, the correlation struc-
ture of the explicative variables, the relative magnitude of
the relevant parameters {β ?

j } j∈S ? , and the signal-to-noise
ratio SNR.

In our experiments, we varied n ∈ {250,500}, p ∈
{250,500}, |S ?| ∈ {25,50}, ρ ∈ {0.5,0.8}. We considered
four predictor correlation structures:

IND independent explicative variables following a
zero-mean, unit-variance Gaussian distribution:
X ∼N (0,Ip);

BLOCK dependent explicative variables following a
zero-mean Gaussian distribution, with a block-
diagonal covariance matrix: X ∼N (0,Σ), where
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Σii = 1, Σi j = ρ for all pairs (i, j), j 6= i belonging
to the same block and Σi j = 0 for all pairs (i, j)
belonging to different blocks. Each block com-
prises 25 variables.
The position of relevant variables is dissociated
from the block structure, that is, randomly dis-
tributed in {1, ..., p}. This design is thus difficult
for variable selection.

GROUP same as BLOCK, except that the relevant vari-
ables are gathered a single block when |S ?|= 25
and in two blocks when |S ?|= 50, thus facilitat-
ing group variable selection.

TOEP− same as GROUP, except that Σi j =−ρ |i− j| for all
pairs (i, j), j 6= i belonging to the same block and
Σi j = 0 for all pairs (i, j) belonging to different
blocks.
This design allows for strong negative correla-
tions.

The non-zero parameters β ?
j are drawn from a uniform

distribution U (10−1,1) to enable different magnitudes.
Finally, the signal to noise ratio, defined as SNR =

β
?>

Σβ
?/σ 2 varies in {4,8,32}.

4.2 Results

In the following, we discuss the IND, BLOCK, GROUP
and TOEP− designs with n = 250, p = 500, |S ?| = 25,
ρ = 0.5 and SNR= 4, since the relative behavior of all meth-
ods is representative of the general pattern that we observed
across all simulation settings. These setups lead to feasible
but challenging problems for model selection.

All variants of the screen and clean procedure are eval-
uated here with respect to their sensitivity (SEN), for a con-
trolled false discovery rate FDR. These two measures are
the analogs of power and significance in the single hypothe-
sis testing framework:

SEN = E
[

T P
T P+FN

I{(T P+FN)>0}

]
FDR = E

[
FP

T P+FP
I{(T P+FP)>0}

]
,

where FP is the number of false positives, T P is the number
of true positives and FN is the number of false negatives.

We first show the importance of the cleaning stage
for FDR control. We then show the benefits of our pro-
posal compared to the original procedure of Wasserman and
Roeder (2009) and to the univariate approach. The variable
selection method of Lockhart et al (2014) was not included
in these experiments, because it did not produce convinc-
ing results in these small n large p designs where the noise
variance is not assumed to be known.

Table 2 False discovery rate FDR and sensitivity SEN, computed over
500 simulations for each design. The screening stage (w/o cleaning) is
not calibrated; the cleaning stage is calibrated to control the FDR be-
low 5%, using the Benjamini-Hochberg procedure. Our adaptive-ridge
(AR) cleaning is compared with the original (OLS) cleaning and uni-
variate testing (Univar).

Design IND BLOCK GROUP TOEP−

FDR SEN FDR SEN FDR SEN FDR SEN

W/o cleaning 76.7 87.5 76.0 83.9 38.9 86.2 79.9 56.5
AR cleaning 4.2 76.1 2.8 64.8 1.7 37.7 4.3 39.6
OLS cleaning 3.9 48.3 3.1 37.1 2.5 17.9 3.7 25.3
Univar 4.4 40.4 86.4 71.0 5.3 100.0 4.2 28.4

Importance of the Cleaning Stage Table 2 shows that the
cleaning step is essential to control the FDR at the desired
level. In the screening stage, the variables selected by the
Lasso are way too numerous: first, the penalty parameter is
determined to optimize the cross-validated mean squared er-
ror, which is not optimal for model selection; second, we are
far from the asymptotic regime where support recovery can
be achieved. As a result, the Lasso performs rather poorly.
Cleaning enables the control of the FDR, leading of course
to a decrease in sensitivity, which is moderate for indepen-
dent variables, and higher in the presence of correlations.

Comparisons of Controlled Selection Procedures Figure 3
provides a global picture of sensitivity according to FDR,
for the test statistics computed in the cleaning stage. First,
we observe that the direct univariate approach, which sim-
ply considers a t-statistic for each variable independently,
is by far the worst option in the IND, BLOCK and TOEP−

designs, and by far the best in the GROUP design. In this
last situation, the univariate approach confidently detects
all the correlated variables of the relevant group, while the
regression-based approaches are hindered by the high level
of correlation between variables. Betting on the univariate
approach may thus be profitable, but it is also risky due to
its extremely erratic behavior.

Second, we see that our adaptive-ridge cleaning system-
atically dominates the original OLS cleaning. In this respect,
experiments meet the analysis of Section 3, but our experi-
mental results are even more strongly in favor of adaptive-
ridge cleaning. There is thus an important practical addi-
tional benefit of adaptive-ridge cleaning which cannot be
explained solely by the analysis of Section 3. To isolate
the effect of transfering the magnitude of weights from the
effect of the regularization brought by adaptive-ridge, we
computed the results obtained from a cleaning step based
on plain ridge regression (with regularization parameter set
by cross-validation). We see that ridge regression cleaning
improves upon OLS cleaning, and that adaptive-ridge clean-
ing brings this improvement much further, thus confirming
the practical value of the weight transfer from the screening
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IND BLOCK

SE
N

SE
N

FDR FDR

GROUP TOEP−

SE
N

SE
N

FDR FDR

Fig. 3 Sensitivity SEN versus False Discovery Rate FDR (the higher,
the better). Lasso screening followed by: adaptive-ridge cleaning (red
solid line), ridge cleaning (green dashed line), OLS cleaning (blue dot-
ted line); univariate testing (black dot-dashed line). All curves are in-
dexed by the rank of the test statistics, and averaged over the 500 sim-
ulations of each design. The vertical dotted line marks the 5% FDR
level.

stage to the cleaning stage. Note that in the orthonormal de-
sign of Section 3, ridge regression behaves exactly as OLS
regarding the power curves of tests. Indeed, since all param-
eters are equally shrunk in the orthonormal setting, β̂

clean
for

OLS and ridge only differ by a shrinking constant, which
does not impact the performances of the tests.

Table 2 shows the actual operating conditions of the
variable selection procedures, when a threshold on the test
statistics has to be set to control the FDR. Here, the thresh-
old is set to control the FDR at the 5% level, using the
Benjamini-Hochberg procedure. This control is always ef-
fective for the screen and clean procedures, but not for vari-
able selection based on univariate testing. In all designs,
our proposal dramatically improves over the original OLS
strategy, with sensitivity gains ranging from 50% to 100%.
All differences in sensitivity are statistically significant. The
variability of FDR and sensitivity is not shown to avoid
clutter, but the smallest variability in FDP is obtained for
the adaptive-ridge cleaning, while the smallest variability
in sensitivity is obtained for univariate regression, followed
by adaptive-ridge cleaning. The adaptive ridge penalty thus
brings about more stability to the overall selection process.

Table 3 Adjusted p-values (in %) obtained from the Benjamini-
Hochberg procedure for the five SNPs of the HIV data selected at a
25% FDR level. Our adaptive-ridge (AR) cleaning is compared with
the original (OLS) cleaning and with univariate testing (Univar).

SNP Genomic Region AR cleaning OLS cleaning Univar

rs2523619 MHC 0.0 2.3 0.2
rs214590 MHC 21.0 38.9 12.7
rs11967684 MHC 21.0 68.5 10.3
rs6923486 other 21.0 42.6 99.5
rs1983789 other 24.8 39.9 96.2

4.3 GWAS on HIV

We now compare the results of variable selection in a
Genome Wide Association Study (GWAS) on HIV-1 infec-
tion (Dalmasso et al 2008). One of the goal of this study
was to identify genomic regions that influence HIV-RNA
levels during primary infection. Genotypes from n = 605
seroconverters were obtained using Illumina Sentrix Human
Hap300 Beadchips. As different subregions of the major his-
tocompatibility complex (MHC) had been shown to be asso-
ciated with HIV-1 disease, the focus is set on the p= 20,811
Single Nucleotide Polymorphisms (SNPs) located on Chro-
mosome 6. The 20,811 explanatory variables are categori-
cal variables with three levels, encoded as 1 for homozygous
samples “AA”, 2 for heterozygous samples “AB” and 3 for
homozygous samples “BB” (where “A” and “B” correspond
to the two possible alleles for each SNP). The quantitative
response variable is the plasma HIV-RNA level, which is a
marker of the HIV disease progression.

The Lasso screening selects |S
λ̂
| = 20 SNPs. Consid-

ering a 25% FDR level (as in Dalmasso et al 2008), the
adaptive-ridge screening selects |Ŝ |= 5 SNPs as being as-
sociated with the plasma HIV-RNA, while OLS selects only
|Ŝ | = 1 of them (see Table 3). Among the 12 SNPs which
were identified by Dalmasso et al (2008) from a univariate
analysis in the MHC region, only 3 (rs2523619, rs214590
and rs11967684) remain selected with the proposed ap-
proach, and only one with the OLS cleaning. It is worth
noting that these 12 SNPs can be clustered into two groups
with high positive intra-block correlations and high nega-
tive inter-block correlations (up to |ρ| = 0.7). Hence, there
is a high chance of confusion between these highly corre-
lated variables. In this situation, variable selection methods
working on sets of variables, such as the ones we envision in
future works would be highly valuable. Those results are in
line with the simulation study, in the sense that, in a similar
context, the adaptive-ridge cleaning stage has a better sensi-
tivity than OLS cleaning and is also much more conservative
than univariate testing.
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5 Discussion

We propose to use the magnitude of regression coefficients
in two-stage variable selection procedures. We use the con-
nection between the Lasso and adaptive-ridge (Grandvalet
1998) to convey more information from the first stage to the
second stage: the magnitude of the coefficients estimated
at the first stage is transferred to the second stage through
penalty parameters. Our proposal results in a new “screen
and clean” procedure (Wasserman and Roeder 2009) for as-
sessing the uncertainties pertaining to the selection of rele-
vant variables in regression problems.

On the theoretical side, our analysis in the orthonormal
setting (which is numerical but precise and accurate up to
numerical integration errors) shows that our cleaning stage
produces test statistics that systematically dominate the ones
of the original cleaning stage based on OLS regression. The
benefits are comparable with the ones of having an oracle
for the penalty parameter in the first stage of the procedure.

Empirically, our procedure controls the False Discov-
ery Rate, even in difficult settings, with high correlations
between variables. Furthermore, the sensitivity obtained by
our cleaning stage is always as good, and often much bet-
ter than the one based on the ordinary least squares. Part
of this improvement is due to the stabilization effect of the
penalization, but the benefit of the adaptive penalty shown
in the orthonormal setting is observed in practice in all set-
tings. The penalized cleaning step also allows for a less se-
vere screening, since cleaning can then handle more than
n/2 variables. Our procedure can thus be employed in very
high-dimensional settings, as the screening property (that is,
in the words of Bühlmann (2013), the ability of the Lasso to
select all relevant variables) is more easily fulfilled, which
is essential for a reliable control of the false discovery rate.

Several interesting directions are left for future works.
The connection between the two stages can be generalized
to all penalties for which a quadratic variational formula-
tion can be derived. This is particularly appealing for struc-
tured penalties such as the fused-lasso or the group-Lasso,
allowing to use the knowledge of groups at the second stage,
through penalization coefficients.
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A Variational Equivalence

We show below that the quadratic penalty in β in Problem (2) acts as
the Lasso penalty λ ‖β‖1.

Proof The Lagrangian of Problem (2) is:

L(β ) = J(β )+λ

p

∑
j=1

1
τ j

β
2
j +ν0

( p

∑
j=1

τ j−‖β‖1

)
−

p

∑
j=1

ν jτ j .

Thus, the first order optimality conditions for τ j are

∂L
∂τ j

(τ?j ) = 0⇔−λ
β 2

j

τ?j
2 +ν0−ν j = 0

⇔−λβ
2
j +ν0 τ

?
j

2−ν j τ
?
j

2 = 0

⇒−λβ
2
j +ν0 τ

?
j

2 = 0 ,

where the term in ν j vanishes due to complementary slackness, which
implies here ν jτ

?
j = 0. Together with the constraints of Problem (2),

the last equation implies τ?j =
∣∣β j
∣∣, hence Problem (2) is equivalent to

min
β∈Rp

J(β )+λ ‖β‖1 ,

which is the original Lasso formulation.

B Efficient Implementation

Permutation tests rely on the simulation of numerous data sampled un-
der the null hypothesis distribution. The number of replications must
be important to estimate the rather extreme quantiles we are typically
interested in. Here, we use B = 1000 replications for the q = |S

λ̂
|

variables selected in the screening stage. Each replication involving
the fitting of a model, the total computational cost for solving these B
systems of size q on the q selected variables is O(Bq(q3 +q2n)). How-
ever, block-wise decompositions and inversions can bring computing
savings by a factor q.

First, we recall that the adaptive-ridge estimate, computed at the
cleaning stage, is computed as

β̂ =
(

X>X+Λ

)−1
X>y ,

where Λ is the diagonal adaptive-penalty matrix defined at the screen-
ing stage, whose jth diagonal entry is λ/τ?j , as defined in (1–3).

In the F-statistic (4), the permutation affects the calculation of the
larger model ŷ1, which is denoted ŷ(b)1 for the bth permutation. Us-
ing a similar notation convention for the design matrix and the esti-

mated parameters, we have ŷ(b)1 =X(b)β̂
(b)

. When testing the relevance
of variable j, X(b) is defined as the concatenation of the permuted
variable x(b)j and the other original variables: X(b) = (x(b)j ,XK j) =

(x(b)j ,x1, ...,x j−1,x j+1, ...,xp). Then, β̂
(b)

can be efficiently computed

by using a(b) ∈ R, v(b) ∈ Rq−1 and β̂ K j ∈ Rq−1 defined as follows:

a(b) = (‖x(b)j ‖
2
2 +Λ j j)−x(b)j

>
XK j(X>K jXK j +Λ K j)

−1X>K jx
(b)
j

v(b) =−(X>K jXK j +Λ K j)
−1X>K jx

(b)
j

β̂ K j = (X>K jXK j +Λ K j)
−1X>K jy .

Indeed, using the Schur complement, one writes β̂
(b)

as follows:

β̂
(b)

=
1

a(b)

(
1

v(b)

)(
1 v(b)>

)(x(b)j
>

y
X>K jy

)
+

(
0

β̂ K j

)
.
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Hence, β̂
(b)

can be obtained as a correction of the vector of coefficients
β̂ K j obtained under the smaller model. The key observation to be made

here is that x(b)j does not intervene in the expression (X>K jXK j +Λ K j)
−1,

which is the bottleneck in the computation of a(b), v(b) and β̂ K j . It
can therefore be performed once for all permutations. Additionally,
(X>K jXK j +Λ K j)

−1 can be cheaply computed from
(
X>X+Λ

)−1 as
follows:

(X>K jXK j +Λ K j)
−1

=

[(
X>X+Λ

)−1
]
K jK j
−[(

X>X+Λ

)−1
]
K j j

[(
X>X+Λ

)−1
]−1

j j

[(
X>X+Λ

)−1
]

jK j
.

Thus we compute
(
X>X+Λ

)−1 once, firstly correct for the removal
of variable j, secondly correct for permutation b, thus eventually re-
quiring O(B(q3 +q2n))) operations.
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