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and Isabelle Merlet

Abstract—As a non-invasive technique, Electroencephalogra-
phy (EEG) is commonly used to monitor the brain signals of
patients with epilepsy such as the interictal epileptic spikes.
However, the recorded data are often corrupted by artifacts
originating, for example, from muscle activities, which may have
much higher amplitudes than the interictal epileptic signals of
interest. To remove these artifacts, a number of Independent
Component Analysis (ICA) techniques were successfully applied.
In this paper, we propose a new deflation ICA algorithm, called
Penalized Semi-Algebraic Unitary Deflation (P-SAUD) algorithm,
that improves upon classical ICA methods by leading to a
considerably reduced computational complexity at equivalent
performance. This is achieved by employing a penalized semi-
algebraic extraction scheme, which permits us to identify the
epileptic components of interest (interictal spikes) first and obvi-
ates the need of extracting subsequent components. The proposed
method is evaluated on physiologically plausible simulated EEG
data and actual measurements of three patients. The results are
compared to those of several popular ICA algorithms as well
as second order blind source separation methods, demonstrating
that P-SAUD extracts the epileptic spikes with the same accuracy
as the best ICA methods, but reduces the computational com-
plexity by a factor of 10 for 32-channel recordings. This superior
computational efficiency is of particular interest considering the
increasing use of high-resolution EEG recordings, whose analysis
requires algorithms with low computational cost.

Index Terms—deflation ICA, EEG, denoising, artifact removal,
epilepsy.

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive and cheap
technique that allows for the monitoring of brain signals with
a high temporal resolution, making it a routinely used method
for the diagnosis and management of epilepsy. Epilepsy is
one of the most common neuronal diseases and leads to
temporary dysfunctions of the electrical brain activity, the
epileptic seizures, as a result of sudden abnormal electric
discharges, called paroxysmal discharges. Two different types
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of epileptic paroxysms can be recorded. During seizures, ictal
discharges last several seconds to a few minutes and are
characterized by a rhythmic activity. Between seizures, brief
paroxysms, called interictal spikes, occur in irregular intervals
and are considered as interictal signatures of the underlying
pathology. Interictal spikes can be frequently observed on the
scalp with a high Signal-to-Noise-Ratio (SNR), whereas the
ictal discharges occur more randomly. Therefore, the analysis
of EEG recordings of epileptic patients includes the study
of interictal epileptic activity. However, the epileptic activity
recorded by surface electrodes is usually corrupted by eye and
muscle artifacts that hinder its interpretation. Thus, before the
interictal epileptic data can be properly analyzed, the first step
consists in removing these artifacts. As little information on
the underlying sources is available a priori, this is a typical
application for Blind Source Separation (BSS) methods [1],
[2].

Due to their different physiological origins, it is reasonable
to assume that the artifacts are statistically independent of the
interictal epileptic activity. This motivates the application of
BSS methods that are based on Second Order (SO) statistics
of the measurement data only, exploiting uncorrelatedness of
the source signals, and of Independent Component Analysis
(ICA), which also involves higher order statistics. In fact,
SO methods such as SOBI [3], CCA [4], and Generalized
Eigenvalue Decomposition (GEVD)-based techniques [5], [6],
and a large number of ICA algorithms have been successfully
applied to separate the artifacts from neuronal activities (see,
e.g., [7], [8], [4], [9]). Note that the method proposed in [6]
is dedicated to ictal epileptic signals while the one presented
in [5] requires a higher SNR compared with ICA techniques.
The ICA algorithms can be distinguished into two types of
approaches: joint methods, that separate all sources simul-
taneously, and deflation methods, which extract the sources
sequentially. Among the joint methods, one can find popular
algorithms such as Infomax [10], JADE [11], and CoM2 [12],
whereas deflation methods include, for example, the well-
known FastICA algorithm1 [13] and RobustICA [14].

Recent studies [15], [16] have compared the performance
of a number of popular ICA algorithms for EEG denoising.
The authors of [15] concluded that CoM2 [12] is the method
that yields the best compromise between performance and

1Please note that a version of the FastICA algorithm which jointly extracts
all sources also exists.
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computational complexity. However, this method extracts all
sources simultaneously and considering a sufficiently large
number of sources, this can easily lead to the separation of
a hundred signals, resulting in a high computational burden
of ICA in the context of high-resolution EEG. Thus, the
denoising of large amounts of EEG recordings remains time-
consuming even with modern high-performance computers.
Considering that the use of high-resolution EEG systems
can be expected to increase over the next few years, it is
desirable to develop more computationally efficient algorithms
to limit the requirements on computing resources. Since we
are only interested in the interictal epileptic activity (interictal
spikes), this could be achieved by limiting the algorithm to
the extraction of the interictal spikes.

To extract a reduced number of ICA components, deflation
methods can be employed. However, a remaining difficulty in
deflationary approaches consists in ensuring that the signals
of interest are extracted first such that the algorithm can be
stopped after the extraction of a small number of components
from the mixture. This requires the exploitation of prior knowl-
edge about the signals of interest. In [17], the constrained ICA
(cICA) framework has been developped to this end and ICA
methods that work with a reference signal, generally referred
to as ICA-R, have been put forward [17], [18], [19] to extract
the signals with the highest resemblance to the references.
These methods are based on a Newton-like learning scheme
to solve the constrained optimization problem.

In this paper, we propose a new deflation ICA algorithm
that improves upon the deflation method presented in [20]
(in the following referred to as DelLR) by resorting to a
semi-algebraic optimization scheme based on a two-source
contrast and alternating Jacobi iterations [12]. Furthermore,
in the proposed ICA algorithm, a penalization term is added
in the contrast function to ensure that the epileptic sources are
extracted first. Contrary to the ICA-R approach, that relies on
a reference signal, which is not always available in practice,
to extract the sources of interest, we make use of the tem-
poral structure of the source time signals. More particularly,
we exploit the high autocorrelation of the epileptic spikes
compared to muscle artifacts, leading to a penalization term
that is related to the CCA approach. The proposed method,
called Penalized Semi-Algebraic Unitary Deflation (P-SAUD)
algorithm, is compared to DelLR as well as CoM2, FastICA,
CCA, and SOBI in terms of performance and computational
complexity.

This paper is organized as follows: in Section II, we describe
the data model and present the proposed method. We also
describe the simulation setup and the real data that is analyzed
in this paper and provide some background information on the
patients in which the data were recorded. Section III contains
the results obtained on the simulated and the real EEG data.
Conclusions are drawn in Section IV.

II. METHODS

A. Problem formulation
In this paper, we assume that the measurements x̃[t] ∈ RN ,

t = 1, . . . , T , of the electric potential recorded by N sen-
sors placed on the scalp for T time samples constitute a

mixture of epileptic activity s̃e[t], muscular activity s̃m[t],
and background activity s̃b[t] of the brain. Fig. 1 displays
examples of these physiological signals, showing in particular
the characteristic form of an interictal epileptic spike, which
has a high autocorrelation, and the appearance of muscle
artifacts, which resemble uncorrelated Gaussian noise. The
propagation of the source signals to the surface is characterized
by the matrix A(e) ∈ RN×Pe for the epileptic sources, the
matrix A(m) ∈ RN×Pm for the muscle artifacts, and the matrix
A(b) ∈ RN×Pb for the background activity. Furthermore, we
consider the instrumentation noise ñ[t] that is added during
the measurement process. This leads to the following model
for the EEG data:

x̃[t] =A(e)s̃e[t] + A(m)s̃m[t] + A(b)s̃b[t] + ñ[t]. (1)

As the number of sources Pe + Pm + Pb generally exceeds
the number of sensors N , the mixture (1) is underdetermined.
In this paper, our objective is to separate the epileptic signals
from the muscle and background activity.

B. ICA approach

Let us assume that the data {x̃[t]} constitute one finite-
length realization of a random vector process {x[t]}. Since
epileptic, muscle, and background activity have different
physiological origins, their signals can be assumed to be
represented by random vector processes that are statistically
independent. This property can be exploited for the separation
of the three types of activity such that the underlying random
vector processes are maximally statistically independent. This
is the objective of ICA, which computes the decomposition:

x[t] =As[t] (2)

where A ∈ R
N×P is the mixing matrix. The P ≤ N

components of the random vector process {s[t]} are mutually
independent and can be divided into three subgroups that
form bases for the signal subspaces of the epileptic, muscle,
and background activity. Although the different sources of
the same type of activity might not be independent, ICA
still permits us to separate the subspaces of the different
types of activity if the following three conditions hold: i)
the three subspaces are statistically independent, ii) the sum
of their dimensions does not exceed the number of sensors,
and iii) the instrumentation noise is Gaussian. Note that the
independent components can only be extracted up to a scale
and permutation indeterminacy.

The identification of independent components by linear
transformation is accomplished by maximizing a contrast
function. In this paper, we concentrate on the following two-
source contrast, introduced in [12], that is used to achieve
statistical independence of a pair of random variables y and
z:

ψ(y, z) = C2
4,y + C2

4,z. (3)

Here C4,y denotes the Fourth Order (FO) cumulant of the
random variable y. To facilitate the separation of the sources,
we work on the prewhitened data, that are obtained as:

z[t] = F+x[t]. (4)
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Fig. 1. Example of an interictal epileptic spike (left), a muscle artifact (middle), and background activity of the brain (right) and their autocorrelation functions.

Here, F+ denotes the Moore-Penrose pseudo inverse of the
matrix F ∈ RN×P , which corresponds to a square root of the
(possibly denoised) data covariance matrix Cx of {x[t]}. This
has the advantage that the sought mixing matrix becomes an
orthonormal matrix, subsequently called H ∈ RP×P . Once an
estimate Ĥ of this matrix has been determined, the original
mixing matrix can be obtained as Â = FĤ. Furthermore,
we employ a parameterization of the mixing vectors, which
is described in appendix A. This reduces the identification of
the p-th mixing vector to the estimation of a certain number
of Givens rotation angles φp,k.

C. The P-SAUD algorithm

1) Presentation of the algorithm: The idea of the P-SAUD
algorithm consists in extracting the sources consecutively by
determining the optimal rotation angles for all signal pairs.
More particularly, to extract the p-th source, the algorithm
updates the rotation angles φp,k for k = 1, . . . , P − p
alternatingly over several sweeps. After each deflation step, the
dimension of the ICA problem is decreased by resorting to the
orthogonal projection approach used by DelLR as explained
below. In order to ensure that the epileptic acitivity is extracted
first, we employ the following penalized contrast function,
which exploits the fact that the autocorrelation of the interictal
spikes is higher than that of the muscle artifacts:

ψc(sp, sk) = C2
4,sp + C2

4,sk
+ λ cum(sp[t], sp[t+ τ ])2. (5)

Here, cum(a, b) stands for the SO cumulant (covariance) of
random variables a and b. Furthermore, λ is a penalization
parameter that determines the influence of the covariance
penalty term and τ denotes a fixed signal delay. In practice,
the value of the penalization parameter λ needs to be adjusted
depending on the kurtosis K1 and the autocorrelation A1 of
the source to extract. As the magnitudes of these factors are

generally unknown, we propose to estimate them based on
the signal {sp[t]} retrieved at the previous iteration. To adjust
the balance between original contrast and penalization, we
introduce the relative penalization parameter α: for α < 1,
the original contrast dominates, for α > 1 the autocorrelation
preponderates, and for α = 1 both terms are equally important.
The penalization parameter λ is then given by λ = αK1

A1
. In

order to ensure that the epileptic activity is extracted first, we
use a high value of α during the first iterations (αmax > 1) and
reduce the penalization parameter with increasing number of
iterations until it reaches a final value that manages a balance
between the two-source contrast (3) and the penalization term
(generally 0 ≤ αmin ≤ 1). The signal delay τ has to
be adjusted depending on the autocorrelation profile of the
epileptic spikes and may range from 1 to several samples (such
that the autocorrelation between the epileptic signal and its
delayed version is still high). For the simulations (cf. Section
III-A), we chose τ = 1 as is typically used for CCA, whereas
we observed that higher delays (e.g., τ = 5) lead to more
robust results on the real data examples (see Section III-B).

The signals {sp[t]} and {sk[t]} depend on the parameter
φp,k that characterizes the Givens rotation. Setting θp,k =
tan(φp,k), the signals are obtained from the corresponding
elements of the data vector as:[

sk[t]
sp[t]

]
=

√
1

1 + θ2p,k

[
1 −θp,k
θp,k 1

] [
zk[t]

zP−p+1[t]

]
. (6)

The determination of the parameter θp,k that maximizes (5) is
detailed in Appendix B.

For the extraction of the first source, i.e., p = 1, we initialize
the matrix G(1) = IP and the vector y(1) = z that correspond
to a temporary unmixing matrix estimate and a temporary
data vector, respectively. Then, the Givens rotation matrix
G

(1,1)
g (θ1,1) for the first pair of sources, p = 1, k = 1, is com-

puted based on the value θ1,1 that maximizes the contrast (5).
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The temporary matrix G(1) and vector y(1) are then updated
by replacing them by the matrix G

(1,1)
g G(1) and the vector

G
(1,1)
g y(1), respectively. Thereafter, the algorithm proceeds

with the estimation of the optimal Givens rotation matrix for
the next pair of sources, i.e., for k = 2, which is based on the
new temporary matrix and vector. The procedure is repeated
for all pairs of sources with p = 1 and k = 1, . . . , P − p,
and over I sweeps. At the end, the mixing vector for the first
source and the corresponding signal vector are extracted as:

ĥ1 =g(1) (7)

ŝ1[t] =ĥT
1 z[t] (8)

where g(1)T denotes the last row of the matrix G(1).
As the mixing matrix is orthonormal, the mixing vector of

the p-th source is sought within the subspace that is orthogonal
to all previously extracted mixing vectors. To this end, to
extract the p-th component, p = 2, . . . , P , we first find the
matrix G̃(p−1) and the vector ỹ(p−1) such that:

G(p−1) =

[
G̃(p−1)T

g(p−1)T

]
and y(p−1) =

[
ỹ(p−1)

y
(p−1)
1

]
and initialize the temporary mixing matrix and data vector
for the p-th source by G(p) = G̃(p−1)T and y(p) = ỹ(p−1).
The estimation then follows the same lines as those described
above for the first source. The mixing and signal vectors of
the p-th source are extracted as:

ĥp =g(p) (9)

ŝp[t] =ĥT
p z[t]. (10)

This procedure is inspired by the deflation algorithm described
in [20]. The algorithm is stopped after M components have
been extracted (including the sources of interest). To automat-
ically determine the number of components to extract, one
could employ a spike detection method (see, e.g., [21]) that
is run on the extracted components and stop the algorithm
once several components without epileptic activity have been
identified. Alternatively, the algorithm could be stopped as
soon as the autocorrelation of the extracted signals falls below
a given threshold. The P-SAUD algorithm is summarized in
Fig. 2.

2) Analysis of the computational complexity: To determine
the computational complexity of P-SAUD, we analyze the
number of floating point operations (FLOPs) that are required
for its completion. As the number of additions is usually of
the same order as the number of multiplications, subsequently,
we consider only the number of multiplications.

The first step of P-SAUD consists in prewhitening the data,
which can be accomplished either by an Eigenvalue Decom-
position (EVD) or by a Singular Value Decomposition (SVD),
leading to a computational complexity of min(TN2/2 +
4N3/3 + PMT, 2TN2) FLOPs [15].

The highest computational cost of P-SAUD can be associ-
ated with the estimation of the SO and FO cumulants that are
exploited in the penalized contrast. These can be obtained in
two different ways: i) by estimating the cumulants for each
pair of analyzed sources from the temporary data vectors at
each iteration, or ii) by estimating first the complete cumulant

Prewhitening: Cx = UΣ2UT, z[t] = (UΣ)+x[t]
initialize y(1)[t] = z[t], G(1) = IP , α = αmax

for p = 1 to M do
for i = 1 to I do
α← α− 1

I (αmax − αmin)
for k = 1 to P − p do

estimate kurtosis and penalty of the current
source estimate to adjust the penalization pa-
rameter:

K1 = kurt(y
(p)
1 [t])2

A1 = cum(y
(p)
1 [t], y

(p)
1 [t+ τ ])2

λ = αK1

A1

maximize (5) with respect to θp,k and build
Givens rotation matrix G

(p,k)
g

G(p) ← G
(p,k)
g G(p)

Y(p) ← G
(p,k)
g Y(p)

end for
end for
extract ĥp = g(p), ŝp[t] = ĥT

p z[t]

G(p+1) = G̃(p)T, y(p+1)[t] = ỹ(p)[t]
end for

Fig. 2. Description of the P-SAUD algorithm.

matrices and by deriving the statistics required for the analysis
of a certain pair of sources using the orthogonal transformation
matrix G(n). For both ways of estimating the statistics, the
computational cost for all

∑M
n=1(P −n) considered pairs has

to be summed up over all iterations I . Considering the first
method for estimating the statistics, we note that the estimation
of the cumulants for one pair of components that is associated
with two rows of the matrix {y(n)[t]} requires O(8T ) FLOPs
if the Leonov-Shiryaev formula for zero-mean data with unit-
variance is used. Furthermore, the estimation of the covariance
requires O(4T ) FLOPs for the penalization term. On the
whole, considering that the number of epileptic components
is small compared to the number of sensors and that these
components are extracted first, this leads to O(8TIMN)
and O(4TIMN)2 FLOPs for cumulant estimations for the
extraction of the first M sources. If the second way of
estimating the statistics is used, O(N4/24) FO cumulants
have to be estimated, corresponding to O(N4/24) different
elements of the FO cumulant matrix for real-valued data. For
each FO cumulant, this requires O(3T ) FLOPs. Exploiting
the multilinearity property of cumulants, the FO cumulants of
the data after one Givens rotation can be derived from the
quadricovariance matrix with 16 FLOPs per cumulant, i.e.,
O(2N4/3) FLOPs in total. On the whole, this corresponds to
O(TN4/8+2N5MI/3) FLOPs. Similar considerations reveal
a computational cost of O(N2T+4MN2I) for the estimation
and transformation of the time-delayed covariance matrix.

Furthermore, at each iteration and for each pair of compo-
nents, the maximization of (5) requires the rooting of an 8-th
degree polynomial (cf. appendix) which can be accomplished
with IMNQ8 FLOPs, where Qn denotes the computational
complexity associated with the rooting of a polynomial of
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TABLE I
COMPUTATIONAL COMPLEXITY IN TERMS OF REAL-VALUED

MULTIPLICATIONS FOR P-SAUD, CCA, SOBI, FASTICA, COM2 , AND
DELLR . THE RESULTS FOR SOBI, FASTICA, AND COM2 ARE

REPRODUCED FROM [15].

Number of FLOPs

P-SAUD min(TN2/2 + 4N3/3 + PMT, 2TN2) + IP 2Q8/2+

4P 2IM +min(4TIMP,P 2T + 2IP 3) + PTM+

min(2IP 5M/3 + P 4T/8, 6ITPM)

CCA T (3N2 + 7P ) + 32P 3/3 +NP 2

SOBI min(TN2/2 + 4N3/3 + PMT, 2TN2) + 4N3/3+

IP (P − 1)(17(Nτ − 1) + 75 + 4P + 4P (Nτ − 1))/2+

(Nτ − 1)N3/2

FastICA min(TN2/2 + 4N3/3 + PMT, 2TN2)+

(2(P − 1)(P + T ) + 5TP (P + 1)/2)I

CoM2 min(TN2/2 + 4N3/3 + PMT, 2TN2) + IP 2Q4/2+

min(IP 6/6 + 2IP 3 + P 4T/8 + TP 2, 6ITP 2)

DelLR min(TN2/2 + 4N3/3 + PMT, 2TN2) + 3ITN2

degree n. The update of the temporary unmixing matrix and
data matrix necessitates 4T + 4N FLOPs for each pair of
components, i.e., (4T + 4N)IMN FLOPs for the extraction
of M components. Finally, the computation of the signal
and mixing vectors of the extracted components adds up to
4N2IM +NTM FLOPs.

Table I summarizes the computational complexity of P-
SAUD in comparison to the computational cost of CCA, SOBI,
FastICA, CoM2, and DelLR. For a fair comparison, we used a
deterministic version of DelLR, which takes into account the
whole data length, instead of the adaptive scheme described
in [20].

D. Simulations

To compare the performance of P-SAUD to other meth-
ods, we conduct a simulation study where we analyze how
accurately the epileptic activity is extracted from the noise.
To this end, we generate 32 s of realistic EEG data for 32
electrodes with a sampling rate of 256 Hz originating from
two source regions with independent interictal epileptic spike-
like activity. To do this, we employ a realistic head model
with three compartments representing the brain, the skull, and
the scalp, whose surfaces are obtained from a normal MRI.
To characterize the source regions, we consider a source space
that is defined by the triangularized inner cortical surface (grey
matter / white matter interface), where a grid dipole is placed
at the centroid of each of the triangles. The grid consists of
19626 triangles (9698 for the left hemisphere and 9928 for
the right hemisphere) and on average, each triangle describes
5 mm2 of the cortical surface. The lead field matrix, which
characterizes the attenuations between the source dipoles and
the sensors, is then computed numerically for all grid dipoles
using a boundary element method (ASA, ANT, Enschede,
Netherlands). We consider two source regions located in the
superior frontal gyrus and the superior occipital gyrus. Each
source region, also called patch, is composed of 100 adjacent
grid dipoles corresponding to a cortical area of approximately
5 cm2. This patch size was chosen because it is known that
about 5 cm2 of cortex need to be active in order to observe

a signal at the surface. Two independent sets of simulated
epileptic signals for the two patches are obtained using a model
of coupled neuronal populations as previously described [22]
that generates highly-correlated epileptiform spike-like signals
for the dipoles within each patch. The epileptic data are then
obtained by multiplying the lead field vectors of all patch
dipoles with the associated spike-like signals and by summing
up the results. Finally, a mixture of artifacts recorded during
an EEG session (containing mostly muscle activity but also
background activity and other artifacts as well as instrumention
noise) is added to the epileptic data according to a given Signal
to Noise Ratio (SNR). The SNR was varied from -30 dB to -5
dB because in practice, the muscle artifacts are often of much
higher amplitude than the neuronal signals.

We apply the P-SAUD algorithm to 50 realizations of
simulated data with different epileptic spikes and different
artifacts and compare its results to those of SAUD (P-SAUD
without penalization, i.e., λ = 0 for all iterations), SOBI,
CoM2, CCA, FastICA, and DelLR. The relative penalization
parameter of P-SAUD is varied from αmax = 4 to αmin = 0
over I = 20 sweeps, which we deemed to be sufficient
for the algorithm to converge. The maximal delay for the
autocorrelation matrix considered in SOBI is fixed to 15 time
samples. For CCA and P-SAUD, we use a delay of τ = 1.
In order to analyze the performance of the various methods,
we compute the correlation coefficients of the original and
estimated signals and of the original and estimated mixing
vectors of the epileptic sources averaged over the two patches
and the 50 realizations.

E. Real data

The performance of P-SAUD was also evaluated on real
data obtained in three patients, 2 females and 1 male, aged 42-
63 years, suffering from drug-resistant temporal lobe epilepsy.
Their clinical features are described in Table II. During the
presurgical evaluation of these patients, EEG was continuously
recorded during daytime for one week using a 32-channel
video-EEG monitoring system (BrainQuick, Micromed). Sig-
nal was sampled at 256 Hz and high-pass filtered at 0.03 Hz.
The antiepileptic drug polytherapy (see Table II for details)
was progressively withdrawn during the EEG monitoring to
stimulate the occurrence of spikes and seizures. The three
patients illustrated in this paper were specifically chosen
because of the presence of interictal spikes on their EEG both
in a noise-free (reference) and in a noisy (muscular activity)
condition. Video-EEG is always carried out as part of normal
clinical care of patients who give informed consent to the
protocol approved by the local ethical board. Patients are
informed that their data may be used for research purposes.

III. RESULTS

A. Simulation results

Fig. 3 (left and middle) shows the spatial mixing vector
correlation coefficients and the signal correlation coefficients
of P-SAUD in comparison to several ICA methods as a
function of the SNR. In addition, we determine how many
sources have to be extracted to identify the epileptic activity
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TABLE II
CLINICAL FEATURES OF THE THREE PATIENTS WHOSE EEG RECORDINGS ARE ANALYZED IN THIS PAPER.

Patient 1 Patient 2 Patient 3

Gender M F F

Age 45 63 42

Precipitating factors No cranial trauma (16 months old) No

Age at first seizure 24 18 11

Seizure frequency 2-4 / Month < 5 / Month 1-5 / Month

Antiepileptic Drug Therapy Sodium Volproate (1000) Levitiracetam (250), Lamotrigin (400), Oxcarbazepin (600)
(AED) (dose, mg/day) Clonazepam (0.5) Clobazam (10)

Interictal spikes on EEG Right temporal Right temporal Right+left temporal

Electrode recording FT10 FT10 FT9, FT10
spike of max. amplitude

MRI - Right hippocampal sclerosis Right temporal-parietal dysplasia
(T2 and IR signal abnormality)

Ictal SPECT Increased CBF in right insular, Increased CBF in right temporal -
temporal and orbitofrontal regions regions (lateral neocortex + pole)

Intracerebral recordings - - • Left anterior middle temporal gyrus
involving sometimes the posterior part of

the left superior and inferior temporal gyri
• Right temporal-occipital-parietal junction +

right anterior middle and posterior inferior
temporal gyri

Fig. 3. (Left and middle) Correlation of recovered mixing vectors and signal vectors and (right) index of recovered sources.1

using the P-SAUD algorithm compared to SAUD and the other
considered deflation algorithms, i.e., FastICA and DelLR. To
this end, we identify the indices of the extracted components
whose signals show the highest correlation with the original,
noiseless epileptic signals. The maximal index, averaged over
all realizations, is plotted in Fig. 3 (right) as a function of
the SNR. Even though CCA extracts the sources jointly, we
show the corresponding indices after ordering the extracted
components according to their autocorrelation to demonstrate
the interest in using the autocorrelation as a penalization term
for P-SAUD.

Fig. 3 (left and middle) shows that P-SAUD clearly out-
performs DelLR for SNR less than -5 dB and achieves a
performance that is comparable to that of CoM2 or FastICA.
Considering the spatial mixing vector correlation, for small
SNR, SAUD is slightly worse than P-SAUD. As shown in Fig.
3 (right), for SAUD, the index of epileptic signals increases

1Please see the pdf version of the paper available online for colored versions
of Fig. 3, 4, 5, 6, 7, and 8.

with diminishing SNR and is very high for SNR below -20 dB.
This means that SAUD extracts the signals of interest rather
late, which favors the accumulation of errors. On the contrary,
P-SAUD ensures that the epileptic activity is extracted first as
confirmed by low indices between 2 and 3 for SNR > −20 dB
and an only slight increase for smaller SNR. This is due to the
selection of the extracted components by the autocorrelation
term as can be concluded from the small CCA source indices
and explains the better performance of P-SAUD compared
to SAUD. For FastICA and DelLR, in this simulation, the
average numbers of sources that need to be extracted do not
exceed 10 and 20, respectively. However, in practice, these
two algorithms cannot be stopped after the extraction of a
reduced number of components because these methods extract
the sources in an arbitrary order and there is no guarantee
that all epileptic sources have been extracted after a given
number of deflation steps. The SO methods CCA and SOBI
do not extract the epileptic components as accurately as higher
order algorithms such as P-SAUD and FastICA, in particular
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Fig. 4. Performance as a function of computational complexity.1

concerning the spatial mixing vectors.
Finally, in Fig. 4, the performance of the tested algorithms

is plotted as a function of the number of FLOPs computed
according to Table I for an SNR of -15 dB. Except for CCA,
which requires a fixed number of FLOPs, the computational
complexity is varied by changing the number of iterations per-
formed by the algorithms. We assume that P-SAUD extracted
the epileptic activity after M = 2 deflation steps. It can be
seen that the computational complexity of the SO methods
CCA and SOBI (at the point of convergence) is smaller than
that of conventional FO methods such as FastICA and CoM2

by a factor of approximately 100. However, FastICA, CoM2,
and SAUD extract the spatial mixing vectors with a higher
accuracy than the SO methods. At an order of FLOPs that is
comparable to that of the other FO methods, DelLR exhibits
a very bad performance. Due to the deflation scheme, P-
SAUD extracts the epileptic signals at a significantly reduced
computational complexity (by a factor of about 10) compared
to the other FO methods while attaining the same accuracy
as FastICA and CoM2. We have observed that this gain in
computational complexity is also reflected in a reduction of
the CPU time (by a factor of about 4).

B. Real data results

For Patient 1, we considered an interval of about 20 s of
interictal epileptic spikes corrupted by muscle artifacts and
noise (cf. Fig. 5 (left); due to limited space, we illustrate
only a segment of 10 s length of the considered data). To
remove the artifacts and noise, we applied both P-SAUD (with
τ = 5) and CoM2 to the data, extracting 32 independent
signal components, shown in Fig. 5 (right). Contrary to CoM2,
which extracts the signals in an arbitrary order, in the case
of P-SAUD, the order of the extracted signals depends on

TABLE III
CORRELATION COEFFICIENT BETWEEN THE P-SAUD USED TO

RECONSTRUCT THE DATA AND THE CORRESPONDING COM2

COMPONENTS FOR REAL DATA EXAMPLES

P-SAUD comp. CoM2 comp. correlation coefficient

Patient 1 1 2 0.997
2 5 0.989

Patient 2 2 1 0.641
2 2 0.746
11 32 0.989
24 14 0.997

Patient 3 2 8 0.988
3 32 0.996
4 13 0.989
6 17 0.930
9 5 0.921

their autocorrelation. The components that characterize the
epileptic spikes are thus extracted first whereas muscle activity,
which has a low autocorrelation, is extracted last. The data
were reconstructed using the first two P-SAUD components,
selected by an EEG expert (see Fig. 5 (center left)). Note that
reconstructing the EEG from components 2 and 5 extracted
by CoM2 yields similar results. Indeed, these components
are very similar to the first two P-SAUD components as
confirmed by their high correlation coefficients (see Table
III). A comparison with the original data shows that the
muscle activity, which corrupted in particular the recordings of
electrodes FC6 and T4, has been removed in the reconstructed
data and the noise has been reduced.

For Patient 2, we illustrate the behavior of P-SAUD on
about 40 s of EEG recordings of epileptic spikes that are
not only corrupted by muscle activity, but also include eye
blink artifacts. A 10 s long segment of the noisy data and the
signal components extracted by P-SAUD are shown in Fig.
6. As the eye blink artifacts also have a high autocorrela-
tion, the associated ICA components are extracted during the
first deflation steps of the P-SAUD algorithm, corresponding
to the first and third P-SAUD component in this example,
whereas the epileptic spikes are mostly contained in the second
component (Note that this component has been split into two
components by CoM2 as indicated in Table III). This shows
that the proposed method does not avoid the extraction of
artifacts such as eye blinks whose autocorrelation is similar to
or higher than that of the epileptic spikes. However, as there
is only a small number of ICA components associated with
these artifacts (only two components in our example), this is
not very annoying because the epileptic spikes can still be
extracted within a small number of deflation steps.

We analyzed 8.5 s of EEG recordings of Patient 3 as
an example of data containing independent interictal spikes
from two sources (see for example clean spike recordings on
electrodes FT9 and FT10 in Fig. 7). The clean spikes, noisy
data, reconstructed data, and P-SAUD and CoM2 components
for this patient are shown in Figure 7. The data are corrupted
by muscle artifacts and eye blinks. As for Patient 2, the eye
blinks are contained in the first ICA component extracted
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Fig. 5. Real EEG recordings of patient 1: 2.5 s of clean spikes and 10 s segment of noisy data, data reconstructed using P-SAUD, and signal components
extracted with P-SAUD and CoM2. The signals of the channel FT10, at which the maximum spike amplitude is observed, are marked in green. The P-SAUD
components (1 and 2) used to reconstruct the data as well as the corresponding CoM2 components (2 and 5, cf. Table III), which lead to similar reconstruction
results, are marked in red.1

by P-SAUD, whereas the epileptic spikes are spread over
components 2, 3, 4, 6, and 9.

As these examples show, to reconstruct the epileptic spike
data using P-SAUD, it would have been sufficient to extract
only the first few components, which leads to a reduction of the
computational complexity compared to CoM2 and FastICA.

Finally, to demonstrate the good performance of the pro-
posed denoising method and to illustrate the practical impor-
tance of this step in the analysis of surface EEG recordings,
we employed distributed source localization to identify the
regions involved in the interictal activity (irritative zone).
To this end, we applied the Sparse Variation-Based Sparse
Cortical Current Distribution (SVB-SCCD) [23] distributed
source localization algorithm to the data of the three patients.
This algorithm permits to identify spatially extended sources
and was applied to the maxima of spikes of the noisy data, of
the P-SAUD denoised data, as well as of clean data. Figure
8 shows representative examples of the source localization
results obtained for the three patients. It can be seen that the
brain regions localized on the denoised spikes correspond very
well to the brain regions localized on the clean spikes. The
localization of these regions is also in agreement with regions
of increased cerebral blood flow during ictal SPECT (patients
1 and 2) or in accordance with findings from intracranial
SEEG recordings (in patient 3). On the contrary, the distributed
source localization results obtained on the noisy spikes always
included activations of remote brain regions, which were not
concordant with the functional imaging (patients 1 and 2) or
intracerebral (patient 3) data.

IV. DISCUSSION AND CONCLUSION

We have presented a new deflation algorithm that efficiently
extracts the epileptic source activity from EEG data corrupted
by noise and artifacts. This preprocessing step is crucial
to ensure good quality EEG data and therefore to provide
a reliable interpretation of these data. Accordingly, results
obtained as an example in three patients show that the spurious
activation of brain regions suggested from the localization of
noisy spikes would have impaired the correct interpretation of
the source localization results and the proposed denoising pro-
cedure improved the result of distributed source localization.

The proposed method is based on the deflation scheme used
by DelLR, but achieves a clearly improved performance by
adopting a semi-algebraic optimization strategy. The quality
of the extracted signals and spatial mixing vectors is indeed
comparable to that achieved by techniques such as CoM2 and
FastICA as demonstrated by simulations (see Fig. 3) and also
observed in the analysis of clinical data (see Table III). How-
ever, this performance is achieved at a considerably reduced
computational cost. While the computational complexity is
reduced only by a factor of 10 for the 32-channel EEG system
considered in this paper (see Fig. 4), it can easily be reduced
by a factor of 100 for high-resolution EEG recordings. This
is due to the fact that the proposed algorithm resorts to a
contrast function that is penalized by autocorrelation terms. As
shown by simulations and demonstrated on real data examples,
this ensures that the epileptic activity is extracted during the
first few deflation steps. In particular, the epileptic spikes are
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Fig. 6. Real EEG recordings of patient 2: 2.5 s of clean spikes and 10 s segment of noisy data, data reconstructed using P-SAUD, and signal components
extracted with P-SAUD and CoM2. The signals of the channel FT10, at which the maximum spike amplitude is observed, are marked in green. The P-SAUD
components (2, 11, and 24) used to reconstruct the data as well as the corresponding CoM2 components (1, 2, 14, and 32; cf. Table III), which lead to similar
reconstruction results, are marked in red.1

extracted before the numerous components associated with
muscle artifacts, which constitute the main nuisance in the
EEG denoising problem. Even though P-SAUD may also
extract other artifacts with high autocorrelation, such as eye
blinks or cardiac activity, among the first few ICA components,
these artifacts are confined to a small number of compo-
nents. Therefore, it is acceptable to identify these additional
components because the algorithm can still be limited to the
extraction of only a small number of components including
the activity of interest.

A remaining difficulty consists in choosing an appropriate
value for the parameter τ , that corresponds to the delay
considered in the autocorrelation term. Here, we have chosen
τ = 5 for the real data examples, but this parameter depends
on the sampling rate and may vary from patient to patient. In
practice, we suggest to test different values of τ on a small
set of data, extracting all P-SAUD components and selecting
the parameter which requires the smallest number of P-SAUD
components to be extracted in order to accurately reconstruct
the epileptic spike signals. The whole set of data can then be
analyzed efficiently using the selected parameter.

In conclusion, the proposed P-SAUD algorithm succeeds
in denoising the EEG recordings of epileptic sources with the
same performance as CoM2 and FastICA, but at a considerably
reduced computational cost. This makes P-SAUD a promising
algorithm to deal with the up-coming challenge of treating
high-resolution EEG data.

While the clinical data examples considered in this paper
confirm that the good performance of P-SAUD, which has

been observed in the simulations, also holds true for real
data, they are not sufficient to definitely validate the proposed
method. Future work will therefore consist in further consol-
idating the performance analysis of the P-SAUD algorithm
by applying it to larger sets of clinical EEG recordings and,
in particular, to high-resolution EEG data. Moreover, we will
explore the usefulness of P-SAUD for denoising ictal EEG
signals.

APPENDIX A
PARAMETERIZATION OF THE MIXING VECTORS

To facilitate the estimation of the mixing matrix, we intro-
duce a parameterization of the mixing vectors based on Givens
rotations. As has been originally introduced in [24] and used in
[20], any unit-norm vector of dimension K whose last element
is non-negative can be parameterized by K−1 Givens rotation
angles, such that the vector corresponds to the last row of the
orthonormal matrix:

G(p)(φ) = G(p,K−1)
g (φp,K−1) · · ·G(p,1)

g (φp,1)

which is composed of the Givens rotation matrices

G(p,k)
g (φp,k) =


Ik−1 0k−1,1 0k−1,q 0k−1,1

01,k−1 cos(φp,k) 0q,q − sin(φp,k)
0q,k−1 0q,1 Iq 0q,1

01,k−1 sin(φp,k) 01,q cos(φp,k)

 .
Here, q = K − k − 1, IK denotes the identity matrix of size
K×K, 0k,q is a k×q matrix of zeros, and p is the source index.
After prewhitening, each vector of the orthonormal mixing
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Fig. 7. Real EEG recordings of patient 3: 2.5 s of clean spikes and 8.5 s of noisy data, data reconstructed using P-SAUD, and signal components extracted
with P-SAUD and CoM2. The signals of the channels FT9 and FT10, at which the maximum spike amplitudes are observed, are marked in green. The
P-SAUD components (2, 3, 4, 6, and 9) used to reconstruct the data as well as the corresponding CoM2 components (5, 8, 13, 17, and 32; cf. Table III),
which lead to similar reconstruction results, are marked in red.1

matrix H can thus be characterized by a sequence of Givens
rotations. To identify the mixing vectors, it is sufficient to
search for the parameters φp,k of these Givens rotations that
maximize the statistical independence of the sources. This is
the basis for the P-SAUD algorithm, described in the Section
II-C.

APPENDIX B
MAXIMIZATION OF THE P-SAUD CONTRAST FUNCTION

Based on equation (6) and the multilinearity property of
cumulants, the FO cumulants of the signals {sp[t]} and
{sk[t]} can be computed from the FO cumulants of the data
{zP−p+1[t]} and {zk[t]} as follows:

C4,sp(1 + θ2)2 = α4θ
4 + α3θ

3 + α2θ
2 + α1θ + α0 (11)

C4,sk(1 + θ2)2 = α0θ
4 − α1θ

3 + α2θ
2 − α3θ + α4 (12)

where we write θ for θp,k to simplify the notation and where:

α0 = cum(zP−p+1, zP−p+1, zP−p+1, zP−p+1) = C4,zP−p+1

α1 = 4 cum(zP−p+1, zP−p+1, zP−p+1, zk)

α2 = 6 cum(zP−p+1, zP−p+1, zk, zk)

α3 = 4 cum(zP−p+1, zk, zk, zk)

α4 = cum(zk, zk, zk, zk) = C4,zk

with cum(a, b, c, d) the FO cross-cumulant of the four random
variables a, b, c, and d. The cumulants can be estimated from
an estimate of the moments according to the Leonov-Shiryaev
formula [25]. The covariance is given by:

cum(sp(t), sp(t+ 1)) · (1 + θ2) = β2θ
2 + β1θ + β0 (13)

with:

β0 =
√
λ · cum(zP−p+1(t), zP−p+1(t+ 1))

β1 =
√
λ · cum(zP−p+1(t), zk(t+ 1))

+
√
λ · cum(zk(t), zP−p+1(t+ 1))

β2 =
√
λ · cum(zk(t), zk(t+ 1))

Inserting (11), (12), and (13) into the contrast (5), one obtains
a rational function. The optima of this function are obtained
at the zeros of the 8-th order polynomial with coefficients:

γ0 =2(α0α1 − α3α4 + β0β1)

γ1 =2(α2
3 + α2

1 + 2α2α4 + 2α0α2 − 2β2
0 + β2

1 + 2β0β2)

− 8(α2
4 + α2

0)

γ2 =6(α0α3 + α1α2 − α1α4 − α2α3)− 14(α0α1 − α3α4)

− 2β0β1 + 6β1β2

γ3 =− 6(α2
1 + α2

3) + 16(α0α4 + α1α3)− 12(α0α2 + α2α4)

+ 8α2
2 + 4β0β2 − 8β2

0 + 2β2
1 + 4β2

2

γ4 =20(α1α4 + α2α3 − α0α3 − α1α2) + 10(β1β2 − β0β1)
γ5 =6(α2

1 + α2
3)− 16(α0α4 + α1α3) + 12(α0α2 + α2α4)

− 8α2
2 − 4β0β2 + 8β2

2 − 2β2
1 − 4β2

0

γ6 =6(α0α3 + α1α2 − α1α4 − α2α3)− 14(α0α1 − α3α4)

+ 2β1β2 − 6β0β1

γ7 =− 2(α2
3 + α2

1 + 2α2α4 + 2α0α2 − 2β2
2 + β2

1 + 2β0β2)

+ 8(α2
4 + α2

0)

γ8 =2(α0α1 − α3α4 − β1β2)
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Fig. 8. Source localization results obtained for the three patients on clean spikes, noisy spikes and spikes denoised by P-SAUD. For all patients, source
localization of denoised spikes yields results consistent with source localization of spikes uncorrupted by muscular activity as well as with functional imaging
and intracerebral data. On the contrary, sources localized from noisy data always involved more brain regions, located in areas that were not consistent with
other conclusions of the presurgical evaluation. These spurious regions were, for example, the right occipital pole and inferior frontal and central regions
bilaterally (patient 1), the right inferior frontal gyrus (patient 2) or the frontal poles (patient 3).1

The optimal rotation angle θ corresponds to the real-valued
zero for which the rational function attains its highest maxi-
mum.
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