
HAL Id: hal-01245998
https://hal.science/hal-01245998v1

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Casimir interaction between a sphere and a grating
Riccardo Messina, Paulo Maia Neto, Brahim Guizal, Mauro Antezza

To cite this version:
Riccardo Messina, Paulo Maia Neto, Brahim Guizal, Mauro Antezza. Casimir interaction between a
sphere and a grating. Physical Review A, 2015, 92 (6), pp.062504. �10.1103/PhysRevA.92.062504�.
�hal-01245998�

https://hal.science/hal-01245998v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW A 92, 062504 (2015)

Casimir interaction between a sphere and a grating

Riccardo Messina,1 Paulo A. Maia Neto,2 Brahim Guizal,1 and Mauro Antezza1,3
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We derive the explicit expression for the Casimir energy between a sphere and a one-dimensional grating in
terms of the sphere and grating reflection matrices. This expression is valid for arbitrary materials, sphere radius,
and grating geometric parameters. We then numerically calculate the Casimir energy between a metallic (gold)
sphere and a dielectric (fused silica) lamellar grating at room temperature, and we explore its dependence on the
sphere radius, grating-sphere separation, and lateral displacement. We quantitatively investigate the geometrical
dependence of the interaction, which is sensitive to the grating height and filling factor, and we show how
the sphere can be used as a local sensor of the Casimir force geometric features. Toward that end, we mostly
concentrate on separations and sphere radii of the same order of the grating parameters (here of the order of
1 μm). We also investigate the lateral component of the Casimir force, resulting from the absence of translational
invariance. We compare our results with those obtained within the proximity force approximation (PFA). When
applied to the sphere only, the PFA overestimates the strength of the attractive interaction, and we find that the
discrepancy is larger in the sphere-grating than in the sphere-plane geometry. On the other hand, when the PFA
is applied to both the sphere and the grating, it provides a better estimate of the exact results, simply because the
effect of a single grating is underestimated, thus leading to a partial compensation of errors.
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I. INTRODUCTION

Over the past few decades, remarkable progress has been
made in controlling the Casimir interaction [1] between mate-
rial surfaces [2], paving the way for technological applications
in the nanoscale [3,4]. In that respect, nanostructured surfaces
are particularly promising because they allow us to tailor the
Casimir interaction, leading, for instance, to a strong force
reduction in the case of a metallic nanostructured grating with
a period below the plasma wavelength [5]. In addition, they
give rise to a lateral Casimir force [6–8] and a Casimir torque
[9,10] that could be useful for the design of novel actuation
schemes in nanoelectromechanical systems (NEMS).

From a more fundamental point of view, nanostructured
surfaces are ideally suited to highlight the nontrivial geom-
etry dependence of the Casimir interaction. Since dispersive
interactions are nonadditive [11], it is not possible to build
up the Casimir interaction between material surfaces from
the elementary van der Waals or Casimir-Polder interaction
between their atomic constituents. For some geometries, such
a pairwise summation approach is unable to predict even the
attractive or repulsive nature of the interaction [12].

The proximity force approximation (PFA) [13] provides an
alternative approach that is valid in the limit of short distances
and large curvature radii. Within the PFA, the Casimir
interaction energy is approximated by the corresponding result
for parallel planes after averaging over the local distances.
Recent advances provide insights into the validity of the PFA in
some particular conditions [14–19]. Nonetheless, the PFA still
remains in general a noncontrolled approximation, especially
with nongentle geometries, and to have some quantitative and
qualitative meaning it should be compared with the exact
calculation.

More recently, the development of the scattering ap-
proach [20,21] led to the derivation of exact results for the
sphere-plane configurations, as well as for a variety of

nontrivial geometries, enabling an assessment of the accuracy
of different approximation methods. When applied to nanos-
tructured gratings, the key ingredient is the evaluation of the
grating reflection matrix. The simplest derivation is based on
a perturbative approximation that is valid for small grating
amplitudes [22–24]. The full exact calculation, involving
numerical computation of the reflection matrix elements, was
applied to configurations at [25–29] or out [30] of thermal
equilibrium.

Comparison with the exact results shows that the PFA
underestimates the attractive force in the case of a single
grating interacting with a planar surface [26,28], while it
overestimates the interaction between two gratings [22,23,25].
All these models considered the geometry of a planar grating
interacting either with a planar surface or a second lamellar
grating. However, the geometry of experimental relevance
involves a spherical surface instead, either smooth [5,31,32]
or with an imprinted grating [6,7,33]. In the presence of
gratings, up to now the sphere has always been analyzed
with the help of the PFA only. Hence an exact calculation
taking into account both the grating and the sphere geometry is
missing. Even though the employed distance-to-radius aspect
ratios, typically in the range 10−2–10−3, suggest that the PFA
should provide an accurate description of the experimental
conditions, it is still important to evaluate the validity of the
PFA by comparing its results with an exact calculation. This
is particularly important in connection with the experiment
reported in [5], where a significant disagreement between PFA
theory and experimental data was found.

In this paper, we compute the exact interaction energy
between a dielectric grating and a metallic sphere, without
approximations, by considering the full scattering matrices of
both sphere and grating in the framework of the scattering
approach. Although we are not able to numerically compute
for the very small aspect ratios probed experimentally, our
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results indicate that the PFA provides indeed a less accurate
description of the sphere curvature in the sphere-grating
geometry than in the sphere-plane one. Moreover, applying
the PFA to the sphere overestimates the attractive interaction,
although by a margin that is too small to explain the theory-
experiment discrepancy found in [5].

By taking the spherical geometry fully into account, we
are also able to discuss the Casimir energy dependence on the
sphere lateral position. Small spheres act as local probes of
the field fluctuations, which are not translational-invariant as
a consequence of the grating profile [24,27,34,35]. As in the
parallel-grating setup [6,7], a lateral Casimir force appears for
small- and medium-sized spheres.

This paper is organized as follows. In Sec. II, we present our
notations and definitions and discuss our theoretical method.
Section III is devoted to an evaluation of the grating and
sphere scattering matrices, which are the key ingredients of the
scattering method. In Sec. IV, we present our numerical results
and physical discussions. Concluding remarks are presented
in Sec. V. The Appendix contains a detailed derivation of all
the ingredients required in the analytical derivation.

II. PHYSICAL SYSTEM AND DEFINITIONS

We consider the Casimir interaction between a sphere and
a one-dimensional (1D) lamellar grating, as depicted in Fig. 1.
The sphere has radius RS , and it is placed at a distance d from
the highest part of a grating of period D and depth h. The unit
cell of the grating is divided in two zones: one, going from
x = 0 to x = f D (f being the filling factor) is filled with a
given arbitrary material; the remaining region from x = f D

to x = D is empty. This periodic structure is placed on top of a
semi-infinite substrate (z < −h) made out of the same material
as the grating (the case of a substrate of finite thickness is a
trivial extension resulting in a minor modification of the grating
reflection matrix, and it can be found in [30]).

While the following analytical derivation is valid for
arbitrary sphere and grating dielectric properties, numerical

FIG. 1. (Color online) Geometry of the system. A sphere of
radius RS is placed at a distance d from the upper plane of a 1D
grating, periodic along the x axis with period D. Moreover, f is the
filling factor of the grating, h is its depth, while xS is the x coordinate
of the sphere center. R−

S and R+
G are the reflection matrices involved

in the calculation of the Casimir interaction (see the text).

investigations will involve a metallic gold (Au) sphere and
a dielectric fused silica (SiO2) grating. We address the
calculation of the Casimir free energy assuming that the system
is at thermal equilibrium at temperature T . In particular,
throughout all this work, the temperature is assumed to be
T = 300 K, implying a natural energy scale given by the
thermal energy kBT = 25.9 meV. Among several theoretical
approaches, the Casimir free energy can be calculated by
means of the scattering-matrix method. This technique, based
on the description of each interacting body by its individual
reflection and transmission operators [36], has been largely
developed and exploited to discuss Casimir forces both at
[20–23,37–42] and out [43–46] of thermal equilibrium. The
equilibrium Casimir free energy is written as a sum over the
Matsubara frequencies

ξn = 2πnkBT

�
, n = 0,1,2, . . . (1)

as follows:

F = kBT
∑

n

′
ln det[1 − M(iξn)], (2)

where the prime stands for an additional factor 1/2 when
accounting for the zero-frequency (n = 0) contribution. The
round-trip operator M is defined as

M = R−
S e−K(d+RS )R+

Ge−K(d+RS ), (3)

where R+
G (R−

S ) is the operator accounting for the reflection of
waves propagating along the negative (positive) z direction by
the grating (sphere) (see Fig. 1), and e−K(d+RS ) is the translation
operator, where K is diagonal in the plane-wave basis with
matrix elements equal to the imaginary part of the wave-vector
z component [see Eq. (13) below for the explicit expression].

The calculation of the sphere-grating Casimir interaction
from Eq. (2) is challenging because this configuration mixes
the planar and spherical symmetries. In fact, the descriptions of
the grating and sphere reflection operators are easily achieved,
when taken separately, in the plane-wave and spherical-wave
bases, respectively. As in the plane-sphere configuration, our
method will then rely on the simultaneous use of these
two bases so as to take full advantage of both symmetries
[38,39,41,42]. This approach requires, as a preliminary step,
the derivation of the change of basis matrix elements that allow
us to combine the two bases when evaluating the Casimir
energy (2).

Both bases are defined for a fixed frequency ω, which is
later replaced by iξn. Each mode (k,p,φ) in the plane-wave
basis is then defined by the wave-vector component parallel
to the xy plane k, the polarization p = 1,2 corresponding
to transverse electric (TE) or transverse magnetic (TM),
respectively, and the parameter φ = ±1 fixing the propagation
direction along the z axis. Thus, the wave-vector z component
is φkz, where kz is a dependent variable defined as

kz =
√

ω2

c2
− k2. (4)

The complete wave vector K reads

Kφ = (k,φkz) = (kx,ky,φkz) (5)

and has modulus K = ω/c.
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The spherical-wave modes (�,m,P,s) are transverse vector
fields that are eigenfunctions of the total angular momentum
L2 and its z component Lz with eigenvalues �(� + 1)�2 and
m�, respectively (� = 1,2, . . . ,m = −�, . . . ,�). P denotes
the spherical polarization, taking the values P = E (electric
multipole) and P = M (magnetic multipole). The fourth index
s takes values s = reg and s = out and denotes, respectively,
regular modes (where the radial dependence of the mode is
given by the Bessel function j�; see the Appendix for more
details) and outgoing modes (given in terms of the spherical
Hankel function of the first kind h

(1)
� ).

In the Appendix, we derive the change of basis matrix
elements we will need in the following. We find

〈�,m,E,reg|k,TE,φ〉 = − i〈�,m,M,reg|k,TM,φ〉

= − 4πme−imϕk

√
�(� + 1) sin θ

φ

k

Y�m

(
θ

φ

k ,0
)
,

〈�,m,E,reg|k,TM,φ〉 = i〈�,m,M,reg|k,TE,φ〉

= − 4πie−imϕk

√
�(� + 1)

∂Y�m

(
θ

φ

k ,0
)

∂θ
,

(6)

and

〈k,TE,φ|�,m,E,out〉 = i〈k,TM,φ|�,m,M,out〉

= − 2πm

Kkz

√
�(�+ 1) sin θ

φ

k

Y�m

(
θ

φ

k ,ϕk
)
,

〈k,TM,φ|�,m,E,out〉 = − i〈k,TE,φ|�,m,M,out〉

= 2πi

Kkz

√
�(� + 1)

∂Y�m

(
θ

φ

k ,ϕk
)

∂θ
,

(7)

where θ
φ

k and ϕk are the spherical angles defining the direction
of Kφ , and Y�m are the spherical harmonics.

It is worth stressing that Eqs. (6) and (7) differ from
those used in [42] and related works. Apart from a slightly
different definition of the spherical modes, Eqs. (6) and
(7) result in a sphere scattering matrix that satisfies the
reciprocity relations and gives the correct limit for small radius
(see Appendices A 5, A 6, and A 7 for more details).

III. SCATTERING MATRICES

In this section, we consider the grating and sphere scattering
matrices, and then we derive an explicit expression for the
matrix representing the round-trip operatorM, given by (3), in
the spherical-wave basis. This result allows us to numerically
compute the Casimir free energy (2) in Sec. IV.

A. 1D-grating scattering matrix

To take into account the periodicity along the x axis,
we employ a mode decomposition in which the wave-vector
component kx is replaced by the new mode parameter,

kx,n = kx + 2π

D
n, (8)

with kx taking values in the first Brillouin zone [−π/D,π/D]
and n assuming all integer values. A given plane-wave mode
is then written as |kx,ky,n,p,φ〉. The reflection upon the
grating conserves both ky (because of translational invariance)
and kx in the first Brillouin zone (as a consequence of
periodicity). Thus, the generic matrix element of the grating
reflection operator satisfies the following relation (for a given
frequency ω):

〈kx,ky,n,p, + |R+
G|k′

x,k
′
y,n

′,p′,−〉
= (2π )2δ(kx − k′

x)δ(ky − k′
y)〈n,p|R+

G(kx,ky)|n′,p′〉. (9)

We are actually left with a matrix R+
G(kx,ky) operating on

the discrete indexes n ∈ Z and p = 1,2. The index n can still
take an infinite number of values, and the number of possible
diffraction orders has to be truncated.

In the numerical application, we will consider a 1D lamellar
dielectric grating, and we use the Fourier modal method
(FMM) to analyze the electromagnetic reflection and hence
derive its scattering matrix. The explicit form of such a
matrix, together with a detailed discussion on the numerical
convergence, can be found in [30].

B. Sphere scattering matrix

The scattering upon a homogeneous sphere (permittivity ε)
conserves the angular momentum variables � and m as well as
the polarization P . It is thus convenient to define

〈�,m,P,s|R−
S |�′,m′,P ′,s ′〉 = δ��′δmm′δPP ′δs,outδs ′,regr�P .

(10)

This expression represents the scattering of an incident
spherical mode, regular at the origin, into an outgoing spherical
wave. The scattering amplitudes r�P (ω) are independent of m

by symmetry. They correspond, apart from the sign, to the
well-known Mie coefficients [47] a� = −r�E and b� = −r�M

for a homogeneous sphere. Here we provide the explicit
expressions on the imaginary frequency axis, in terms of
the modified Bessel functions [48] evaluated at the “size
parameter” variables x = ξRS/c and nx, with n(iξ ) = √

ε(iξ )
representing the sphere refractive index:

r�E(iξ ) = (−1)�
π

2

ε(iξ )S(a)
� (x) − S

(b)
� (x)

ε(iξ )S(c)
� (x) − S

(d)
� (x)

,

r�M (iξ ) = (−1)�
π

2

S
(a)
� (x) − S

(b)
� (x)

S
(c)
� (x) − S

(d)
� (x)

,

(11)

S
(a)
� (x) = I�+ 1

2
[n(ix)x]

[
xI�− 1

2
(x) − �I�+ 1

2
(x)

]
,

S
(b)
� (x) = I�+ 1

2
(x)

{
n(ix)xI�− 1

2
[n(ix)x] − �I�+ 1

2
[n(ix)x]

}
,

(12)
S

(c)
� (x) = I�+ 1

2
[n(ix)x]

[−xK�− 1
2
(x) − �K�+ 1

2
(x)

]
,

S
(d)
� (x) = K�+ 1

2
(x)

{
n(ix)xI�− 1

2
[n(ix)x] − �I�+ 1

2
[n(ix)x]

}
.

C. Round-trip scattering matrix

To obtain an explicit expression for the matrix elements
of the round-trip operator M given by (3), we still need the
matrix elements of the K operator, which read (for a given
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imaginary frequency ω = iξ )

〈kx,ky,n,p,φ|K|k′
x,k

′
y,n

′,p′,φ〉
= (2π )2δ(kx − k′

x)δ(ky − k′
y)δnn′δpp′κn, (13)

where

κn =
√

ξ 2

c2
+ k2

x,n + k2
y. (14)

To compute the determinant in (2) using the spherical-wave
basis, we first remark from Eq. (10) that the operator M,

representing a closed round-trip loop, only has matrix elements
between outgoing modes s = out.

We insert twice the spectral decomposition of the identity
operator (closure relation) in terms of the plane-wave basis,

I =
∑
n,p,φ

∫ π
D

− π
D

dkx

2π

∫ +∞

−∞

dky

2π
|k,n,p,φ〉〈k,n,p,φ|, (15)

into the right-hand side of (3) and use Eqs. (9), (10), and (13)
to find

〈�1,m1,P1,out|M|�2,m2,P2,out〉

=
∫ π

D

− π
D

dkx

2π

∫ +∞

−∞

dky

2π

∑
n,n′

∑
p,p′

r�1P1

× 〈�1,m1,P1,reg|k,n′,p′,+〉
× e−κn′ (d+RS )〈n′,p′|R+

G(kx,ky)|n,p〉
× e−κn(d+RS )〈k,n,p, − |�2,m2,P2,out〉. (16)

The matrix element (16) represents the scattering amplitude
for going from a spherical mode |�2,m2,P2,out〉 to a different
mode |�1,m1,P1,out〉 after one complete round-trip propa-
gation between the two interacting bodies. It can be easily
interpreted if read from right to left. The mode |�2,m2,P2,out〉,
coming from the sphere, is first decomposed into plane waves
that travel from the sphere to the grating. After multiplication
by the translation factor (free-space propagation), each plane
wave is reflected by the grating, changing in general its
diffraction order and polarization, and then it propagates back
toward the sphere with a new wave-vector value and multiplied
by the appropriate translation factor. This plane wave is
now decomposed into spherical regular modes, being plane
waves regular at the origin. Since the scattering by the sphere
conserves angular momentum, the final transition amplitude
to the outgoing mode |�1,m1,P1,out〉 corresponds to the mul-
tiplication by the Mie coefficient r�1P1 . The total amplitude is
obtained by adding over all plane-wave intermediate modes.

Each matrix element of M is then a double integral, with
respect to kx and ky , of a matrix product in the vector space
spanned by the integers (n,p). All expressions appearing in
(16) were explicitly given in Secs. II C and III B, except for
the grating reflection matrix, whose evaluation is discussed in
detail in Ref. [30]. We now have all the ingredients needed to
compute the Casimir free energy.

IV. NUMERICAL RESULTS

We will present in this section the numerical results for the
Casimir energy between a sphere and a grating for different

configurations. First of all, we want to stress that the sphere-
grating calculation proves to be much more challenging than
the one for a sphere in front of a plane. The first obvious reason
is that, whereas the reflection matrix of a plane is diagonal with
respect to wave vectors and known analytically (for instance, it
is simply given in terms of the Fresnel coefficients in the case of
a homogeneous medium), the situation is different in the case
of a grating, where a numerical method has to be employed
to numerically evaluate a nondiagonal matrix linking wave
vectors differing in their x component by multiples of 2π

D
.

Moreover, the grating breaks the rotational symmetry
around the z axis, so that the round-trip matrix M is no longer
block-diagonal in m, representing the angular-momentum z

component. Whereas the contributions from different values
of m can be calculated independently in the plane-sphere
geometry [41], in the sphere-grating case the full nondiagonal
matrix coupling different values of m has to be considered.

When computing the determinant of the round-trip matrix
M, we must truncate the number of multipoles up to a
given maximum value �max. As in the plane-sphere case, the
required �max is proportional to the radius to distance ratio
RS/d. Coherently with previous results [41], we have taken
�max = 4d/RS in order to achieve a precision of the order of
1%. We also need to truncate the sums over the diffraction
orders n and n′ in (16) when computing the grating reflection
using the FMM method. We used the same reasoning presented
in [30], and the maximum number of diffraction orders that
need to be taken into account depends mainly on the distance
d and on the grating period D.

Before moving to the results, let us state our choice for the
materials of the sphere and the grating. The sphere is made of
gold, described using a Drude model,

εS(iξ ) = 1 + ω2
P

ξ (ξ + γ )
, (17)

where the plasma frequency and the dissipation rate are equal
to ωP = 9 eV and γ = 35 meV, respectively. Concerning the
grating, it is made of fused silica, for which we used optical
data [49] and a suitable Kramers-Kronig relation in order to
obtain the permittivity function along the imaginary axis [50].

A. Casimir energy for different filling factors

We start our numerical discussion presenting the depen-
dence of the Casimir energy on the sphere-grating distance d.
The sphere radius is RS = 5 μm, and for each configuration
the sphere center is aligned with the center of the higher part
of the grating. The grating has depth h = 500 nm and we
consider four different filling factors f = 0.3, 0.5, 0.7, and
1.0. The last case corresponds of course to a plane, and we
have verified the agreement with an independent sphere-plane
calculation.

In Fig. 2 we show the Casimir energy F as a function
of d. We took distances ranging from d = 1 to 4.25 μm,
corresponding to ratios d/RS in the range [0.2,0.85]. We
observe that the energy has a monotonic behavior with respect
to d for any filling factor. Moreover, not surprisingly, for a
given distance d, the energy is also an increasing function of
f . The same monotonic behavior with respect to f was also
observed in the case of two gratings [30].
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FIG. 2. (Color online) Casimir interaction energy (in units of
kBT = 25.9 meV) between a gold sphere (radius RS = 5 μm) and
a grating made of fused silica as a function of the distance d . The
grating has period D = 1 μm, depth h = 500 nm, and four possible
filling factors: f = 0.3, 0.5, 0.7, and 1, the last one corresponding
to a sphere-plane configuration. The points are obtained numerically
and the solid lines are interpolations.

1. Comparison with the proximity force approximation

It is now instructive to compare the exact results with
the ones obtained in the context of the proximity force
approximation (PFA) [13]. This approach is widely used
to deal with complex geometries, particularly in the case
of plane-sphere interactions. In this simple configuration, it
corresponds to the decomposition of the sphere into concentric
hollow cylinders extending in z from the sphere to +∞,
orthogonal to the plane, and of infinitesimal thickness. Each
one contributes to the Casimir energy with the product of
its frontal area times the Casimir energy per unit of surface
between two half-spaces at the corresponding distance. The
final result is the integral of these contributions. Of course
this approach does not take into account the well-known
nonadditivity of Casimir interactions [11], and for this reason
its precision cannot be assessed, except by comparison with
exact results taking the sphere curvature fully into account.

To be more quantitative, we give here the precise definition
of the PFA free energy at a distance d in the sphere-grating
configuration,

F (1)
PFA(d) = 2πRS

∫ d+RS

d

EPG(z)dz, (18)

where EPG(z) represents the exact Casimir free energy per unit
area between a gold plane and the grating under scrutiny in
our calculation, placed at a distance z from each other. One
can perform an even rougher approximation by also replacing
the grating by a set of planar half-spaces, one at a distance d

and one at a distance d + h from the sphere (see Fig. 1), and
averaging the results using the filling factor f as a weight. In
this double proximity force approximation, the Casimir energy

FIG. 3. (Color online) Main part of the plot: ratio between the
exact Casimir energy and the PFA result (18) as a function of distance
for four different values of the filling factor f (see the legend). In
the inset, the green triangles and gray squares are the same as in the
main part of the figure, while the orange circles represent the ratio
between the exact result and the double PFA (19) for f = 0.5. Same
parameters as in Fig. 2.

reads

F (2)
PFA(d) = 2πRS

[
f

∫ d+RS

d

EPP(z)dz

+ (1 − f )
∫ d+h+RS

d+h

EPP(z)dz

]

= 2πRS[f (DPP(d) − DPP(d + RS))

+ (1 − f )(DPP(d + h) − DPP(d + h + RS))].
(19)

In this expression, we have defined the function DPP(z)
by the condition − ∂DPP(z)

∂z
= EPP(z). While this function can

be expressed analytically in the case of the plane-plane
interaction, this is no longer true in the case of the plane-grating
geometry. Thus, in order to compute the single-PFA expression
F (1)

PFA from (18), one needs to calculate the energy EPG(z) for
several distances and then integrate it numerically from d to
d + RS .

A comparison between the exact results and the two PFA
approaches (18) and (19) is presented in Fig. 3, where we plot
the ratio

η = F(d)

FPFA(d)
(20)

as a function of distance. We calculate for the same filling
factors used in Fig. 2, including f = 1 corresponding to
a plane-sphere configuration. The figure shows that the
PFA overestimates the interaction energy and becomes more
accurate as d/RS decreases, as expected. More interestingly,
lower values of the filling factor prove to give lower values for
the ratio η when taking the single PFA (18). In other words,
the introduction of a more complex geometry, namely the
structuring of the plane into a grating, makes the replacement
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of the exact spherical surface by a set of parallel planes less
accurate for the description of the interaction. For example, for
the closest distance d = 1 μm (corresponding to d/RS = 0.2)
shown in Fig. 3, we have a ratio ηE = 0.89 for the plane-sphere
case (f = 1), which drops to ηE = 0.84 in the case of f = 0.3.
At this point, it is important to note, in connection with a recent
sphere-grating experiment [5], that the theoretical approach
based on the single PFA (18) leads to a huge overestimation
of the experimental data for the Casimir force gradient. In
this experiment, the interaction was probed for distances
such that d/RS < 10−2. In this range, it is known that the
PFA is sufficiently accurate when describing the plane-sphere
geometry [51], but no indication about the accuracy of (18)
for the sphere-grating configuration has been available so far.
Although our numerical results only cover distance-to-radius
ratios much larger than those probed in the experiment, they
indicate that the PFA is indeed worse when a plane surface is
replaced by a grating, even when the diffraction by the grating
is fully taken into account. However, the discrepancy we have
found is most likely too small to explain the theory-experiment
disagreement found in [5].

In the inset of Fig. 3, we compare the values of η when
taking either the single (18) or double (19) PFA result in
the denominator of (20) (green triangles and orange circles,
respectively). We also plot η for the standard plane-sphere
geometry (gray squares). Note that the double PFA is sur-
prisingly more accurate than the single PFA. This is clearly a
consequence of the fact that the PFA approach underestimates
the interaction energy in the plane-grating geometry [26]. In
fact, when both the sphere and the grating are approximated by
planar surfaces, the corresponding errors have opposite signs
and tend to compensate each other.

B. Lateral Casimir force

As already highlighted before, the presence of the grating
breaks the translational symmetry along the x axis. Since the
Casimir energy depends on the sphere lateral position xS , the
Casimir force acquires a lateral component along the x axis
given by

Fx(xS,d) = −∂F(xS,d)

∂xS

. (21)

For very large spheres close to the validity regime of the PFA,
the lateral dependence is averaged out by the very large nearly
plane spherical surface. On the other hand, since our approach
fully accounts for the curvature of the sphere and allows us
to consider different sphere radii, we can analyze the lateral
dependence of the Casimir energy in a variety of configurations
leading to possibly measurable lateral forces. In the limit of
very small radii, the sphere plays the role of a local probe
of the field fluctuations. By considering finite-size metallic
spheres, we expect to find lateral forces larger than in the
atomic case [52], thus improving the prospect for a possible
experiment (note that the lateral Casimir force between two
metallic gratings has been measured [6]).

Let us consider a sphere of radius RS = 500 nm placed at a
distance d = 200 nm from a grating having period D = 1 μm
and depth h = 500 nm. We consider three different filling
factors f = 0.3, 0.5, and 0.7 and plot the Casimir energy

FIG. 4. (Color online) Dependence of the Casimir energy on the
sphere center lateral position xS . The sphere radius and distance are
RS = 500 nm and d = 200 nm. The grating parameters are D =
1 μm, h = 500 nm, and f = 0.3 (red squares), 0.5 (green triangles),
and 0.7 (blue diamonds). The exact results are compared to several
plane-sphere energies (see the main text for details).

as a function of xS over one period in Fig. 4. As expected,
we observe indeed a dependence on xS , and we confirm the
periodicity of F . Moreover, we clearly see that the minima
and maxima of the energy for the three filling factors are
clearly associated with the center of the two grating regions.
In particular, the energy is minimized when the center of the
sphere is located at the center of the higher region of the grating
(which is then a stable equilibrium position with respect to
displacements along the x axis), while it is maximized when
the sphere is located at the center of the lower region (unstable
equilibrium position). In Fig. 4, we also show reference energy
values obtained for plane-sphere configurations. The lower
and higher values (dot-dashed horizontal lines) correspond to
the sphere-plane energies at the two distances d and d + h.
Moreover, the dashed value around which each curve is
oscillating is the weighted average of these two sphere-plane
results using the appropriate filling factors. We see that the two
sphere-plane results make it possible to predict very roughly
the region of oscillation, and the weighted averages give a
good estimate of the center of oscillation.

C. Nanosphere as a local probe of field fluctuations

We now consider the case in which both the radius of the
sphere and the sphere-grating distance are small compared
to the grating period. In particular, we take into account a
nanosphere of radius RS = 100 nm placed at a distance of
d = 100 nm from a grating of period D = 2 μm and f = 0.5.
Since the ratios D/RS and D/d are equal to 20, we expect the
sphere-grating energy to show two flat parts around the center
of the two regions of the grating, with two transition regions
close to the corners. We have studied this behavior for different
values of the grating height h. The results are presented in
Fig. 5.
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FIG. 5. (Color online) Casimir energy variation with the sphere
lateral position for a nanosphere of radius RS = 100 nm at a distance
d = 100 nm from a grating of period D = 2 μm and filling factor
f = 0.5. The different curves correspond to different grating heights
(see legend).

First of all, we clearly observe that in the case of h = 0 we
have no dependence on xS , since this case corresponds to a
plane-sphere configuration. On the other hand, we see indeed
a dependence on the lateral position for all the other values of
h, which is already visible at values as low as h = 5 nm. Then,
the curves are strongly modified by increasing the value of the
height, and clearly seem to reach an asymptotic behavior for
h of the order of 500 nm. Such asymptotic behavior suggests
that the bottom of the grating is not affecting the interaction
energy of a nanosphere sitting on top of the center of the
plateau region, as long as h is sufficiently large.

Moreover, we observe the existence of two regions with a
slow variation with xS , close to the centers of the high and
low part of the grating. As expected, the width of this nearly
flat region decreases with h, whereas the difference between
the low and high values of the energy increases. To make
this analysis quantitative, we have considered the difference
between the extreme values of the energy as a function of h.
This difference is clearly defined as

�F = F(1.5 μm) − F(0.5 μm), (22)

and it is plotted in Fig. 6. This difference is exactly zero
for h = 0 (not visible in logarithmic scale) and goes to an
asymptotic value reached around 500 nm as observed before
from Fig. 5. We have also studied the characteristic transition
length between the two regions:

�x = x2 − x1, (23)

where x1 and x2 are defined by

F(x1) = F(0.5 μm) + F(1.0 μm)

2
,

F(x2) = F(1.0 μm) + F(1.5 μm)

2
.

(24)

In other words, x2 (x1) is the point at which the energy, starting
from x = 1 μm and moving to larger (smaller) values of xS ,

FIG. 6. The main part of the figure shows the oscillation ampli-
tude (22) of the Casimir energy represented in Fig. 5 as a function of
h. The inset shows the transition length (23) as a function of h.

has increased (decreased) by half of the value it would get
to arrive at its maximum (minimum). We see in the inset
of Fig. 6 that this quantity has a behavior similar to that of
�F . It is interesting to remark that its asymptotic value is
around 140 nm: it is then of the order of the sphere geometric
parameters RS and d, confirming the behavior of the sphere as
a local probe of the field.

Finally, in Fig. 7 we show the lateral force acting on the
sphere, computed from the numerical derivative of the curves
for the energy shown in Fig. 5. The force points toward the
center of the plateau regions, and its magnitude is maximum
on top of the corners. For the nanospheres considered in
Figs. 7 and 5, the maximum lateral force is close to 4 fN,
hence considerably smaller than the values measured in [6]
for the more complex geometry involving a second grating

FIG. 7. (Color online) Lateral Casimir force for a nanosphere of
radius RS = 100 nm at a distance d = 100 nm from a grating of
period D = 2 μm and filling factor f = 0.5. The different curves
correspond to different grating heights (see the legend).
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imprinted on the surface of a very large sphere. Nevertheless,
it is remarkable that a lateral force exists even with a single
grating, as long as the sphere surface is sufficiently small and
does not average out the grating profile. One can still expect
a considerable increase in the value of the force by replacing
our dielectric grating with a metallic one (as in [6,7]) and by
optimizing the sphere radius and the grating period and filling
factor.

V. CONCLUSIONS

We derived the exact sphere-grating Casimir interaction en-
ergy, which we investigated numerically for a metallic sphere
and a dielectric grating. We considered separation/radius
aspect ratios d/RS

>∼ 0.2. These values of d/RS are still more
than one order of magnitude larger than the aspect ratios
probed in existing Casimir force experiments [5–7,31–33].
Nonetheless, our results show that replacing the plane surface
by a nanostructured grating degrades the quality of the PFA
description of the sphere curvature.

The sphere is shown to be a probe of several geometric
effects in Casimir interaction. In particular, its finite size has a
startling consequence: a lateral Casimir force appears as long
as the sphere surface does not average out the grating profile.

This work paves the way for several interesting develop-
ments. For instance, a metallic grating can be used to increase
both the normal and the lateral Casimir interaction.
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APPENDIX

In this Appendix, we provide all the details concerning the
choice of the plane-wave and spherical bases, as well as a
detailed derivation of the projection coefficients between the
two representations.

1. Plane-wave basis

We start by providing an explicit expression of the electric
field, which we first decompose with respect to frequency,
working only with positive frequencies,

E(R,t) = 2 Re

[∫ +∞

0

dω

2π
exp(−iωt)E(R,ω)

]
. (A1)

The single-frequency component E(R,ω) is then decomposed
with respect to the parallel wave vector k, the direction of
propagation φ, and the polarization p,

E(R,ω) =
∑
φ,p

∫
d2k

(2π )2
exp(iKφ · R)ε̂φ

p(k,ω)Eφ
p (k,ω).

(A2)

As a general rule, the sum on φ runs over the values {+,−},
while the sum on p runs over the values {1,2}. For the

polarization vectors ε̂φ
p(k,ω) appearing in Eq. (A2), we adopt

the following definitions:

ε̂
φ

TE(k,ω) = ẑ × k̂ = 1

k
(−ky x̂ + kx ŷ),

ε̂
φ

TM(k,ω) = 1

K
ε̂

φ

TE(k,ω) × Kφ = 1

K
(−kẑ + φkzk̂),

(A3)

where x̂, ŷ, and ẑ are the unit vectors along the directions x,
y, and z, respectively, and k̂ = k/k. The following relation
holds:

K̂φ × ε̂φ
p(k,ω) = β̂

φ

p(k,ω) = (−1)p ε̂
φ

S(p)(k,ω), (A4)

where S(p) is a function that switches between the two
polarization, acting as S(1) = 2 and 1.

The expression of the single-frequency component of
the magnetic field can be easily deduced from Maxwell’s
equations. It reads

B(R,ω) =
√

ε(ω)

c

∑
φ,p

∫
d2k

(2π )2
exp(iKφ · R)

× β̂
φ

p(k,ω)Eφ
p (k,ω). (A5)

2. Spherical-wave basis

The presence of the sphere makes it natural to introduce
a spherical-wave basis. In this basis, a mode is identified by
the set (ω,�,m,P,s), where � and m are associated as usual
with the eigenvalues of the angular-momentum operators L2

and Lz, while P denotes the spherical polarization, taking the
values P = E (electric) and P = M (magnetic). Finally, as
stated in the main text, s is associated with regular (s = reg)
or outgoing (s = out) modes. In this mode decomposition, we
write the regular or outgoing electric field as

E(s)(R,ω) =
+∞∑
�=1

�∑
m=−�

∑
P∈{E,M}

E
(s)
�mP (ω)F(s)

�mP (R). (A6)

The mode functions F(s)
�mP are defined as follows:

F(s)
�mM (R) = ∇ × [

Rψ
(s)
�m(R)

]
,

F(s)
�mE(R) = 1

K
∇ × F(s)

�mM (R).
(A7)

The scalar function ψ
(s)
�m appearing in these equations is a

solution of the Helmholtz equation and can be cast in the form

ψ
(s)
�m(R) = i�√

�(� + 1)
z

(s)
� (KR)Y�m(θ,ϕ), (A8)

where for regular modes z
(reg)
� = j�, while for outgoing

modes (diverging at the origin) we have z
(out)
� = h

(1)
� . In this

expression, we are working in spherical coordinates. The
modes (A7) can be calculated explicitly, and they read

F(s)
�mM (R) = i�√

�(� + 1)

[
im

sin θ
z

(s)
� (KR)Y�m(θ,ϕ)θ̂

− z
(s)
� (KR)

∂Y�m(θ,ϕ)

∂θ
ϕ̂

]
,
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F(s)
�mE(R) = i�√

�(� + 1)

[
1

KR
z

(s)
� (KR)�(� + 1)Y�m(θ,ϕ)R̂

+ 1

KR

d

dR

[
R z

(s)
� (KR)

]∂Y�m(θ,ϕ)

∂θ
θ̂

+ im

sin θ

1

KR

d

dR

[
R z

(s)
� (KR)

]
Y�m(θ,ϕ)ϕ̂

]
.

(A9)

It can be shown that these functions satisfy the following
conditions [where S(E) = M and S(M) = E]:

∇ × F(s)
�mP (R) = KF(s)

�mS(P )(R), (A10)

and the orthogonality and normalization properties

∫ π

0
dθ sin θ

∫ 2π

0
dϕ F(s)∗

�mE(R) · F(s)
�′m′M (R) = 0,

∫ π

0
dθ sin θ

∫ 2π

0
dϕ F(s)∗

�mM (R) · F(s)
�′m′M (R)

= δ�,�′δm,m′
[
z

(s)
� (KR)

]2
,

(A11)∫ π

0
dθ sin θ

∫ 2π

0
dϕ F(s)∗

�mE(R) · F(s)
�′m′E(R)

= δ�,�′δm,m′
1

K2R2

[(
d

dR

[
R z

(s)
� (KR)

])2

+ �(� + 1)
[
z

(s)
� (KR)

]2
]
.

As a consequence, the amplitude E
(s)
�mP of a given field

E(s)(R,ω) with respect to a mode function F(s)
�mP can be

calculated as

E
(s)
�mP =

∫ π

0 dθ sin θ
∫ 2π

0 dϕ F(s)∗
�mP (R) · E(s)(R,ω)∫ π

0 dθ sin θ
∫ 2π

0 dϕ
∣∣F(s)

�mP (R)
∣∣2 . (A12)

3. Projection of a plane wave on spherical waves

Because of the mixture of symmetries typical of our
physical system, we have to face the problem of calculating
the matrix elements describing the projections of any basis
function of one set (plane or spherical waves) on the functions
of the other set. We start here from the problem of decomposing
a plane wave of frequency ω, wave vector Kφ , and polarization
p on the set of spherical waves. Since a plane wave is regular
at the origin, this decomposition will involve only spherical
modes having s = reg. More explicitly, we want to derive the

coefficients defined by the following decomposition:

exp(iKφ · R)ε̂φ
p(k,ω) =

∑
�,m,P

〈�,m,P,reg|k,p,φ〉F(reg)
�mP (R).

(A13)
Toward that end, we start by expressing the plane-wave unit

vectors with respect to spherical unit vectors. This gives

ε̂
φ

TE(k,ω) = sin θ sin(ϕ − ϕk)R̂ + cos θ sin(ϕ − ϕk)θ̂

+ cos(ϕ − ϕk)ϕ̂,

ε̂
φ

TM(k,ω) = (− sin θ
φ

k cos θ + cos θ
φ

k sin θ cos(ϕ − ϕk)
)
R̂

+ (
sin θ

φ

k sin θ + cos θ
φ

k cos θ cos(ϕ − ϕk)
)
θ̂

− cos θ
φ

k sin(ϕ − ϕk)ϕ̂. (A14)

In these expressions, we have introduced the angles θk and ϕk,
defined by the relation

Kφ = K(sin θ
φ

k cos ϕk, sin θ
φ

k sin ϕk, cos θ
φ

k )

⇒ sin θ
φ

k = k

K
, cos θ

φ

k = φkz

K
,

cos ϕk = kx

k
, sin ϕk = ky

k
.

(A15)

If we move to an imaginary frequency ω = iξ , the angle θφ is
defined as

sin θ
φ

k = −i
ck

ξ
, cos θ

φ

k = φcκ

ξ
, kz = iκ = i

√
ξ 2

c2
+ k2.

(A16)
For an arbitrary frequency we deduce

Kφ · R = KR
(
sin θ

φ

k sin θ cos(ϕ − ϕk) + cos θ
φ

k cos θ
)
.

(A17)
To calculate the matrix elements defined in Eq. (A13), we will
make use of the following result:

∫ 2π

0
dϕ eiβ cos(ϕ−ϕk)e−imϕ

⎛
⎝sin(ϕ − ϕk)

cos(ϕ − ϕk)
1

⎞
⎠

= −πime−imϕk

⎛
⎝ [Jm−1(β) + Jm+1(β)]

i[Jm−1(β) − Jm+1(β)]
−2Jm(β)

⎞
⎠, (A18)

Jn(x) being the ordinary Bessel function of index n. Taking
the curl of both sides of Eq. (A13) and using Eqs. (A4) and
(A10), we have easily

exp(iKφ · R)ε̂φ
p(k,ω)

=
∑

�,m,P

i(−1)p〈�,m,S(P ),reg|k,S(p),φ〉F(reg)
�mP (R),

(A19)

from which we deduce the property

〈�,m,P,reg|k,p,φ〉 = i(−1)p〈�,m,S(P ),reg|k,S(p),φ〉.
(A20)
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Let us start with the calculation of 〈l,m,M,reg|k,TE,φ〉. We have

exp(iKφ · R)F(reg)∗
�mM (R) · ε̂φ

TE(k,ω)

= exp
[
iKR sin θ

φ

k sin θ cos(ϕ − ϕk)
]

exp
[
iKR cos θ

φ

k cos θ
]

× i−�

√
�(� + 1)

(
− im cos θ

sin θ
sin(ϕ − ϕk)Y�m(θ,0) − cos(ϕ − ϕk)

∂Y�m(θ,0)

∂θ

)
j�(KR)e−imϕ. (A21)

We now use Eq. (A18) and the following two relations:

−2m cos θ

sin θ
Y�m(θ,ϕ) = e−iϕ

√
(� − m)(� + m + 1)Y�,m+1(θ,ϕ) + eiϕ

√
(� + m)(� − m + 1)Y�,m−1(θ,ϕ), (A22)

∂Y�m(θ,ϕ)

∂θ
= m cos θ

sin θ
Y�m(θ,ϕ) + e−iϕ

√
(� − m)(� + m + 1)Y�,m+1(θ,ϕ)

= 1

2
(e−iϕ

√
(� − m)(� + m + 1)Y�,m+1(θ,ϕ) − eiϕ

√
(� + m)(� − m + 1)Y�,m−1(θ,ϕ)), (A23)

to get ∫ 2π

0
dϕ exp(iKφ · R)F(reg)∗

�mM (R) · ε̂
φ

TE(k,ω)

= −πim+1e−imϕk exp
[
iKR cos θ

φ

k cos θ
]
j�(KR)

i−�

√
�(� + 1)

[
√

(� + m)(� − m + 1)

× Jm−1(β)Y�,m−1(θ,0) +
√

(� − m)(� + m + 1)Jm+1(β)Y�,m+1(θ,0)]. (A24)

Using the result [53] ∫ π

0
dθ sin θ exp[ia cos α cos θ ]Y�,m(θ,ϕ)Jm(a sin α sin θ ) = 2i�−mY�,m(α,ϕ)j�(a), (A25)

we conclude, using again Eq. (A22),

〈�,m,M,reg|k,TE,φ〉 = 2π√
�(� + 1)

e−imϕk
[√

(� + m)(� − m + 1)Y�,m−1
(
θ

φ

k ,0
) −

√
(� − m)(� + m + 1)Y�,m+1

(
θ

φ

k ,0
)]

= − 4πe−imϕk

√
�(� + 1)

∂Y�m

(
θ

φ

k ,0
)

∂θ
. (A26)

This, together with Eq. (A20), proves the second part of Eq. (6).
We now move to the calculation of 〈�,m,M,reg|k,TM,φ〉. We have

exp(iKφ · R)F(reg)∗
�mM (R) · ε̂

φ

TM(k,ω)

= exp
[
iKR sin θ

φ

k sin θ cos(ϕ − ϕk)
]

exp
[
iKR cos θ

φ

k cos θ
] i−�

√
�(� + 1)

×
[
− im

sin θ

(
sin θ

φ

k sin θ + cos θ
φ

k cos θ cos(ϕ − ϕk)
)
Y�m(θ,0) + cos θ

φ

k sin(ϕ − ϕk)
∂Y�m(θ,0)

∂θ

]
j�(KR)e−imϕ. (A27)

We follow the same steps as before, using Eqs. (A22) and (A23) twice and Eq. (A25) once, and we conclude

〈�,m,M,reg|k,TM,φ〉 = − 4πime−imϕk

√
�(� + 1) sin θ

φ

k

Y�m

(
θ

φ

k ,0
)
, (A28)

which, together with Eq. (A20), proves the first part of Eq. (6). Associating p = 1 (p = 2) with TE (TM), and P = 1 (P = 2)
to E (M), we can write

〈�,m,P,reg|k,p,φ〉 = −4πip−1e−imϕk

√
�(� + 1)

(
m

sin θ
φ

k

)δpP
(

∂

∂θ

)1−δpP

Y�m

(
θ

φ

k ,0
)
. (A29)

062504-10



CASIMIR INTERACTION BETWEEN A SPHERE AND A . . . PHYSICAL REVIEW A 92, 062504 (2015)

4. Projection of a spherical wave on plane waves

The complementary problem we need to solve is the decomposition of a spherical wave in plane waves. In particular, we
only need the decomposition of outgoing spherical waves, i.e., the ones involving only the Hankel functions h

(1)
� . We write this

decomposition in the form

F(out)
�mP (R) =

∑
p

∫
d2k

(2π )2
eiKφ ·R〈k,p,φ|�,m,P,out〉ε̂φ

p(k,ω). (A30)

We want to make use of the following decomposition [54]:

h
(1)
� (KR)Y�m(θ,ϕ) = 2πi−�

K

∫
d2k

(2π )2

1

kz

eiKφ ·RY�m

(
θ

φ

k ,ϕk
)
. (A31)

Taking the curl of both sides of Eq. (A30) we have, after simple manipulations,

F(out)
�mP (R) = −

∑
p

∫
d2k

(2π )2
eiKφ ·R〈k,S(p),φ|�,m,S(P ),out〉i(−1)p ε̂φ

p(k,ω), (A32)

from which we deduce

〈k,p,φ|�,m,P,out〉 = −i(−1)p〈k,S(p),φ|�,m,S(P ),out〉. (A33)

The first step is the projection of the electric field associated with the M polarization [see Eq. (A9)] on the two unit vectors
associated with TE and TM, respectively. Using Eq. (A14), we obtain easily

F(out)
�mM (R) = F

(out)φ,TE
�mM (R)ε̂φ

TE(k,ω) + F
(out)φ,TM
�mM (R)ε̂φ

TM(k,ω),

F
(out)φ,TE
�mM (R) = i�√

�(� + 1)
h

(1)
� (KR)

[
cos θ sin(ϕ − ϕk)

im

sin θ
Y�m(θ,ϕ) − cos(ϕ − ϕk)

∂Y�m(θ,ϕ)

∂θ

]
, (A34)

F
(out)φ,TM
�mM (R) = i�√

�(� + 1)
h

(1)
� (KR)

[(
sin θ

φ

k sin θ + cos θ
φ

k cos θ cos(ϕ − ϕk)
) im

sin θ
Y�m(θ,ϕ) + cos θ

φ

k sin(ϕ − ϕk)
∂Y�m(θ,ϕ)

∂θ

]
.

We have, using Eqs. (A22) and (A23),

F
(out)φ,TE
�mM (R)

= i�√
�(� + 1)

h
(1)
� (KR)

2
[−i sin(ϕ − ϕk)(e−iϕ

√
(� − m)(� + m + 1)Y�,m+1(θ,ϕ) + eiϕ

√
(� + m)(� − m + 1)Y�,m−1(θ,ϕ))

− cos(ϕ − ϕk)(e−iϕ
√

(� − m)(� + m + 1)Y�,m+1(θ,ϕ) − eiϕ
√

(� + m)(� − m + 1)Y�,m−1(θ,ϕ))]

= i�√
�(� + 1)

h
(1)
� (KR)

2
( − e−iϕk

√
(� − m)(� + m + 1)Y�,m+1(θ,ϕ) + eiϕk

√
(� + m)(� − m + 1)Y�,m−1(θ,ϕ)), (A35)

and

F
(out)φ,TM
�mM (R) = i�√

�(� + 1)
ih

(1)
� (KR)

[
m sin θ

φ

k Y�m(θ,ϕ)

− 1

2
cos θ

φ

k [cos(ϕ − ϕk)(e−iϕ
√

(� − m)(� + m + 1)Y�,m+1(θ,ϕ) + eiϕ
√

(� + m)(� − m + 1)Y�,m−1(θ,ϕ))

+ i sin(ϕ − ϕk)(e−iϕ
√

(� − m)(� + m + 1)Y�,m+1(θ,ϕ) − eiϕ
√

(� + m)(� − m + 1)Y�,m−1(θ,ϕ))]
]

= i�√
�(� + 1)

ih
(1)
� (KR)

[
m sin θ

φ

k Y�m(θ,ϕ)

− 1

2
cos θ

φ

k (e−iϕk
√

(� − m)(� + m + 1)Y�,m+1(θ,ϕ) + eiϕk
√

(� + m)(� − m + 1)Y�,m−1(θ,ϕ))
]
. (A36)
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Finally, using (A31) together with Eqs. (A22) and (A23), we conclude

〈k,TE,φ|�,m,M,out〉 = − 2πeimϕk

Kkz

√
�(� + 1)

∂Y�m

(
θ

φ

k ,0
)

∂θ
,

〈k,TM,φ|�,m,M,out〉 = 2πimeimϕk

Kkz

√
�(� + 1) sin θ

φ

k

Y�m

(
θ

φ

k ,0
)
.

(A37)

This, together with Eq. (A20), proves Eq. (7). Associating p = 1 (p = 2) with TE (TM), and P = 1 (P = 2) with E (M), we
can write

〈k,p,φ|�,m,P,out〉 = − 2πi1−peimϕk

Kkz

√
�(� + 1)

(
m

sin θ
φ

k

)δpP
(

∂

∂θ

)1−δpP

Y�m

(
θ

φ

k ,0
)
. (A38)

5. Sphere reflection matrix in plane waves and comparison with previous results

Here we compute the matrix elements of the sphere reflection operator in the plane-wave basis,

〈k,p|Rφ

S |k′,p′〉, (A39)

which is useful to double-check our results for the various matrix elements we have derived in this paper. In fact, these matrix
elements should satisfy the general reciprocity relations and must provide the correct small-sphere (Rayleigh) limit, which can
be connected to the atomic reflection matrix operator.

By inserting in Eq. (A39) two closure relations in spherical waves and by exploiting Eq. (10),

〈k,p|Rφ

S |k′,p′〉 =
+∞∑
�=1

�∑
m=−�

∑
P∈{E,M}

〈k,p,φ|�,m,P,out〉〈�,m,P,out|Rφ

S |�,m,P,reg〉〈�,m,P,reg|k′,p′, − φ〉. (A40)

Using Eqs. (A29), (10), and (A38), we have

〈k,p|Rφ

S |k′,p′〉 =
+∞∑
�=1

�∑
m=−�

∑
P∈{E,M}

8π2ip
′−pr�P

�(� + 1)kz

mδpP +δp′P KδpP +δp′P −1

kδpP (k′)δp′P
eim(ϕk−ϕk′ )

×
[( ∂

∂θ

)1−δpP

Y�m(θφ

k ,0)
][( ∂

∂θ

)1−δp′P
Y�m

(
θ

−φ

k′ ,0
)]

. (A41)

It is worth stressing that the sphere reflection matrix in plane waves derived from the matrix elements presented in [42] is
related to the one given in Eq. (A41) by the relation

(〈k,p|Rφ

S |k′,p′〉)previous =
√

kz

k′
z

〈k,p|Rφ

S |k′,p′〉. (A42)

Thus, the matrix elements used in [42] coincide with the correct ones only for k = k′. This discrepancy between the two results
does not affect the results for the Casimir energy in the sphere-plane configuration discussed in [42], for which only matrix
elements with k = k′ are relevant. On the other hand, when more general matrix elements with any k and k′ are needed, Eq. (A41)
should be used. In the rest of this Appendix, we show that Eq. (A41) satisfies reciprocity relations (see Appendix A 6), as well
as reproducing the reflection matrix of an atom in the limit of a small radius (see Appendix A 7).

6. Reciprocity relations

We now want to prove that the sphere reflection matrix satisfies the reciprocity relation [45],

kz〈k,p|Rφ

S |k′,p′〉 = (−1)p+p′
k′
z〈−k′,p′|Rφ

S | − k,p〉, (A43)

which for our purposes becomes

kz

+∞∑
�=1

�∑
m=−�

∑
P∈{E,M}

〈k,p,φ|�,m,P,out〉〈�,m,P,out|Rφ

S |�,m,P,reg〉〈�,m,P,reg|k′,p′, − φ〉

= (−1)p+p′
k′
z

+∞∑
�=1

�∑
m=−�

∑
P∈{E,M}

〈−k′,p′,φ|�, − m,P,out〉〈�, − m,P,out|Rφ

S |�, − m,P,reg〉〈�, − m,P,reg| − k,p, − φ〉,

(A44)
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where in the second sum we changed m in −m. It is then sufficient to prove that

r1 = kz〈k,p,φ|�,m,P,out〉〈�,m,P,reg|k′,p′, − φ〉
= (−1)p+p′

k′
z〈−k′,p′,φ|�, − m,P,out〉〈�, − m,P,reg| − k,p, − φ〉 = r2.

(A45)

Toward that end, we first observe from Eq. (A15) that

sin θ
φ

k = sin θ
−φ

k = sin θ
φ

−k,

cos θ
φ

k = − cos θ
−φ

k = cos θ
φ

−k,

sin ϕk = − sin ϕ−k,

cos ϕk = − cos ϕ−k,

(A46)

Using Eqs. (A29) and (A38), we have

r1 = kz

(
2πi1−p

Kkz

4πip
′−1

�(� + 1)

)(
m

sin θ
φ

k

)δpP
(

m

sin θ
−φ

k′

)δp′P

eim(ϕk−ϕk′ )
[(

∂

∂θ

)1−δpP

Y�m(θφ

k ,0)

][(
∂

∂θ

)1−δp′P

Y�m

(
θ

−φ

k′ ,0
)]

, (A47)

and

r2 = k′
z(−1)p+p′

(
2πi1−p′

Kk′
z

4πip−1

�(� + 1)

)( −m

sin θ
φ

−k′

)δp′P ( −m

sin θ
−φ

−k

)δpP

e−im(ϕ−k′ −ϕ−k)

×
[(

∂

∂θ

)1−δp′P

Y�,−m

(
θ

φ

−k′ ,0
)][(

∂

∂θ

)1−δpP

Y�,−m

(
θ

−φ

−k ,0
)]

. (A48)

Using Eq. (A46) and the properties of spherical harmonics,

r2 = (−1)p+p′
(

8π2ip−p′

K�(� + 1)

)(
m

sin θ
−φ

k′

)δp′P (
m

sin θ
φ

k

)δpP

eim(ϕk−ϕk′ )

×
[(

∂

∂θ

)1−δp′P

Y�m

(
θ

−φ

k′ ,0
)][(

∂

∂θ

)1−δpP

Y�m

(
θ

φ

k ,0
)]

, (A49)

which coincides indeed with r1 since ip
′−p = (−1)p+p′

ip−p′
.

7. Limit of a small radius: Atomic reflection matrix

We want to show here that in the limit of a small radius of the
sphere, we are able to recover analytically the reflection matrix
of an atom obtained within the dipolar approximation in [24].
It is well known that in the case of a small sphere, the term
� = 1 gives the main contribution. Furthermore, the matrix
elements with P = E are proportional to the Mie coefficient
a1, which dominates over b1, present in the case P = M . The
Mie coefficient a1 can be approximated as

〈1,m,E|Rφ

S |1,m,E〉 = a1 � 2i

3
(KR)3 ε(ω) − 1

ε(ω) + 2

= 2iK3

3

α(ω)

4πε0
, (A50)

where we have introduced the polarizability of the sphere. We
then have

〈k,p|Rφ

S |k′,p′〉 = 2iK3

3

α(ω)

4πε0

1∑
m=−1

〈k,p,φ|1,m,E,out〉

× 〈1,m,E,reg|k′,p′, − φ〉. (A51)

We have

〈k,TM,φ|1,0,E,out〉 =
√

3π

2

i−1 sin θ
φ

k

Kkz

,

〈k,TM,φ|1,±1,E,out〉 = ±
√

3πi−1 cos θ
φ

k

2Kkz

e±iϕk ,

(A52)

〈k,TE,φ|1,0,E,out〉 = 0,

〈k,TE,φ|1,±1,E,out〉 =
√

3π

2Kkz

e±iϕk ,
(A53)

and

〈1,0,E,reg|k,TM,φ〉 =
√

6πi sin θ
φ

k ,

〈1,±1,E,reg|k,TM,φ〉 = ±
√

3πi cos θ
φ

k e∓iϕk .
(A54)

〈1,0,E,reg|k,TE,φ〉 = 0,

〈1,±1,E,reg|k,TE,φ〉 =
√

3πe∓iϕk .
(A55)

Using these relations, it can be shown that

1∑
m=−1

〈k,p,φ|1,m,E,out〉〈1,m,E,reg|k′,p′, − φ〉

= 3π

Kkz

[
ε̂φ

p(k,ω) · ε̂
−φ

p′ (k′,ω)
]
, (A56)
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thus

〈k,p|Rφ

S |k′,p′〉 = 2πiK2

kz

α(ω)

4πε0

[
ε̂φ

p(k,ω) · ε̂−φ

p′ (k′,ω)
]
,

(A57)

which is the reflection matrix of an electrically polarizable
atom located in the origin [24].
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