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We adapt the Gurau's proof (2008) about the asymptotic limit of Ponzano-Regge formula to supersymmetric 6jS symbols according to their intrinsic parities alpha, beta, gamma. The behaviour at a large scaling shows significant differences depending on these parities. The decay is slowed and the angles of the oscillating parts in cosine are generally shifted or more altered. Our results should be relevant in 3-D Quantum Supergravity and Spin Foam models.

Introduction

Since the growing expansion of quantum gravity theory [START_REF] Rovelli | Quantum Gravity[END_REF] the SU (2) 6j symbols acquired a considerable importance by becoming the basic building blocks of all spin networks. They appear to represent a quantum tetrahedron with quantized edges and even can be viewed as eigenfunctions of a discrete Schrödinger equation [START_REF] Aquilanti | Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials[END_REF]. As well known the classical Ponzano-Regge partition function Z P R [START_REF] Ponzano | Spectroscopic and group theoretical methods in physics[END_REF] was expressed as a sum of products of 6j symbols. In [START_REF] Livine | Three-dimensional Quantum SuperGravity and Supersymmetric Spin Foam Models[END_REF] the occurrence of supersymmetric 6j S symbols [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF][START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF], related to OSP (1|2), was also studied and led to a similar supersymmetric partition function, called Z sugra . A possible different divergence compared to the classical case was sketched.

Guided by the conceptual approach of Gurau [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF], our present task is to give also an elementary proof of the Ponzano-Regge asymptotic of the 6j S supersymmetric symbols. Let us recall the formulation of Gurau:

Under a rescaling of all its arguments by a large k the 6j symbol associated to an Euclidean tetrahedron behaves like

kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3 = 1 √ 12πk 3 V cos π 4 + 3 ι=1 kj ι + 1 2 θ jι + kJ ι + 1 2 θ Jι , ( 1 
)
where V is the tetrahedron volume and θ jι , θ Jι are the exterior dihedral angles of the tetrahedron corresponding to the edges j ι and J ι respectively.

Tetrahedron of volume V
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2 Recalls about 6j and 6j S symbols and notations

We rewrite our formulas [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF] with notations as close as possible to those used by Gurau [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] and replace j i ↔ J i , p 1 → v 4 , p 2 → v 2 , p 3 → v 3 , p 4 → v 1 , q → p. Notations used in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] were

v 1 =j 1 +j 2 +j 3 , v 2 = J 1 +j 2 +J 3 , v 3 = J 1 +J 2 +j 3 , v 4 = j 1 +J 2 +J 3 , (2) 
p 1 =j 2 +J 2 +j 3 +J 3 , p 2 = j 3 +J 3 +j 1 +J 1 , p 3 = j 1 +J 1 +j 2 +J 2 . (3) 
Diagrammatic representation of a 6j symbol j 1 j 2 j 3 J 1 J 2 J 3 :

the four triangles of any 6j the three columns pairs

v 4 v 2 v 3 v 1 p 1 p 2 p 3
v i is the sum of the values of the three circled spins just above v i in the diagrams. In the same way, p j is the sum of the values of the four circled spins above p j . The variables p,v satisfy the equation

3 j=1 p j = 4 i=1 v i . (4) 
As a result any spin is determined by two v i and one p j according to

2j 1 = v 1 + v 4 -p 1 , 2j 2 = v 1 + v 2 -p 2 , 2j 3 = v 1 + v 3 -p 3 , (5) 
2J 1 = v 2 + v 3 -p 1 , 2J 2 = v 3 + v 4 -p 2 , 2J 3 = v 2 + v 4 -p 3 , (6) 
or by two p j and two v i 'complementary' according to

2j 1 = p 2 +p 3 -v 2 -v 3 , 2j 2 = p 1 +p 3 -v 3 -v 4 , 2j 3 = p 1 +p 2 -v 2 -v 4 , (7) 
2J 1 = p 2 +p 3 -v 1 -v 4 , 2J 2 = p 1 +p 3 -v 1 -v 2 , 2J 3 = p 1 +p 2 -v 1 -v 3 . (8) 
Formulas for a 6j symbol are well known, however here we shall use an expression [START_REF] Bréhamet | Regge Symmetry of 6-j or super 6-jS Symbols: a Re-Analysis with Partition Properties[END_REF], used elsewhere long ago. That avoids the usual triangle coefficients △ and contains only terms in v i , p j .

j 1 j 2 j 3 J 1 J 2 J 3 = √ R t (-1) t (t+1)! i=4 i=1 (t-v i )! j=3 j=1 (p j -t)! , (9) 
where the radical R under square root is the prefactor used by Gurau

R = j=3 j=1 i=4 i=1 (p j -v i )! i=4 i=1 (v i + 1)! . ( 10 
)
A short historical review about the supersymmetric 6j S symbols:

The conceptualization of supersymmetric 3j or 6j symbols was done in several years spread over time, with sometimes different notations. It started with Pais and Rittenberg [START_REF] Pais | Semisimple graded Lie algebras[END_REF] in 1975 with a semisimple graded Lie algebra named "graded su(2)". Later in 1977, Scheunert et al. [START_REF] Scheunert | Irreducible representations of the osp(2, 1) and spl(2, 1) graded Lie algebras[END_REF] have computed the super-rotation Clebsch-Gordan coefficients as a product of usual rotation Clebsch-Gordan coefficients with a scalar factor. Finally, in 1981, Berezin and Tolstoy [START_REF] Berezin | The group with Grassmann structure UOSP(1.2)[END_REF] suggested that the (iso)scalar factors form a pseudo-orthogonal matrix. Subsequently these works were materialized in the paper by Daumens et al. [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF] dated 1993 with the introduction of properly defined 6j S symbols. Our definitions of supersymmetric 6j S π symbols [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF] of parity π = α, β, γ were published in 2006, more than a decade after the paper of Daumens et al. 1 . These 6j S π symbols were expressed by a single sum formula over an index t [involving monomials Π π (t)] as shown below:

j 1 j 2 j 3 J 1 J 2 J 3 S π = (-1) 4 jιJι R S π t (-1) t t!Ππ (t) i=4 i=1 (t-[vi+ 1 2 ])! j=3 j=1 ([pj+ 1 2 ]-t))! , (11) 
where R S π is a supersymmetric prefactor given by

R S π = j=3 j=1 i=4 i=1 [p j -v i ]! i=4 i=1 [v i + 1 2 ]! . ( 12 
)
Detailed expressions for R S α , R S γ , R S β are given in Appendix. Notation [ ] means 'integer part of'. In contrast to SU (2), OSP (1|2) triangles v i can be integer or half-integer, however they still satisfy the well known triangular inequalities. Let us recall the definitions of the parities π and monomials Π π (t) of degree 0 or 1 in t:

     π = α if ∀i ∈ [1, 4] v i integer, π = β if ∃ only two distinct v i , v j integer, π = γ if ∀i ∈ [1, 4] v i half-integer.
(13) 1 Ref. [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF] was explicitly used in 2004 by Livine and Oeckl [START_REF] Livine | Three-dimensional Quantum SuperGravity and Supersymmetric Spin Foam Models[END_REF] . On that date our work [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF] was not known.

For a parity β, both integer triangles shall be denoted by v, v ′ , both other half-integer by v, v ′ . The single integer quadrangle is denoted by p, both other half-integer by p, p ′ . In this case eq. ( 4) transforms into

p + p + p ′ = v + v ′ + v + v ′ . ( 14 
)
Thus a parity π just depends on the quality half-integral or integer of a triangle v i . Let us note that only the γ parity may contain supersymmetric symbols whose all the spins are half-integers.

Our monomials Π π (t) were defined in [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF] as

Π α (t) =1, (15) 
Π β (t) = -t(2j ⋆ β + 1) + (p + 1 2 )(p ′ + 1 2 ) -vv ′ , (16) 
Π γ (t) = -t+2(J 1 j 1 +J 2 j 2 +J 3 j 3 )+(J 1 +j 1 +J 2 +j 2 +J 3 +j 3 )+ 1 2 . ( 17 
)
All constants Π α (0), Π β (0), Π γ (0) are positive integers.

The special spin j ⋆ β was identified [START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF] as the vertex common to both half-integer triangles v, v ′ :

2j ⋆ β = p + p ′ -v -v ′ = v + v ′ -p. ( 18 
)
Other shorter formulas are available:

J 1 j 1 + J 2 j 2 + J 3 j 3 = 3 i=ι j ι J ι and J 1 + j 1 + J 2 + j 2 + J 3 + j 3 = 1 2 3 j=1 p j . (19) 
Oddly enough these 'supersymmetric' quantities are reflected in most parameters of the discriminant necessary for the saddle points computation [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF], while the background is that of standard 6j.

An appropriate formulation more adapted to the manipulations of t in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] is the following

Π β (t) = -(t + 1)(2j ⋆ β + 1) + [(2j ⋆ β + 1) + (p + 1 2 )(p ′ + 1 2 ) -vv ′ ] , (20) 
Π γ (t) = -(t + 1) + [2 3 ι=1 j ι J ι + 1 2 3 j=1 p j + 3 2 ]. (21) 
The supersymmetric frontal phase (-1) 4 jιJι is worthwhile of attention. From eq. ( 21) in [10]

A = 2 3 ι=1 j ι J ι = i<j v i v j - k<l p k p l , (22) 
it can be proved hat

4 j ι J ι =      0 (mod 2) if π = α, 1 + j p j (mod 2) if π = γ, v + v ′ -p (mod 2) if π = β. (23) 
As (-1 k 2 N = +1 if k even and (-1) N if k odd, rescaling any spin by k odd leads to

(-1) 4k 2 jιJι |k odd =      +1 if π = α, (-1) (1+ j p j ) if π = γ, (-1) (v+v ′ -p) if π = β. (24) 
In the same way if v i is integer, kv i remains integer, whereas if v i is half-integer kv i remains half-integer only if k is odd and the formulas for initial parities β, γ can change. Thus care should be taken of k parity itself. Indeed the following transformations can occur:

j 1 j 2 j 3 J 1 J 2 J 3 S α ×k -→ kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3 S α
∀k even or odd, (25)

j 1 j 2 j 3 J 1 J 2 J 3 S β,γ ×k -→ kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3 S α if k even, ( 26 
)
j 1 j 2 j 3 J 1 J 2 J 3 S β,γ ×k -→ kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3 S β,γ if k odd. ( 27 
)
The precisions given about 'subleading contributions' in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] are not altered by the fact that k → ∞ by even or odd integer values. Due to the presence of integer parts, in R S π and t , the Stirling's approximation

n! = √ 2πe (n+ 1 2 ) ln(n)-n = √ 2πe n ln(n)-n+ 1 2 ln(n) , (28) 
could give rise to different formulas when all spins are rescaled by a factor k. Namely

[kn]! = (kn)! = √ 2π e [k ln(k)-k]n+kn ln(n)+ 1 2 ln(kn) if n integer. ( 29 
)
[kn]! = (kn)! if k even and n half-integer, (kn -1

2 )! if k odd and n half-integer.

(30)

[kn + 1 2 ]! = (kn)!
if k even and n half-integer, (kn + 1 2 )! if k odd and n half-integer.

(

It can be checked that only two approximations are modified for k odd and n half-integer:

[kn]! = √ 2π e [k ln(k)-k]n+kn ln(n) , (32) 
[kn + 1 2 ]! = √ 2π e [k ln(k)-k]n+kn ln(n)+ln(kn) . ( 33 
)
As a direct consequence of eq. ( 4), we have single out the term e [k ln(k)-k] because in all the summations to carry out with parities α, β, γ the resulting multiplicative factor will yield a null quantity.

Since we look for a dominant behaviour in first order approximation, the equalities are valid up to a multiplicative factor 1 + 1/k. Throughout this paper we will keep the original functions of Gurau H, h, F, f , denoted here by Gothic letters as H, h, F, f. A preliminary analysis shows that, for the three supersymmetric parities α, β, γ, both functions h(j, J) and f(x) remain unchanged as well as the saddle points values x ± . These functions appear under an exponentiated form as e kh(j,J) and e kf(x) . The results were presented as a linear expansion over the six spins as

h(j, J) =j 1 h j 1 + j 2 h j 2 + j 3 h j 3 + J 1 h J 1 + J 2 h J 2 + J 3 h J 3 , (34) 
h j 1 = 1 2 ln (j 1 +j 2 -j 3 )(j 1 -j 2 +j 3 )(j 1 +J 2 -J 3 )(j 1 -J 2 +J 3 ) (j 1 +j 2 +j 3 )(-j 1 +j 2 +j 3 )(j 1 +J 2 +J 3 )(-j 1 +J 2 +J 3 )
and so on, (35)

f(x) =ıπx+x ln(x)- (x-v i ) ln(x-v i ) - (p j -x) ln(p j -x). (36) 
Equation ( 35) can be rewritten in terms of p, v:

h j 1 = 1 2 ln (p 3 -v 3 )(p 2 -v 2 )(p 3 -v 2 )(p 2 -v 3 ) (p 1 -v 4 )(p 1 -v 1 )v 1 v 4 . (37) 
So we have

h α (j, J) = h β (j, J) = h γ (j, J) ≡ h(j, J), (38) 
h α j 1 = h β j 1 = h γ j 1 ≡ h j 1 and so on. ( 39 
)
f α (x) = f β (x) = f γ (x) ≡ f(x). (40) 
Equation ( 18) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] is the saddle points equation and remains unchanged, then the same holds for the saddle points solutions x ± lying in the appropriate integration interval. We recall that

f ′ (x) = ıπ ln(x) - ln(x -v i ) + ln(p j -x) = 0. ( 41 
)
Changes with respect to the usual 6j symbols can arise either from R S π via e Hπ((j,J) =H((j,J) or from Σ x via e Fπ(x) =F(x) . This will lead to distinct variants of Gurau's proof.

3 PARITY α 3.1 Change in the prefactor R S α
Multiplying the spins of the prefactor R S α by a scaling factor k yields

R S α (k) = j=3 j=1 i=4 i=1 k(p j -v i ) ! i=4 i=1 (kv i )! , (3.1) 
From eq. ( 29) the numerator and denominator of R S α (k) become

NumPreα =(2π) 6 e [k ln(k)-k](4 j p j -3 i v i )+k[ j,i (p j -v i ) ln(p j -v i )] × e 1 2 j,i ln(p j -v i )+ 1 2 j,i ln(k) =(2π) 6 e [k ln(k)-k](4 j p j -3 i v i )+k[ j,i (p j -v i ) ln(p j -v i )] × e 1 2 j,i ln(p j -v i )+6 ln(k)) . (3.2) DenPreα =(2π) 2 e [k ln(k)-k] i v i +k i v i ln(v i )+ 1 2 i ln(k)+ 1 2 i ln(v i ) =(2π) 2 e [k ln(k)-k] i v i +k i v i ln(v i )) × e 3 2 i ln(v i )-i ln(v i )+2 ln(k) = (2π) 2 Π i (v i ) e [k ln(k)-k] i v i +k i v i ln(v i )+ 1 2 i ln(v 3 i )+2 ln(k) . (3.3) That is R S α (k) =(2π) 4 k 4 Π i (v i ) e k[ j,i (p j -v i ) ln(p j -v i )-i v i ln(v i ) ] × e 1 2 j,i ln (p j -v i ) v 3 i . (3.4)
The similarities with eqs. [START_REF] Daumens | The super-rotation Racah-Wigner calculus revisited[END_REF][START_REF] Bréhamet | Analytical complements to the parity-independent Racah-Wigner calculus for the superalgebra osp(1|2) Part I[END_REF] in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] are obvious whence

R S α (k) = (2π) 2 k 2 Π i (v i ) e H(j,J)+kh(j,J) (3.5)
3.2 Changes in the factors Σ α and F α (x)

Σ α = min p j max v i (-1) t t! Π i (t -v i )!Π j (p j -t)! . (3.6)
The only difference with [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] lies in the lack of factor e ln(kx+1)) ≈ e

1 2 ln(k 2 x 2 ) whence Σ α = 1 (2π) 3 x=min p j x=max v i G α (x), (3.7) 
with

G α (x) = 1 k 3 e 1 2 ln x Π(x-v i )Π(p j -x) × e k{ıπx+x ln(x)-[ i (x-v i ) ln(x-v i )+ j (p j -x) ln(p j -x)]} , (3.8) 
so that

Σ α = 1 (2π) 3 x=min p j x=max v i 1 k 3 e Fα(x)+kf(x) . (3.9) with F α (x) = 1 2 ln x Π(x -v i )Π(p j -x) = F(x) -ln(x). (3.10) Accordingly Σ α = 1 (2π) 3 1 k 3 x=min p j x=max v i 1 x e F(x))+kf(x) . (3.11) 

Contribution to the saddle points (parity α)

Identifying Σ α of eq. (3.11) as a Riemann sum with 1 k → dx leads to

Σ α = 1 (2π) 3 k 2 min p j max v i dx 1 x e F(x)+kf(x) .
(3.12)

After collecting the three header factors from eqs. (3.5, 3.12) and from the Laplace's approximation [in complex plane] we find

Sdl α (x s ) = √ Πv i √ 2πk 1 x s 1 -f ′′ (x s ) e H(j,J)+F(xs)+k[h(j,J)+f(xs)] , (3.13) 
with the same values x s than those used by Gurau. For reducing the equation lengths let us define

ϕ θ k = ι=3 ι=1 (kj ι + 1 2 )θ jι + (kJ ι + 1 2 )θ Jι . (3.14)
Then eq. ( 45) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] changes into

Π i=4 i=1 (v i ) √ 48πkV 1 x + e ı π 4 +ıϕ θ k + 1 x - e -ı π 4 -ıϕ θ k = √ Πv i √ 48πkV 1 x + + 1 x - cos π 4 + ϕ θ k + ı 1 x + - 1 x - sin π 4 + ϕ θ k . (3.15)
By using the results and notations of [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] we have

1 x ± = 2A (B ± ı △) = 2A(B ∓ ı △) B 2 + △ = 2A(B ∓ ı △) 4AC = (B ∓ ı △) 2C , (3.16 
)

whence 1 x + + 1 x - = B C and 1 x + - 1 x - = - ı √ △ C . (3.17) As C = Πv i and √ △ = 24V we obtain finally 1 √ 48πkV √ Πv i B cos π 4 + ϕ θ k + 24V sin π 4 + ϕ θ k . (3.18)
We recall that coefficient B defined in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] has the dimension of a volume and writes as

B = 3 i=1 j i J i 3 j=1 p j + 2(j 1 j 2 j 3 + j 1 J 2 J 3 + j 2 J 3 J 1 + j 3 J 1 J 2 ). (3.19)
The square root √ Πv i has the dimension of an area.

4 PARITY γ and k odd 

R S γ (k) = j=3 j=1 i=4 i=1 k(p j -v i ) -1 2 )! i=4 i=1 (kv i + 1 2 )! , (4.1) 
NumPreγ = (2π) 6 e [k ln(k)-k](4 j p j -3 i v i )+k[ j,i (p j -v i ) ln(p j -v i )] . (4.2) DenPreγ = (2π) 2 e [k ln(k)-k] i v i + i ln(k)+ i ln(v i ) = (2π) 2 k 4 e [k ln(k)-k] i v i + i ln(v i ) . (4.3) Then R S γ (k) = (2π) 2 1 k 2 e 1 2 k[ j,i (p j -v i ) ln(p j -v i )-i ln(v i )] . (4.4) 
This means that the prefactor R S γ (k) is given by

R S γ (k) = (2π) 2 1 k 2 e Hγ (i,J)+khγ(i,J) , (4.5) 
with H γ (i, J) = 0 and h γ (i, J) ≡ h(i, J). 

′ γ = t=min p j t=max v i + 1 2 (-1) t (t + 1)! Π i (t -v i -1 2 )!Π j (p j -t)! , (4.7) 
Σ ′′ γ = t=min p j t=max v i + 1 2 (-1) t t! Π i (t -v i -1 2 )!Π j (p j -t)! , (4.8) 
so that

Σ γ = -Σ ′ γ + 2 3 i=1 j i J i + 1 2 ( 3 j=1 p j ) + 3 2 Σ ′′ γ . (4.9) 
In the first sum Σ ′ γ we carry out simultaneously the variable changes t → kx and v i → kv i , p j → kp j and use eqs. (29-30). The result is

Σ ′ γ = 1 (2π) 3 x=min p j x=max v i + 1 2 G ′ γ (x), (4.10) 
where

G ′ γ (x) = e 1 2 ln x 3 Π j (p j -x) +k{ıπx+x ln(x)-[ i (x-v i ) ln(x-v i )+ j (p j -x) ln(p j -x)]} = e F γ ′ (x)+kf(x) , (4.11) 
F γ ′ (x) = e 1 2 ln x 3 Π j (p j -x) , (4.12) 
so that

G ′ γ (x) = √ x 3 Π j (p j -x)
e kf(x) . (4.13)

The second sum Σ γ ′′ is handled in the same way as the first with slight differences

Σ ′′ γ = 1 (2π) 3 x=min p j x=max v i + 1 2 G ′′ γ (x), (4.14) 
with x) . (4.15)

G ′′ γ (x) = e 1 2 ln 1 k 2 x Π j (p j -x) +k{ıπx+x ln(x)-[ i (x-v i ) ln(x-v i )+ j (p j -x) ln(p j -x)]} = 1 k √ x Π j (p j -x) e kf(

Contribution to the saddle points (parity γ)

From eq. (4.13) for ′ γ and the value of -f ′′ (x ± ) found by Gurau, see its equation (33),

-f ′′ (x ± ) = ∓ı √ △ x ± Π j (p j -x ± ) , (4.16) 
we derive

2π k(-f ′′ (x ± )) × x 3 ± Π j (p j -x ± ) = 2π k x ± ∓ı √ △ Π j (p j -x ± ) × x 3 ± Π j (p j -x ± ) = 2π k(∓ı √ △) x 2 ± .
(4.17)

The k-dependent header factor comes from eq. (4.5) with (2π) 2 1 k 2 , from eq. (4.10 ) with 1 (2π) 3 and from the equation just above with 2π k what yields finally

1 k 1 √ 2πk 3 . As 1 k → dx the remaining contributions for ′ γ are x 2 ± 2πk 3 (∓ı √ △) e k[h(j,J)+f(x ± )] . (4.18) 
For ′′ γ we have the following contribution

1 k x ± 2πk 3 (∓ı √ △) e k[h(j,J)+f(x ± )] , (4.19) 
which must be weighted by its multiplicative coefficient

2 3 ι=1 j ι J ι + 1 2 ( 3 j=1 p j ) + 3 2 ≈ k 2 3 ι=1 2j ι J ι . Then ′
γ is no longer dominant that is the only one contribution comes from ′′ γ has the form

3 ι=1 2j ι J ι k 2 k x ± 2πk 3 (∓ı √ △) e k[h(j,J)+f(x ± )] = 3 ι=1 2j ι J ι √ ±ı x ± √ 48πkV e k[h(j,J)+f(x ± )] . (4.20)
As a function of the parameter A defined in eq. ( 21) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] for the saddle points equation we obtain

Sdl γ (x ± ) = A x ± √ 48πkV e ±ı π 4 +k[h(j,J)+f(x ± )] . (4.21) 
From eq. ( 44) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] the real part of

e k[j 1 (h j 1 +f j 1 )+j 2 (h j 2 +f j 2 )+j 3 (h j 3 +f j 3 )+J 1 (h J 1 +f J 1 )+J 2 (h J 2 +f J 2 )+J 3 (h J 3 +f J 3 )]
is zero, then its remains only the imaginary part (the 

h j i ,J i being real) e ±ık[j 1 θ j 1 +j 2 θ j 2 +j 3 θ j 3 +J 1 θ J 1 +J 2 θ J 2 +J 3 θ J 3 ] whence Sdl γ (x ± ) =A x ± √ 48πkV e ±ı π 4 × e ±ık[j 1 θ j 1 +j 2 θ j 2 +j 3 θ j 3 +J 1 θ J 1 +J 2 θ J 2 +J 3 θ J 3 ] . ( 4 
v, v ′ v, v ′ 1 2 integer j * β p integer v, v ′ integer p, p ′ 1 2 integer v 4 , v 1 j 1 p 1 v 2 , v 3 p 2 , p 3 v 2 , v 1 j 2 p 2 v 3 , v 4 p 3 , p 1 v 3 , v 1 j 3 p 3 v 4 , v 2 p 1 , p 2 v 2 , v 3 J 1 p 1 v 4 , v 1 p 2 , p 3 v 3 , v 4 J 2 p 2 v 2 , v 1 p 3 , p 1 v 4 , v 2 J 3 p 3 v 3 , v 1 p 1 , p 2
Let us define J * β as the column companion of the spin j * β and represent it by an empty oval. An appropriate diagrammatic representation looks as follows j * β represented by •, J * β by an oval, only both half-integer v, v ′ are drawn

j * β = j 1 J * β = J 1 j * β = j 2 J * β = J 2 j * β = j 3 J * β = J 3 j * β = J 3 J * β = j 3 j * β = J 2 J * β = j 2 j * β = J 3 J * β = j 3 5.1 Change in the prefactor R S β
Multiplying the spins of the prefactor R S β by a scaling odd factor k yields

R S β (k) = (k(p -v))!(k(p -v ′ ))!k((p -v) - 1 2 )!(k(p -v ′ ) - 1 2 )! × (k(p -v))!(k(p -v ′ ))!(k(p -v) - 1 2 )!(k(p -v ′ ) - 1 2 )! × (k(p ′ -v))!(k(p ′ -v ′ ))!(k(p ′ -v) - 1 2 )!(k(p ′ -v ′ ) - 1 2 )! × kv!kv ′ ! -1 kv + 1 2 )!(kv ′ + 1 2 )! -1 . (5.1)
From eqs. (32-33) the numerator of R S β (k) becomes

NumPreβ = (2π) 6 e [k ln(k)-k](4 j p j -3 i v i )+k[ j,i (p j -v i ) ln(p j -v i )] ×e 1 2 [ln(p-v)+ln(p-v ′ )+ln(p-v)+ln(p-v ′ )+ln(p ′ -v)+ln(p ′ -v ′ )]+3 ln(k) . (5.2)
and the denominator is

DenPreβ = (2π) 2 e [k ln(k)-k](v+v ′ +v+v ′ ) × e k[v ln(v)+v ′ ln(v ′ )+v ln(v)+v ′ ln(v ′ )] × e 1 2 [ln(kv)+ln(kv ′ )]+ln(kv)+ln(kv ′ ) = (2π) 2 e [k ln(k)-k] i v i +k[ i v i ln(v i )] × e 3 ln(k) e 1 2 {ln(v)+ln(v ′ )}+ln(v)+ln(v ′ ) . (5.3) Note the lack of frontal factor in 1 k m in R S β (k). Whence R S β (k) = (2π) 4 e k[ j,i (p j -v i ) ln(p j -v i )-i v i ln(v i )] × e 1 2 ln (p-v)(p-v ′ )(p-v)(p-v ′ )(p ′ -v)(p ′ -v ′ ) (vv ′ )(v 2 v ′2 )
.

(5.4)

Thanks to the correlation table and the definition of the spin J * β it can be proved that

e 1 2 ln (p-v)(p-v ′ )(p-v)(p-v ′ )(p ′ -v)(p ′ -v ′ ) (vv ′ )(v 2 v ′2 ) = (p -v)(p -v ′ ) v v ′ e h J * β , (5.5) 
where the header fraction is dimensionless. Then

R S β (k) =(2π) 4 e k[ j,i (p j -v i ) ln(p j -v i )-i v i ln(v i )] × (p -v)(p -v ′ ) v v ′ e h J * β . (5.6) Finally R S β (k) =(2π) 2 (p -v)(p -v ′ ) v v ′ e 1 2 h J * β +kh(i,J) .
(5.7)

Changes in the factors Σ β and F β (x)

From eqs.( 11) and (20) we define two sums Σ ′ β , Σ ′′ β to be gathered to form a a Σ β :

Σ ′ β = tmax t min (-1) t (t+1)! (t-v)!(t-v ′ )!(t-v-1 2 )!(t-v ′ -1 2 )!(p-t)!(p+ 1 2 -t)!(p ′ + 1 2 -t)! , (5.8) 
Σ ′′ β = tmax t min (-1) t t! (t-v)!(t-v ′ )!(t-v-1 2 )!(t-v ′ -1 2 )!(p-t)!(p+ 1 2 -t)!(p ′ + 1 2 -t)! , (5.9) so that Σ β = -(2j ⋆ β + 1)Σ ′ β + [(2j ⋆ β + 1) + (p + 1 2 )(p ′ + 1 2 ) -vv ′ ] Σ ′′ β , (5.10) 
with 

t min = max (v, v ′ , v+
(-1) kx (kx+1)! (k(x-v))!(k(x-v ′ ))!(k(x-v)-1 2 )!(k(x-v ′ )-1 2 )!(k(p-x))!(k(p-x)+ 1 2 )!(k(p ′ -x)+ 1 
2 )! .

(5.12) By using factorial approximations for large k we write Σ ′ β in detail as

Σ ′ β = 1 (2π) 3 x=t max x=t min G ′ β (x), (5.13) with G ′ β (x) = e [k ln(k)-k]x+k{ıπx+x ln(x)}+ 1 2 ln(k 3 x 3 ) × e -1 2 ln k(x-v)+[k ln(k)-k](x-v ′ )+k(x-v ′ ) ln(x-v ′ )+ 1 2 ln k(x-v ′ ) × e -[k ln(k)-k](x-v)+k(x-v) ln(x-v) × e -[k ln(k)-k](x-v)+k(x-v) ln(x-v)+[k ln(k)-k](x-v ′ )+k(x-v ′ ) ln(x-v ′ ) × e -[k ln(k)-k](p-x)+k(p-x) ln(p-x)+ 1 2 ln k(p-x) × e -[k ln(k)-k](p-x)+k(p-x) ln(p-x)+ln k(p-x) × e -[k ln(k)-k](p ′ -x)+k(p ′ -x) ln(p ′ -x)+ln k(p ′ -x) .
(5.14)

All rearrangements done it remains

G ′ β (x) = 1 k 2 e 1 2 ln x 3 Π(x-v i )Π(p j -x) + 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)
× e k{ıπx+x ln(x)-(x-v i ) ln(x-v i )-(p j -x) ln(p j -x)} .

(5.15)

It results in Σ ′ β (k) = 1 (2π) 3 x=tmax x=t min 1 k 2 e 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)] +F β ′ (x)+kf β ′ (x) , (5.16) 
with

F β ′ (x) = 1 2 ln x 3 Π(x -v i )Π(p j -x) ≡ F(x), (5.17) 
f β ′ (x) ≡ f(x). (5.18) 
In the same way we derive

Σ ′′ β (k) = 1 (2π) 3 x=tmax x=t min 1 k 3 e 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)] +F β ′′ (x)+kf β ′′ (x) , (5.19) 
with

F β ′′ (x) = 1 2 ln x Π(x -v i )Π(p j -x) ≡ F(x) -ln(x), (5.20) 
so that e F β ′′ (x) = 1 x e F(x) and f β ′′ (x) ≡ f(x).

(5.21)

Contribution to the saddle points (parity β)

Identifying Σ ′ β of eq. ( 5.16) as a Riemann sum with 1 k → dx leads to

Σ ′ β (k) = 1 (2π) 3 k tmax t min dx e 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)] +F(x)+kf(x) .
(5.22) Equation (5.10), with j ⋆ β → kj ⋆ β , gives the following dominant contribution

-(2kj ⋆ β + 1)Σ ′ β (k) = - 2j ⋆ β (2π) 3 tmax t min dx e 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)] +F(x)+kf(x) .
(5.23)

In the same way

Σ ′′ β (k) = 1 (2π) 3 k 2 tmax t min dx 1 x e 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)] +F(x)+kf(x) .
(5.24)

Its coefficient in (5.10), [(2j ⋆ β + 1) + (p + 1 2 )(p ′ + 1 2 ) -vv ′ ], is rescaled into [(2kj ⋆ β + 1) + (kp + 1 2 )(kp ′ + 1 2 ) -k 2 vv ′ ] = k 2 [p p ′ -vv ′ ] + k[2j ⋆ β + 1 2 (p + p ′ )] + 3 4 . (5.25) 
The Σ ′′ β (k) contribution is also dominant and can be written down as

1 x [p p ′ -vv ′ ] (2π) 3 tmax t min dx e 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)] +F(x)+kf(x) . (5.26) 
Finally the integral approximation has the form

Σ β = -2j ⋆ β + [p p ′ -vv ′ ] x 1 (2π) 3 x=tmax x=t min e 1 2 ln (x-v)(x-v ′ ) (p-x)(p ′ -x)] +F(x)+kf(x) .
(5.27)

Writing f(x) as the equation ( 27) used by Gurau for the saddle points

f(x ± ) = j 1 f j 1 (x ± )+j 2 f j 2 (x ± )+j 3 f j 3 (x ± )+J 1 f J 1 (x ± )+J 2 f J 2 (x ± )+J 3 f J 3 (x ± ), (5.28) 
using its result, see eqs. (26-27-44) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF],

ℜ(f j * β (x + )) = ℜ(f j * β (x -)) = -h j * β (not depending on x + or x -), (5.29) 
our correlation table for j * β shows that the following identification holds

ℜ ln (x ± -v)(x ± -v ′ ) (p -x ± )(p ′ -x ± ) ≡ ℜ{f j * β (x ± )} = -h j * β .
(5.30)

In contrast the imaginary part is

ℑ f j * β (x ± ) = ±θ j * β . (5.31) It follows that Σ β (x ± ) = e -1 2 h j * β -2j ⋆ β + [p p ′ -vv ′ ] x ± 1 (2π) 3 e ± ı 2 θ j * β +F(x ± )+kf(x ± ) .
(5.32)

After the Laplace's approximation the final header factor is simply

1 √ 2πk .
Ultimately from eq. (5.7) the saddle points contributions for parity β have the form

Sdl β (x ± ) = 1 √ 2πk (p -v)(p -v ′ ) v v ′ e 1 2 h J ⋆ β × e -1 2 h j * β F(x ± ) -f ′′ (x ± ) -2j ⋆ β + [p p ′ -vv ′ ] x ± × e ± ı 2 θ j * β +k[h(i,J)+f(x ± )] .
(5.33)

From eqs. (32-33) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] clearly

-f ′′ (x -) = +ı √ △ x -Π((p j -x -)
.

(5.34)

From eq. ( 35) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] we obtain

Sdl β (x ± ) = 1 √ 2πk (p -v)(p -v ′ ) v v ′ e 1 2 h J ⋆ β × e k[j 1 (h j 1 +f j 1 )+j 2 (h j 2 +f j 2 )+j 3 (h j 3 +f j 3 )] × e k[J 1 (h J 1 +f J 1 )+J 2 (h J 2 +f J 2 )+J 3 (h J 3 +f J 3 )] × e 1 2 [f j 1 +f j 2 +f j 3 +f J 1 +f J 2 +f J 3 ] × e -1 2 h j * β 1 ∓ı √ △ -2j ⋆ β + [p p ′ -vv ′ ] x ± e ± ı 2 θ j * β . (5.35) 
From △ = (24) 2 V 2 and 1 √ ∓ı = e ±ı π 4 we derive

1 ∓ı √ △ = 1 √ 24V e ±ı π 4 .
(5.36)

The result for Sdl β (x ± ) becomes the complex expression

Sdl β (x ± ) = 1 √ 48πkV (p -v)(p -v ′ ) v v ′ e 1 2 h J ⋆ β × e k[j 1 (h j 1 +f j 1 )+j 2 (h j 2 +f j 2 )+j 3 (h j 3 +f j 3 )+J 1 (h J 1 +f J 1 )+J 2 (h J 2 +f J 2 )+J 3 (h J 3 +f J 3 )] × e 1 2 [f j 1 +f j 2 +f j 3 +f J 1 +f J 2 +f J 3 ] × e -1 2 h j * β e ±ı π 4 -2j ⋆ β + [p p ′ -vv ′ ] x ± e ± ı 2 θ j * β .
(5.37)

From eq. ( 44) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] the real part of e k[j 1 (h j 1 +f j 1 )+j 2 (h j 2 +f j 2 )+j 3 (h j 3 +f j 3 )+J 1 (h J 1 +f J 1 )+J 2 (h J 2 +f J 2 )+J 3 (h J 3 +f J 3 )] is zero, then its remains only the imaginary part (the h j i ,J i being real) which is e ±ık[j 1 θ j 1 +j 2 θ j 2 +j 3 θ j 3 +J 1 θ J 1 +J 2 θ J 2 +J 3 θ J 3 ] whence

Sdl β (x ± ) = 1 √ 48πkV (p -v)(p -v ′ ) v v ′ e 1 2 h J ⋆ β × e ±ık[j 1 θ j 1 +j 2 θ j 2 +j 3 θ j 3 +J 1 θ J 1 +J 2 θ J 2 +J 3 θ J 3 ] × e ±ı 1 2 [θ j 1 +θ j 2 +θ j 3 +θ J 1 +θ J 2 +θ J 3 ] × e 1 2 ℜ[f j 1 +f j 2 +f j 3 +f J 1 +f J 2 +f J 3 ] × e -1 2 h j * β e ±ı π 4 -2j ⋆ β + [p p ′ -vv ′ ] x ± e ± ı 2 θ j * β .
(5.38)

That is

Sdl β (x ± ) = 1 √ 48πkV (p -v)(p -v ′ ) v v ′ × e -1 2 [h j 1 +h j 2 +h j 3 +h J 1 +h J 2 +h J 3 +h j * β -h J ⋆ β ] × [v + v ′ -p -p ′ ] + [p p ′ -vv ′ ] x ± e ±ı( π 4 +ϕ θ k β ) , (5.39) 
where a new angle ϕ θ k β depending on θ j * β is defined via

ϕ θ k β = ι=3 ι=1 [(kj ι + 1 2 )θ jι + (kJ ι + 1 2 )θ Jι ] + 1 2 θ j * β . (5.40) 
We have 1

x + = (B -ı △) 2C and 1 x - = (B + ı △) 2C , (5.41) 
whence adding the contribution + and -, taken into account C = Π(v i ), √ △ = 24V , we obtain

1 Π(v i ) 2Π(v i )[v+v ′ -p-p ′ ]+B[p p ′ -vv ′ ] cos( π 4 +ϕ θ k β )+24V [p p ′ -vv ′ ] sin( π 4 +ϕ θ k β ) .
A preliminary result is then

kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3 S β ≈ (-1) (v+v ′ -p) √ 48πkV Π(v i ) (p -v)(p -v ′ ) v v ′ × e -1 2 [h j 1 +h j 2 +h j 3 +h J 1 +h J 2 +h J 3 ]-1 2 [h j * β -h J ⋆ β ] × 2Π(v i )[v+v ′ -p-p ′ ]+B[p p ′ -vv ′ ] cos( π 4 +ϕ θ k β )+24V [p p ′ -vv ′ ] sin( π 4 +ϕ θ k β
) .

(5.42)

Factor 1 2 h J ⋆ β is compensatory, i.e. 1 2 h J ⋆ β term vanishes whereas 1 2 h J ⋆ β becomes h J ⋆ β .
Unfortunately this evidence will be more or less lost in the general formulas we try to explicit below.

Computation of e

h J * β -h j * β yields e h J * β -h j * β = e 1 2 ln (p-v)(p-v ′ )(p ′ -v)(p ′ -v ′ )(p-v)(p-v ′ ) v v ′ (p-v)(p-v ′ )(p-v)(p-v ′ (p ′ -v)(p ′ -v ′ ) v v ′ , (5.43) whence e -1 2 [h J * β -h j * β ] = 4 (p -v)(p -v ′ )(p -v)(p -v ′ (p ′ -v)(p ′ -v ′ ) v v ′ (p -v)(p -v ′ )(p ′ -v)(p ′ -v ′ )(p -v)(p -v ′ ) v v ′ .
(5.44) Besides from eqs. (8-9-11) in [START_REF] Gurau | The Ponzano-Regge Asymptotic of the 6j Symbol: An Elementary Proof[END_REF] we can write e -H(i,J) = e

-1 2 3 j=1 (h j j +h J j ) = e -1 4 ln Π i,j (p j -v i ) v 3 i = 4 Π i,j [v 3 i /(p j -v i )]
(5.45)

We conclude that

kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3 S β ≈ (-1) (v+v ′ -p) √ 48πkV Π(v i ) (p -v)(p -v ′ ) v v ′ × 4 Π i,j [v 3 i /(p j -v i )] 4 (p -v)(p -v ′ )(p -v)(p -v ′ (p ′ -v)(p ′ -v ′ ) v v ′ (p -v)(p -v ′ )(p ′ -v)(p ′ -v ′ )(p -v)(p -v ′ ) v v ′ × 2Π(v i )[v+v ′ -p-p ′ ]+B[p p ′ -vv ′ ] cos( π 4 +ϕ θ k β )+24V [p p ′ -vv ′ ] sin( π 4 +ϕ θ k β ) = (-1) (v+v ′ -p) √ 48πkV 4 Π i,j [(p j -v i )v i ] × (p-v)(p-v ′ ) v v ′ 4 (p-v)(p-v ′ )(p-v)(p-v ′ (p ′ -v)(p ′ -v ′ ) v v ′ (p-v)(p-v ′ )(p ′ -v)(p ′ -v ′ )(p-v)(p-v ′ ) v v ′ × 2Π(v i )[v+v ′ -p-p ′ ]+B[p p ′ -vv ′ ] cos( π 4 +ϕ θ k β )+24V [p p ′ -vv ′ ] sin( π 4 +ϕ θ k β
) .

(5.46) Note that denominator 4 Π i,j [(p jv i )v i ] has the dimension of an area like √ Πv i in the formula (3.18) for approximating the supersymmetric symbol 6j S α . The following line with √ and 4 √ is dimensionless.

Results for the supersymmetric limits

Prior to properly present results as similar as possible with standard 6j symbols we will use a formula to shift the angular arguments, namely:

a cos(x) + b sin(x) = N cos(x -ψ), (6.1) 
where

N = a 2 + b 2 and tan(ψ) = b a . (6.2) 
Then for each parity α, γ, β, we get

N α = B 2 + (24V ) 2 , ψ α = arctan 24V B , (6.3 
)

N γ = N α , ψ γ = -ψ α , (6.4 
)

N β = √ (2Π(v i )[v+v ′ -p-p ′ ]) 2 +(24V [p p ′ -vv ′ ]) 2 , (6.5 
)

ψ β = arctan 24V [p p ′ -vv ′ ] 2Π(v i )[v+v ′ -p-p ′ ] . (6.6) 
We recall that V is the tetrahedron volume and B which also has the dimension of a volume is given by

B = 3 ι=1 j ι J ι 3 j=1 p j + 2(j 1 j 2 j 3 + j 1 J 2 J 3 + j 2 J 3 J 1 + j 3 J 1 J 2 ). (6.7)
Parity α, : Under a rescaling of all its arguments by a large k a supersymmetric 6j S α symbol behaves like

kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3 S α = 1 √ 48πkV √ Πv i N α cos π 4 + ϕ θ k -ψ α , (6.8) 
where the angle ϕ θ k is defined by 

ϕ θ k = ι=3 
(v+v ′ -p) √ 48πkV 4 Π i,j [(p j -v i )v i ] (p -v)(p -v ′ ) v v ′ × 4 (p-v)(p-v ′ )(p-v)(p-v ′ (p ′ -v)(p ′ -v ′ ) v v ′ (p-v)(p-v ′ )(p ′ -v)(p ′ -v ′ )(p-v)(p-v ′ ) v v ′ N β cos π 4 + ϕ θ k β -ψ β , (6.12) 
where a new angle depending on θ j * β is defined as This means that only one term among the six (kj ι + 1 2 )θ jι , (kJ ι + 1 2 )θ Jι transforms into (kj j * β +1)θ j * β . Denominator in 4 √ has the dimension of an area like √ Πv i .

ϕ θ k β = ι=3 ι=1 [(kj ι + 1 

Conclusion

Compared to a standard 6j symbol [SU (2)] a major difference with the supersymmetric 6j S π [OSP (1|2)] lies in a slower decay as a function of the scaling parameter k. Indeed it becomes 1 k instead of 1 k 3 . The standard term in cos contains always angular arguments depending on the six tetrahedral angles θ jι , θ Jι . However all the angles are shifted from their standard values by an angle different according to each parity π. For parity α the usual expressions like (kj ι + 1

2 )θ jι are unchanged. For parity γ (and k odd) the terms in 1 2 vanish so that it remains (kj ι )θ jι and so on. For parity β (and k odd) the angular dependence takes a form where a special angle θ j * β modifies the standard formula into (kj j * β + 1)θ j * β + ι (kj ι + 1 2 )θ jι + (kj ι + 1 2 )θ Jι | jι,Jι =j * β .

If k is even all supersymmetric 6j S π have the same asymptotic behaviour, ie that of parity α. Pertinent interpretations are clearly within the Quantum Supergravity framework.

Appendix: Expression of supersymmetric prefactors

R S α = j=3 j=1 i=4 i=1 (p j -v i )! i=4 i=1 (v i )! , (A.1) R S γ = j=3 j=1 i=4 i=1 (p j -v i -1 2 )! i=4 i=1 (v i + 1 2 )! , (A.2) R S β =(p -v)!(p -v ′ )!(p -v - 1 2 )!(p -v ′ - 1 2 )! × (p -v)!(p -v ′ )!(p -v - 1 2 )!(p -v ′ - 1 2 )! × (p ′ -v)!(p ′ -v ′ )!(p ′ -v - 1 2 )!(p ′ -v ′ - 1 2 )! × v!v ′ ! -1 (v + 1 2 )!(v ′ + 1 2 )! -1 (A.3)

4. 1

 1 Change in the prefactor R S γ Multiplying the spins of the prefactor R S γ by a scaling odd factor k yields

(4. 6 ) 4 . 2

 642 Changes in the factors Σ γ and F γ (x) From eqs. (11) and (21) let be two sums Σ ′ γ , Σ ′′ γ to be gathered to form a Σ γ : Σ

θbehaves like kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3

 3 jι , θ Jι are the exterior dihedral angles of the tetrahedron corresponding to the edges j ι and J ι respectively. Parity γ: [If k is even, refer to formula (6.8)] Under a rescaling of all its arguments by a large k (odd) a supersymmetric 6j S γ ι θ jι + J i θ Jι ). (6.11)Parity β: [If k is even, refer to formula (6.8)] Under a rescaling of all its arguments by a large k (odd) a supersymmetric 6j S β behaves like kj 1 kj 2 kj 3 kJ 1 kJ 2 kJ 3

  similar to that of the standard sum Σ analyzed by Gurau whereas Σ ′′ β looks like our Σ α explicited in sect. 3.2. With all spins multiplied by the factor k, and changes t → kx, p, v → kp, kv, Σ

	1 2 , v ′ + 1 2 ) and t max = min (p, p+ 1 2 , p ′ + 1 2 ) .	(5.11)
	Computation of Σ	
	the sum x=tmax x=t min over the quotient below	′ β (k) rewrites as

′

β is very