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ABSTRACT

The theory of interactive scores addresses the writing and
execution of temporal constraints between musical objects,
with the ability to describe the use of interactivity in the
scores. In this paper, a notation for the use of conditional
branching in interactive scores will be introduced. It is
based on a high level formalism for the authoring of in-
teractive scores developed during the course of the OS-
SIA research project. This formalism is meant to be at the
same time easily manipulated by composers, and translat-
able to multiple formal methods used in interactive scores
like Petri nets and timed automaton. An application pro-
gramming interface that allows the interactive scores to be
embedded in other software and the authoring software, I-
SCORE, will be presented.

1. INTRODUCTION

This article will focus on a novel approach to represent and
execute conditional branching in interactive scores. Inter-
active scores, as presented in [1], allow a composer to write
musical scores in a hierarchical fashion and introduce in-
teractivity by setting interaction points. This enables dif-
ferent executions of the same score to be performed, while
maintaining a global consistency by the use of constraints
on either the values of the controlled parameters, or the
time when they must occur. This is notably achieved in
the current version of the I-SCORE 1 software, presented
in [2].

Previously, interactive scores did not offer the possibil-
ity to make elaborate choices in case of multiple distinct

1 http://i-score.org/
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events occurring at the same time; the work presented here
removes this limitation. Here, we will initially present
the use cases for conditional branching, as well as sev-
eral existing works of art which involve conditions. Then,
we will introduce new graphical and formal semantics, re-
searched during the course of the OSSIA project. Their
goal is to allow composers to easily make use of condi-
tional branching during the authoring of interactive scores.
We will show the compliance with previous research on
the same field, which allows for strong verification capa-
bilities. We will conclude by presenting the software im-
plementation of these formalisms in the upcoming version
0.3 of I-SCORE, which will be able to edit and play such
scenarios in a collaborative way.

2. A CASE FOR CONDITIONAL INTERACTIVE
SCORES

Even before the advent of computing, there was already a
need to write scores containing informations of transport :
in western sheet music, manifestations of this are the D.
S. Al Coda, D. S. Al Fine, Da Capo, and repetition sign.
There is however no choice left at the interpretation.

A case with more freedom for the performer is the fer-
mata, which allows for the duration of a musical note to be
chosen during the interpretation of the musical piece : the
score moves from purely static to interactive, since there
can be multiple interpretations of the lengths written in the
sheet.

There is also the different case of improvisational parts
where each musician has the freedom of his own choice
during a few bars – or even a whole piece. In our case, the
choices might involve multiple people at the same time (for
instance multiple dancers each with his position mapped
and used as a parameter), and lead to completely different
results.
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2.1 Conditional works of art

Some of the most interesting cases happen in more recent
times, with the advent of composers trying to push the
boundaries of the composition techniques. John Cage’s
Two (1987), is a suite of phrases augmented with flexible
timing : “Each part has ten time brackets, nine which are
flexible with respect to beginning and ending, and one, the
eight, which is fixed. No sound is to be repeated within a
bracket.”. The brackets are of the form : 2′00′′ ↔ 2′45′′

and are indicated at the top of each sequence.
Branching scores can be found in Boulez’s Third sonata

for Piano (1955–57) or in Boucourechliev’s Archipels (1967-
70) where the interpreter is left to decide which paths to
follow at several points of bifurcation along the score. This
principle is pushed even further in the polyvalent forms
found in Stockhausen’s Klavierstücke XI (1957) where dif-
ferent parts can be linked to each other to create a unique
combination at each interpretation. Some of these compo-
sitions have already been implemented in computers, how-
ever it was generally done in a case-by-case basis, for in-
stance using specific Max/MSP patches that are only suit-
able for a single composition. The use of patches to record
and preserve complex interactive musical pieces is described
in [3].

The scripting of interactive pieces can also be extended
towards full audio-visual experiences, in the case of artistic
installations, exhibitions and experimental video games.
Multiple case studies of interactive installations involving
conditional constraints (Concert Prolongé, Mariona, The
Priest, Le promeneur écoutant) were conducted in the OS-
SIA project. Concert Prolongé (i.e. extended concert) of-
fers an individual listening experience, controllable on a
touchscreen where the user can choose between different
"virtual rooms" and listen to a different musical piece in
each room, while continuously moving his virtual listen-
ing point – thus making him aware of the (generally unno-
ticed) importance of the room acoustics in the listening ex-
perience. Mariona [4, section 7.5.3] is an interactive ped-
agogic installation relying on automatic choices made by
the computer, in response to the users behaviours. This in-
stallation relies on a hierarchical scenarization, in order to
coordinate its several competing subroutines. The Priest
is an interactive system where a mapping occurs between
the position of a person in a room, and the gaze of a vir-
tual priest. Le promeneur écoutant 2 (i.e. the wandering
listener) is a stand-alone interactive sound installation de-
signed as a video game with different levels of exploration,
mainly by auditory means.

In closing, interactive applications for exhibitions offer
various situations in which conditional constraints are re-

2 http://goo.gl/et4yPd

quired, from touchscreen applications to full-fledged in-
teractive installations. Several projects have been studied
in the scope of OSSIA, in order to make the creation of
new complex interactive applications more efficient by us-
ing the tools that are developed in this research project.

2.2 Existing notations for conditional and interactive
scores

We chose to compare the existing notations in a scale that
goes from purely textual like most programming environ-
ments, to purely graphic like traditional sheet music. Sim-
ilarily, there are multiple ways to define interactivity and,
consequently, multiple definitions of what is an interactive
score.

The programmatic environments generally take a preex-
isting programming language, like LISP, and extend it with
constructs useful for the description of music. This is the
case with for instance Abjad [5], based on Python and
Lilypond, a famous music typesetting software based on
a TEX-like syntax. There are also programming languages
more axed towards interpretation and execution of a given
score, which can take the form of the program itself. This
is the case with Csound and CommonMusic [6]. In gen-
eral, programming languages of this kind offer a tremen-
dous amount of flexibility in term of flow-control. How-
ever, they require additional knowledge for the composer
to write scores with it.

The purely graphic environments allow compositions of
scores without the need to type commands, and are much
closer to traditional scores. For instance, multiple Max/MSP
externals, Bach for Max/MSP [7], note~ 3 , rs.delos 4 and
MaxScore [8] allow to write notes in a piano roll, timeline,
or sheet music from within Max. But they are geared to-
wards traditional, linear music-making, even if one could
build a non-linear interactive song by combining multiple
instances, or sending messages to the externals from the
outside.

Finally, there is a whole class of paradigms that sit be-
tween the two, with the well-known "patcher"-like lan-
guages: PureData, Max/MSP, OpenMusic [9], PWGL [10].
These software work in term of data-flow : the patch rep-
resents an invariant computation which processes control
and/or audio data. In each case, it is possible to work
purely graphically, and flow control is generally imple-
mented as a block that acts on this data ([expr] in Pd/-
Max or [conditional] and [omif] in OpenMusic,
for instance). These software all allow to use a textual
programming language to extend the capabilites or express
some ideas more easily.

3 http://www.noteformax.net
4 http://arts.lu/roby/index.php/site/maxmsp/rs_

delos
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Figure 1. Fragments B2, C1, C3 of Klavierstücke XI, Karlheinz Stock-
hausen. 5

2.3 Goals

The examples presented in section 2.1 allow us to devise
the specification for the kind of conditional capabilities
that we want to allow composers to express in our notation
system. Most examples studied here operate at a macro-
scopic level : the choices of the performer generally con-
cerns sections, but at the phrase level, these are often tradi-
tional scores, as can be seen from an excerpt from Klavier-
stücke XI in fig. 1. However, the case of a single note which
would last longer depending on a given condition can also
happen.

The main problem is that there is generally no specific
symbol to indicate the conditional execution; instead, the
explanation is part of the description of the musical piece.
Hence, we have to devise a graphical notation simple enough
and yet able to convey easily these different levels of con-
ditions.

These conditions operate on a span of time, which can
range from instantaneous, like in the Stockhausen piece,
where the performer has to choose his next phrase at the
end of the one he is currently playing, to indeterminate, in
the case of a perpetual artistic installation waiting for the
next visitor. A single symbol might then not be enough
to convey in a readable fashion the whole meaning, and
multiple symbols would be necessary to explain the artic-
ulation of the time in the musical piece.

Finally, an important requirement is to be able to study
formal properties on the written score. The presence of
conditional expressions means that there is some kind of
flow control in the song. Like in a traditional computer
software, we want to be able to verify that some proper-
ties will remain true for the score : for instance, again in
the case of Klavierstücke XI, we would like to be able to
specify : at a given time, there cannot be two overlapping
fragments, and be informed if there might be a possible ex-

5 c©Copyright 1957 by Universal Edition (London) Ltd., London/UE
12654. Retrieved from [11]

ecution of the score that would lead to this case. This has
practical implications especially when working with hard-
ware, which can have hard requirements on the input data.
This means that the notation will have to be grounded with
solid formal semantics.

2.4 Formal semantics

The current work is based on previous work at the LaBRI
by Jaime Arias, Mauricio Toro and Antoine Allombert,
that attempt both to formalize the composition semantics
and to provide ways for real-time performance of interac-
tive scores. Our work is threefold: finding formal seman-
tics adapted to complex conditional constraints; studying
their execution; devising a consistent and simple graphical
representation, in order to make the creation of interactive
conditional scores as intuitive as possible.

The four following interactive scores formalisms were re-
searched, in order to give a solid foundation, and enforce
strong provability properties:

2.4.1 Petri nets

One of the most prominent ideas in the research, on which
the current implementation of I-SCORE is based, is the use
of Petri nets in order to model interactive scores, by focus-
ing on agogic variations.

The followed methodology was to define basic nets for
each Allen relationship [12], and then to apply a transfor-
mation algorithm, described in [13, section 9.2].

When a score is played, it is compiled by I-SCORE 0.2
(shown in fig. 2) into a Hierarchical Time Stream Petri Net
(HTSPN) which is in turn executed using its well-known
semantics.

Figure 2. i-score 0.2. The model is based on a succession of boxes (con-
taining curves and other boxes), and relationships between these boxes. A
box can have trigger points at the beginning and the end; this introduces
an unnecessary graphical coupling between the data and the conditions.

Coloured Petri nets were also used to model complex data
processing in interactive scores [14], in order to allow the



description and execution of sound processes to occur di-
rectly in the score.

2.4.2 Temporal Concurrent Constraint Programming

Since the interactive scores can be expressed in terms of
constraints (A is after B), one of the recurrent ideas for
their formalisation was to use Non-deterministic Tempo-
ral Concurrent Constraint Programming (NTCC), since it
allows constraint solving. This approach was studied by
Antoine Allombert [15] and Mauricio Toro [4, 16].

However, there are multiple problems, notably the impos-
sibility to compute easily the duration of a rigid constraint,
and the exponential growth of the computation time of con-
straint solving, which led to some latency in the implemen-
tation, making real-time operations impossible.

2.4.3 Reactive programming

Due to the static nature of models involving Petri nets and
temporal constraints, a domain-specific language, REAC-
TIVEIS [17], was conceived in order to give dynamic prop-
erties to interactive scores. An operational semantic is de-
fined using the synchronous paradigm, to allow both static
and dynamic analysis of the interactive scores. This also
allows composers to easily describe parts of their score that
cannot be efficiently represented in a visual manner.

2.4.4 Timed Automata

The current focus of the research is put upon the investi-
gation of models for the formal semantics of conditional
constraints in interactive scores.

This has been achieved using the extendend timed au-
tomata of UPPAAL. Timed Automata allow to describe
both logical and temporal properties of interactive scores.
Moreover, the shared variables provided by UPPAAL al-
lows to model the conditionals. They are also used for
hardware synthesis, in order to target Field-Programmable
Gate Arrays (FPGAs) [18]. Real-time execution semantics
is implemented with this method.

The problem of the implementation of loops is however
still unresolved : it makes static analysis on the score harder,
since we hurt the reachability problem.

3. THE OSSIA PARADIGM

3.1 Presentation

OSSIA (Open Scenario System for Interactive Applica-
tions) is a research project, presented in [19] and funded by
the french agency for research (ANR). Its goal is to devise
methods and tools to write and execute interactive scenar-
ios. The two main objectives are to provide a formalisation
for interactive scenarisation and seamless interoperability
with the existing software and hardware. This paper will

focus on the interactive scoring part, the interoperability
being provided by the Jamoma Modular framework [20],
which allows the use of multiple protocols, such as OSC
or MIDI.

When comparing with the previous approaches for in-
teractive scores (Acousmoscribe, Virage, i-score 0.2), the
OSSIA project tries to follow a “users first” philosophy :
the research work is shared and discussed with artists, de-
velopers, and scenographers from the musical and theater
fields, and their use case serve as a basis for the focus of
the research. They are in turn asked to try the software and
discuss about the implementation.

For instance, in the previous studies of interactive scores,
a mapping had to be done between the theoretical founda-
tion (Petri nets, temporal constraints. . . ) and the domain
objects with which the composer had to interact. This has
led to mismatches between the representation and the exe-
cution [17] of the score. The most prominent problem was
the inability to express cleanly multiple synchronized con-
ditions, and to route the time flow according to these condi-
tions. The formalism also did not allow for boxes directly
following each other in a continuous manner, and always
required the existence of a relationship between them. In-
stead, in the OSSIA project, we tried to conceive high-level
concepts that would allow a composer to easily write an
interactive score, build a software over these concepts, and
then implement them on the basis of the formalisms pre-
sented in part. 2.4.

The main concepts of interactive scores can be grouped in
two categories: temporal elements and contents. The tem-
poral elements (scenarios, instantaneous events, temporal
constraints, conditional branching and hierarchy) allow to
create the temporal and logical structure of the scenario,
and the contents (states and processes) allow to give actual
control over several kind of processes.

3.2 Temporal elements

In order to allow the composer to write interactive con-
ditional scores, it is necessary to provide temporal con-
straints, to allow at least a partial ordering between the
different parts of the score. This is done using four base
elements : Node, Event, Constraint and Scenario. A Node
(Time Node) represents a single point in time. An Event
describes an instantaneous action. A Constraint describes
the span of time between two given Events. Finally, the
Scenario structures the other elements and checks that the
temporal constraints are valid and meaningful.

3.2.1 Scenario

A Scenario is defined as an union of directed acyclic graphs.
The vertices are Events and the edges are Constraints. The



(a) A Node with two Events, one with a trigger, and one
without

(b) A rigid constraint between two events. Minimum and
maximum duration of the constraint are equal ; the date of
the end event is fixed with regards to the date of the start
event.

(c) A constraint with a non-null minimum and a different,
non-infinite maximum

(d) A constraint with a non-null minimum and an infinite
maximum

(e) A constraint with a null minimum and an infinite maxi-
mum. Instead of making the representation heavier by hav-
ing the dashes of the constraint continue indefinitely, we
chose to remove the rake to symbolize infinity.

Figure 3. The OSSIA Graphical Formalism

direction is the flow of time. It allows to organize the other
base elements in time.

Scenarios follow these basic rules:

• A Scenario begins with a Node

• There can be multiple Events explicitly synchronized
by a single Node

• A Constraint is always started by an Event and fin-
ished by another, distinct Event

Events and Constraints are chained sequentially. Multiple
Constraints can span from a single Event and finish on a
single Event, as shown in fig. 7. The operational semantics
of these cases will be described later. This allows different
processes to start and/or stop in a synchronized manner.

3.2.2 Events and Nodes

An Event allows to describe precisely a part of what will
happen in a specific, instantaneous point in the execution
of the score. It is the basic element, to which are further
attached Constraints.

Events can be explicitly synchronized using Nodes. This
means that when an Event is triggered, all the other Events

A B

C(/x = 1) D

E(/x 6= 1) F

Figure 4. Implementation of temporal branching. A,B,C,D,E, F are
Events. B,C,E are on the same Node. C contains the condition /x = 1
and E contains !(/x = 1) in order to have an if - then - else mechanism.
C and E are evaluated when the constraint between A and B has ended.

on the same Node are also evaluated and instantaneously
triggered (or discarded if their Condition is not met, see
section 3.3.1).

3.2.3 Constraints

A Constraint represents a span of time. Due to the interac-
tive nature of the proposed paradigm, the span can change
at execution time, like a fermata. When the author wants to
allow a Constraint to have a variable duration, he renders it
flexible. This means that the end of the Constraint depends
on the Condition of its final Event.

A Constraint can be activated or deactivated: if it is de-
activated, it will not count for the determination of the ex-
ecution span of its end event.

The graphical representation of a Constraint can change
according to its minimum and maximum duration. The
minimum m’s range is [0; +∞], and the maximum M ’s
range is [m; +∞]\{0}. In the user interface (introduced in
section 4), the duration is directly linked to the horizontal
size and is visible on a ruler.

3.2.4 Graphical formalism

The graphical formalism for these elements is presented in
fig. 3.

The Node is a vertical line. An Event is a dot on a Node.
If there is a trigger on the Event, a small arrow indicates it.
The colour of the arrow can change at run-time to indicate
the current state of the trigger.

The Constraint is an horizontal line that represents a span
of time, like a timeline. If the constraint is flexible, the
flexible part is indicated by dashes and a rake. When there
is no maximum to the constraint, there is no rake.

3.3 Operational semantics

3.3.1 Conditions

Each Event carries a condition of execution, and a maxi-
mum range of time for its evaluation. The effective range
of time for execution is computed by constraint-solving al-
gorithms. For the Event to enter its execution range, all the



A B

C(/x = 1) D

E(/x 6= 1) F

G(/y = 1) H

I(/y 6= 1) J

K(/z = 1) L

M(/z 6= 1) N

Figure 5. Nested if - then - else using flexible constraints

Constraints that finish on this Event must be between their
minimal and maximal duration.

An Event is executed as soon as its condition evaluates to
True in its execution range. As a result, the Constraints that
follow this Event are started, and the messages that might
be stored in the Event are sent. Otherwise, the Event is
discarded and all the following Constraints are deactivated.

There is usually a default condition which is “all the con-
straints that explicitly finish on the event have ended”. This
default condition can be replaced or extended. For in-
stance, there can be checks on the arrival of a specific net-
work message, or checks on a remote or local address’s
value with a specific expression, with the following syn-
tax:

• For parameters that can have a value, there can be
comparisons between the values. For instance:

/some/parameter > 35 &&
( /other/parameter != "a string"
|| /last/parameter == true)

• Value-less parameters (akin to bangs in PureData)
can also be used as triggers for the evaluation of ex-
pressions. In this mode, logical operators have a dif-
ferent meaning. For instance:
/some/bang && !/another/bang

will trigger if :

– /some/bang is received, and

– /another/bang is not received within the
synchronization interval.

• This is not to be confused with the comparison with
boolean values :

/a/val == true &&
/another/val == false

which will trigger when the parameters will both be
set (not necessarily at the same time) to the required
values.

Higher-level operations, like a mouse click on a GUI can
then be translated in conditions on Events, in order to bring
rich interaction capabilities to the software dedicated to the
execution of the scores.

3.3.2 Conditional branching

Branching occurs when, at a single point in the score, two
different executions can happen, which leads the scenario
to distinct states. For example, the classic if - then - else
construct can be implemented by having two Events with
opposite conditions, as shown in fig. 4. It is also possible
to have other cases : for instance, there could be a set of
conditions that would lead to either both constraint, or no
constraint executed. It is also possible to have multiple
constraints with the same condition. Figure 5 presents a
method to instantaneously nest conditions, using a flexible
constraint with a minimal duration of zero. These patterns
can be used as is. However, the authoring software should
provide graphical ways to simplify these common cases,
for instance by not showing the duplicated conditions. This
is not yet done in the current development version of i-
score, which allows its users to author scores using the raw
formalism presented here.

Convergence occurs when we want to synchronize parts
of a scenario that branched previously. The constraint solver
ensures that the durations are coherent during the author-
ing of the score. The execution date of the Node for which
a convergence happens will necessarily be after the mini-
mum of each converging Constraint.

3.3.3 Execution of a Node

In this part, we will first present a high-level algorithm that
explains the general order of execution of a Node. Then,
we will study a particular Node and see how the algorithm
translates into a Petri net that can be executed for this par-
ticular Node.

As we said before in section 3.2.2, Events are attached to
a Node. They are ordered and will be evaluated one after
another according to the algorithm given in fig. 6.

The software guarantees that at a high level, if the com-
poser sets an order, the messages will be sent in this order.
The only delay will be the one induced by the ordering of
instructions in the CPU.

However, it is necessary to be aware that the protocols
used underneath, like UDP which is commonly used in
OSC protocol implementations, might not always have such



Require: We enter the evaluation range for a Node n

if all(n.eventList(), Event::emptyCondition) then
repeat

wait()
until n.DefaultDate
for Event e in n.eventList() do

e.run()
end for

else
repeat

if any(n.eventList(), Event::isReady) then
nodeWasRun← true
for Event e in TimeNode.eventList() do

if validate(e.condition()) then
e.run()

else
e.disable()

end if
end for

end if
until nodeWasRun

end if

Figure 6. Execution algorithm for a Node

strong guarantees. For this reason, and also because it is
not possible to expect network messages to arrive exactly
at the same time, the author can specify a synchronization
time on a Node: it can wait for a brief time after the trig-
gering of another Event in the same Node, in order to let
some time for messages to be received and change the re-
sult of conditional choices. However we don’t have yet a
way to represent this graphically; the idea of a bolder time
node was proposed. The synchronization time can also ex-
press the will to synchronize events at a lower rate, like
two people clapping hands at the same time for example.

Another possibility for the ordering would be to run the
Event whose condition did trigger the time node first, and
then run the others. This should be a choice left at the
discretion of the score writer.

Figure 7 presents the different branching and converging
cases that may occur, all mixed in a single Node.

3.4 Contents

An Event may contain a State, which contains messages,
and can itself hierarchically contain other States. At a con-
ceptual level, for the composer, a State generally represents
a change of state in a remote or local device, i.e. a discon-
tinuity.

A Constraint also acts as a container: during its execu-
tion, several Processes can be executed in parallel.

The two main Processes are:

A B

C

D

E F

G H

I

Figure 7. A complete example of Node in the OSSIA graphical formal-
ism. Two constraints converge on the Event B, and three constraints
branch from the Node that synchronizes B,F,G. The durations are al-
ready processed by the constraint solver.

CondB

CondF

ABmin

CBmin

Passive

BDmin

Tsync

EFmin GHmin

GImin

Figure 8. Petri net for the Node of fig. 7.
The previous Constraints’s minimum duration have to elapse in ABmin,
CBmin, EFmin. When a Condition is validated, a token is put in the
respective place (CondB or CondF); this triggers the evaluation of the
whole Node, unless it was already triggered. The central transition Tsync

introduces a small synchronization delay to allow other conditions to val-
idate if necessary. When an Event’s condition is not validated, a passive
token is instead sent to the following Constraints, which will not trigger
the execution of any process or state, and will simply allow the scenario
to keep going after a failed condition. This is achieved by the Passive
transition.

• The Curve, which allows to send interpolated data in
any protocol available to the software.

• The Scenario, which allows hierarchy to happen seam-
lessly: a constraint can contain a scenario, which can
in turn contain other Constraints.

There can be two possible executions for processes: they
can do something on each tick of a scheduler; or they can
send start and stop signals and behave however they want
in-between.

Processes can share data with the Events at the beginning
and the end of the parent Constraint, by putting them in
specific States.

The API provides ways for somebody to implement his
own processes and use them afterwards in scores.



Figure 9. An example of score in i-score 0.3. Not all the graphical fea-
tures presented here are already implemented.

3.5 Usage as an API

One of the goals of this high-level paradigm is to allow at
the same time, a simple mapping with graphical elements,
clear semantics of execution, and simple translations with
the proven semantics that were studied before, like Petri
nets and Timed Automata. In this way, a composer could
describe his score which could then be translated into a va-
riety of formats that allow for static and dynamic analysis.

This is achieved by writing a C++ API, that allows for
multiple implementations and the use generic programming.
It is accessible in https://github.com/OSSIA/API.
It consitutes a kind of domain-specific language, with the
elements that were talked about earlier.

3.6 Implementation in terms of Petri nets

In order to maintain cohesiveness with the previous works
on the field, we chose to represent the temporal logic of
our formalism in terms of Petri nets. The span of time
of the constraints is represented as a transition, and states
are emitted when a token enters a state-containing place.
These places are not represented here because there can be
multiple cases according to the requirements of the writer
of the score: it would for instance be possible to send the
last state either after the default duration of the constraint,
or as soon or late as the condition is validated. It is also
possible to add places and transitions in order to have a
specific behaviour occurs when the maximum duration of
a constraint elapses without triggering.

Figure 8 represents the translation of the Node shown in
fig. 7 into Petri nets. We refer to Constraints by the name
of their start and end Events.

4. I-SCORE: TEMPORAL AND LOGICAL USER
INTERFACES

The API talked about in section 3.5 is being used as the
basis of different projects tied to the interactive scores. The

dependency graph is shown in fig. 10.
The different sub-projects are:

• I-SCORE, a graphical editor and player for the inter-
active scores. It solves the problem of the display,
edition and interaction with simultaneous elements
of the interactive scores. Its current development
version (0.3) is available at (https://github.
com/OSSIA/i-score).

• J.SCORE and I-SCORE-CMD: two players for the scores
produced in i-score. The first is an external for Max,
the second is a standalone command-line executable.
Their current version is available in the repository
of the Jamoma project (https://github.com/
Jamoma/Jamoma).

I-SCORE also exposes its own dynamic device in order
to provide some kind of external control at run-time. For
example, the conditions could be changed prior to their
evaluation, in order to set them in advance at true or false
according to events that might have occurred previously
during the execution of the score.

The current version (0.2) of I-SCORE, shown in fig. 2,
relies on the idea that relations are used to separate boxes.
At the time of writing, the upcoming version (0.3, shown in
fig. 9) is able to create constraints, events, and nodes using
the graphical formalism that was presented in this article,
and can play and export these scores so that they can be
played on the other software of the suite. It also allows
a primitive form of collaborative edition of scores on a lo-
cal network, and the authoring and execution of distributed
scores is currently being studied. Distributed scores would
allow for instance to have a part of a score run on a com-
puter, and another part run on another computer.

OSSIA API

JamomaScore

API toolkit

i-score 0.2

i-score 0.3
i-score-cmd j.score

Translations
formats

Figure 10. Diagram of the different components of the OSSIA project

5. CONCLUSION

We presented in this article a new interactive score seman-
tic that allows the conception and execution of conditional
scores. This semantic is thought of as a mapping into well-
known formal models, such as Petri nets, Timed Automata,
and Reactive languages: it is meant to be easily under-
standable and usable for the composer.

https://github.com/OSSIA/API
https://github.com/OSSIA/i-score
https://github.com/OSSIA/i-score
https://github.com/Jamoma/Jamoma
https://github.com/Jamoma/Jamoma


However, in order to achieve more expressive power, we
still need to find a way to implement loops. Two approaches
are currently being studied: one using a Loop process, and
another using a concept of goto; once one is chosen, we
will try to find a relevant graphical element to present it.

Furthermore, there could be some interest in the speci-
fication and implementation of variables, which could al-
leviate the need for an adjacent software like Max/MSP to
perform complex logical computations. This would maybe
pave the way towards a time-oriented Turing complete pro-
gramming language, with a simple graphical representa-
tion which would allow composers to write complex scores
in an understandable way. Another track is the imple-
mentation of an audio engine, for instance by embedding
FaUST 6 , in order to be able to produce sound directly
from i-score. The relevant parameters would then be ex-
posed and controlled within i-score.

The next step for the graphical formalism is to make us-
ability studies in order to find the most convincing interac-
tions in the authoring software for the composers.
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