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We present a model for estimating the momentum flux from water drops falling onto a
moving free surface. The theory is based on a kinetic approach whereby individual drops
are modelled as point particles with mass and velocity, and are described collectively by
a distribution function f(t,x,v, r). We show that the resulting momentum flux can be
readily incorporated in free surface Navier-Stokes and Euler models. As an illustration
of this approach we examine the interaction between rainfall and linear deep water
surface waves. This particular application is not fundamentally different from study
of Le Méhauté & Khangaonkar (1990), but our methodology is more general and is
novel in its use of a kinetic approach with an all-purpose drop distribution function.
The applicability of the model to linear surface waves is discussed. We further show that
rainfall modifies the usual wave dispersion relationship and induces wave amplification,
or damping, depending on the rain rate, the rain impact angle, and the wavelength of the
surface wave. We solve for the amplification and damping rates analytically and show,
among other results, that rain falling vertically will always damp the surface waves.

1. Introduction

Rain falling on the sea surface and, in particular, the observed damping of the
surface waves by rainfall, is a problem that has puzzled the sea going and scientific
communities alike. Indeed, sailors have long noted that rainfall has the unexpected
effect of “calming the sea”. Among the scientific community, this observation was first
made by Reynolds (1900) who described surface wave damping in the presence of rain.
Interestingly, this rain-induced wave damping may lead to biases and errors in remote
wind and wave measurements routinely made by airborne microwave radiometers which
rely on backscatter returns from the surface waves (Chen et al. 1998). Indeed, while
raindrops in the atmosphere reduce overall backscatter intensity, an effect that has been
used to locate patches of rainfall in the open ocean (Atlas 1994; Chen et al. 1998; Bliven
et al. 1993; Braun et al. 2002; Contreras et al. 2003; Weissman et al. 2012), reduced
surface roughness, or wave damping, has the opposite effect and instead enhances the
radar backscatter signal (Guymer et al. 1995; Quartly et al. 1996). Thus, in order to
improve the satellite measurements in rainy conditions, a physical understanding of rain-
induced wave damping mechanism is necessary if adequate parametrizations are to be
developed.

In addition, it is well known that the surface waves play a critical role in the air-sea
momentum flux and air-sea drag. An accurate knowledge of surface wave amplitude and
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slope is thus necessary in order to make reliable wind speed predictions, especially in
high wind, rainy conditions. Indeed, the role of surface waves and associated phenomena
(e.g. breaking, sea spray, wave stress, Langmuir turbulence) on the air-sea fluxes have
been well documented and studied as an important component of the air-sea surface
dynamics, with significant progress achieved in the past decades (Melville 1996; Thorpe
2004; Sullivan & McWilliams 2010; Veron 2015). However, the dynamic effects of rainfall
have been largely overlooked and, in particular, our knowledge of the interaction between
rain and surface wave remains extremely poor (Kraus & Bussinger 1994; Jones & Toba
2001; Csanady 2001).

To date, relatively few experimental and theoretical investigations of rain-wave inter-
actions have been completed. The available experimental data are, for the most part,
focused on quantifying the rain-induced wave damping in a laboratory environment,
where waves are shorter than approximately 0.5 m in wavelength (Manton 1973; Tsimplis
& Thorpe 1989; Tsimplis 1992; Poon et al. 1992; Yang et al. 1997; Braun et al. 2002;
Harrison 2012; Peirson et al. 2013). Some of these experiments were performed using
mechanically generated, monochromatic waves (Tsimplis & Thorpe 1989), while others
used wind-generated wave fields (Poon et al. 1992). In both types of experiments, gravity
waves with frequencies less than 5 Hz were damped by the rain and the damping rate was
found to be independent of the rain rate. Wave amplification has also been observed for
higher wave frequencies (Poon et al. 1992; Yang et al. 1997; Braun et al. 2002; Harrison
2012) but only in the presence of wind.

Tsimplis & Thorpe (1989) proposed that the observed rain-induced wave damping
results from the rain-generated turbulence where a near-surface high eddy viscosity layer
viscously damps the surface waves. Shortly after, Nystuen (1990) estimated the wave
attenuation when a thin, rain-induced, high viscosity mixed layer is present near the
surface. There have been, however, very few experimental studies focusing on direct rain-
induced turbulence measurements (Braun 2003; Beya et al. 2011; Harrison 2012; Peirson
et al. 2013). Evidently, since the rain-induced turbulent layer is O(10) cm thick (Green &
Houk 1979b; Harrison 2012; Peirson et al. 2013), viscous damping will only affect surface
waves shorter than O(1) m such as those observed in the laboratory (Nystuen 1990).
The rain-induced damping of longer ocean waves documented by Chen et al. (1998) for
example, likely results from a different mechanism.

Le Méhauté & Khangaonkar (1990) modelled rain-wave interactions based only on
the rain drop’s momentum change at the air-sea interface. Their theory suggests several
rain-wave interaction regimes, with a switch from damping to enhancing wave amplitude
depending on the entry angle of the rain drops. At high wind speed (high entry angle
of rain drops), Le Méhauté & Khangaonkar (1990) predicted that the rain will increase
the waves’ amplitude while at low wind speed (vertical rain), the rain causes significant
wave damping, especially at high wave frequencies (short waves). In that case, the
damping rate was found to increase linearly with rain rate. In their study Le Méhauté &
Khangaonkar (1990) did not account for a distribution of rain drop size or fall velocities,
nor did they provide details on the range of conditions for which the theory might not be
valid. The data of both Poon et al. (1992) and Tsimplis (1992) show damping rates that
are independent of rain rates and approximately 10 times larger than those predicted
by the theory of Le Méhauté & Khangaonkar (1990). As emphasized by Peirson et al.
(2013), this discrepancy has yet to be resolved. To date, the damping of the surface by
rainfall has not been satisfactorily explained and available theories remain untested.

Simple estimates show that shear stresses (momentum flux) induced by rainfall at
the surface under typical rainfall conditions can be as significant, dynamically, as the
wind induced stresses (Caldwell & Elliott 1971, 1972). Thus, as a first step, we propose
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a model based on surface momentum exchange induced by the rain. In this paper, our
approach uses a kinetic description of rain where individual drops are modelled as point
particles with mass and velocity. Collectively, they are described by a velocity and mass
(or, equivalently, velocity and size) distribution. This idea is standard in kinetic theory
of gases (Chapman & Cowling 1990), and it is valid under some assumptions like, for
instance, when the scale of the drop is much smaller than the macroscopic length scales
of interest. This theory has been used successfully in other fields, such as in spray
combustion modelling (see Marchisio & Fox 2013). To the best of our knowledge, this is
the first time that kinetic theory is applied to the natural rainfall - free surface interaction
problem.

The kinetic approach is a much richer description than the momentum flux approach
of Le Méhauté & Khangaonkar (1990) in that it allows to consider rainfall with a
polydisperse distribution, that is a distribution of drop radii, and radius-dependent
impact velocities and impact angles. This added physical complexity makes the kinetic
approach substantially more realistic. Other drop properties like temperature, density,
or chemical composition could also be easily incorporated making this approach more
powerful than the standard rain rate, or size distribution, methodology (e.g Law &
Parsons 1943; Marshall & Palmer 1948; Green & Houk 1979b; Schlussel et al. 1997;
de Wolf 2001). Finally, it allows for accurate estimation of the stress exerted by the rain
on the sea surface. This stress takes into account the velocity of the drops with respect
to the movement of the surface, and we show that it can be readily incorporated into
free surface fluid models using Navier-Stokes or Euler frameworks.

This article is organized as follows: In section 2, we explain how rain drops can be
modeled at the kinetic level (section 2.1). Then, we compute the rain stress induced
at the sea surface (section 2.2), and we show how it can be taken into account in free
surface Navier-Stokes and Euler models (section 2.3). An Euler model is then employed
in section 3 to develop a linear water wave analysis with falling rain. A specific rain
drop distribution is then considered and utilized in sections 3.1 and 3.2. The validity
regime of this analysis is carefully explored in section 3.3, and some numerical results
are presented (section 4). Finally, we offer a discussion (section 5) followed by brief
conclusions in section 6.

2. Free surface Navier-Stokes and Euler models with falling rain

2.1. Kinetic description of the rain

The kinetic description employed here can be used to compute the force, and hence
the pressure, exerted by drops falling on a surface (see Chapman & Cowling 1990). For
the sake of completeness, and since the reader might not be familiar with kinetic gas
theory, we find it useful to briefly summarize below certain aspects of our approach.

A rain drop is a volume of fluid described by its density and velocity, which are in turn
governed by the Navier-Stokes equations. At larger scales, the number of drops falling
on a unit surface at the air-sea interface is large, and conversely, the radius of any drop
is much smaller than the macroscopic length scales (surface gravity waves). Thus, it is
appropriate to use a statistical description of the drops. This description is similar to that
used for spray modeling, as is commonly done in combustion engineering (for example
see Marchisio & Fox (2013)).

We assume that each rain drop is made of a single fluid with constant density ρd, and
is spherical with radius r and mass m(r) = ρd

4
3πr

3. Each drop is then uniquely defined
by:
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Figure 1. Schematic, notation and sign convention for rain drops falling on the sea surface.

• its position x ∈ R3;
• its velocity v ∈ R3, which is the mean velocity of the molecules inside the drop;
• and its radius r ∈ ]0,+∞[.

One could also consider additional variables such as temperature or chemical species but
this will not be used here.

The set of drops is then described by the distribution function f(t,x,v, r), which is
the number density of drops at time t in the phase space R3 × R3×]0,+∞[. In other
words, f(t,x,v, r)dxdvdr is the number of drops that at time t are at position x ± dx
(where dx = dxdydz) with velocity v ± dv and with a radius r ± dr.

Averaged quantities can be easily obtained through the distribution f(t,x,v, r). For
instance, the time-dependent radius distribution n is

n(t,x, r) =

∫
R3

f(t,x,v, r) dv, (2.1)

which is the number of drops of radius r at time t and position x, per unit volume and
per radius increment.

2.2. Pressure induced by drops on a surface

To compute the surface stress exerted by rain drops, we first consider a surface dS
defined by a normal unit vector n and moving with a velocity u. Here, we are interested
in the drops with a given velocity v that will impact dS. This simply implies that we
only need to consider drops for which (v − u)·n < 0 (see figure 1). Thus, summing over
all possible radii and all incident velocities, the total number of drops impacting dS per
unit time (i.e. the drop flux through dS) is given by:

N =

(∫
(v−u)·n<0

∫
]0,+∞[

f(t,x,v, r)(−(v − u)·n) drdv
)
dS. (2.2)

In the frame of reference attached to the surface, the momentum flux from all the
drops impacting dS is

M =

(∫
(v−u)·n<0

∫
]0,+∞[

m(r)(v − u)f(t,x,v, r)(−(v − u)·n) drdv
)
dS. (2.3)

Consequently, the momentum flux φ (the momentum per unit of surface and per unit of
time) across a surface of normal n is obtained by dividing M by dS such that:

φ =

∫
(v−u)·n<0

∫
]0,+∞[

m(r)(v − u)f(t,x,v, r)(−(v − u)·n) drdv

= −

(∫
(v−u)·n<0

∫
]0,+∞[

m(r)(v − u)⊗ (v − u)f(t,x,v, r) drdv

)
n

(2.4)
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where ⊗ denotes the tensor product. Therefore, the force exerted by the rain drops on
the surface dS is

F = φdS, (2.5)

where φ is the momentum flux of the drops defined in equation (2.4). Here, we neglect
the force exerted by the drops ejected from the surface. When rain falls on a free surface,
there are indeed secondary drops generated at the surface. drops pinch off from the
stalks, and smaller so-called film droplets are ejected from crowns and craters resulting
from rain-drop impacts. However, these secondary drops are either much slower than
the rain in the case of stalks, or significantly smaller than rain drops in the case of film
droplets (see Veron 2015). In either case, the momentum carried by these secondary drops
is considered negligible.

We finally consider that drops falling on the surface exert a stress on dS such that the
corresponding stress tensor σd is given by the relation F = σdndS. Using equations (2.4)
and (2.5), this analysis then yields:

σd = −
∫
(v−u)·n<0

∫
]0,+∞[

m(r)(v − u)⊗ (v − u)f(t,x,v, r) drdv. (2.6)

2.3. Accounting for falling rain in Navier-Stokes and Euler free-surface models

In this section, we incorporate the rain-induced stress (equation (2.6) above) in an
incompressible Navier-Stokes framework which includes a free surface. The surface is
described by the equation z = η(t,x⊥), where t > 0 is the time, x⊥ = (x, y) is the
two-dimensional horizontal position vector perpendicular to the z direction, and η is the
height of the free surface (see figure 1). The velocity u(t,x⊥, z) = (u⊥, w) of the water
under the free surface is given by

∇·u = 0, (2.7)

ρ∂tu+ ρ(u·∇)u = ∇·σ + ρg, (2.8)

where σ = −pI + µ
(
∇u+ (∇u)T

)
is the stress tensor, ρ is the water density, p is the

pressure, µ is the dynamic viscosity of water, and g is gravity. Here, I is the unit tensor,
∇u is the gradient velocity tensor and (∇u)T its transpose. The boundary conditions at
the free surface are the kinematic boundary condition

w (t,x⊥, z = η(t,x⊥)) = ∂tη + u⊥·∇⊥η, (2.9)

and the dynamic boundary condition

σn = σan+ Γκn, (2.10)

where σa is the stress tensor exerted by the air on thec surface, Γ is the surface tension,
and κ is the curvature of the free surface. In the absence of wind and other shear stresses,
the stress tensor reduces to σa = −paI , where pa is the atmospheric pressure.

Therefore, we can account for the effect of the rain drops on the free surface by simply
incorporating the stress from the rain (2.6) into the dynamic boundary condition (2.10),
which is then replaced by

σn = σan+ Γκn+ σdn. (2.11)

Neglecting viscosity both in the fluid and at the surface, and neglecting surface tension
(thus limiting our analysis to moderate surface curvatures), we obtain the following Euler
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model:

∇·u = 0, (2.12)

ρ∂tu+ ρ(u·∇)u+∇p = ρg, (2.13)

with the unchanged kinematic relation (2.9). Since viscosity is neglected, the dynamic
boundary condition is limited to normal stresses only and reduces to:

p = pa + pd, (2.14)

where pa is the atmospheric pressure and pd = −σdn·n is the pressure exerted by the
rain on the free surface expressed as:

pd =

∫
(v−u)·n<0

∫
]0,+∞[

m(r)|(v − u)·n|2f(t,x,v, r) drdv. (2.15)

3. Application to water waves with falling rain

3.1. Linear deep water surface gravity waves with falling rain

Here, we use the standard linear water wave theory using the inviscid Euler model
(equations (2.12)–(2.14)). For an irrotational flow, the linearized Euler system written in
the potential form, gives

∇2Φ = 0, (3.1)

ρ∂tΦ+ p+ ρgz = C(t), (3.2)

where Φ is the velocity potential such that u = ∇Φ is the velocity associated with the
surface waves, and C(t) depends only on time t. The surface boundary conditions (2.9)
and (2.14) give

∂tη = ∂zΦ, (3.3)

p = pa + pd. (3.4)

Finally, we consider that velocity perturbations from the surface waves are confined near
the surface (deep water waves) and add the kinematic boundary condition

Φ = 0 as z → −∞ (3.5)

Considering a surface wave mode of elevation η = aei (k⊥·x⊥−ωt) with amplitude a,
angular frequency ω, and propagating along the horizontal wavenumber k⊥, the Laplace
equation (3.1) and accompanying linearized kinematic conditions (3.3) and (3.5) give
Φ = −i aω

k ekzei (k⊥·x⊥−ωt) with k = |k⊥| and the surface wave wavelength λ = k/(2π).
Note that the linear theory assumes that ak is a small parameter. In turn, Bernouilli’s
equation (3.2) and the dynamic condition (3.4) linearized about z = 0 lead to the usual
dispersion relationship ω = (gk)1/2 for deep water surface gravity waves when pd = 0
and choosing C(t) = pa. Therefore, we can now examine how incorporating the rain-
induced pressure in the dynamic boundary condition modifies the classical dispersion
relationship.

In order to do so, the rain-induced pressure defined in equation (2.15) must be
evaluated. To make the computation possible, we make several assumptions. First, we
assume the rain drop distribution is homogeneous in space and monokinetic, that is to
say f(t,x,v, r) = n(r)δv−vd(r), where δ is the delta-Dirac function centered on vd so that
δv−vd(r) = 0 for v ̸= vd. In other words, we assume the same drop radius distribution
n(r) at each time t and position x, and all the drops of radius r have the same velocity
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vd(r). Note that despite its simplicity, this choice allows for different drop velocities
depending on the radius. Indeed, various analytic formulae of radius distribution and
velocity can be used (see section 3.2). Second, we estimate the integral (2.15) assuming
that (vd(r) − u)·n < 0 for all drop radii. With these assumptions, the rain-induced
pressure (equation (2.15)) reduces to

pd =

∫
]0,+∞[

m(r)n(r)|(vd(r)− u)·n|2 dr. (3.6)

This second assumption simply means that, in the estimate of the rain-induced pressure,
we count all drop contributions including very slow falling drops for which (vd(r) −
u)·n may not be negative. In other words, we include drops of very small radii that
may locally fall slower than the wavy surface. We will show in the following section
that these small droplets (as is the case with secondary rain-generated drops) carry a
negligible fraction of the total rain-induced momentum flux. However, their inclusion here
significantly simplifies the integration (3.6) and yields practical analytical expressions (see
appendix A). Note here that pd is quadratic with the impact velocity, and cubic with the
drop radius.

Without loss of generality, we choose a frame of reference aligned with x⊥ (i.e. such
that x⊥ = (x, 0) is the direction of propagation of the wave) and project vd(r) with the
horizontal and vertical components of the drop velocity given by vd(r) = (ud(r), wd(r))
respectively. Keeping only the linear terms in ak and aω, the rain-induced pressure pd
from equation (3.6) reduces to pd = p

(0)
d + p

(1)
d with

p
(0)
d =

∫
]0,+∞[

m(r)n(r)wd(r)
2 dr,

p
(1)
d = (Ik + Jω)i aei (kx−ωt),

(3.7)

and where I and J are constants defined by

I = −2

∫
]0,+∞[

m(r)n(r)ud(r)wd(r) dr,

J = 2

∫
]0,+∞[

m(r)n(r)wd(r) dr.

(3.8)

Here, p(0) is a constant pressure term (thus dynamically insignificant) arising from the
vertical momentum flux due to the rain. Also, p(1) is a wave-coherent pressure component
in which the term Iak results from the surface slope - drop velocity correlation and the
term Jaω is caused by the vertical velocity of the interface. We note here that J/(2ρd)
is the rain-induced volume flux per horizontal (i.e. perpendicular to wd) unit surface per
unit time. It has the dimension of a velocity and is commonly referred to as the rain rate
R. We also note that with our sign convention where the vertical z-direction is positive
upward, wd < 0 and J/(2ρd) = R where R < 0. Generally, rain rates are reported in mm
h−1 and refer to |R|.

We now re-introduce the dynamic condition (3.4) with pd = p
(0)
d + p

(1)
d given by

equations (3.7)– (3.8) into Bernouilli’s equation (3.2) linearized about z = 0 and obtain

ρ∂tΦ+ p
(1)
d + ρgη = 0, (3.9)

where we have chosen the constant C(t) such that C(t) = pa + p
(0)
d . Inserting the
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expressions of Φ, p
(1)
d , and η into this relation gives the following equation for ω:

ω2 − i
kJ

ρ
ω −

(
g + i

kI

ρ

)
k = 0. (3.10)

In this case, we find that the dispersion relationship is a quadratic equation with complex
coefficients. We find that its solutions are couples of complex frequencies ω = ωR + iωI .
The real part ωR is given by

ωR = ±

√√√√√1

2

√(kg − k2J2

4ρ2

)2

+
k4I2

ρ2
+ kg − k2J2

4ρ2

. (3.11)

Without loss of generality, we choose the solution with ωR > 0 (surface waves going in
the x > 0 direction), and we find that the imaginary part ωI depends on the sign of I:

ωI =
kJ

2ρ
+ sign(I)

√√√√√1

2

√(kg − k2J2

4ρ2

)2

+
k4I2

ρ2
− kg +

k2J2

4ρ2

, (3.12)

where we consider that sign(0) = 0. Since η = aei (kx−ωt) = aeωItei (kx−ωRt), the falling
rain induces wave attenuation if ωI < 0, or amplification if ωI > 0.

3.2. Rain size and velocity distributions

In order to assess the impact of rainfall on the surface waves, we must evaluate
equations (3.11) and (3.12) and thus estimate I and J . To do so, we need to choose
a number density function n(r) and a fall velocity vd(r) for the rain. There are number
of different formulae for either n(r) or vd(r) in the literature but we note here that
I and J depend on their integral values and are thus not dramatically influenced by
the details of their formulations. For the drop size distribution, we choose the classical
gamma function formulation proposed by Marshall & Palmer (1948):

n(r) = N e−Λr, (3.13)

where Λ = 344.34|R|−0.21 m−1 with R in m s−1, and N is a normalization factor (see
appendix A) that allows to recover the rain rate which is the variable generally measured
and reported. The vertical fall velocity wd(r) is taken from Best (1950):

wd(r) = −Υw(1− e−αwr), (3.14)

with Υw = 9.32 m s−1 the maximum fall velocity for rain, and αw = 1296 m−1. Equation
(3.14) is considered valid for drop sizes 0.1 mm < r < 3 mm. The horizontal rain velocity
is usually ignored (Ho et al. 2000; Harrison et al. 2012) or considered to be independent of
the radius and assumed to be approximately 85% of the 10-m wind speed U10 (Caldwell
& Elliott 1971, 1972). However, while it is clear that large rain drops falling through the
near surface atmospheric boundary layer will rapidly reach the surface without having
the time to decelerate significantly, small droplets take longer to fall and also have a
smaller mass and Stokes number (inertial response time). Therefore, the small rain drops
will impact the surface after having exchanged momentum with the air flow and thus
decelerated substantially. Past studies have focused on the vertical terminal velocity of
rain, and there are few published studies on the horizontal transport of rain drops. To
the authors’ knowledge, there are no published radius-dependent horizontal drop velocity
formulae. To remedy this paucity, we used results from a series of simulations based on
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Figure 2. a) The rain drop size distribution from Marshall & Palmer (1948) for multiple rain
rates. b) the vertical drop velocity wd, and horizontal velocity ud normalized by U10 (right axis)
at impact on the surface, as a function of drop radius.

the Lagrangian Stochastic model of Mueller & Veron (2009) for wind speeds ranging from
0 m s−1 to 30 m s−1. In these simulations, rain drops of various sizes were left to fall
freely through the turbulent atmospheric boundary layer above the wavy surface until
they impacted the surface. Impact velocities were recorded and based on the results from
these simulations†, we propose the following formulation for rain drop horizontal velocity
at impact on the surface:

ud(r)
∣∣∣
z=0

= Υu(1− e−αur), (3.15)

with Υu = 0.85U10 and αu ≈ 5000 m−1. Note that equation 3.15 implies that the wind
and wave are traveling in the same x direction. In the case of misaligned wind and waves,
ud is simply the component of the horizontal drop velocity in the direction of propagation
of the wave and Υu = 0.85U10 cos θ, with θ the angle between the wind and the wave
directions.

Figure 2a shows the drop size distribution of Marshall & Palmer (1948) for several rain
rates. As expected the number density increases with increasing rain rate but the shape
of the distribution remains. Figure 2b shows the rain drop velocity at impact on the
surface as a function of the radius. The vertical fall velocity is that of Best (1950) given
by equation (3.14). The horizontal drop impact velocity, shown in gray, is normalized by
the 10-m wind speed U10. Large drops are found to impact at approximately 85% of the
10-m wind speed in accord with Caldwell & Elliott (1972).

3.3. Validity of assumptions

In this section, we discuss the validity of several assumptions made above and offer
limits on the range of validity of the approach presented here. Overall, we show below
that the model presented here is valid for linear deep water gravity waves with wavelength
in the range O(1− 3) m < λ < O(250) m.

3.3.1. Inviscid irrotational approach

As mentioned earlier, rainfall is known to generate a near surface highly turbulent and
dissipative layer that is O(10) cm (Braun 2003; Beya et al. 2011; Harrison 2012; Peirson
et al. 2013). Hence, surface waves with wavelength significantly longer than the depth

† These simulations explore the free fall of water drops of several sizes through the stratified
turbulent atmosphere near the wavy interface. They are very comprehensive and thus beyond
the scope of this paper. Results will be the subject of a subsequent publication.
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of this layer will be largely unaffected, and conversely, the viscous damping mechanism
proposed by Tsimplis & Thorpe (1989) will only affect waves with wavelength shorter
than O(1) m such as those observed in the laboratory. However, the analysis presented
above for application to water waves (section 3.1), is limited to inviscid irrotational
flows. Thus, the model presented here, in which the effects of the rain reduce to an
added pressure confined to the interface, does not account for the dissipation from the
rain-generated subsurface turbulent layer. This merely implies that the present approach
is suitable for evaluating rain-induced effects for waves with wavelength λ longer than
O(1) m like ocean waves, but will be of limited use for assessing rain effects on short
laboratory waves.

We note here that the theory of Le Méhauté & Khangaonkar (1990) also relies on
inviscid irrotational wave solutions. Therefore it cannot properly account for wave-
turbulence interaction and is thus also limited to waves with wavelength λ > O(1) m.
We believe that to be the source of the discrepancy, last noted by Peirson et al. (2013),
between their theory and the laboratory data (Poon et al. 1992; Tsimplis 1992; Harrison
2012; Peirson et al. 2013).

3.3.2. Smoothness of the free surface and the validity of the kinetic approach

As noted in section 2.1, the kinetic description of the rain assumes that the radii of
rain drops are much smaller than the macroscopic length scales, taken here to be the
wavelength of the surface wave λ. In the case of a heavy rain, drops can have radii as
large as several millimetres. Looking at figure 2a for example, we find that r = 3 mm is
a reasonable upper limit on the radius (i.e. the density n(r) of drops is very small for
rain drops larger r > 3 mm). Villermaux & Bossa (2009) also showed that large drops
spontaneously fragment in free fall conditions leading to an effective upper limit for the
drop radius. In fact, Villermaux & Bossa (2009), using established laboratory results
showed that the fragmentation of free falling large drops yields a size distribution similar
to that of Marshall & Palmer (1948). Here, this means that our derivation is correct if λ
is at least much larger than approximately 3 mm, but further quantifying this limitation
is not straightforward.

However, there is an additional and stronger constraint that has to be taken into
account. Indeed, the analysis presented in section 2.2 assumes that the rain impacts an
element of surface dS that can be defined by a normal unit vector n. This implies that
dS is locally flat and thus smooth. Yet, rain drop impacts generate perturbations on
the free surface in the form of large impact craters, stalks and secondary droplets, and
capillary ring waves. The impact craters have radii that are on the order of O(10) r and
so are the height of the stalks (Prosperetti & Oguz 1993; Yarin 2005). The amplitude and
wavelength of capillary ring waves are expected to scale with O(1) r (Bliven et al. 1997).
Thus, we expect that the largest surface perturbations generated by the rain are of order
O(10) r. Considering dL a length scale associated with dS (where dL scales with dS1/2),
we infer that dS can be considered smooth when dL is at least of O(100) r. Furthermore,
dS is locally flat but the free surface is curved because of the surface waves. Accordingly,
we propose that the surface wave wavelength λ is required to be larger than O(10) dL.
Taking a drop radii as a conservative r ≈ 3 mm, together these estimates suggest that
our approach is valid for wavelength λ longer than ≈ 3 m.

3.3.3. Wave slope and velocity.

In estimating pd = p
(0)
d + p

(1)
d , we chose to keep only linear terms in ak (wave slope)

and aω (amplitude of the surface velocity), ignoring terms in (ak)2, a2kω and ak(aω)2

contained in |(vd(r)−u)·n|2 in equation (3.6). The linear theory for surface waves already
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assumes ak as a small parameter so terms in (ak)2 are readily negligible. Assuming
ω = (gk)1/2 (which will be shown below), we find that both a2kω < ak and ak(aω)2 < ak
for k > g(ak)2. Thus, taking for example the range of validity of the linear model to be
for ak < 0.05, we estimate that terms in a2kω and ak(aω)2 are negligible for surface
waves with wavelength λ < O(250) m. We conclude here that the linear assumption
combined with neglecting high order rain-induced pressure terms makes this approach
valid for surface waves with wavelength λ shorter than ≈ 250 m. Concurrently, this leads
to a maximum surface velocity aω < O(1) m s−1.

3.3.4. Radius of impacting drops.

Here, we explore the assumption that (vd(r) − u)·n < 0 is true for all drop radii. To
first order in ak, the inequality (vd(r) − u)·n < 0 that characterizes impacting drops
reduces to wd(r) − w < 0 with w the vertical component of the surface velocity (i.e.
to first order, the surface is flat and n is vertical). On the forward side of the surface
wave, w > 0 , and since wd(r) < 0 for every r, this inequality is always true: every drop
impacts the surface. On the back side of the wave where w < 0, the inequality reduces
to |wd(r)| > |w|. Since w = −i aωei (kx−ωt), the inequality is satisfied if |wd(r)| > aω.
We note that |w| = aω is a “worst case scenario” which only occurs when the wave
phase (kx− ωt) = ±π/2: for instance, w = 0 at the crest and trough of the wave. Given
equation (3.14), this leads to the constraint on the radius

r > rmin =
1

αw

∣∣∣ln(1− aω

Υw

)∣∣∣ ≈ ∣∣∣ 1

αw

aω

Υw

∣∣∣. (3.16)

In other words, drops with radii less than rmin may not reach the surface, at least not in
a manner that is homogeneous in space along the waves. Consequently, the integral (3.6)
may be over estimated since it is calculated for r in ]0,+∞[. Conversely, using rmin leads
to a slight underestimate of (3.6):

p̃d =

∫ +∞

rmin

m(r)n(r)|(vd(r)− u)·n|2 dr. (3.17)

Thus, the error made on the true pressure is at most

pd − p̃d
pd

=
1

pd

∫ rmin

0

m(r)n(r)|(vd(r)− u)·n|2 dr. (3.18)

Taking aω to be at most O(1) m s−1 as described above, yields rmin 6 10−4 m. And
using n(r) and wd(r) in equation (3.18) above, we find an error around 10−4%. This is
clearly very small and is due to the fact that the integrand in (3.6) depends on the r3

and w2
d, both of which are small for r 6 rmin.

4. Results

Using the size and velocity distributions for the rain drops given in section 3.2,
equations (3.11) and (3.12) can be evaluated in order to assess the effect of rainfall
on the propagating surface waves. We note here that the distributions chosen allow for
the derivation of an analytical solution (see appendix A), but in general equations (3.11)
and (3.12) can easily be estimated numerically. As mentioned above, the specific details
of the distributions do not dramatically alter the results.

The first notable result is that for all practical purposes, ωR ≈ (kg)1/2. This stems
from the fact that the terms (k2J2)/(4ρ2) and (k4I2)/(ρ2) in equation (3.11) are generally
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much smaller than (kg). The exact same terms appear in equation (3.12) but the two
(kg) terms appear with opposite signs, and

ωI ≈ 1

2ρ

(
kJ +

k2I

ωR

)
. (4.1)

In turn, this means that ωI ≪ ωR and thus, the vertical speed of the free surface due to
the wave amplification or attenuation, aωI , is very small compared to either the surface
wave phase speed (g/k)1/2 or the velocity of the free surface due to the wave propagation,
aωR.

As a side note, it is worth mentioning here that approximation (4.1) can be quickly
obtained from a result originally mentioned in Lamb (1932) (Sec. 348) where he estimated
the wave attenuation rate

ωI =
Ck

2aρωR
, (4.2)

when the surface is exposed to a wave coherent pressure p = iCei (kx−ωt) in quadrature
with the surface elevation. Here, from equation (3.7),

C = (Ik + Jω)a, (4.3)

and it follows that

ωI =
Ck

2aρωR

=
k

2ρωR
(Ik + Jω)

=
1

2ρ

(
kJ +

k2I

ωR

)
.

(4.4)

The derivation of Lamb (1932) results from a boundary-layer approximation, assuming
that viscous effects near the surface do not significantly alter the inviscid, irrotational
wave solution. This is consistent with ωR ≈ (gk)1/2 and additionally requires that the
boundary layer thickness be small compared to the surface wave wavelength, i.e. that
ωI ≪ ωR.

In our general case, relatively simple interpretations of I and J can also be given. For
example, as noted earlier, J is the rain induced mass flux driven by the vertical velocity,
and hence a flux through an horizontal surface. The rain induced mass flux is thus related
to the rain rate and R = J/(2ρd). The term containing J appears in equation (3.7) as a
pressure involving the vertical velocity of the interface and that of the rain. It is related to
the modulation of the momentum flux from rain vertical velocity, locally along the surface
wave, by the vertical velocity of the moving surface. In other words, this contribution
would vanish if the surface were non-moving. In addition, this term will always have the
effect of damping the waves. The integral I is the only term containing the horizontal
component of the rain velocity ud. It is related to the modulation of the momentum
flux from the rain vertical velocity by the rain horizontal velocity and the surface slope
ak. Therefore, it contains information regarding the direction of the wind compared to
that of the surface waves. Here we have chosen waves with ωR > 0 propagating in the
x > 0 direction, so ud < 0 implies I < 0 meaning that the wind travels opposite to the
wave. Respectively, I > 0 indicates wind and waves propagating in the same direction.
The term containing I appears in equation (3.7) as a pressure term involving the surface
slope. This term would vanish for a flat interface.

Figure 3a shows the rate of change ωI/|R| of the surface wave amplitude normalized by



Falling rain on water waves 13

0.01 0.1 1 10

k (m-1)

-0.4

-0.2

0.0

0.2

0.4

wave

wind

rain

wave

wind
rain

no wind

U10 =2.5 m s-1

U10 =5 m s-1

b)

0.01 0.1 1 10

k (m-1)

-40

-20

0

20

40

wave

wind
rain

wave

wind

rain

Dissipation

Amplification

a)

U10 < 0

U10 > 0

ud = 0

ud < 0

ud > 0
ω I

 /
 R

  
(m

-1
)

ω I
 /

 R
  

(m
-1
)

U
10 = 0

Figure 3. a) The rate of change ωI/|R| of the surface wave amplitude normalized by the absolute
value of the rain rate (in m s−1) as a function of the wavenumber k plotted for several wind
speeds. The wind direction compared to that of the wave is displayed with the light (U10 > 0)
and dark (U10 < 0) shadings. The thick black line shows U10 = 0 (or ud = 0). b) shows, for
the wind speed studied here, a closer view at the transition from dissipation to amplification at
fixed wavenumbers.

the absolute value of the rain rate (in m s−1) as a function of the wavenumber k plotted
for 10−m equivalent wind speeds of U10 = ± 0, 2.5, 5, 7.5, 10, 15, 20, 25, and 30 m
s−1. The direction of the wind compared to that of the waves is displayed with light and
dark shadings and the schematic embedded in the figure. The thick line shows ud = 0
(or U10 = 0). When I < 0, ud < 0, the wind propagates in the direction opposite to the
waves, and ωI is always negative, meaning that the surface waves are always damped.
This is not surprising since, in this case, rainfall will invariably fall with a velocity that
is opposite to that of the waves. This is presumably uncommon and would only occur in
the situation of swell waves propagating in a different direction than the local wind and
wind-driven seas.

On the other hand, when I > 0 and ud > 0, the wind and the waves (and the rain
drops transported by the wind) all travel in the same direction. In this case, ωI can be
either positive or negative, a result in qualitative agreement with that of Le Méhauté &
Khangaonkar (1990). Figure 3b shows a closer look at the transition from dissipation to
amplification. Here, we find that when I > 0, then ωI > 0 for kI2 > gJ2 and the waves
are amplified; alternatively, ωI < 0 when kI2 < gJ2, and the waves are damped.

The transition from dissipation to amplification occurs at a wavenumber ko such that
koI

2 = gJ2 or co = (g/ko)
1/2 = I/J , i.e. when the ratio I/J matches the phase speed

of the surface waves. Figure 4 shows the transition wavenumber ko as a function of U10.
The open symbols mark the 8 different (non-zero) wind speeds plotted on figure 3. Wave
amplification occurs for wavenumbers k > ko (short waves) and wave dissipation for
k < ko (long waves). Also, as a reminder, we show in the shaded areas on figure 4 the
range of wavenumber for which the theory presented here starts to become void.

Finally, in the case where I = 0, that is ud = 0 and U10 = 0, when the rain falls
vertically because of the absence of wind, we find that ωI = kJ/(2ρ) and ωI < 0. Thus,
the surface waves are always dissipated and ωI further reduces to ωI = (ρdkR)/ρ, a result
previously alluded to by Phillips (1987) who identified the proportionality ωI ∝ kR but
did not elaborate further. Here we estimate that with U10 = 0 m s−1 and with a rain rate
of |R| = 50 mm h−1, the amplitude of a surface wave of wavelength λ = 5 m would be
damped 94% after 1 hour, 88% after 2 hours, and 73% after 5 hours, with a corresponding
reduction in wave energy density of 12%, 22%, and 46% respectively.
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Figure 4. Transition wavenumber ko between wave amplification and dissipation as a function of
wind speed for U10 > 0. The right vertical axis shows the corresponding surface wave wavelength.
We also show the range of validity of the theoretical approach presented here.

5. Discussion

5.1. Comparison with the theory of Le Méhauté & Khangaonkar (1990)

As mentioned above, Le Méhauté & Khangaonkar (1990) modelled rain-wave interac-
tions based only on the rain drop’s momentum change at the air-sea interface. They did
not account for a distribution of rain drop size or fall velocities and as such, their results
depend solely on a rain rate and a unique rain fall velocity. For deep water linear waves,
they found that

ωI =
ρd|R|
2ρ

(
Udk

2

ωR
− 3k

)
(5.1)

where Ud is the rain horizontal fall velocity. However, we find several issues with their
derivation. The main problem has to do with their estimate of the modification of the rain
rate, locally, when waves are present (their equation (3)). They correctly included the
effect of the movement of the surface on the exchange of momentum at the surface but
they mistakenly omitted the effect of the surface slope on the mass flux across the surface.
In other words, in their version of equation (2.3), they used the vertical component of
(v − u) instead of (v − u)·n. In addition, they included the effects of the rain-induced
(viscous) tangential stress at the surface by accounting for the weight of the viscous
boundary layer as a pressure term that was incorporated in the inviscid Euler model.
We find that including viscous effects in inviscid models using these boundary layer
assumptions can be misleading. In this paper, we limit our analysis to strictly inviscid
boundary conditions. Accounting for both these issues (correcting for the sloped surface
and eliminating the effects of the shear stress), their corrected formula is:

ωI =
ρdR

2ρ

(
2k − 2Udk

2

ωR

)
. (5.2)

The similarity between equations (5.2) and (4.1) becomes easily apparent. In fact, as
already mentioned, J = 2ρdR. Furthermore, if the drop size distribution n(r) is taken to
be monodisperse (as Le Méhauté & Khangaonkar (1990) do), that is if we greatly simplify
n(r) = δr−rd , then I in equation (4.1) reduces exactly to I = −2ρdRUd, and equations
(5.2) and (4.1) become identical. We note that in this simplified case, the transition
from amplification to attenuation arises when co = Ud and the rain will amplify (resp.
attenuate) the wave when the horizontal impact velocity is larger (resp. smaller) than
the wave phase speed.

In short, in this application to rain falling on surface waves where the distribution
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function f(t,x,v, r) is replaced by a rather simple homogeneous and monokinetic ex-
pression, the kinetic approach presented here can be viewed as an extension of the
work of Le Méhauté & Khangaonkar (1990) which allows to retain the dependence
of the rain-induced momentum flux on the velocity and size of the drops. Of course,
when using a general distribution f(t,x,v, r), the kinetic theory applies broadly to drop
momentum flux on moving surfaces (see equation (2.6)) with the possibility to consider
non-homogeneous particle distributions, multivalued velocity distributions for a given
radius, or include other drop specific parameters such as temperature.

5.2. Comparison with experimental data

At this point, it is difficult to compare our theoretical estimates with available data
(Manton 1973; Tsimplis & Thorpe 1989; Tsimplis 1992; Poon et al. 1992; Yang et al.
1997; Braun et al. 2002; Harrison 2012; Peirson et al. 2013) because the experiments
on wave-rain interactions all use laboratory, short wind-generated or mechanical waves
which systematically fall outside the wavenumber range for which the we consider the
present theory to be robust (see figure 5). Brushing aside, for a moment, the limitations
of the theory, we find that the longest wave studied by Peirson et al. (2013) (λ ≈ 0.5 m
for a rain rate of |R| = 141 mm h−1) attenuates approximately 5 times faster than would
be predicted by the present theory if it were valid at that scale. We also note that the
laboratory observations show weak dependence of the wave attenuation rate on the rain
rate, at least at high rain rates. This result is also in contrast with the theory presented
here or that of Le Méhauté & Khangaonkar (1990). Although, Peirson et al. (2013)
compared the time scales between consecutive drop impact with that of the lifetime of
surface perturbations and concluded that, beyond approximately |R| = 30 mm h−1, rain
likely falls on a highly perturbed surface which may lead to a “saturated” regime. Figure
5 shows the non-dimensional wave amplitude attenuation rate −ωI/ωR (thick black line)
as a function of the surface wave wavenumber in the case of a vertical rain (no wind)
with |R| = 100. We also plot the results of Teixeira & Belcher (2002) who estimated wave
damping by sub-surface turbulence using rapid distortion theory. Here we have used a
sub-surface turbulence of u′

rms = 1.2 cm s−1 as did Peirson et al. (2013). Coincidentally,
this corresponds to rain induced turbulent levels observed at the surface by Harrison
(2012). Teixeira & Belcher (2002) estimated their results to be valid for 5 cm ≪ λ ≪ 15
m (with ak = 0.1 and u′

rms ≈ 1 cm s−1). The data of Tsimplis (1992); Harrison (2012);
Peirson et al. (2013) are shown with the symbols. The data show significant scatter and
a trend is difficult to extract. Despite the scatter in the data however, it is also clear that
a simple linear extrapolation of the kinetic theory beyond the range of validity suggested
above in section 3.3 is not recommended.

The subsurface turbulence measurements of Harrison (2012) and Peirson et al. (2013)
show that the turbulent motions under the rain are surprisingly weak and also inde-
pendent of rain rate. Note here that with turbulent levels independent of rain rate,
the viscous damping of the waves by the turbulence would also be independent of rain
rate as is indeed observed in the laboratory (Poon et al. 1992; Tsimplis 1992; Harrison
2012). Peirson et al. (2013) concluded that high levels of dissipation must be present
at the interface and that near-saturated turbulent conditions exist at high rain rates.
They hypothesize that below a threshold rain rate, of O(30) mm h−1, rain-rate-sensitive
regimes may exist. However, our current understanding of turbulence generated at the
surface and its interaction with short waves is considerably incomplete and more work
in the area is needed (Poon et al. 1992; Peirson et al. 2013).

In any case, as mentioned earlier, the thin rain-induced turbulent layer only interacts
with waves shorter than O(1) m and viscous damping of these short waves by the
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Figure 5. Non-dimensional attenuation rate as a function of the surface wave wavenumber in
the case of vertical rain (no wind) with a rain rate of |R| = 100 mm h−1 (thick black line). The
dash line shows the the estimate of Teixeira & Belcher (2002) from rapid distortion theory using
a subsurface turbulence of u′

rms = 1.2 cm s−1. The data symbols show the data of Tsimplis
(1992); Harrison (2012); Peirson et al. (2013). The solid gray line shows viscous attenuation. As
in figure 4, the gray area shows the range over which the present theory becomes void.

turbulence leads to ωI ∝ k2. The approach presented here applies for waves longer
than O(1−3) m and under vertical rain conditions where I = 0, the present model yields
ωI ∝ k. Thus, technically, it should be possible to perform simple experiments that would
span a sufficiently large wavenumber range to evaluate both regimes. We note here that
the data of Peirson et al. (2013) suggest ωI ∝ k3/2. Besides experiments, improvement
to the theoretical approach can also be considered. To this end, we intend to use the
rain stress formulation developed here with a typical rain distribution and include it in
a direct Navier-Stokes simulation in the hope that the blended approach might be able
to account for the effects of the turbulence on the short waves.

Furthermore, with our kinetic approach it is also possible, in principle, to include
other effects like mass and heat transfer, and to take into account the difference in
density (salinity) between rain drops and sea water. This last property might be very
important for wave attenuation as it induces stratification in the surface layer which in
turn constrains the propagation of the vortices generated by drop impacts and affects
the structure of the near surface turbulence (Harrison 2012).

In practice, it is likely that the kinetic approach as presented here is adequate for
“long” waves, but not for the short waves found in the laboratory. At these short scales,
subsurface turbulence and wave-turbulence interaction need to be examined and perhaps
accounted for in more detail.

6. Conclusion

In this paper, we present a kinetic model for estimating the momentum flux from
falling drops onto a moving free surface. This approach neglects the internal structure of
the particles, but retains other properties, like their radius and velocity, and hence their
momentum. The model also takes into account the disperse nature of particles in size,
position, and velocity, through a time-dependent distribution function f(t,x,v, r). The
computation of the stress exerted by the particles on a moving free surface then becomes
straightforward and is easily incorporated in Navier-Stokes and Euler free surface models.

As an example of a possible application of our approach, we apply the present model
to the problem of rain falling on linear deep water surface waves. In this particular case,
f(t,x,v, r) is replaced by a rather simple expression. Under appropriate linear, inviscid,
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and irrotational conditions, the rain-induced stress is included in the free surface Euler
model as a wave-coherent surface pressure. The kinetic approach allows us to retain the
dependence of the rain-induced momentum flux on the velocity and size of the drops. In
addition, we show that the rain stress also depends on the free surface velocity and slope.

For monochromatic linear surface waves, we find that rainfall can induce either wave
amplification or attenuation depending on the wind speed and direction, and the surface
wave wavelength. For example, in the case of vertical falling rain, in the absence of wind,
waves appear to be attenuated over the whole wavenumber range and the attenuation
rate reduces to a linear function of the rain rate and surface wave wavenumber. In general,
our theory can be viewed as an extension of the work Le Méhauté & Khangaonkar (1990)
who considered a monodipserse rain size distribution. In the work presented here, the
attenuation rate is related to moments of f(t,x,v, r).
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Appendix A

As mentioned in section 3, several rain drop size distributions exist in the literature.
The most common drop size distributions are variations of the modified gamma distri-
bution (Ulbrich 1983):

n(r) = N rke−Λr, (A 1)

with N a normalization factor. Generally, both Λ and N depend on the rain rate to
account, for example, for the change in the shape of the distribution with a shift to
larger drop under intense rain events. We also note that the normalization factor N
essentially allows for the rain rate to be recovered such that:

R =

∫
]0,+∞[

m(r)

ρd
n(r)wd(r) dr

= N
∫
]0,+∞[

m(r)

ρd
rke−Λrwd(r) dr.

(A 2)

As such, N also depends on the choice of the radius-dependent vertical velocity wd(r).
When integral properties of the rain size distributions, as is the rain rate R for

example, are the only variables needed, it is sometimes possible to evaluate these integrals
analytically. For example, Schlussel et al. (1997) used the distribution (A 1) with k = 0
originally proposed by Marshall & Palmer (1948) and provided analytical expression
for the fresh water input by rainfall to the upper layers of the ocean. In our case, we
need to evaluate the equations (3.8) in which both horizontal ud(r) and vertical wd(r)
components of the impact drop velocity also appears. To do so, we too choose the drop
size distribution proposed by Marshall & Palmer (1948):

n(r) = N e−Λr, (A 3)

along with the following formulations for impact drop velocity components:

ud(r) = Υu(1− e−αur),

wd(r) = −Υw(1− e−αwr).
(A 4)

Under these conditions, and using the rain rate R as the independent variable, the
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normalized drop size distribution is:

n(r) =
Re−Λr

8πΥw

(
1

(Λ+ αw)4
− 1

Λ4

)−1

, (A 5)

which indeed depends on the details of the vertical fall velocity. Additionally, the
equations (3.8) reduce to:

I = 2ρdRΥu

(
(Λ+ αw + αu)

−4 − (Λ+ αu)
−4

(Λ+ αw)−4 − (Λ)−4
− 1

)
,

J = 2ρdR.

(A 6)

Values for Λ, Υu, αu, Υw, and αw are cited in the text or can be chosen from sources in
the literature.
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