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Abstract The Internet of Things (IoT) has become a reality with the avail-
ability of chatty embedded devices. The huge amount of data generated by
things must be analysed with models and technologies of the “Big Data An-
alytics”, deployed on Cloud platforms. The CIRUS project aims to deliver a
generic and elastic cloud-based framework for Ubilytics (ubiquitous big data
analytics). The CIRUS framework collects and analyses IoT data for Machine
to Machine services using Component-off-the-Shelves (COTS) such as IoT
gateways, Message brokers or Message-as-a-Service providers and Big Data
analytics platforms deployed and reconfigured dynamically with Roboconf. In
this paper, we demonstrate and evaluate the genericity and elasticity of CIRUS
with the deployment of an Ubilytics use case using a real dataset based on
records originating from a practical source.

Keywords Big Data analytics · Cloud computing · Elasticity · Internet of
Things · Middleware · Ubilytics

1 Introduction

The Internet of Things (IoT) [1] has become a reality with the availability
of chatty embedded devices such as RFID, wireless sensors, mobile sensors,
personal smartphones, etc. According to IDC, the installed base of the Internet
of Things will be approximately 212 billion “things” globally by the end of
2020 [2]. IoT provides companies with new opportunities of economic models
(e.g. pay as you go), improves the quality of service delivered to their customers
both individuals and companies and helps them to satisfy their legal and
contractual duties. The IoT is now an established efficiency and productivity
tool for agile enterprises and organizations. However, associated services called

Linh Manh Pham · Ahmed El-Rheddane · Didier Donsez · Noel de Palma
University of Grenoble Alpes, France
E-mail: first.last@imag.fr



2 Linh Manh Pham et al.

Machine to Machine (i.e. M2M) require the analysis of a huge amount of data
produced by swarms of sensors and collected by dedicated gateways. This
huge amount of IoT data must be analysed with models (e.g. Map-Reduce,
ESP, CEP [4]) and technologies (e.g. Hadoop, Storm [7]) of the “Big Data
Analytics” (BDA for short), deployed on Cloud computing platforms [5]. This
new field is named Ubilytics (ubiquitous big data analytics) by [3]. Currently,
deploying Ubilytics infrastructures/projects often requires engineers with skills
in various technologies of Cloud computing, Big Data, IoT as well as diverse
business domains such as smart grid, supply chain, healthcare, etc. Gartner
forecasts that the business behind Big Data will globally create 4.4 million IT
jobs by 2015 with the mobile and social networks [23]. Ubilytics will create a
new kind of IT job, the Ubilylist. Ubilylists are business and domain experts
who are able to design and deploy complex analytic workflows and to interpret
ubiquitous big data results. Whereas, deploying and configuring (i.e. D&C
process) the infrastructure for Ubilytics is a complex task and requires several
IT skills to deal with various technologies from embedded IoT gateways to
cloud-based analytic platforms.

The CIRUS framework is a generic and elastic cloud-based Platform as a
service (PaaS) for real-time Ubilytics. The CIRUS project targets the ubilylists
who are not Cloud D&C expert. It allows them to design complex workflows
of standard analytics, sensor data sources and data viz interfaces as well as
to deploy these components both on the IoT gateways and on virtual servers
hosted by one or several Cloud platforms. Moreover, the CIRUS PaaS aims
to design and deploy rapidly Software as a service (SaaS) for Ubilytics. In
summary, we make the following contributions in this paper: (1) We propose
the novel architecture of CIRUS, a generic and elastic cloud-based PaaS plat-
form for Ubilytics using Component-off-the-Shelves (COTS); (2) We perform
an experiment which validates the genericity and elasticity of CIRUS using a
practical Ubilytics use case. This experiment is deployed on a hybrid Cloud
environment consisting of a private VMware vSphere [28] hosting center, the
public Amazon EC2 [13] and Microsoft Azure [14] Clouds.

The paper is organized as follows. Section 2 presents the related work and
motivation. Section 3 describes the overall architecture and components of
CIRUS. The proof-of-concept implementation of CIRUS using a dataset from
practical sources is demonstrated in an use case of Section 4. Section 5 uses this
use case in an experiment to validate the proposed framework. Conclusions are
stated in Section 6.

2 Related work and motivation

Since CIRUS framework is a flexible cloud-based PaaS platform for Ubilytics,
we compare it with cloud-based BDA platforms for IoT.

On this aspect, several research works target special IoT application do-
mains. Ma et al. [18] integrate the on-demand ability of the Cloud to their Big
Data framework for IoT. In order to deal with the large volume of IoT data,
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they propose an update and query efficient index framework (UQE-Index)
based on key-value store that can support high insert throughput and pro-
vide efficient multi-dimensional query simultaneously. In [16], Talia introduces
Data Mining Cloud Framework as a Data Analytic (DAPaaS), a program-
ming environment for development of BDA applications, including supports
for single-task and parameter-sweeping data mining programs. A cloud-based
platform for BDA in power grid, validated in a micro-grid at USC campus, has
been proposed by Simmhan, et al. [17]. This platform provides a pipeline mech-
anism to integrate information from various sources, digest and store them in
static repositories for sharing knowledge. These approaches do not mention
the D&C process of such complex Big Data frameworks. It is an error-prone
and complicated work for the ubilylists, which needs to be automated by in-
termediate systems or middlewares like CIRUS does.

Only a few projects such as Globus Provision [19] and CloudMan [20] take
the issue of automating deployment of BDA applications on Cloud infras-
tructure into consideration. Globus Provision is a cloud resource management
tool for deploying biologic computational Grids on EC2. It offers tools such
as CRData and Globus Transfer to deal with massive dataset on the Cloud.
CloudMan is also a Cloud resource management tool for automation of the
deployment of a Galaxy instance on EC2. However, these two frameworks are
dedicated to one specific Cloud and used for only one type of BDA applica-
tions. In contrast to CloudMan and Globus Provision, Jin, et al. [21] propose
an automatic deployment framework which supports heterogeneous environ-
ments for deployment of BDA applications. However, it only supports static
deployment, the elasticity is not considered at all. Elasticity is one of the ma-
jor benefits of Cloud computing to add quality of service (QoS) into cloud
services [15]. To the best of our knowledge, CIRUS is the first preliminary
framework providing automated D&C and elasticity for cloud-based BDA ap-
plications.

Along with academic efforts, commercial Big Data as-a-Service (BDaaS)
solutions for IoT are currently available and built on open-source platforms.
Splunk Cloud [25] is a proprietary cloud-based service that consumes, searches
and visualizes different sources of machine data. This multi-tenant DA SaaS
model provides analysing and monitoring suites for developers, application
support staffs, system administrators, and security analysts who have to deal
with a bulk of data every single day. Amazon Kinesis offers real-time process-
ing, scalable data throughput and volume which accommodate up to “hun-
dreds of terabytes of data per hour from hundreds of thousands of sources” [24].
However, those solutions are not portable from one provider to another. Inter-
operability, portability and hybrid cloud configuration are seriously compro-
mised. Moreover, although these Big Data IoT systems are implemented and
orchestrated automatically on the Cloud, they do not take into account the
dynamic reaction to changes from surrounding environment.

In comparison with the state-of-the-art, the CIRUS project aims to provide
a generic and elastic PaaS Cloud infrastructure for BDA, which digests IoT
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Fig. 1: The CIRUS novel framework implementing lambda architecture

data and covers the automated D&C process of software components on both
IoT gateways and Cloud machines.

3 The CIRUS framework

The CIRUS framework is designed as a flexible architecture described as a
set of abstract components. Each of these abstract components will be spe-
cialized into concrete components when a CIRUS application is deployed on
the Cloud. Therefore the platform assembly can be replaced easily to use new
IoT gateway protocols, message brokers and BDA platforms. The overall novel
architecture of the CIRUS framework is depicted in Fig. 1. As shown in this
figure, CIRUS is a combination of 3 application tiers which are IoT edges, Mes-
sage brokers and BDA platforms. The BDA platform tier, in turn, is divided
into 3 main layers (serving, batch and speed) according to Lambda architec-
ture [26] which is a data-processing architecture designed to deal with massive
data from multiple sources. A lambda system contains typically three layers:
batch processing aiming to perfect accuracy, speed (or real-time stream pro-
cessing) for minimizing latency, and a serving layer for responding to queries.
Following is details about main components of CIRUS.

IoT Edge tier is deployed on the IoT gateways. It collects data from
various sensor networks (e.g. enOcean, Zigbee, etc.) and publish them to the
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brokers. They store temporally the data when the network such as Wifi pub-
lic hotspots or ADSL is not available. Gateways can be either mobile (from
people, cars to sounding balloons) or static (vending machines, interactive
digital signages). Message Brokers tier implements the distributed publish-
subscribe patterns with various QoS properties. These include fault-tolerance,
high-availability, elasticity, causality, deterministic delivery time, etc. BDA
Platforms tier implements various BDA solutions, which comprises of follow-
ing three layers:

– Data Storage operates at Serving layer to store temporal data of sensors
as well as calculated aggregation data and prediction models.

– Batch processor operating at Batch layer is to retrieve offline data from
the storages and perform batch processing.

– Event stream processor operating at Speed layer aims to analyse in
real-time the stream of sensor data incoming from the IoT edges thanks to
the brokers to classify the data. Machine Learning processor situated
between batch and speed layers is to calculate unsupervised models of
offline big data and parameterize the event stream processing (i.e ESP).

DSL-based plug-ins allows to describe Big Data applications in terms of
abstract components that vary from the sensors to use, the clouds to imple-
ment to the topologies to reuse, etc. D&C manager parses the application
descriptions to concrete instances which can be deployed, configured, adapted
automatically in a hybrid cloud infrastructure and on physical machines (gate-
ways) at runtime. The D&C manager allows third-party monitoring and
scaling plug-ins to be integrated in its core. This component monitors the
three lambda layers and makes scaling decisions based on variations of envi-
ronment that enables the elasticity for the framework.

Based on the flexible architecture which is a composition of many COTS
components, CIRUS can implement and (self-)manage any kind of BDA ap-
plications. As a first step towards validating the genericity and elasticity of
CIRUS, we describe in details its selected components and data-flow processing
in a smart-grid use case. CIRUS allows to use OTSO (Off-the-shelf Option) [30]
and CAP (COTS Acquisition Process) [31] as COTS selection methods. With
the smart-grid domain, we use CAP, which considers domain/domain compat-
ibility criterion, to select appropriate components among many candidates for
each tier as well as layer of CIRUS.

4 The smart-grid use case

For validating our Ubilytics PaaS, we have implemented a prototype of CIRUS
for simple smart-grid application in which the electricity supplier can forecast
the electric load in the next minutes by analysing in real time electric con-
sumptions collected in houses. In the short term, the infrastructure will be
adjusted dynamically according to the load of sensor messages’ throughput by
an autonomous manager such as Roboconf [12]. For instance, additional cloud
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Fig. 2: The CIRUS’s components for the smart-grid use case

instances can be added to the speed layer of the architecture when workload
goes over a threshold. The detailed architecture of the CIRUS prototype for
the use case is shown in Fig. 2. As the batch processing layer is not necessary
in this particular use case, without loss of generality, we have not implemented
it in the prototype. The components of the smart-grid use case are described
as follows.

4.1 IoT gateways

For the sensor data collection, we have chosen the OpenHAB framework 1

which provides an integration platform for sensors and actuators of the home
automation. OpenHAB allows users to specify DSL-based rules which will be
parsed by its rule engine to update the actuator’s commands upon sensor’s
state changes. The Event-Condition-Action (ECA) paradigm is used by Open-
HAB for executing the home automation actions. ECA rules are triggered on
sensor value changes, command emission and timer expiration. Events (e.g.
state changes and commands) can be “imported” or “exported” using bind-
ings for MQTT, XMPP, Twitter, etc. OpenHAB can be installed and run on

1 Now is ESH [8]
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embedded boards, some of which are Raspberry Pi, Beaglebone Black and In-
tel Galileo. For the smart-grid use case, we have developed a new OpenHAB
plug-in (called binding) in order to replay the sensor log files containing the
smart-plug measurements (e.g. timestamped load and work) of each house.
It is deployed on both embedded boards and virtual machines (VMs) on the
Cloud with one instance per house. Data from OpenHAB is sent to the MQTT
brokers.

4.2 MQTT brokers

Message Queue Telemetry Transport (MQTT) [9] is a transport data protocol
for M2M networks. It is devised for supporting low-bandwidth and unreliable
networks, as illustrated by satellite links or sensor networks. MQTT follows
the publish-subscribe pattern between sensors and one or more sinks like M2M
gateways, etc. Mosquitto [10] and RabbitMQ [11] are the main robust and
open-source implementations of MQTT brokers that we have selected for this
use case. The data from sensors are classified in the brokers according to
specific topics (e.g. houses or plugs) and then delivered to the Speed layer.

4.3 Speed layer for real-time analytics

For the speed layer of the lambda architecture, we have chosen the Apache
Storm framework. Storm is a real-time ESP system. It is designed to deploy
a processing chain in a distributed infrastructure such as a Cloud platform
(IaaS). For the Ubilytics platform, we have developed a new Storm input
components (called spout) in order to generate sensor tuples from the MQTT
brokers by subscribing on the MQTT topics with one spout per house.

4.4 Historical data storage

In the speed layer, the Storm topology needs to maintain some execution on-
going state. This is the case for the sliding window average of sensor values. To
do this we use Storm with Cassandra [22] for our real-time power consumption
prediction. Cassandra is an open source distributed database management sys-
tem (NoSQL solution). It is created to handle large amounts of data spread
out across many nodes, while providing a highly available service with no sin-
gle point of failure. Cassandra’s data model allows incremental modifications
of rows.

4.5 D&C manager

As mentioned, Roboconf is our choice for the elastic D&C manager in multi-
Clouds. It is a middleware for autonomously configuring, installing, and man-
aging complex legacy application stacks deployed on the cloud VMs and on
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Fig. 3: Components of the smart-grid use case under Roboconf’s DSL

physical machines which dynamically evolve over time. Following the Service-
Oriented Architecture (SOA) principles, Roboconf consists of a simple DSL
for describing configuration properties and inter-dependencies of service com-
ponents; a distributed configuration protocol ensuring the dynamic resolu-
tion of these inter-dependencies; a runtime system that guarantees the correct
(re)deployment and management of distributed application across multiple
Clouds, physical devices or virtual machines. Roboconf supports popular IaaS
Cloud platforms such as EC2, Azure and vSphere. The configuration of compo-
nents in smart-grid use case under Roboconf’s DSL are excerpted and shown
in Fig. 3.

This section describes the prototype for the smart-grid use case which
serves as a proof-of-concept for the genericity of CIRUS. However, to vali-
date the elasticity, an experiment in an autonomous environment needs to be
conducted.

5 Validating experiments

In order to evaluate the elasticity of the proposed framework, we use the
smart-grid prototype in implementing an experiment which worker instances
of “Event stream processor” component (the Storm cluster in this situation)
will be scaled out/in depending on fluctuation of workload. The experiment
is deployed on a hybrid Cloud environment. Each house is represented by
an OpenHAB process which publishes a given dataset related to the house
(approximately 2.5 GB per house). The dataset files, which are derived from
DEBS 2014 Grand Challenge [6], are preloaded on microSD cards. The dataset
is based on practical records collecting from smart plugs, which are deployed in
private households of 40 houses located in Germany. Those data are collected
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Fig. 4: Instances of components of the smart-grid use case under Roboconf’s
DSL

roughly every second for each sensor in each smart plug. It is worth noting
that the data set is gathered in an real-world, uncontrolled environment, which
implies the possibility of producing imperfect data and measurements.

The OpenHAB gateways are deployed on Beaglebone Black [27] embed-
ded boards. The aggregated data and results are finally stored in an Apache
Cassandra database which is in our vSphere private Cloud for safety. The clus-
ter of MQTT brokers, containing the topics, are hosted on EC2 public Cloud
VMs. The Storm cluster contains worker nodes, each corresponding to a VM
instance on Azure Cloud for taking advantage of the computing strength of
our granted Microsoft infrastructure. The dynamic D&C process is performed
automatically by Roboconf. Fig. 4 shows a short extract about instances of
the experiment under Roboconf’s DSL.

5.1 Storm topology for real-time load forecasting

To handle the consumption prediction query in a continuous and scalable man-
ner we use a Storm-based solution. The elaborations consist of queries that
are continuously evaluated on the events supplied as input. Storm cluster is
composed of two kinds of nodes: a master node which runs a daemon called
Nimbus and worker ones which run a daemon called Supervisor. The Nimbus
is responsible for distributing code around the cluster, assigning tasks to ma-
chines and monitoring for failures. Each supervisor listens for works assigned
to its node, it starts and stops worker processes when necessary based on what
Nimbus has assigned to it. Each worker process executes a subset of a topol-
ogy; a running topology may consist of many worker processes spread across
many nodes.
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Fig. 5: The Storm topology used in the smart-grid use case

A topology is a graph of computation. Each node in a topology encompasses
a processing logic, and links between nodes indicate data flows between these
ones. The unit of information that is exchanged among components is referred
to as a tuple, which is a named list of values. There are two types of components
which are spout and bolt. A spout component encapsulates the production of
tuples. A bolt encapsulates a processing logic manipulating the tuples such as
filtering. The communication patterns among components are represented by
streams, unbounded sequences of tuples that are emitted by spouts or bolts and
consumed by bolts. Each bolt can subscribe to many distinct streams in order
to receive and consume their tuples. Both spouts and bolts can emit tuples on
different streams as needed. The diagram in Fig. 5 presents our Storm topology
for electric load prediction, which is submitted to Storm clusters for execution.
The spout retrieves the data from an MQTT topic where it is published line
by line, these lines are then formatted into a list of values by the Format bolt.
Then, only the load-related tuples are filtered and enriched with a time slice
based on their timestamps and aggregated per house and time slice. Prevision
is then made given the recent time slice history and previous time slices which
are stored in a Cassandra database.

5.2 Monitoring and scaling decision

We have developed a Ganglia [29] plug-in for Roboconf to monitor the topology
and fetch the metrics that we consider relevant to characterize the load of
a given component. Moreover, Storm also exposes application-metrics, such
as the number of emitted or executed tuples. We consider that these Storm
metrics are the most fit to reflect the load of a Storm component. Basically,
the state of a component is described by the difference between the tuples it
receives, i.e., the tuples that are emitted by all its input components, and the
tuples it is able to process within a given period of time. While this is straight
forward to compute, it takes into account virtually any type of bottlenecks a
component might encounter: should the processing of a tuple be CPU-intensive
or should it rely on an external web service or database connection, it would
invariably tell if a given component is able to keep up with the pace of its
incoming stream of data.

Once we have the Storm metrics of the components and provided that load
balancing among different instances of the same component is guaranteed,
through a random policy for instance, the scaling decision goes as follows:
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Fig. 6: Throughput per component

– Scaling out: which is the addition of an extra component instance, should
occur when a given component receives more messages than it is able to
process, i.e., if formula (1) is verified, n being the current number of the
component’s instances.

∑
inputs

emitted >
∑

i<n
executedi (1)

Before scaling out, we store the last witnessed capacity of the component’s
instances as described by equation (2). This will be later used to initiate
scaling in.

capacity =

∑
i<n executedi

n
(2)

– Scaling in: which is the removal of an unnecessary component instance,
should take place if we can guarantee that, with one instance less, the
component’s instances would still not be overloaded. Using the previously
stored capacity, that is updated upon each scaling out, scaling in is insti-
gated upon formula (3) verification.

∑
inputs

emitted > (n− 1)capacity (3)

Obviously, changing the number of component instances would not have the
desired effect on performance unless it is coupled with a correspondent change
in the amount of provisioned resources.
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Fig. 7: Parallelism per component

5.3 Result discussion

This experiment shows how our framework provides elasticity for BDA ap-
plications in multi-Clouds using the prototype for smart-grid use case. The
initial cluster is set so as to have one worker per component of our topology.
The incoming throughput is then varied gradually in order to see its impact
on the behaviour of our topology.

Figures 6 and 7 show the results of this experiment, components that have
not needed scaling have been omitted. We can see that at times, there is a
decrease in the number of emitted bolts (Fig. 6). This is detected by our elas-
ticity controller which instigate the corresponding scaling operation (Fig. 7).
The pikes following each scaling are due to accumulated non executed tu-
ples when scaling is carried out. Likewise, when the spout’s throughput is low
enough our controller removes unnecessary instances.

Note that different components are scaled separately. Format has been the
first to be scaled, and as it became able to process all the tuples its received, it
emitted more tuples which resulted in Slice being overloaded later on. Slice’s
throughput is roughly half the throughput of the previous components as
it filters only load related measurements which accounts for half the total
reported measurements. Thanks to the elasticity, our framework has been able
to efficiently support the variations of dataload.
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6 Conclusion

This paper demonstrates the CIRUS project in the aspects of an Ubilytics
novel generic architecture and its elastic implementation for a smart-grid use
case. The CIRUS project aims to deliver a self-adaptive cloud-based framework
for Ubilytics applications. The CIRUS framework collects and analyses IoT
data for M2M services using COTS such as IoT gateways, Message brokers
or Message-as-a-Service providers and BDA platforms. For the smart-grid use
case, CIRUS deploys OpenHAB processes for house gateways, several MQTT
brokers and a Storm topology which analyses the sensor data stream of the
smart-grid application for power prediction. The experiment validated the
genericity and elasticity of CIRUS’s architecture.
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