N
N

N

HAL

open science

An evolution management model for multi-level

component-based software architectures
Abderrahman Mokni, Marianne Huchard, Christelle Urtado, Sylvain Vauttier,
Yulin Zhang

» To cite this version:

Abderrahman Mokni, Marianne Huchard, Christelle Urtado, Sylvain Vauttier, Yulin Zhang. An
evolution management model for multi-level component-based software architectures. SEKE: Soft-
ware Engineering and Knowledge Engineering, Jul 2015, Pittsburgh, United States. pp.674-679,
10.18293/SEKE2015-172 . hal-01245924

HAL Id: hal-01245924
https://hal.science/hal-01245924
Submitted on 1 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01245924
https://hal.archives-ouvertes.fr

An evolution management model for
multi-level component-based software architectures

Abderrahman Mokni', Marianne Huchard?, Christelle Urtado!, Sylvain Vauttier', and Yulin Zhang?

'LGI2P / Ecole des Mines d’Ales, Nimes, France, { Abderrahman.Mokni, Christelle.Urtado,
Sylvain. Vauttier } @ mines-ales.fr
2LIRMM / CNRS & Montpellier University, France, huchard @lirmm.fr
3Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France, yulin.zhang @u-picardie.fr

Abstract

Handling evolution in component-based software archi-
tectures is a non trivial task. Indeed, a series of changes ap-
plied on software may alter its architecture leading to sev-
eral inconsistencies. In turn, architecture inconsistencies
lead to software erosion and shorten its lifetime. To avoid
architectural inconsistencies and increase software reliabil-
ity, architecture evolution must be handled at all steps of
the software lifecycle. Moreover, changes must be treated
as first class entities. In this paper, we propose an evolution
management model that takes these criteria into account.
The model is a support for our three-level Dedal architec-
tural model. It captures and handles change at any of the
Dedal abstraction levels: specification, implementation and
deployment. It generates evolution plans using evolution
rules proposed in previous work. The generation process is
implemented using the ProB model checker and evaluated
through three evolution scenarios of a Home Automation
Software.

Keywords: software architecture evolution, component
reuse, evolution rules, evolution management, abstraction
level, change propagation, consistency checking.

1 Introduction

Software evolution [1] is becoming more and more chal-
lenging due to the increasing complexity of software sys-
tems and their importance in everyday life. While compo-
nent reuse has become crucial to shorten large-scale soft-

DOI reference number: 10.18293/SEKE2015-172

ware systems development time, handling evolution in such
systems is a serious issue. As witnessed by Garlan et al.
in their recent study [2], the difficulty of reuse lies essen-
tially on architectural mismatches that arise due to several
changes that affect software. A famous problem is software
architecture erosion [3), 14]. It arises when modifications of
the implementation of a software violate the design prin-
ciples captured by its specification architecture. Such ero-
sion leads to software degradation and shortens its lifetime.
Increasing confidence in reuse-centered, component-based
software systems lies on resorting out multiple issues.

First, software architectures must support change at any
step of component-based development to meet new user
needs, improve component quality, or cope with component
failure. Second, the impact of change must be handled lo-
cally (at the same abstraction level) to avoid architecture
inconsistencies and propagated to the other abstraction lev-
els to avoid incoherence between the architecture descrip-
tions, notably erosion. Third, the evolution activity must
be tracked to enable monitoring, commitment and/or roll-
back and versioning. In this paper, we propose an evolution
management model that deals with all these issues. It is
based on our Dedal architectural model [5, 6] that covers
the three main steps of component-based software develop-
ment: specification, implementation and deployment. The
model uses architecture properties and evolution rules pro-
posed in previous work [7, [8] to generate evolution plans
that preserve the consistency of all architecture descriptions
as well as coherence between them. The remainder of this
paper is outlined as follow: Section [2| gives the background
of this work. Section 3| presents the evolution management
model. Section@]presents the evolution plan generation pro-
cess, an implementation and evaluation. SectionE]discusses

related work before Section [6]concludes the paper and gives
future work directions.

2 Background

This article is concerned with evolution management in
multi-level component-based architectures. Specifically, we
address software architectures described by Dedal [6], a
three-level architectural model. First, we introduce Dedal
and then we give a brief overview of its formalization.

2.1 Dedal a three-level architectural model

Dedal is a novel architectural model that covers the three
main steps of component-based development by reuse:
specification, implementation and deployment. The idea of
Dedal is to build a concrete software architecture (called
configuration) from suitable software components stored in
indexed repositories. Candidate components are selected
according to an intended architecture (called specification)
that represents an abstract and ideal view of the software.
The implemented architecture can then be instantiated (the
instantiation is called assembly) and deployed in multiple
contexts.

The Dedal model is then constituted of three descriptions
that correspond to three architecture abstraction levels.

The architecture specification corresponds to the high-
est abstraction level. It is composed of component roles
and their connections. Component roles encapsulate the re-
quired functionalities of the future software.

The architecture configuration corresponds to the sec-
ond abstraction level. It is composed of concrete component
classes selected from repositories and realize the identified
component roles in the architecture specification.

The architecture assembly corresponds to the lowest
abstraction level. It is composed of component instances
that instantiate the component classes of the architecture
configuration. While the specification and configuration de-
scriptions represent the software at design-time, the assem-
bly description represents the software at runtime.

Figure |1|illustrates the three abstraction levels of Dedal
on an example of a Home Automation Software. The soft-
ware enables to manage the light of buildings in function
of the time through an orchestrator (component role Home-
Orchestrator). The specified functionalities are turning
on/off the light (component role Light), controlling its in-
tensity (component role Intensity) and getting information
about the time (component role Time).

2.2 Dedal formalization

Dedal formalization is crucial to enable the verification
and validation of the derived architectural models as well

Time
Lo oy -
A

HomeOrches 4

A
specification ! trator /
P ! - J / Component
1| Intensity l/
! | role
!

Abstract architecture

A

1 h f A

I <<implements>> i / h ! <<reaI|zes>>
1 1 | ’

I [Cluck

Concrete architecture
configuration

Component

al

<<instantiates>> / / <<|nstant|ates>>

i
o
lampDesk clock
O orchestrator ‘

Home j—'

lampsitting

Figure 1. Example of a Dedal model: Home
Automation Software

as evolution management. In [7], we propose a formaliza-
tion of Dedal that comprises two kinds of typing rules. The
first kind is about intra-level rules. These rules define the
relations between components of the same abstraction level
such as compatibility and substitutability. The second kind
is about inter-level rules. These rules define the relations
between components of different abstraction levels (cf. Fi-
gurefor inter-level relations). For instance, the realization
rule checks whether a (or a set of) component class(es) real-
izes a (or a set of) component role(s). This rule is also used
to search for candidate concrete components in repositories
to implement a specified software architecture. Inter-level
and intra-level rules are generalized to support the architec-
tural level. First, using intra-level rules, we can check archi-
tecture consistency at any abstraction level. Second, using
inter-level rules, it is possible to check coherence between
architecture descriptions at different abstraction levels. For
instance, we can check whether a configuration implements
all the desired functionalities documented in its specifica-
tion. In [8], we propose a set of evolution rules that enable
to evolve Dedal models. The proposed rules allow the ma-
nipulation (addition, deletion and substitution) of architec-
tural elements (e.g., components, connections) at the three
Dedal abstraction levels.

In this work, we present an evolution management model
for architecture models derived from Dedal. We show how
evolution rules can be used to generate evolution plans that
preserve the consistency of architecture descriptions and co-
herence between them.

3 The evolution management model

Figure [2] presents our evolution management model. It
is composed of three parts: the architectural Model (meta-

classes of group 1), the changes that affect the architectural
model (meta-classes of group 2) and the evolution manager
(meta-classes of group 3).

3.1 The architectural model

The architectural model is the target of change. It is de-
rived from the Dedal meta-model and hence includes three
architecture descriptions, each represents the component-
based software at a different abstraction level.

Architecture properties represent the set of rules that
decide about the well-formedness of the architectural
model. These properties have to be preserved after change
and hence are part of the analysis goals that must be en-
forced during the software evolution. In our work we focus
on two properties,

Architecture consistency states whether the elements of
the architecture are correctly typed and well connected
(each interface is connected to a compatible one). Addi-
tionally, consistency involves the internal completeness of
the architecture, i.e., an architecture is said complete if all
its required properties are met. From a structural viewpoint,
an architecture is complete if all its required interfaces are
connected to compatible provided ones.

Architecture coherence states whether an architecture de-
scription at an abstraction level is in conformance with
an architecture description at an adjacent abstraction level.
Verifying architecture coherence keeps all architecture de-
scriptions up-to-date and avoids the problems of drift and
erosion.

Model manipulation operations are elementary change
operations that manipulate the artifacts of the architectural
model (e.g., component roles, component classes, or con-
nections). They are classified into three types: addition,
deletion and substitution. Manipulation operations are com-
posed of four parts. A signature defines the operation name
and states its arguments. Preconditions are related to the
architectural model (e.g., a precondition checks if substi-
tutability between two components is possible). Actions are
applied on the architectural model by updating the set of its
artifacts. Post-conditions must be verified by the new state
of the architectural model after applying the actions of the
operation.

3.2 The architectural change

Architectural changes characterize all the modifications
that alter the software architecture. They meet new re-
quirements to keep software up-to-date or arise due to an
environmental change (e.g., lack of resources, or faults).
Software architectures are subject to change at any abstrac-
tion level of component-based development. The impact of
change may affect the other abstraction levels. All of these

facts about software change make its handling a non trivial
task. In order to tackle this complexity, we represent change
as a first class entity that interferes with the architectural
model. Furthermore, we identify three main change char-
acteristics necessary for the evolution management process:
origin, level and subject.

There are two types of change origin: initiated change
and triggered change. Initiated change has an external
source. It may be originated from user action or from the ex-
ecution environment. Triggered change is internal and is in-
duced by the evolution manager to reestablish the architec-
ture consistency at the same abstraction level (local change)
and/or preserve conformance between all architecture de-
scriptions at other abstraction levels (propagated change).

Change level designates the level where a change is cur-
rently performed. It allows to identify which properties
must be checked to ensure a successful evolution.

Change subject designates the artifacts subject to
change. This information is useful to identify the elements
that have to be manipulated in the evolution process.

3.3 The evolution manager

The evolution manager captures software change and
controls its impact on the architectural model. It uses evolu-
tion rules to generate an evolution plan that satisfies a given
evolution goal. The evolution manager ensures also the co-
evolution of the descriptions of the software architectures at
the other abstraction levels.

Evolution rules are specific operations that are com-
posed of model manipulation operations. They manage and
control access to these operations using preconditions re-
lated to the change, according its origin, level, or subject.

The evolution goal sets all the conditions that must be
satisfied by the architectural model after the change. Basi-
cally, it is composed of two parts: architecture properties
(i.e., consistency and coherence) and the post-condition of
the initiated change.

4 The generation process

In this section, we state the generation process prob-
lem. Then, we test and evaluate two search strategies im-
plemented by the ProB [9]] model-checker.

4.1 Problem formalization

Notations: Let M be an instance of the Dedal archi-
tectural model and S be the state space of M. Then, let
L be the enumeration of Dedal abstraction levels. L =
{specLevel, con figLevel,asmLevel}. Let E be the set
of all evolution rules and E; the subset of F related to an
abstraction level [, I € L. For each e¢; € F, let pre(e;) be

-
| | [l InitiatedChangePostCondition

[1.1] satisfies ——
LI EvolutionPlan

llul]lposttondilion

] ChangeLeveI| |

= speclLevel
= configLevel
— asmLevel

|[0‘.'] propertiesPredicate

[0.."] generates

group3

|
: t] Change
ran 1 level : ChangelLevel = specLevel

[L.1] handles [~ —

L) EvolutionManager| £ EvolutionRule

[1.."] evolutionRules [7=7 oo™ EString

|

|

|

S |
|

[1."] planOperations |
|

|

U

|

|

1

e —

| H InitiatedChange |D Triggeredchange'
| | |
—
= P
[1.1] source

|

| |

| | |
| | |
: group2 I
| |
|

groupl

[ArchitectureConsistency H ArchitectureCoherence |~

[1..1] encapsulates

El ArchitecturalModel

H ModelManipulationOperation |I

© name : EString

|
£l changesource | | | LocalChange [Propagatedchan
| g8
- JI

1] instanceOf

[1..1] alters [0.."] artifacts I

=

L] pedalMetaModel

B Artifacts

[1.."] changeSubject

Figure 2. The evolution managment model (ecore)

the precondition of e;. Let C'i; be the change initiated at an
abstraction level [and post(C1;) the post-condition satis-
fied by s € S after applying C'4; on M. Let P.opsistency ()
be the consistency property related to the abstraction level [
and P.oherence (1, k) be the coherence property between the
two adjacent abstraction levels [and k. Finally, let G; be an
evolution goal related to an abstraction level [.

Problem: Considering an initiated change C'i; on M,
we would like to (1) find a sequence of e; € E; where
Gi = post(Ci;) N Peonsistency(l) is satisfied and (2)
V1, k where P.operence(l, k) = false, find a sequence of
er € Ek where Gk = Pcoherence(lak) A Pconsistency(k)
is satisfied. The evolution plan P! is thus the concatena-
tion of all found sequences. Pl = Pliocal; Plpropagated
where Plj,cq; is the plan related to the local change and
Plyropagated 1s the concatenation of the plans related to the
propagated change.

4.2 TImplementation overview

The implementation is composed of two parts: the Dedal
modeler and the ProB [9] model-checker. The Dedal mod-
eler is an eclipse-based tool that enables the creation and
edition of Dedal diagrams (i.e., specification, configura-
tion and assembly diagrams) and the automatic generation
of B [10]] formal models corresponding to those diagrams.
ProB is a model-checker and animator for B models. It cal-
culates and simulates state-transitions. In our case, it can
calculate all the enabled evolution rules (defined as B op-
erations) at each state of the model. Moreover, using for-
ward chaining inferences, ProB can search for a sequence
of evolution rules that reaches the evolution goal. It pro-
poses depth-first (DF), breadth-first (BF) and mixed depth-
first/breadth-first (DF/BF) search strategies to find invariant
violations or defined goals. The most suitable strategy de-

pends on the kind of checking the user wants to perform.
In the case of searching for a specific state by exploring a
large state space, depth first seems to be the most efficient
strategy as stated in [11]]. In the remainder, we use ProB
to generate evolution plans and observe the resolution time
using DF and mixed DF/BF. We compare the results to see
which strategy is the most efficient.

4.3 Evaluation
To illustrate the generation process, we run three evolu-

tion scenarios on the example of HAS. The initial architec-
tures are illustrated by Figure 3]

ILight ILamp
)— —(.— AdjustableLamp
HomeOrches Orchestrator @ (cl1)
ITime | trator (er3) (cI3)
-
HAS Specification (S) HAS Configuration (C)
ILamp
lampDesk _.)_ CIonkl
(ci1l) —@ ._orchestrator i
lintensity 1(ci3) IClock

lampsSitting ‘.)_
(ci12) -®

Figure 3. The initial state of Has

Scenario 1 corresponds to a requirement change. The
specification of HAS needs to be evolved to enable the con-
trol of the building luminosity. This consists in adding a
new role (crla) that provides a luminosity functionality.

Scenario 2 corresponds to an implementation change.

The configuration needs to be evolved to turn under android
OS. The initiated change consists in adding an android or-
chestrator (c/3a). This entails to delete the current orches-
trator (cl3).

Scenario 3 corresponds to a runtime change. The clockl
(ci2) component instance must be replaced due to a dry bat-
tery of the clock. That of the embeddedClockl (ci2a) mo-
bile device is used instead.

We run two tests for each evolution scenario. The first
test uses the DF strategy and the second one uses the DF/BF
strategy. The results (cf Table [I) show that DF is more
efficient than BF/DF in all cases.

Change level DF (seconds) DF/BF (seconds)
Scenariol specLevel (initial) 2.36 48
(top-down configLevel 16.71 4.97
change) asmLevel 9.12 23.83
full process 28.19 76.8
configLevel (initial) 9 13.39
Scenario2 specLevel 2.98 5.37
(mixed) asmLevel 12.01 65.41
full process 23.99 84.17
Scenario3 asmLevel (initial) 4.5 26.54
(bottom-up configLevel 77.8 136.08
change) specLevel (not affected) 0 0
full process 82.3 162.62

Table 1. Evaluation results

Due to space limitation, we only show the generated
plans corresponding to scenario?2. Figure@}a, Figure @}
b and Figure[d}c respectively show the ProB output for local
change (configuration level), bottom-up change (specifica-
tion level) and top-down change (assembly level). The se-
quence must be read from the bottom to the top of the output
view. We use the following notation to explain the syntax of
the generated rules: cr, cl, ct and ci correspond respectively
to component role, class, type and instance. The pint and
rint prefixes respectively denote a provided or a required
interface. HASSpec, HASConfig and HASAssm respectively
name the HAS specification, configuration and assembly.

5 Related work

Managing software architecture evolution is still an open
issue. For more than two decades, a lot of efforts have been
dedicated to provide methods, tools and techniques for ar-
chitecture modeling and analysis. Several ADLs (Archi-
tecture Description Languages) [12] have been proposed.
Most of them provide textual notations for describing and
analyzing software systems. They are usually supported by
tools or integrated environments for edition, analysis and
simulation. Examples include C2SADL [13]], Wright [14]],
Darwin [15] and ArchJava [16]. C2SADL is an ADL
for the design of concurrent systems. It includes a sub-
architecture modification language (AML) to support evolu-
tion. Changes are first applied at the architectural level and
then implemented using a runtime infrastructure. Wright is

config_removeClass(HASConfig,cl3)
config_class_disconnect(HASConfig, (ct2|-> pintIClock), (ct3|-> rintiClock))
config_class_connect((ct3a|->rintiLamp2),(ctl|-> pintiLamp2), HASConfig)
config_class_connect((ct3a|->rintlintensity), (ct1|-> pintlintensity), HASConfig)
config_class_connect((ct3a|->rintIClock2), (ct2|- > pintlClock), HASConfig)
config_addServer(HASConfig, (ctl|-> pintlintensity))
config_class_disconnect(HASConfig, (ctl|-> pintiLamp2), (ct3|- > rintlLamp))
config_addClass(HASConfig,cl3a)

a- Local change

spec_connect((cr3a|->rintlLight2), (crl|-> pintiLight), HASSpec)
spec_connect((cr3a|->rintlLum),(crlal-> pintlLum),HASSpec)
spec_connect((cr3a|->rinlTime2), (cr2|- > pintltime), HASSpec)
spec_addRole(HASSpec,cr3a)

spec_addRole(HASSpec,crla)

spec_removeRole(HASSpec,cr3)

spec_disconnect(HASSpec, (crl|->pintiLight), (cr3|->rintiLight))
spec_disconnect(HASSpec,(cr2|-> pintltime), (cr3|- > rintITime))

b- Bottom-up change
asm_bind((ci3a|-> rintlLamp2Inst), (cil1|-> pintlLamp2Inst2), HASAssm)
asm_bind((ci3a|-> rintlIntensitylnst), (cil1|-> pintlIntensitylnst2), HASAssm)
asm_bind((ci3a|-> rintiClock2Inst), (ci2|-> pintIClockinst), HASAssm)
asm_deploylnstance(HASAssm,ci3a,cl3a)
asm_addServerinstance(HASAssm, (cil1|-> pintlintensitylnst2))
asm_removelnstance(HASAssm,ci3,cl3)
asm_removelnstance(HASAssm,cil2,cll)
asm_unbind(HASAssm, (cil1|-> pintlLlamp2Inst2),(ci3|-> rintiLamplnst))
asm_deleteServerinstance(HASAssm, (cil2|-> pintiLamp2Instl))
asm_unbind(HASAssm, (cil2|-> pintlLlamp2Instl), (ci3|-> rintiLamplnst))
asm_unbind(HASAssm, (ci2|-> pintIClockInst), (ci3|-> rintIClockInst))

c- Top-down change

Figure 4. generated plans

also a domain-specific ADL. It aids the design of distributed
architectures. Wright focuses more on increasing the archi-
tect’s confidence on the design of systems. It enables con-
sistency checking and analysis using CSP (Communicating
Sequential Processes) as a formal basis. However, it does
not propose any language or notation to describe architec-
tural changes. Darwin is relatively similar to Wright as it
shares the same goal. Unlike Wright, it includes a declar-
ative language that supports change description (including
operations such as create, remove, link, or unlink). Beside
the fact that they are domain-specific, C2SADL, Wright
and Darwin do not support reverse (bottom-up) evolution.
Moreover, they cover only the specification level of the soft-
ware system and hardly support the implementation and de-
ployment levels. This gap between architecture specifica-
tion and its implementation generates several inconsisten-
cies when applying changes and shortens the software life-
time. ArchJava is an ADL that unifies the architectural level
and the implementation code in a single entity. It uses a
type system to check conformance between both descrip-
tions. Although, this unification enables co-evolution, it
makes it harder to separate program implementation from
its specification. Separating specification from implemen-
tation is central in our approach to foster component reuse.
Moreover, as far as we know, all cited ADL do not han-
dle changes as first class entities, neither do they propose a
mechanism for generating evolution plans.

6 Conclusion and future work

This work proposes an evolution management model
for component-based software architectures. It represents
changes as first class entities as the architecture models de-
rived from Dedal. The model enables to (1) capture change
at any architecture abstraction level, (2) handle its impact at
the same level and (3) propagate it to the lower and higher
abstraction levels keeping then all the architecture descrip-
tions coherent. Both top-down (forward) and bottom-up (re-
verse) evolution are then supported by the proposed model.

At this stage of work, evolution is not yet automated and
is simulated using model-checking techniques on the gener-
ated formal models of Dedal [7]. Unfortunately, this is lim-
ited by combinatorial explosion. Using meta-heuristic tech-
niques could be a solution to reduce the complexity of evo-
lution plan generation. Ongoing work is the development
of an eclipse-based environment of Dedal that automates
the evolution plan generation process. Change requests can
be expressed using a change description language such as
Dedal-CDL [[17]]. Furthermore, we are considering to set a
versioning mechanism for the architectural models derived
from Dedal.

References

[1] T. Mens and S. Demeyer,
Springer, 2008.

Software Evolution.

[2] D. Garlan, R. Allen, and J. Ockerbloom, “Architec-
tural mismatch: Why reuse is still so hard,” IEEE Soft-
ware, vol. 26, no. 4, pp. 66—69, July 2009.

[3] D.E. Perry and A. L. Wolf, “Foundations for the study
of software architecture,” SIGSOFT Software Engi-
neering Notes, vol. 17, no. 4, pp. 40-52, Oct. 1992.

[4] L. de Silva and D. Balasubramaniam, “Controlling
software architecture erosion: A survey,” JSS, vol. 85,
no. 1, pp. 132-151, Jan. 2012.

[5] H.Y.Zhang, C. Urtado, and S. Vauttier, “Architecture-
centric component-based development needs a three-
level ADL,” in Proc. of the 4th ECSA conf., ser. LNCS,
vol. 6285. Copenhagen, Denmark: Springer, August
2010, pp. 295-310.

[6] H. Y. Zhang, L. Zhang, C. Urtado, S. Vauttier, and
M. Huchard, “A three-level component model in
component-based software development,” in Proc. of
the 11th GPCE Conf. Dresden, Germany: ACM,
Sept. 2012, pp. 70-79.

[71 A. Mokni, M. Huchard, C. Urtado, S. Vauttier, and
H. Y. Zhang, “Towards automating the coherence ver-
ification of multi-level architecture descriptions,” in

(8]

(9]

[12]

[13]

[16]

Proc. of the 9th ICSEA, Nice, France, Oct. 2014, pp.
416-421.

——, “Formal rules for reliable component-based ar-
chitecture evolution,” in Formal Aspects of Compo-
nent Software - 11th International FACS Symposium
revised selected papers, Bertinoro, Italy, Sept. 2014,
pp- 127-142.

M. Leuschel and M. Butler, “ProB: An Automated
Analysis Toolset for the B Method,” International

Journal on Software Tools for Technology Transfer,
vol. 10, no. 2, pp. 185-203, Feb. 2008.

J.-R. Abrial, The B-book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

M. Leuschel and J. Bendisposto, “Directed model
checking for B: An evaluation and new techniques,’
in Formal Methods: Foundations and Applications,
ser. Lecture Notes in Computer Science, J. Davies,
L. Silva, and A. Simao, Eds. Springer Berlin Hei-
delberg, 2011, vol. 6527, pp. 1-16.

N. Medvidovic and R. N. Taylor, “A classification and
comparison framework for software architecture de-
scription languages,” IEEE TSE, vol. 26, no. 1, pp.
70-93, Jan. 2000.

N. Medvidovic, “ADLs and dynamic architecture
changes,” in Joint Proc. of the Second International
Software Architecture Workshop and International
Workshop on Multiple Perspectives in Software De-
velopment on SIGSOFT ’96 Workshops. New York,
USA: ACM, 1996, pp. 24-27.

R. Allen and D. Garlan, “A formal basis for archi-
tectural connection,” ACM TOSEM, vol. 6, no. 3, pp.
213-249, Jul. 1997.

J. Magee and J. Kramer, “Dynamic structure in soft-
ware architectures,” ACM SIGSOFT Software Engi-
neering Notes, vol. 21, no. 6, pp. 3—14, 1996.

J. Aldrich, C. Chambers, and D. Notkin, “Archjava:
connecting software architecture to implementation,”
in Proc. of the 24rd ICSE Conf., May 2002, pp. 187—
197.

H. Y. Zhang, C. Urtado, S. Vauttier, L. Zhang,
M. Huchard, and B. Coulette, “Dedal-CDL: Modeling
first-class architectural changes in Dedal,” in Proc. of
the Joint 10th WICSA and 6th ECSA conf., Helsinki,
Finland, August 2012.

	Introduction
	Background
	Dedal a three-level architectural model
	Dedal formalization

	The evolution management model
	The architectural model
	The architectural change
	The evolution manager

	The generation process
	Problem formalization
	Implementation overview
	Evaluation

	Related work
	Conclusion and future work

