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Introduction 

Aim : model the progression of neuro-degenerative diseases 

• Understanding the progression of neuro-degenerative 

diseases, such as Alzheimer’s Disease (AD) is 

necessary for early and acurate diagnosis and care 

planning. 

 

• We need to validate experimentally hypothetical models 

of disease progression, such as [Clifford Jack et al, 

2010].  

Clifford Jack et al, Lancet Neurol., 2010 

• Two individuals of the same age might be at very different stages of disease progression  

 

⟹ statistical models based on the regression of measurements with age are inadequate to model disease 

progression and age shoud not be treated as a covariate but as a random variable. 

 

• Longitudinal measurements sometimes belong to Riemannian manifolds (non-Euclidean spaces). 

 

⟹ statistical models for such longitudinal data should be defined for manifold-valued measurements. 

Linear mixed-effects models [Laird and Ware, 1982] are not defined for manifold-valued measurements 

Working with longitudinal data in the context of neuro-

degenerative diseases raises two difficulties : 

Generic spatio-temporal model for longitudinal data 

Summary : we propose a generic mixed-effects model for longitudinal manifold-valued data. The model 

allows to estimate an average trajectory as well as individual trajectories. Random effects allow to 

characterize changes in direction and pace at which individual trajectories are followed. This generic model is 

used to analyze the temporal progression of a family of univariate biomakers. 

•  𝑀 , 𝑔𝑀    smooth Riemannian manifold included in 𝐑𝑛 

•  𝑀, 𝑔𝑀   sub-Riemannian manifold of 𝑀 , assumed to be geodesically complete 

• 𝒑 ∈ 𝑀, 𝒗 ∈ T𝒑𝑀, Exp𝒑
𝑀 𝒗  : Riemannian exponential in 𝑀 at 𝒑 of the tangent vector 𝒗 

• 𝜸 ∶ 𝐑 → 𝑀 : geodesic of 𝑀 

• 𝑡, 𝑡0 ∈ 𝐑, P𝜸,𝑡0,𝑡 (⋅) : parallel transport in 𝑀 along 𝜸 from 𝜸(𝑡0) to 𝜸(𝑡). 

• t ↦ Exp𝒑,𝑡0
𝑀 (𝒗)(𝑡) ; geodesic of 𝑀 which goes through 𝒑 at time 𝑡0 with velocity 𝒗. 

 

 

 A hierarchical model : 

𝑡 ↦ 𝜸(𝑡) 

𝑡 ↦ 𝜸𝑖 𝑡 = 𝜂𝒘𝒊 𝜸, 𝜓𝑖 𝑡  
𝒚𝑖,𝑗 = 𝜸𝑖 𝑡𝑖,𝑗 + 𝜺𝑖,𝑗 

Average trajectory : Trajectory of the 

i-th individual : 
Observations : 

 The model : 

𝒚i,j = 𝜂𝒘𝑖 𝜸, 𝜓𝑖 𝑡𝑖,𝑗 + 𝜺𝑖,𝑗 . 

3.   The trajectory 𝑡 ↦ 𝜸𝑖 𝑡  is then obtained by reparametrizing in time the parallel shift 𝜂𝒘𝑖(𝜸,⋅) using the 

affine time reparametrization 𝜓𝑖 ∶ 𝑡 ↦ 𝛼𝑖 𝑡 − 𝑡0 − 𝜏𝑖  + 𝑡0. This allows to account for the variability in stages 

of disease progression across the population. 

where 𝜓𝑖 𝑡 = 𝛼𝑖 𝑡 − 𝑡0 − 𝜏𝑖 + 𝑡0 and : 

 

• 𝛼𝑖 is a subject-specific acceleration factor, 𝛼𝑖 = exp 𝜉𝑖  and 𝜉𝑖 ∼ 𝑁(0, 𝜎𝜉
2) 

• 𝜏𝑖 is a subject-specific time shift, 𝜏𝑖 ∼ 𝑁 0, 𝜎𝜏
2  

• 𝜺𝑖,𝑗 ∼ 𝑁(0, 𝜎2) 

• 𝒘𝑖 is a subject-specific space shift : 

𝒘𝑖 = 𝐀𝒔𝑖 and : ∀ 1 ≤ 𝑗 ≤ 𝑁𝑠, 𝑠𝑙,𝑖 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 
1

2
. 

In the spirit of Independent Component Analysis, the space shift 𝒘𝑖 appears as a linear combination of 𝑁𝑠 
independent components, namely the columns of the matrix 𝐀. 

 

Aim : we want to analyze the temporal progression of a family of 𝑁 biomarkers. 

 We assume that the measurements of each biomarker belong to a one-dimensional Riemannian 

manifold 𝐼, geodesically complete and included in 𝐑. As a consequence, 𝑀 is a product of one-

dimensional manifolds : 𝑀 = 𝐼𝑁 = 𝐼 × 𝐼 × ⋯× 𝐼. 
 

 The average trajectory 𝑡 ↦ 𝜸 𝑡  is choosen among a parametric family of geodesics of 𝑀 : 

 

𝛾δ t = 𝛾0 𝑡 , 𝛾0 𝑡 + 𝛿1 , … , 𝛾 𝑡 + 𝛿𝑁−1   
 

    where the parameters 𝛿𝑖 (1 ≤ 𝑖 ≤ 𝑁 − 1) correspond to the relative delay between the biomarkers and 

    𝑡 ↦ 𝛾0(𝑡) is a geodesic of the one-dimensional Riemannian manifold 𝐼 (straight line, logistic curve, …) 

 
 If the space of observations is the open interval ]0,1[ for all the biomarkers (we consider normalized 

measurements), the manifold 𝑀 is ]0,1[ 𝑁, equipped with the product metric (see « Logistic curves 

model »).  

Writing the generic spatio-temporal model  in this case leads to a progression model for normalized 

biomarkers named « multivariate logistic curves model ». This model is given by : 

𝑦𝑖,𝑗,𝑘 = 1 +
1

𝑝0
− 1 exp −

𝛼𝑖𝑣0 𝑡𝑖,𝑗−𝑡0−𝜏𝑖 +𝑣0𝛿𝑘+𝑣0
𝐀𝒔𝑖 𝑘

𝛾′ 𝑡0+𝛿𝑘

𝑝0 1−𝑝0

−1

+ 𝜀𝑖,𝑗,𝑘. 

Estimation of the parameters of the model 

1. The average trajectory 𝑡 ↦ 𝜸(𝑡) is choosen to be the geodesic t ↦ Exp𝒑0,𝑡0
𝑀 (𝒗𝟎)(𝑡), 𝒑0 ∈ 𝑀, 𝒗0 ∈ T𝒑0𝑀 

 

2. The trajectory of the 𝑖-th individual is obtained in two steps. We start by constructing the parallel shift of 

the average trajectory by using a tangent vector 𝒘𝑖, which we choose orthogonal to 𝒗0. 

 

• « Straight lines » model [Schiratti et al., IPMI 2015] 

 𝑀 = 𝐑 (equipped with the canonical metric) 

 Geodesics are straight lines 

𝑦𝑖,𝑗 = 𝑝0 + 𝛼𝑖𝑣0 𝑡𝑖,𝑗 − 𝑡0 − 𝜏𝑖 + 𝜀𝑖,𝑗. 

• « Logistic curves » model [Schiratti et al., IPMI 2015] 

 𝑀 =]0,1[ , equipped with the metric 𝑔 = 𝑔𝑝 𝑝∈]0,1[
, 𝑔𝑝 𝑢, 𝑣 = 𝑢𝑣 / 𝑝2 1 − 𝑝 2 

 Geodesics are logistic curves 

𝑦𝑖,𝑗 = 1 +
1

𝑝0
− 1 exp −

𝛼𝑖𝑣0 𝑡𝑖,𝑗 − 𝑡0 − 𝜏𝑖

𝑝0 1 − 𝑝0

−1

+ 𝜀𝑖,𝑗  . 

Note that this model is not equivalent to a linear model on the logit of the observations : the logit transform 

corresponds to the Riemannian logarithm at 𝑝0 = 0,5. The model written in the tangent space is still not 
linear due to the multiplication between the random effects 𝛼𝑖 = exp (𝜉𝑖) and 𝜏𝑖. 

where 𝑦𝑖,𝑗,𝑘 = measurement of the 𝑘-th biomarker for individual 𝑖, at time 𝑡𝑖,𝑗. 

The parameters of the generic spatio-temporal model are 𝜽 = 𝑝0, 𝑡0, 𝑣0, 𝜹, 𝜎𝜉 , 𝜎𝜏, 𝜎, vec 𝐀 . 

Summary : the parameters are estimated using a stochastic version of the EM algorithm [Dempster, Laird, 

Rubin, 1977]. This algorithm is the Monte Carlo Markov Chain Stochastic Approximation EM algorithm 

(MCMC-SAEM) [Delyon et al.,1999 ; Allassonnière et al.,2010].Theoretical results regarding the 

convergence of the algorithm have been proved in [Delyon et al.,1999 ; Allassonnière et al.,2010]. 

Note that the MCMC-SAEM requires that the model belongs to the curved exponential family . Howerver, the 

multivariate logistic curves model does not belong to this family. The model can be made exponential by 

considering each parameters as realizations of independent Gaussian random variables. 

 Overview of the MCMC-SAEM for the multivariate logistic curves model : 

𝒛(𝑘) (resp. 𝜽(𝑘) ) denotes the vector of hidden variables (resp. parameters) at the 𝑘-th iteration. 

• Initialisation : 

𝜽 ← 𝜽(0), 𝒛(0) ← random, 𝐒 ← 0, 𝜀𝑘 𝑘 sequence of positive step-sizes 

repeat until convergence 

Simulation (Hasting-Metropolis within Gibbs sampler) : 

𝒛(𝑘+1) ← Gibbs sampler( 𝒛(𝑘), 𝒚, 𝜽 𝑘 ) 

• Compute the sufficent statistics : 𝐒𝟏
(𝒌) ← [𝒚𝒊,𝒋

⊤𝒇𝒊,𝒋]𝒊,𝒋, 𝐒𝟐
(𝒌) ← [ 𝒇𝒊,𝒋

𝟐
]𝒊,𝒋, 𝐒𝟑

(𝒌) ← [ 𝝃𝒊
𝒌 𝟐

 ]𝒊,  

𝐒𝟒
(𝒌) ← [ 𝝉𝒊

𝒌 𝟐
]𝒊, 𝐒𝟓

(𝒌) ← 𝑝0
(𝑘), 𝐒𝟔

(𝒌) ← 𝑡0
(𝑘), 𝐒𝟕

(𝒌) ← 𝑣0
(𝑘), 𝐒𝟖

(𝒌) ← [𝛿𝑗
𝑘 ]𝑗, 𝐒𝟗

(𝒌) ← [𝛽𝑗
(𝑘)]𝑗 

• Stochastic approximation : 

𝐒j
(𝒌+𝟏) ← 𝐒𝒋

(𝒌) + 𝜀𝑘  𝐒 𝒚, 𝒛 𝒌 −  𝐒𝑗
𝒌  for all 𝑗 

• Maximization  (𝜽(𝑘+1) ← argmax𝜽∈Θ  −𝜙 𝜽 + 𝐒 𝑘+1 , 𝝍 𝜽  ) : closed-form updates 

end repeat 

Experimental results 

 Data : Normalized cognitive scores grouped into four categories (biomarkers) : memory (5 items), 

language (5 items), praxis (2 items), concentration (1 item). Data collected from the ADNI database for 

248 MCI patients who converted to AD. Each observation is a point in 𝑀 = ]0,1[4. 

Left : the plot of individual random effects show that the time-shifts correspond well with the age at which individuals converted to AD.  Right : histogram of the ages of 

conversion to AD ((𝑡𝑖
conv)𝑖) in blue and histobram of the normalized ages ( 𝜓𝑖 𝑡𝑖

conv
𝑖 ; ages of conversion mapped from the individual timeline to the reference timeline 

using the subject-specific affine reparametrization. The individual time reparametrizations correctly register the dynamics of individual trajectories. 

Right: The figure illustrates the effect of the variance of the acceleration 

factors, and the two estimated independent components (𝑁𝑠 = 2). Among the 

studied population, individuals evolve from 7 times faster or slower than the 

average trajectory. Individual space shifts along the first (or second) 

independent components may change the relative order between the cognitive 

functions. 

 

Left : the estimated avergae trajectory i(𝑝0 = 0,3 and 𝑡0 = 72) The score 

associated to memory will reach the value 0,3 at 72 years old, followed by 

concentration which reaches the same value 5 years later and then praxis and 

language at 85 and 87 years old respectively. 

y 

time t0 

y 

time t0 

𝑦𝑖,𝑗 = 𝑎 + 𝑎𝑖 𝑡𝑖,𝑗 − 𝑡0 + 𝑏 + 𝑏𝑖 + 𝜀𝑖,𝑗 𝑦𝑖,𝑗 = 𝑎 + 𝑎𝑖 𝑡𝑖,𝑗 − 𝑡0 − 𝜏𝑖 + 𝑏 + 𝜀𝑖,𝑗 

[Laird & Ware, 1982] Our approach 

• A progression model for a familiy of univariate biomarkers :  

The operation of parallel shifting, on the manifold 𝑀, using a tangent vector, is defined as follows : 

Definition : 𝒘 ∈ T𝛾(𝑡0)𝑀, 𝒘 ≠ 0. The curve 𝑠 ↦ 𝜂𝒘(𝜸, 𝑠) defined by :: 

 

𝜂𝒘 𝛾, 𝑠 = 𝐸𝑥𝑝𝜸 𝑠  𝑃𝜸,𝑡0,𝑠 𝒘 , 𝑠 ∈ 𝐑.   

 

is said to be the « parallel shift of 𝛾 » using 𝒘. 

By virtue of the tubular neighborhood theorem [Hirsch M.W., 2012], parallel shifting defines a local spatio-

temporal coordinate system. 

Three particular cases of our generic spatio-temporal model 


