Introduction

The Web-scale data integration progressively becomes a reality, giving birth to the Web of Data. It is sustained and promoted by the W3C Data Activity1 working group that aims at overcoming data diversity and support public and private sector organizations in this matter. A key-point to the achievement of the Web of Data is that data be published openly on the Web in a standard, machine-readable format, and linked with other related data sets. In this matter, an extensive work has been achieved during the last years to expose legacy data as RDF.

At the same time, the success of NoSQL database platforms is no longer questioned today. Driven by major Web companies, they have been developed to meet requirements of novel applications, hardly available in relational databases (RDB), such as a flexible schema, high throughput, high availability and horizontal elasticity. Not only NoSQL platforms are at the core of many applications dealing with big data, but also they are increasingly used as a generic-purpose database in many domains. Today, this overwhelming success makes NoSQL databases a natural candidate for RDF-based data integration systems, and potential significant contributors to feed the Web of Data.

In this regard, it shall be necessary to develop SPARQL access methods for heterogeneous databases with different query languages. These methods shall vary greatly depending on the target database query capabilities: for instance, RDBs support joins, nested queries and string manipulations, but this is hardly the case of some NoSQL document stores like MongoDB or CouchDB. Thus, rather than defining yet another SPARQL translation method for each and every query language, we think it is beneficial to consider a two-step approach. First, given a set of mappings of the target database to RDF, a SPARQL query is translated into a pivot abstract query by matching SPARQL graph patterns with relevant mappings. This step can be made generic if the mapping language used is generic enough to apply to a large and extensible set of databases. In a second step, the abstract query is translated into the target database query language, taking into account the specific database capabilities.

Our goal, in this document, is to address this two-step method. Firstly, leveraging previous works on R2RML-based SPARQL-to-SQL methods, we define a method to translate a SPARQL query into a pivot abstract query, utilizing xR2RML [START_REF] Michel | Translation of Relational and Non-Relational Databases into RDF with xR2RML[END_REF] to describe the mapping of a target database to RDF. The method determines the minimal set of mappings matching each SPARQL graph pattern, and takes into account join constraints implied by shared variables, cross-references denoted in the mappings, and SPARQL filters. Common query optimization techniques are applied to the abstract query in order to alleviate the work required in the second step. Secondly, we define a method to translate such an abstract query into a concrete query using MongoDB as a target database. In recent years, MongoDB2 has become the leader in the NoSQL market, as suggested by several indicators including Google searches 3 , job offerings 4 and LinkedIn member profiles mentioning MongoDB skills 5 . Some methods have been proposed to translate MongoDB documents into RDF [START_REF] Michel | Translation of Relational and Non-Relational Databases into RDF with xR2RML[END_REF], or to use MongoDB as an RDF triple store [START_REF] Tomaszuk | Document-oriented triplestore based on RDF/JSON[END_REF]. Yet, to the best of our knowledge, no work has been proposed so far to query arbitrary MongoDB documents using SPARQL.

In the rest of this section, we review previous works related to the translation of various data sources into RDF. Section 2 presents the xR2RML mapping language and introduces a running example. In section 3, we first describe a method to rewrite a SPARQL query into a pivot abstract query under xR2RML mappings. This relies on bindings between a SPARQL triple pattern and xR2RML mappings, detailed in section 3.4. Section 0 focuses more specifically on the translation of an abstract query into MongoDB concrete queries. Section 5 recaps the whole method through an algorithm that orchestrates the different steps, until the evaluation of MongoDB queries and the generation of the RDF triples matching the SPARQL query. After a discussion and conclusion in section 6, appendix B (section 8) goes over the running example that is been detailed throughout the previous sections.

Related works.

Much work has been achieved during the last decade to expose legacy data as RDF, in which two approaches generally apply: either the RDF graph is materialized by translating the data into RDF and loading it in a triple store (in an ETL -Extract, Transform and Load -manner), or the raw data is unchanged and a query language such as SPARQL is used to access the virtual RDF graph through query rewriting techniques. While materializing the RDF graph can be needed in some contexts, it is often impossible in practice due to the size of generated graphs, and not desirable when data freshness is at stake. Several methods have been proposed to achieve SPARQL access to relational data, either in the context of RDF stores backed by RDBs [START_REF] Chebotko | Semantics preserving SPARQL-to-SQL translation[END_REF][START_REF] Sequeda | Ultrawrap: SPARQL execution on relational data[END_REF]8] or using arbitrary relational schemas [START_REF] Bizer | D2R server -Publishing Relational Databases on the Semantic Web[END_REF][START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF][START_REF] Priyatna | Formalisation and Experiences of R2RML-based SPARQL to SQL query translation using Morph[END_REF][START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF]. R2RML [START_REF] Das | R2RML: RDB to RDF Mapping Language[END_REF], the W3C RDB-to-RDF mapping language recommendation is now a well-accepted standard and various SPARQL-to-SQL rewriting approaches rely on it [START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF][START_REF] Priyatna | Formalisation and Experiences of R2RML-based SPARQL to SQL query translation using Morph[END_REF][START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF]. Other solutions intend to map XML data to RDF [START_REF] Bischof | Mapping between RDF and XML with XSPARQL[END_REF][START_REF] Bikakis | The SPARQL2XQuery interoperability framework: Utilizing Schema Mapping, Schema Transformation and Query Translation to Integrate XML and the Semantic Web[END_REF], and the CSV on the Web W3C working group 6 makes a recommendation for the description of and access to CSV data on the Web. RML [START_REF] Dimou | RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data[END_REF] is an extension of R2RML that tackles the mapping of data sources with heterogeneous data formats such as CSV/TSV, XML or JSON. The xR2RML mapping language [START_REF] Michel | Translation of Relational and Non-Relational Databases into RDF with xR2RML[END_REF] is an extension of the R2RML and RML addressing the mapping of a large and extensible scope of non-relational databases to RDF. Some works have been proposed to use MongoDB as an RDF triple store, and in this context they designed a method to translate SPARQL queries into MongoDB queries [START_REF] Tomaszuk | Document-oriented triplestore based on RDF/JSON[END_REF]. MongoGraph7 is an extension of AllegroGraph 8 to query MongoDB documents with SPARQL queries. It follows an approach very similar to the Direct Mapping approach defined in the context of RDBs [START_REF] Sequeda | Survey of directly mapping SQL databases to the Semantic Web[END_REF]: each field of a MongoDB JSON document is translated into an ad-hoc predicate, and a mapping links MongoDB document identifiers with URIs. SPARQL queries use the specific find predicate to tell the SPARQL engine to query MongoDB. Despite those approaches, to the best of our knowledge, no work has been proposed yet to translate a SPARQL query into the MongoDB query language and map arbitrary MongoDB documents to RDF.

The xR2RML mapping language

The xR2RML mapping language [START_REF] Michel | Translation of Relational and Non-Relational Databases into RDF with xR2RML[END_REF] is designed to map an extensible scope of relational and non-relational databases to RDF. Its flexibly adapts to heterogeneous query languages and data models thereby remaining independent from any specific database. It is backward compatible with R2RML and it relies on RML for the handling of various data formats.

Below we shortly describe the main xR2RML features, a complete specification of the language is available in [START_REF] Michel | xR2RML: Non-Relational Databases to RDF Mapping Language[END_REF].

We assume the following namespace prefix definitions:

xrr: <http://www.i3s.unice.fr/ns/xr2rml#> rr: <http://www.w3.org/ns/r2rml#> rml: <http://semweb.mmlab.be/ns/rml#> ex: <http://example.com/ns#>

Recalls on R2RML

R2RML is a generic language meant to describe customized mappings that translate data from a relational database into an RDF data set. An R2RML mapping is expressed as an RDF graph that consists of triples maps, each one specifying how to map rows of a logical table to RDF triples. A triples map is composed of exactly one logical table (property rr:logicalTable), one subject map (property rr:subjectMap) and any number of predicate-object maps (property rr:predicateObjectMap). A logical table may be a table, an SQL view (property rr:tableName), or the result of a valid SQL query (property rr:sqlQuery). A predicate-object map consists of predicate maps (property rr:predicateMap) and object maps (property rr:objectMap). For each row of the logical table, the subject map generates a subject IRI, while each predicate-object map creates one or more predicate-object pairs. Triples are produced by combining the subject IRI with each predicate-object pair. Additionally, triples are generated either in the default graph or in a named graph specified using graph maps (property rr:graphMap).

Subject, predicate, object and graph maps are all R2RML term maps. A term map is a function that generates RDF terms (either a literal, an IRI or a blank node) from elements of a logical table row. A term map must be exactly one of the following: a constant-valued term map (property rr:constant) always generates the same value; a columnvalued term map (property rr:column) produces the value of a given column in the current row; a template-valued term map (property rr:template) builds a value from a template string that references columns of the current row.

When a logical resource is cross-referenced, typically by means of a foreign key relationship, it may be used as the subject of some triples and the object of some others. In such cases, a referencing object map uses IRIs produced by the subject map of a (parent) triples map as the objects of triples produced by another (child) triples map. In case both triples maps do not share the same logical table, a join query must be performed. A join condition (property rr:joinCondition) names the columns from the parent and child triples maps, that must be joined (properties rr:parent and rr:child).

Below we provide a short illustrative example. 

xR2RML Language Description

An xR2RML mapping defines a logical source (property xrr:logicalSource) as the result of executing a query (property xrr:query) against an input database. The query is expressed in the query language of the target database. Data from the logical source is mapped to RDF using triples maps. Like in R2RML a triples map consists of several term maps that extract values from a query result set and translate them into terms of RDF triples. A subject map generates the subject of RDF triples, and multiple predicate-object maps produce the predicate and object terms. Optionally, a graph map is used to name a target graph. Listing 3 depicts two xR2RLM triples map <#Departments> and <#Staff>.

xR2RML references. Term maps extract data from query results by evaluating xR2RML data element references, hereafter named xR2RML references. The syntax of xR2RML references is called the reference formulation (as a reference to the RML property of the same name), it depends on the target database: a column name in case of a relational database, an XPath expression in case of a native XML database, or a JSONPath expression in case of JSON documents like in MongoDB. An xR2RML processor is provided with a connection to the target database and the reference formulation applicable to results of queries run against the connection. xR2RML references are used with properties xrr:reference and rr:template. The xrr:reference property contains a single xR2RML reference, whereas the rr:template property may contain several references in a template string.

Iteration model. xR2RML implements a document-based iteration model: a document is basically one entry of a result set returned by the target database, e.g. a JSON document retrieved from a NoSQL document store, rows of an SQL result set or an XML document retrieved from an XML native database. In some contexts, this iteration model may not be sufficient to address all needs: it may be needed to iterate on explicitly specified entries of a JSON document or elements of an XML tree. To this end, xR2RML leverages the concept of iterator introduced in RML. An iterator (property rml:iterator) specifies the iteration pattern to apply to data read from the input database. Its value is an expression written using the syntax specified in the reference formulation. For instance, in the collection in database Listing 2, if we were interested in team members rather than in departments, we would define an iterator in the logical source of triples map <#Departments> to explicitly specify to iterate on elements of the members array: Mixed-syntax paths. xR2RML extends RML's principle of data element references to allow referencing data elements within mixed content. For instance, a JSON value may be embedded the cells of a relational table. In such cases, properties xrr:reference and rr:template may accept mixed-syntax path expressions. An xR2RML mixed-syntax path consists of the concatenation of several path expressions, each path being enclosed in a syntax path constructor that makes explicit the path syntax. Existing constructors are: Column(), CSV(), TSV(), JSONPath() and XPath(). For example, in a relational table, a text column NAME stores JSON-formatted values containing people's first and last names, e.g.: {"First":"John", "Last":"Smith"}. Field FirstName can be referenced with the following mixed-syntax path: Column(NAME)/JSONPath($.First).

RDF collections and containers.

When the evaluation of an xR2RML reference produces several RDF terms, the xR2RML processor creates one triple for each term. Alternatively, it can group them in an RDF collection (rdf:List) or container (rdf:Seq, rdf:Bag and rdf:Alt). This is achieved using specific values of the rr:termType property within an object map. Besides, property xrr:nestedTermMap is a means to create nested collections and containers, and to qualify terms of a collection or container with a language tag or data type.

Cross-references.

Like R2RML, xR2RML allows to model cross-references by means of referencing object maps. A referencing object map uses values produced by the subject map of another triples map (the parent) as objects.

Properties rr:child and rr:parent specify the join condition between documents of the current triples map (the child), and the parent triples map. In Listing 3 this is exemplified by triples map <#Staff> that has a referencing object map whose parent triples map is <#Departments>.

The objects produced by a referencing object map can be grouped in an RDF collection or container, instead of being the objects of multiple triples, using specific values of the property rr:termType, mentioned above. Results of the joint query are grouped by child value, i.e.: objects generated by the parent triples map, referring to the same child value, are grouped as members of an RDF collection or container.

Normalization and Restriction of xR2RML within this Document

A standard principle when rewriting a SPARQL query based on mappings is to identify which mappings are good candidates for each triple pattern in the SPARQL graph pattern. For this matching to be accurate, mappings should be expressed such that they shall produce only one type of triple.

However, xR2RML and R2RML triples map may contain any number of predicate-object maps, and each predicateobject map may contain any number (>1) of predicate maps and object maps. Therefore, a triples map with multiple predicate-object maps (and/or multiple predicate and object maps) may generate varying types of RDF triple, and result in the coarse matching of this triples map with triple patterns.

This issue has been addressed in R2RML-based rewriting approaches. Rodríguez-Muro and Rezk [START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF] propose an algorithm to normalize R2RML mappings, that is, rewrite the mapping graph so that a triples map contain at the most one predicate-object map, each having exactly one predicate map and one object map. Although they do not explicitly mention it, authors of [START_REF] Priyatna | Formalisation and Experiences of R2RML-based SPARQL to SQL query translation using Morph[END_REF] and [START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF] do the same assumption.

Furthermore, the R2RML rr:class property introduces a specific way of producing triples such as "<A> rdf:type <B>". Rodríguez-Muro and Rezk propose to replace any rr:class property by an equivalent predicate-object map:

[rr:predicate rdf:type; rr:object <A>.]. This allows for the definition of a rewriting method consistently dealing with all kinds of triple patterns, may they have the rdf:type property or any other property.

Consequently, we comply with both propositions above as they apply to R2RML and xR2RML alike. Definition 1 summarizes this:

Definition 1. Normalization of xR2RML Mappings

An xR2RML triples map is said to be normalized when:

-It contains exactly at the most one predicate-object map with exactly one predicate map and one object map;

-Its logical source definition does not use the rr:class property, instead a regular predicate-object map is used to generate RDF triples with constant predicate rdf:type.

In the rest of this document, we only consider normalized xR2RML triples map.

Running Example

To illustrate the description of our method, we define a running example that we refer to all along this document. Additionally, section 8 goes through the whole method and provides additional explanations. To keep the document focused on the query translation question and for the sake of clarity, the running example does not use iterators nor mixed syntax paths.

Let us consider a MongoDB database with two collections "staff" and "departments" given in Listing 1 and Listing 2 respectively. Collection "departments" lists the departments within a company, including a department code and its members. Members are given by their name and age. Collection "staff" lists people by their name (that may be either field "familyname" or "lastname"), and provides a list of departments that they manage, if any, in array field "manages".

Listing 1: Collection "staff"

{ "familyname":"Underwood", "manages":["Sales"] }, { "lastname":"Dunbar", "manages":["R&D", "Human Resources"] }, { "lastname":"Sharp", "manages":["Support", "Business Dev"] }

Listing 2: Collection "departments"

{ "dept":"Sales", "code":"sa", "members":[ {"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43} ]} { "dept":"R&D", "code":"rd", "members": [ {"name":"J. Smith", "age":32}, {"name":"D. Duke", "age":23} ]} { "dept":"Human Resources", "code":"hr", "members": [ {"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38} ]} { "dept":"Business Dev", "code":"bdev", "members": [ {"name":"R. Danton", "age":36}, {"name":"E. Meetchum", "age":34}

]}

Let us consider the xR2RML mapping graph in Listing 3, consisting of two triples maps <#Staff> and <#Departments>. The logical source in triples map <#Staff> provides a MongoDB query db.staff.find({}) that retrieves all documents in collection "staff". Similarly, the query in <#Departments>'s logical source retrieves all documents in collection "departments". Triples map <#Staff> has a referencing object map whose parent triples map is <#Departments>. Triples map <#Departments> generates triples with predicate ex:hasSeniorMember for each member of the department who is 40 years old or more. For the sake of simplicity the queries in both triples maps retrieve all documents of the collection with no other query filter. Finally, we consider the SPARQL query below, that we shall use throughout this document to illustrate the method. Its semantics is to retrieve senior members of departments managed by "H. Dunbar". The query consists of one basic graph pattern composed of two triple patterns tp1 and tp2. In this section, we first review several SPARQL translation methods ( §3.1), with a focus on R2RML-based SPARQL-to-SQL translation. We then define the abstract query language ( §3.2), and we describe the translation of a SPARQL query into this abstract query language, along four steps sketched in Figure 1.

Figure 1: Translation of a SPARQL graph pattern into an optimized abstract query

1. A SPARQL graph pattern is decomposed into an abstract expression exhibiting only operators from the abstract query language (see function transm, §3.3); 2. Then we identify the xR2RML triples maps likely to generate RDF triples matching each triple pattern (see function bindm, §3.4); 3. Each triple pattern is translated into one or several atomic abstract queries (<AtomicQuery>), under the set of xR2RML triples maps identified in step 2. Each atomic query is made as selective as possible by pushing relevant SPARQL filter conditions (function transTPm, §). 4. Finally, the abstract query is optimized by removing e.g. self-joins, self-unions ( §3.6).

R2RML-based SPARQL-to-SQL methods

Various methods have been defined to translate SPARQL queries into another query language, which are generally tailored to the expressiveness of the target query language. For instance, SPARQL-to-SQL methods harness the ability of SQL to support joins, unions, nested queries and various string manipulation functions, to translate a SPARQL query into a single, possibly deeply nested SQL query. Some of them rely on modern RDBs optimization engines to rewrite the query in a more efficient way, although this is often not sufficient as attested by the focus on the generation of pre-optimized queries e.g. using self-join elimination or by pushing down projections and selections [8,[START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF][START_REF] Sequeda | Ultrawrap: SPARQL execution on relational data[END_REF][START_REF] Unbehauen | Optimizing SPARQL-to-SQL Rewriting[END_REF]. A conjunction of two basic graph patterns (BGP) generally results in the inner join of their respective translations; their union results in an SQL UNION ALL clause; the SPARQL OPTIONAL keyword between two BGPs results in a left outer join, and a SPARQL FILTER results in an encapsulating SQL SELECT in which the filter is translated into an equivalent SQL WHERE clause. Similarly, the SPARQL-to-XQuery method proposed in [START_REF] Bikakis | The SPARQL2XQuery interoperability framework: Utilizing Schema Mapping, Schema Transformation and Query Translation to Integrate XML and the Semantic Web[END_REF] relies on the ability of XQuery to support the same features. For instance, a SPARQL FILTER is translated into an XPath condition and/or an encapsulating XQuery For-Let-Where clause.

Priyatna et al. [START_REF] Priyatna | Formalisation and Experiences of R2RML-based SPARQL to SQL query translation using Morph[END_REF] extend Chebotko's algorithm [START_REF] Chebotko | Semantics preserving SPARQL-to-SQL translation[END_REF] that focused on the SPARQL-to-SQL query translation in the context of a RDB-based triple stores. They redefine the original mappings to comply with the context of custom mappings described in R2RML. Their method addresses the problem of eliminating null answers by adding not null conditions for variables of a triple pattern. However, it has two limitations: (i) R2RML triples maps must have constant predicate maps, i.e. the predicates of the generated RDF triples cannot be built using a value from the database. (ii) Triple patterns are considered and translated independently of each other, even when variables are shared by several triple patterns of a basic graph pattern; solutions that do not match a join between two or more triple patterns are ruled out only during the final join step. The risk is to retrieve more data than actually necessary to answer queries. This may be avoided by using query optimization techniques; however, it seems more natural and probably more efficient to consider such constraints at the earliest step.

Unbehauen et al. [START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF] define the concept of compatibility between the RDF terms of a triple pattern and R2RML term maps (subject, predicate or object map), and subsequently the concept of triple pattern binding. This helps effectively manage variable predicate maps, which clears the first aforementioned limitation. Furthermore, this method considers the dependencies between triple patterns of a basic graph pattern. This helps reduce the number of candidate triples maps for each triple pattern by pre-checking filters and join constraints implied by the variables shared by several triple patterns. This clears the second aforementioned limitation. This whole mapping selection process is generic and can be reused for xR2RML. Yet, two limitations can be noticed: (i) Referencing object maps are not addressed, and therefore only a subpart of R2RML is supported: joins implied by shared variables are dealt with but joins declared in the mapping graph are ignored.

(ii) The rewriting maps each term map to a set of columns, called column group, that enables filtering, join and data type compatibility checks. This strongly relies on SQL capabilities (CASE, CAST, string concatenation, etc.), making it hardly applicable out of the scope of SQL-based systems.

Rodríguez-Muro and Rezk [START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF] propose a different approach. They extend the ontop system that performs Ontology-Based Data Access (OBDA), to support R2RML mappings. A SPARQL query and an R2RML mapping graph are translated into a Datalog program. This formal representation is used to combine and apply optimization techniques from logic programming and SQL querying. The optimized program is then translated into an executable SQL query.

It must be noticed that, at the time of writing, this is the only state-of-the-art method fully supporting SPARQL 1.1.

The rich expressiveness of SQL and XQuery makes it possible to translate a SPARQL query into a single, possibly deeply nested, target query, whose semantics is strictly equivalent to that of the SPARQL query. In the general case however, i.e. beyond the scope of SQL and XQuery, joins, unions and/or sub-queries may not be supported. NoSQL databases typically make a trade-off between query language expressiveness and scalability. This is particularly the case of MongoDB: joins are not supported, and unions and nested queries are supported under strong restrictions. Unions, joins and sub-queries may be delegated to the target database when it supports these operations, or processed by the query-processing engine otherwise. Thus, an xR2RML-based query processing engine for MongoDB shall evaluate several queries separately (e.g. one per triple pattern), and perform joins and unions afterwards.

Therefore, in order to address a large scope of target databases, we must generalize those approaches to make them independent of any target query language. This will be the object of the subsequent sections.

Abstract Query Language

Our pivot abstract query language complies with the following grammar, that directly derives from the syntax and semantics of SPARQL [START_REF] Pérez | Semantics and complexity of SPARQL[END_REF]. The language keeps the names of several SPARQL operators (UNION, LIMIT) and prefers the SQL terms INNER JOIN ON and LEFT OUTER JOIN ON to define join operations more explicitly. Like in the case of SPARQL, an abstract query can be represented as a tree. However, the abstract query language differs from SPARQL in that the tree leaves are Atomic Abstract Queries (defined later on) whereas they are triple patterns in SPARQL.

Note. As an alternative, we could have used a relational algebra-based notation. However, extending it to account for the semantics of abstract atomic queries (that we define later) would have made the notation cumbersome and error prone. Thus, we felt like a notation based on usual SQL syntax was easier to manipulate, while keeping the required expressive power.

The abstract query language operators are entailed by the dependencies between graph patterns of the SPARQL query. The first INNER JOIN notation is entailed by the join constraints implied by shared variables. The second INNER JOIN notation, including the "AS child", "AS parent" and "ON child/<Ref> = parent/<Ref>" notations, is entailed by the join constraints expressed in xR2RML mappings using referencing object maps. Notation {v1, … vn}, in the join operators, stands for the set of SPARQL variables on which the join is to be performed. "<Ref>" stands for any valid xR2RML data element reference, i.e. this shall be a column name for a tabular data source, an XPath expression for an XML database or a JSONPath expression for a NoSQL document store such as MongoDB and CouchDB.

The computation of these abstract operators shall be delegated to the target database if it supports them (i.e. if the target query language has equivalent operators, this is the case of a relational database), or they may be computed by the query processing engine otherwise (case of MongoDB). Atomic abstract queries (<AtomicQuery>) are entailed by translating a triple pattern under a set of xR2RML triples maps.

Translation of a SPARQL Graph Pattern

Function transm (Definition 2) translates a well-designed SPARQL graph pattern [START_REF] Pérez | Semantics and complexity of SPARQL[END_REF] into an abstract query that makes no assumption on the target database capabilities. It extends the translation algorithms defined in [START_REF] Chebotko | Semantics preserving SPARQL-to-SQL translation[END_REF], [START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF] and [START_REF] Priyatna | Formalisation and Experiences of R2RML-based SPARQL to SQL query translation using Morph[END_REF]. 

Running

-if gp is (P LIMIT l'), transm(gp, f, l) = transm(P, f, min(l, l')) -if gp is (P FILTER f'), transm(gp, f, l) = transm(P, f && f', ∞) FILTER sparqlCond(P, f && f') LIMIT l -if gp is (P1 AND P2), transm(gp, f, l) = transm(P1, f, ∞) INNER JOIN transm(P2, f, ∞) ON var(P1) ⋂ var(P2) LIMIT l -if gp is (P1 OPTIONAL P2), transm(gp, f, l) = transm(P1, f, ∞) LEFT OUTER JOIN transm(P2, f, ∞) ON var(P1) ⋂ var(P2) LIMIT l -if gp is (P1 UNION P2), transm (gp, f, l) = transm(P1, f, l) UNION transm(P2, f, l) LIMIT l
Simplification: notations "FILTER true" and "LIMIT ∞" may be omitted.

Note. As we describe in subsequent sections, we deal with the FILTER and LIMIT SPARQL clauses in a way that pushes them down into the translation of each triple pattern, in order to make inner queries as selective as possible. In a simplified approach, we do not consider SPARQL solution modifiers OFFSET, ORDER BY and DISTINCT. However, they could be managed in the very same way: additional parameters offset, order by and distinct of the transm and transTPm functions would allow for early selection and sorting at the level of inner queries, while abstract operators OFFSET, ORDER BY and DISTINCT would perform selection and sorting at the level of outer queries.

Management of SPARQL filters

In the usual bottom-up evaluation of a SPARQL query, filters in the outer query do not contribute to the selectivity of inner-queries. A usual consequence, in SPARQL-to-SQL translations, is to rewrite a SPARQL FILTER into a SELECT-WHERE clause that encapsulate sub-queries. The problem in such a strategy is that sub-queries may return very large intermediate results. Consequently, this step is generally followed by an optimization phase, either by implementing specific SQL query optimizations or by relying on the underlying database engine.

In our generalized context, we do not know anything about the target database. Hence, we cannot assume (i) that the target query that we shall come up with can be optimized, or (ii) that the database query evaluation is capable of such optimization. We must therefore consider SPARQL filters at the earliest stage: we propose a generalized management of SPARQL filters that pushes down SPARQL filters into the translation of each triple pattern, in order to make inner queries as selective as possible, thereby limiting the size of intermediate results. This is achieved in function transm by the introduction of a SPARQL filter argument initialized to "true" in the expression transm(gp) = transm(gp, true, ∞). The filter argument shall be updated if the query graph pattern contains a FILTER clause.

Note: Function transm relies on function transTPm to translate each triple pattern into a sub-query. At this stage though, we do not yet explicit the way function transTPm shall deal with SPARQL filters. We just take care of the fact that, to filter data as early as possible, transTPm will need to know about the filters that are relevant for the translation of a given triple pattern. Therefore, we have to devise a method to select appropriate conditions from a SPARQL filter.

A SPARQL filter f can be considered as a conjunction of n conditions (n >= 1): C1 && ... Cn. Function sparqlCond (Definition 3) discriminates between conditions with respect to two criteria: (i) A condition Ci is pushed into the translation of triple pattern tp if all variables of Ci show in a tp. More simply, a SPARQL condition involving variables ?x and ?y can be pushed to the translation of a triple pattern tp only if tp contains (at least) both variables ?x and ?y. (ii) A condition Ci is part of the abstract FILTER operator if at least one variable of Ci is shared by several triple patterns. This FILTER operator represents the join criteria. Example: if Ci contains variable ?x, and variable ?x shows in triple patterns tp1 and tp2, then condition Ci will be in the FITLER operator.

Those two criteria are formalized in Definition 3 that defines how function sparqlCond discriminates between the filter conditions. Notice that the two criteria are not exclusive: a condition may match both criteria, and thereby show simultaneously in the FILTER operator and in the translation of a triple pattern.

Definition 3: Function sparqlCond, splitting SPARQL filter conditions per graph pattern Let gp be a well-designed SPARQL graph pattern, and TPgp the set of triple patterns of gp. Let f be the conjunctive SPARQL filter "C1 && … && Cn", where C1 to Cn are SPARQL conditions. Let V(Cn) be the set of SPARQL variables named in condition Cn, and V(tp) be the set of SPARQL variables named in triple pattern tp. Function sparqlCond is defined as follows:

if gp consists of a single triple pattern tp, sparqlCond(tp, f) is the conjunction of "true" and the conditions Ci such that all the variables in Ci appear in tp, denoted V(Ci) ⊂ V(tp).

if gp is any other graph pattern, sparqlCond(gp, f) is the conjunction of "true" and the conditions Ci such that at least one variable in Ci is shared by several triple patterns of gp, denoted as ∃v ∈ V(Ci), ∃tp1, tp2 ∈ TPgp, v ∈ V(tp1) ∩ V(tp2).

We illustrate this process with a dedicated example (out of the scope of the running example). We apply the transm function to the SPARQL query Q depicted below, in which we denote by tp1 to tp4 the triple patterns and C1 to C4 the conditions of the SPARQL filter. 

Management of the LIMIT clause

The way we deal with the LIMIT clause is motivated by the same concern as in the case of SPARQL filters. In the bottom-up evaluation of a SPARQL query, the LIMIT in the outer query does not contribute to the selectivity of innerqueries. Thus, sub-queries may return unnecessary large intermediate results. This issue is generally taken care of by implementing specific query optimizations or by relying on the underlying database engine to do the optimization. But again, in our generalized context, we do not know whether (i) it will be possible to optimize the target query, or (ii) if the database query evaluation engine is capable of such optimization.

Therefore, we propose a method to push down the LIMIT solution modifier into the translation of each triple pattern, in order to make inner queries as selective as possible. Function transm has a limit argument l, initialized to "∞" in the expression transm(gp) = transm(gp, true, ∞). The limit argument shall be modified depending on the type of graph pattern passed to transm. Below we elaborate on the different situations encountered in Definition 2:

-In the rule:

transm(P LIMIT l', f, l) = transm(P, f, min(l, l'))
the SPARQL LIMIT l' is passed to the subsequent graph pattern translation. If there is already a limit (from the outer query), then the smallest limit is considered, hence the parameter min(l, l').In the case of a simple triple pattern, the limit argument is passed to the transTPm function.

-In a graph pattern P FILTER f', we cannot know in advance how many results will be filtered out by the FILTER clause. Consequently, we have to run the query with no limit and apply the filter. The explains the "∞" parameter in:

transm(gp, f, l) = transm(P, f && f', ∞) FILTER sparqlCond(P, f && f') LIMIT l
-Similarly, in the case of an inner or left join, we cannot know in advance how many results will be returned. Consequently, we have to run both queries with no limit, apply the join, and only then limit the number of results. This explains the "∞" parameter in expressions:

transm(P1, f, ∞) INNER JOIN transm(P2, f, ∞) ON var(P1) ⋂ var(P2) LIMIT l and transm(P1, f, ∞) LEFT OUTER JOIN transm(P2, f, ∞) ON var(P1) ⋂ var(P2) LIMIT l
-Finally, in the union case, none of the two operands of the UNION should return more than the limit parameter. Hence the translation:

transm (P1 UNION P2, f, l) = transm(P1, f, l) UNION transm(P2, f, l) LIMIT l

Binding xR2RML triples maps to triple patterns

Before we define function transTPm, that translates SPARQL triple patterns into atomic abstract queries, we elaborate on how to figure out which ones of the xR2RML triple maps are likely to generate RDF triples matching the SPARQL triple patterns.

In the following, we assume that xR2RML triples are normalized in the sense defined in section 2.3. Also, we denote by TM.sub, TM.pred and TM.obj respectively the subject map, the predicate map and the object map of the normalized triples map TM. Furthermore, we adapt the concept of triple pattern binding defined by Unbehauen et al. as follows:

Definition 4: Triple pattern binding (adapted from Unbehauen et al. [20])

Let m be an xR2RML mapping graph consisting of a set of xR2RML triples map, and tp be a triple pattern.

A triples map TM ∈ m is bound to tp if it is likely to produce triples matching tp.

A triple pattern binding is a pair (tp, TMSet) where TMSet is the set of triples maps of m that are bound to tp.

Function bindm, determines, for a graph pattern gp, the bindings of each triple pattern of gp. It takes into account join constraints implied by shared variables, and the SPARQL filter constraints whose unsatisfiability can be verified statically. This is achieved by means of two functions: compatible and reduce. These functions were introduced by Unbehauen et al [START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF] in the SPARQL-to-SQL context, but important details were left untold. Especially, the authors did not formally define what the compatibility between a term map and a triple pattern term means, and they did not investigate the static compatibility between a term map and a SPARQL filter. Below, we define these functions in details and extend them to fit in our context of an abstract query language.

Definition 5: function bindm

Let m be a mapping graph consisting of a set of xR2RML triples maps, and gp be a well-designed graph pattern. We denote by bindm(gp) the set of triple pattern bindings of gp under m, defined recursively as follows:

bindm(gp) = bindm(gp, true) -if gp consists of a single triple pattern tp, -if tp.pred is one of rdf:first, rdf:rest, rdf:nil, rdf:_1, rdf:_2 etc., or tp.pred is rdf:type and tp.obj is one of rdf:List, rdf:Bag, rdf:Seq, rdf:Alt, then ignore this triple pattern.

-Otherwise, bindm(gp, f) is the pair (tp, TMSet) where

TMSet = {TM | TM ∈ m ∧ compatible(TM.sub, tp.sub, f) ∧ compatible(TM.pred, tp.pred, f) ∧ compatible(TM.obj, tp.obj, f)} -if gp is (P1 AND P2), bindm(gp, f) = reduce(bindm(P1, f), bindm(P2, f)) ∪ reduce(bindm(P2, f), bindm(P1, f)) -if gp is (P1 OPTIONAL P2), bindm(gp, f) = bindm(P1, f) ∪ reduce(bindm(P2, f), bindm(P1, f)) -if gp is (P1 UNION P2), bindm(gp, f) = bindm(P1, f) ∪ bindm(P2, f) -if gp is (P FILTER f'), bindm(gp, f) = bindm(P, f && f')
Running Example: Before we get into the details, let us illustrate informally the way function bindm infers triple pattern bindings. Triple pattern tp1 is: <http://example.org/staff/Dunbar> ex:manages ?dept.

The subject term, <http://example.org/staff/Dunbar>, could be produced by the template string http://example.org/staff/{$['lastname','familyname']} in the subject map of triples map <#Staff>. On the contrary, it could not be produced by the template string in triples map <#Department>:

http://example.org/dept/{$.code}
Additionally, the predicate part of tp1 matches the constant predicate map of triples map <#Staff>. Consequently, triples map <#Staff> is bound to tp1 and <#Department> is not.

The very same reasoning lets us deduce that triple pattern tp2 could be produced by triples map <#Department>, but not by triples map <#Staff>. Finally, we obtain the following bindings: bindm(bgp) = { (tp1, {<#Staff>}), (tp2, {<#Departments>}) }

Case of RDF collections and containers

An xR2RML triples may generate RDF collections and containers using specific term type values xrr:RdfList, xrr:RdfSeq, etc. Some SPARQL queries may access the members of such collections and containers. In our running example let us assume that triples map <#Departments> generates a list of senior members instead of one triple per senior member, with the amended predicate-object map below: In this context, a user may issue queries about the list terms, such as: Trivially, triples map <#Departments> can be bound to triple pattern tp1 since their predicate parts match (ex:seniorMembers). Let us now consider tp2 and tp3. In our running example, there is no triples map with constant predicate "rdf:type" and constant object "rdf:List" that could be bound to tp2. Similarly, there is no triples map with constant predicate "rdf:first" that could be bound to tp3. With no bindings, no RDF triples matching tp2 nor tp3 are generated. Consequently, the join (logical AND) between triples patterns tp1, tp2 and tp3 will return an empty result set, whereas there are solutions to that SPARQL query.

To avoid coming up with empty bindings, the bindm function simply ignores triple patterns that pertain to RDF collections and containers (triple patterns whose predicate is one of rdf:first, rdf:rest, rdf:nil, rdf:_1, rdf:_2 etc., or the predicate is rdf:type and the object is one of rdf:List, rdf:Bag, rdf:Seq, rdf:Alt). This does not prevent from generating a query, executing it and obtaining relevant results; what we do is simplify the SPARQL query by ignoring those triple patterns that we cannot deal with at this stage, thus making the SPARQL query less specific. As a result, the generated target database query may return more results than actually expected; finally, we may generate RDF triples that do not match the SPARQL query. To work out this issue, we propose to perform a late SPARQL query evaluation that shall rule out all unneeded triples. This step is described further on in section 5.

Reduction of bindings, function reduce

At this point, we have come up with bindings of xR2RML triples maps to each triple pattern of the SPARQL query. This is performed for each triple pattern, regardless of other triple patterns. Yet, triple patterns are not independent of each other: shared variables induce join constraints that can help us find out inconsistent bindings. For instance, consider two triple patterns tp1 and tp2 that have a shared variable v, triples map TM1 is bound to tp1 and triples map TM2 is bound to tp2. If the term map associated to v in TM1 generates literals, whereas the term map associated to v in TM2 generates IRIs, these term maps are incompatible. Consequently, we can rules out TM1 from the bindings of tp1 and TM2 from the bindings of tp2. This is what we call "reduction of bindings".

To that end, function join examines the variables shared by two triple patterns to detect unsatisfiable join constraints:

Definition 6: function join

Let m ∈ M be a set of xR2RML triples maps, tpb1=(tp1, TMSet1) and tpb2=(tp2, TMSet2) be triple pattern bindings with TMSet1 ⊆ m and TMSet2 ⊆ m, V be the set of variables shared by tp1 and tp2. Let postp: V → {sub, pred, obj} be the function that returns the position of a variable v ∈ V in triple pattern tp. We denote by join(tpb1, tpb2) the set of pairs (TM1, TM2) ∈ TMSet1×TMSet2, such that, for each v ∈ V, it holds that

compatibleTermMaps(TM1.postp1(v), TM2.postp2(v)).

In other words, function join returns the pair (TM1, TM2) if, for each variable v shared by tp1 and tp2, the term maps associated to v in TM1 and TM2 are compatible.

Example. Let us consider two triple patterns tp1 and tp2 with a shared variable ?y: tp1 = ?x knows ?y  variable ?y is in object position of tp1: postp1(?y) = obj. tp2 = ?y knows <#me>  variable ?y is in subject position of tp2: postp2(?y) = sub. We assume the following bindings: tpb1 = (tp1, {TM1a, TM1b}), tpb2 = (tp2, {TM2a, TM2b}). Finally, we assume the following compatibility matrix between the term maps concerned by variable ?y in the triples maps bound of tp1 and tp2: We can now define function reduce, that computes the minimal set of triple maps bound to each triple pattern (minimal with respect to the join constraints considered).

Definition 7. Reduction of bindings: function reduce

Let m ∈ M be a set of triples maps, tpb1 = (tp1, TMSet1) and tpb2 = (tp2, TMSet2) be triple pattern bindings with TMSet1 ⊆ m and TMSet2 ⊆ m.

We denote by reduce(tpb1, tpb2) the binding to tp1 of triples maps that appear as the left component of pairs obtained from join(tpb1, tpb2). Formally:

reduce(tpb1, tpb2) = (tp1, { TM1 ∈ TMSet1, ∃ (TM1,TM2) ∈ join(tpb1, tpb2) })
Following up on the example above, reduce makes a simple projection of the left term of the pairs computed by join: join(tpb1, tpb2) = { (TM1a, TM2a), (TM1b, TM2a) } reduce(tpb1, tpb2) = (tp1, {TM1a, TM1b}) join(tpb2, tpb1) = { (TM2a, TM1a), (TM2a, TM1b) } reduce(tpb2, tpb1) = (tp2, {TM2a})

Compatibility of term maps, triple pattern terms and SPARQL filters

To decide whether an xR2RML mapping (a triples map) can be bound to a triple pattern, we must verify whether the triples map can potentially generate RDF triples matching the triple pattern. More precisely, we look for incompatibilities between each term map of the triples map, and the corresponding term in the triple pattern (a triple pattern term may be a literal, an IRI, a blank node or a variable). In function bindm, this is denoted by the expression:

compatible(TM.sub, tp.sub, f) ∧ compatible(TM.pred, tp.pred, f) ∧ compatible(TM.obj, tp.obj, f)}
Function compatible (Definition 8) checks if a term map (termMap) is compatible with a term of a triple pattern (tpTerm) and a SPARQL filter f, i.e. it verifies whether there is any contradiction between termMap and tpTerm, or between termMap and f. Unbehauen et al defined the compatibility of termMap and tpTerm as: tpTerm ∈ range(termMap), but no description of the range function was provided. Therefore, we precise this definition. A term map is always considered compatible with a variable, unless a SPARQL filter contradicts the term map. The later situation is identified in function compatibleFilter (Definition 9). It pertains to type constraints expressed using SPARQL operators isIRI, isLiteral or isBlank, as well as language and data type constraints expressed using operators lang, langMatches or datatype. For instance, if variable ?var is matched with an object map that produces literals (rr:termType rr:Literal), and the SPARQL contains the necessary condition isIRI(?var), then this condition is unsatisfiable.

When the triple pattern term is not a variable, function compatible identifies the similar situations wherein the triple pattern term and the term map cannot match with regards to the type of the triple pattern term 9 (literal, IRI, blank node), its language tag (e.g. "string"@en) or its data type (e.g. 10^^xsd:integer).

Definition 8: compatibility between a term map, a triple pattern term and a SPARQL filter

Let tpTerm be a term of a triple pattern, termMap be a term map of an xR2RML triples map TM and f be a SPARQL filter.

It holds that termMap is compatible with tpTerm and f, denoted by compatible(termMap, tpTerm, f), if termMap is compatible with filter f, denoted by compatibleFilter(termMap, f), and either (i) tpTerm is a variable or (ii) none of the following assertions holds:

-tpTerm is a literal and the term type of termMap is not rr:Literal; -tpTerm is an IRI and the term type of termMap is not rr:IRI; -tpTerm is a blank node and the term type of termMap is not one of {rr:BlankNode, xrr:RdfList, xrr:RdfBag, xrr:RdfSeq, xrr:RdfAlt}; -tpTerm is a literal with a language tag L, and the language of termMap is either undefined or different from L; -tpTerm is a literal with a datatype T, and the datatype of termMap is either undefined or different from T; -termMap is constant-valued with value V, and tpTerm is different from V; -termMap is template-valued with template string T, and tpTerm does not match T; -termMap is a ReferencingObjectMap and the subject map of the parent triples map is not compatible with tpTerm, i.e. ¬compatible (termMap.parentTriplesMap.subjectMap, tpTerm, f).

Definition 9: compatibility between a term map and a SPARQL filter

Let termMap be an xR2RML term map and f be a SPARQL filter. It holds that termMap is compatible with f, denoted as compatibleFilter(termMap, f), if f ="true" or none of the following assertions holds:

a necessary condition of f is isIRI(?var) and the term type of termMap is not rr:IRI; -a necessary condition of f is isLiteral(?var) and the term type of termMap is not rr:Literal; -a necessary condition of f is isBlank(?var) and the term type of termMap is not rr:BlankNode; -a necessary condition of f is lang(?var)="L" or langMatches(lang(?var),"L"), and the language of termMap is either not defined or different from L; -a necessary condition of f is datatype(?var)=<T> and the datatype of termMap is either undefined or different from <T>.

The compatibility between two term maps is defined by [START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF] as the condition: Any of the assertions (1) to ( 5) is a sufficient condition to entail that two term maps are incompatible. We could be tempted to consider the additional assertion (6):

range(tm1) ⋂ range(tm2) ≠ ∅ Again,

tm1 and tm2 have different types (constant-valued, reference-valued or template-valued).

This would be wrong however. For instance, a reference-valued term map returning a URL from the database with a term type rr:IRI could be compatible with a template-valued term map building a URL from some other value of the database. Therefore, considering assertion [START_REF] Das | R2RML: RDB to RDF Mapping Language[END_REF] in our definition may lead to state that two term maps are incompatible although they are.

Translation of a SPARQL Triple Pattern: Atomic Abstract Query

The transm function relies on the transTPm function (Definition 11) to translate to translate a single triple pattern tp into an abstract query under the set of compatible xR2RML triples maps (the triples maps of m bound to tp by function bindm). Below, we first define function transTPm as well as the concept of concept of Atomic Abstract Query.

In subsequent sections, we go through the algorithm of transTPm and the details of how atomic abstract queries are transTPm computed. -"From" consists of the triples map's logical source; -"Project" is the set of xR2RML data element references that are projected, i.e. returned as part of the query results. There are three types of projection:

-<xR2RML reference> -<xR2RML reference> AS <SPARQL variable> -<Constant value> AS <SPARQL variable> -"Where" is a set of conditions on xR2RML data element references, entailed by matching terms of tp with (i) their corresponding term map in the triples map, or (ii) with a SPARQL filter. Three types of condition exist:

-isNotNull(<xR2RML reference>) -equals(value, <xR2RML reference>) -sparqlFilter(<SPARQL filter>) -"Limit" is the maximum number of results that must be returned by the atomic query.

{From, Project, Where} may be used as a simplified notation of {From, Project, Where, ∞}.

Algorithm of function transTPm

Function transTPm is described in further details in Algorithm 1. It consists on a loop on all triples maps bound to tp (line 4 to 23). The result query is a UNION of all per-triples-map subqueries (line 22). For each triples map TM, the algorithm constructs the From, Project and Where parts of an atomic abstract query (lines 5-7). Then, two cases are distinguished:

-If the object maps if a regular object map (no cross-reference), then a single atomic abstract query is created: {From, Project, Where}.

-When the object map is a referencing object map, e.g. child triples map TM1 produces the subject and predicate terms while parent triples map TM2 produces object terms, a second atomic abstract query is constructed (lines 12-14) to account for TM2's information: PFrom is TM2's logical source, PProject projects the data element references from TM2's subject map, and PWhere embeds conditions on the data element references from TM2's subject map. Then, the abstract query corresponding to the couple (tp, TM1) is the INNER JOIN of the two atomic abstract queries (lines 15-18):

{From, Project, Where} AS child INNER JOIN {PFrom, PProject, PWhere} AS parent ON child/childRef = parent/parentRef
where childRef and parentRef denote the values of properties rr:child and rr:parent respectively.

Note: Interestingly, INNER JOIN operators of the abstract query language may be implied by shared SPARQL variables (in function transm), as well as cross-references denoted in the mappings as explained above. Similarly, UNION operators of the abstract query language may arise from the SPARQL UNION (in function transm), or the binding of several triples maps to the sale triple pattern.

Algorithm 1: Translation of a triple pattern into an abstract query (function transTPm).

f is a SPARQL filter, l is the maximum number of results. Note: From now on, we shall omit the Limit part in an atomic query, and the LIMIT abstract query operator, when the limit value is ∞.

Computing Atomic Abstract Queries

We now go through further details about how the From, Project and Where parts of an abstract atomic query are computed. The detailed algorithms of functions genProjection, genProjectionParent, genCond and genCondParent are given in section 7.

From. The From part provides the concrete query that the abstract query relies on. It contains the logical source of triples map TM that consists of the xrr:query property and an optional iterator (property rml:iterator). In our running example, the From part of tp2 is simply:

{[xrr:query "db.departments.find({})"]}
In the case of tp1, two atomic abstract queries are created, each referring to the logical source of one triples map.

Project. The projection part of a database query restricts the set of attributes that shall be returned in the query response. In relational algebra, this is denoted by the π operator: πa1, … an (R) is the set obtained when the components of the tuple R are restricted to the set {a1, … , an}. In the context of a relational database, the attributes are columns, whereas in the context of a JSON document store, attributes are fields of JSON documents.

The genProjection and genProjectionParent functions select the xR2RML data element references that must be projected. When an xR2RML reference is matched with a SPARQL variable in the triple pattern, it is projected with notation "AS <variable name>". In the running example, the subject and object of tp2 are variables "?dept" and "?senior", respectively matched with subject map's reference "$.code" and object map's reference "$.members[?(@.age >= 40)].name". Consequently:

genProjection(tp2, <#Departments>) = { $.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior }
How the JSON fields named in the JSONPath expression (members, age, name) are actually projected is not relevant at this point: the atomic abstract query simply names xR2RML references to be projected, it does not tell how they will be projected in a concrete target database query.

Additionally, when a referencing object map is involved (cross-reference), functions genProjection and genProjectionParent project the joined references mentioned in an xR2RML rr:joinCondition. This is illustrated with tp1 in the running example. Triples map <#Staff> has a referencing object map whose child and parent references are projected: function genProjection projects the child reference "$.manages.*", while function genProjectionParent projects the parent reference "$.dept": Where. The genCond function computes the Where part by matching each triple pattern term with its corresponding term map. In relational algebra, this would be denoted by the selection operator σ: σϕ(R) selects all tuples in R for which the proposition ϕ holds. In our context, R is the triples map logical source, and ϕ is a conjunction of conditions of three types: not-null, equality or SPARQL filter. Below, we determine the type of condition entailed according to the type of triple pattern term and the type of term map that are matched with each other. (a) A SPARQL variable in the triple pattern entails a non-null condition on the corresponding xR2RML reference(s). Let us exemplify this: the subject part of tp2 is variable ?dept; it is matched with the subject map of triples map <#Departments>, whose template string is "http://example.org/dept/{$.code}". Without any further knowledge on ?dept, the match simply states that the subject map must return a valid value, in other words the reference "$.code" must not return null. This entails a condition: isNotNull($.code). When applied to the object of tp2, the same method entails a second not-null condition: isNotNull($.members[?(@.age >= 40)].name).

As a result, we can already deduce the evaluation of function genCond on tp2: stating that either "lastname" or "familyname" must equal "Dunbar".

(c) When a constant term map is matched with a triple pattern term, o If the triple pattern term is also constant (literal or IRI), then no condition is entailed, e.g.: the predicate part of tp2, ex:hasSeniorManager, matches the constant predicate map of triples map <#Departments>. There is nothing more we can deduct from this.

o If the triple pattern term is a variable, then the variable is bound to the constant value of the term map. This case is already taken care of in the projection part, that we illustrated above with triple pattern tp3:

genProjection(tp3, <#Staff>) = {ex:manages AS ?predicate} (d) When a referencing object map is matched with a triple pattern term, a not-null condition must be added for each of the joined references to ensure that only valid values are inner joined. This is achieved by function genCond for the child triples map and function genCondParent for the parent triples map. In the running example, the object of tp1, variable ?dept, is matched with the referencing object map of <#Staff>, whose join condition is: The SPARQL filter "?x >= 5 && ?x < 10", and the Project part states that the values of ?x are generated by the xR2RML reference "$.arrayField.*". At the level of the abstract query language, the SPARQL filter and the projection are kept as is. The filter shall be translated into a target query in the subsequent translation step, i.e. when translating from the abstract query language to the target database query language.

Limit. The Limit part is a positive integer value representing the maximum number of results that the atomic query should return. It is provided in the atomic query with the incentive of limiting the size of intermediate results from inner queries.

Running Example. We now sum up the way function transTPm computes abstract queries.

The SPARQL basic graph pattern bgp consists of two triple patterns: tp1 = <http://example.org/staff/Dunbar> ex:manages ?dept tp2 = ?dept ex:hasSeniorMember ?senior.

Given the bindings for each triple pattern: 

Abstract query optimization

At this point, the method we have exposed translates SPARQL graph patterns into effective abstract queries, i.e. they preserve the semantics of SPARQL queries. Yet, shortcomings such as unnecessary complexity or redundancy may lead to the generation of inefficient queries, and in turn entail poor performances. Although we may postpone the query optimization to the translation into a concrete query language, it is interesting to figure out what optimizations can be done on the abstract representation first, and leave only database-specific optimizations to the subsequent stage. SPARQL-to-SQL methods proposed various query optimizations [START_REF] Unbehauen | Optimizing SPARQL-to-SQL Rewriting[END_REF][START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF]8,[START_REF] Sequeda | Ultrawrap: SPARQL execution on relational data[END_REF]. In this section, we review some of these techniques, referring to the terminology defined in [START_REF] Unbehauen | Optimizing SPARQL-to-SQL Rewriting[END_REF]. We show how these optimizations can be relevantly adapted to fit in the context of our abstract query language. In particular, we show that our translation method implements some of these optimizations by construction. In addition, we propose a new optimization, the Filter Propagation. To our knowledge, it was not proposed in SPARQL-to-SQL rewriting methods.

Examples of this section are provided relying on the MongoDB example. Yet again, recall that these optimizations apply at the abstract query level and, consequently, they are generic and may apply with any other target database.

Filter Optimization

In a naive approach, the management of template strings can lead to inefficient target queries. Typically, when the translation of an R2RML template relies on the SQL string concatenation, a SPARQL ca ben rewritten into something like this: In our approach, equality conditions generated by the genCond and genCondParent functions apply to xR2RML references rather than on template-generated values, hence the Filter Optimization is enforced by construction.

Filter pushing

As we have mentioned in section 3.3, the translation of a SPARQL filter into an encapsulating SELECT-WHERE clause makes inner queries very little selective, and the query evaluation process may have to deal with unnecessarily large intermediate results. In our approach, Filter pushing is enforced by construction by the sparqlCond function: relevant SPARQL filters are pushed down, as much as possible, in the translation of individual triple patterns.

Self-Join Elimination

The self-join issue has been investigated for R2RML-based SPARQL-to-SQL translation [8,[START_REF] Unbehauen | Optimizing SPARQL-to-SQL Rewriting[END_REF]: it occurs when a relational table is joined with itself. We generalize this in our xR2RML-based translation: a self-join may occur when two triples maps, bound to two joined triple patterns, share the same logical source (xrr:query and rml:iterator).

The atomic abstract queries Q1 and Q2 representing the two triple patterns are in a self-join situation when the following conditions are met:

(a) Both queries have the same From part, i.e. they refer to the same logical source, or one logical source is a subset of the other. (b) They have at least one shared variable on which the join is to be performed. (c) Both queries project the same xR2RML data element reference(s) as the same shared variable(s), e.g. if the xR2RML reference "$.x" is projected as variable ?x is the left query, then the same projection must exist in the right query for the join to be a self-join. On the contrary, if projections are different: "$.x1 AS ?x" in Q1 and "$.x2 AS ?x" is Q2, then this is a regular join. (d) Each reference projected as a shared variable must uniquely identify a document within query results: if Q1 and Q2 both have projection "$.x AS ?x", then the xR2RML reference "$.x" must be declared as unique in at least one of the logical sources:

xrr:logicalSource [ xrr:query "…"; xrr:uniqueRef "$.

x" ]

The Self-Join Elimination consists in merging both atomic queries into a single one, wherein the Project part merges the Project parts of both queries, and the From part is the most specific of the two From parts.

Condition (d) is illustrated in Figure 2 : on both sides, Q1 and Q2 depict the result of the atomic queries. Since they have the same From part, Q1 and Q2 actually contain the same results. On the left, two documents have a field x with value 1. Yet, x is not unique: several documents may have field x=1. Therefore, the self-join must not be eliminated as this is a regular join: documents with id 4 and 5 can be joined together. On the right, the logical source of one of the atomic queries declares the xR2RML reference "$.x" as unique with property xrr:uniqueRef. In that case, both documents with x=1 are necessarily the exact same document. In turn, this self-join can be eliminated.

Figure 2: Self-join elimination on a unique xR2RML reference

Note: the xrr:uniqueRef property has been added to the xR2RML mapping language to enable the self-join elimination at the abstract query level. In conventional SPARQL-to-SQL approaches, it is actually not necessary: the query rewriting application can inspect the database schema, looking primary key or unicity constraints. On the contrary, with schema-less databases like MongoDB, unicity constraints must be stated declaratively. 

Running

Self-Union Elimination

The UNION operator of the abstract query language can either be created when translating the SPARQL UNION operator, or during the translation of a triple pattern to which several triples maps are bound (in function transTPm). Similar to the Self-Join Elimination, a union of several atomic abstract queries can be merged into a single one at the condition that they have the same From part, i.e. they share the same logical source.

The resulting atomic abstract query Q merges atomic abstract queries Q1 and Q2 this way:

-The Project part of Q is the union of the Project parts of Q1 and Q2.

-The Where part of Q must be a condition that allows either the conditions of Q1 or the conditions of Q2, or both.

Toward that end, we introduce the new condition operator OR. The Where part of Q is defined as: OR(Q1.Where, Q2.Where).

Constant Projection

The Constant Projection optimization detects cases where the only projected variables in the SPARQL query are matched with constant values in the bound triples maps. In the relational database context, it has been referred to as the Projection Pushing optimization [START_REF] Unbehauen | Optimizing SPARQL-to-SQL Rewriting[END_REF]. Nevertheless, we find this term somehow unintuitive, and we prefer the term Constant Projection.

Let us consider the example query below:

SELECT DISTINCT ?p WHERE {?s ?p ?o}.

In a first approach, all triples maps of the mapping graph are bound to the triple pattern "?s ?p ?o". Hence, the resulting abstract query is a union of the atomic queries derived from all the triples maps in the mapping graph. In other words, this query will materialize the whole database before it can provide an answer. Besides, this type of query is critical since it is typical of schema exploration queries.

Very frequently, the xR2RML predicate maps are constant-valued: the predicate is not computed from a database value, on the contrary it is defined statically in the mapping. This is typically the case in our running example that has only constant predicate maps defined by: "rr:predicate ex:hasSeniorMember" and "rr:predicate ex:manages". In such cases, given that the SPARQL query retrieves only DISTINCT values of the predicate variable ?p, no query needs to be run against the database at all: it is sufficient to collect the distinct constant values that variable ?p can be matched with.

More generally, this optimization checks if all variables projected in the SPARQL query are matched with constant term maps. If this is verified, the SPARQL query is rewritten such that the values of all projected variables are provided as an inline solution sequence using the SPARQL 1.1 VALUES clause. Following up on the example above, we would rewrite the query in this way:

SELECT DISTINCT ?p WHERE { VALUES ?p ( _:prop1 _:propr2 … )}.

The latter query can be evaluated straightaway, without requiring any query to the target database.

Filter Propagation

We identified another type of optimization that was not implemented in the SPARQL-to-SQL context. This optimization applies in the inner join or left outer join of two atomic queries, and seeks to narrow down one of the joined queries by propagating filter conditions from the other query.

In an inner join, if the two queries have shared variables, then Equality and IsNotNull conditions of one query on those shared variables can be propagated to the other query. In a left join, propagation can happen only from right to left query since null values must still be allowed in the right query.

Example. Assume that abstract query Q is defined as the inner join of atomic queries Q1 and Q2:

{ From ← { … } Project ← {$.field1 AS ?x} Where ← {equals("value", $.field1)} } INNER JOIN { From ← { … } Project ← {$.field2 AS ?x} Where ← {} } ON { ?x }
The equals condition in Q1's Where part applies to an xR2RML reference that happens to be the reference projected as ?x. In other words, the join will only select documents from Q1 and Q2 where variable ?x equals "value".

In the right query, Q2, another xR2RML reference is projected as ?x: "$.field2". Thus, the join will only match documents of Q2 where the reference "$.field2" also returns "value". Consequently, we can add (propagate) a new condition to the Where conditions of Q2: equals($.field2, "value"). We end up with the optimized query:

{ From ← { … } Project ← {$.field1 AS ?x} Where ← {equals("value", $.field1)} } INNER JOIN { From ← { … } Project ← {$.field2 AS ?x} Where ← {equals("value", $.field2)} } ON { ?x }
In turn, query Q2 is more selective and the join can be computed faster.

Conclusion and Perspectives

In this chapter, we have proposed a method aimed at fostering the development of SPARQL interfaces to heterogeneous databases, as we believe this is a key to the advent of the Web of Data.

Leveraging R2RML-based SPARQL-to-SQL works, our method translates a SPARQL query into a pivot abstract query, utilizing xR2RML to describe the mapping of a target database to RDF. The method determines a set of relevant mappings for each SPARQL triple pattern; this set is reduced with respect to the join constraints and SPARQL filters.

Lastly, query optimization techniques are enforced in order to produce an efficient abstract query and facilitate the subsequent translation into the target query language. In the next chapter, we shall demonstrate the effectiveness of the method, taking the MongoDB document store as an example target database.

In the next chapter, we demonstrate the effectiveness of the method exposed here, taking the MongoDB document store as a target database. Before that, below we highlighted several limitations of our method and discuss possible future works. SPARQL support. At this point, SPARQL named graphs are not considered in the translation. However, it would be relatively easy to extend the method that computes triple pattern bindings in order to match named graphs (FROM, FROM NAMED) with xR2RML graph maps.

Abstract Query Optimization. The management of SPARQL filters is delegated to the translation into the target query language, using the sparqlFilter condition. Yet, some types of filter may be dealt with at the abstract query level, in order to alleviate the work required in the translation towards the target query language. For instance, operator BIND may be turned into equivalent equals conditions, and bound into isNotNull conditions.

Beyond the optimizations we have implemented, further query optimization challenges shall arise in order to develop an efficient query-processing engine. For instance, what is the most efficient order to compute INNER JOINs? In this regard, the query processing engine may need to embark query plan optimization logics such as the bind join [START_REF] Haas | Optimizing Queries across Diverse Data Sources[END_REF] Let us consider a SPARQL query containing the following triple pattern:

?vern txrp:vernacularName "Delphinus delphis".

The rewriting process will create an atomic abstract query wherein a condition that matches value "Delphinus delphis" with the mixed-syntax path expression: equals(JSONPath($.nomVernaculaire)/CSV(0), "Delphinus delphis")

Unfortunately, there is an infinite number of CSV strings where the first value is "Delphinus delphis". Hence, in this specific context, we could rewrite the condition into something like:

startsWith($.nomVernaculaire, "Delphinus delphis")

But then, if the field content is not a CSV value but an XML snippet, we may end up with very complex expressions, for instance: equals(JSONPath($.field)/XPath(//root/element[@type="some type"]), "Value")

More generally, it occurs that this problems amounts to deal with an arbitrary combination of JSONPath, XPath and CSV expressions. Although we may find solutions to this issue in specific situations, it seems illusory to seek a generic solution. Consequently, our SPARQL rewriting method does not deal with mixed-syntax paths. Nevertheless, in the context of custom functions written using CSVW and R2RML-F, it would be possible to define a transformation function along with an inverse transformation function, similar to the R2RML rr:inverseExpression property. Thus, the inverse transformation would be delegated to a function that embeds domain knowledge.

Translation of an abstract query into a MongoDB query

In the previous chapter, we have exhibited a method to translate a SPARQL query into an optimized abstract query, relying on xR2RML to describe the mapping of a target database to RDF. Operators INNER JOIN, LEFT OUTER JOIN and UNION are entailed by the dependencies between graph patterns of the SPARQL query. UNION and INNER JOIN operators may also arise from the rewriting of a triple pattern: a UNION when a triple pattern tp is bound to more than one triples map, and an INNER JOIN when a triples map contains a referencing object map denoting a join query. The abstract operators relate atomic abstract queries of the form {From, Project, Where, Limit}. The From part contains the triples maps logical source. The Where part is calculated by matching triple pattern terms with term maps; this shall generate either isNotNull conditions for SPARQL variables, equals conditions for constant terms or sparqlFilter conditions that encapsulate SPARQL filters. Finally, the Limit part denotes an optional maximum number of results.

Translation of an Abstract Query into MongoDB queries.

In this chapter, we keep on the process with the second step of our method: the translation of an abstract query into a target query, using the concrete case of MongoDB. In the context of MongoDB, xR2RML data element references are JSONPath expressions. Hence, the translation of an atomic abstract query towards MongoDB amounts to translate (i) projections of JSONPath expressions into MongoDB projection arguments, and (ii) conditions on JSONPath expressions into equivalent MongoDB query operators. Below, we illustrate the expected result using the running example.

Running Example. Previously, we showed that the translation of tp1 entails the atomic abstract queries below: The projection of the "$.manages.*" xR2RML reference shall be turned into the MongoDB projection ""manages": true".

The condition equals("Dunbar", $['lastname','familyname']) shall be translated into a concrete MongoDB query as follows:

$or: [{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}]

Similarly, the condition isNotNull($.manages.*) shall be translated into:

"manages": {$exists:true, $ne:null]

Those conditions shall augment the query of the From part, provided by the xxr:query and rml:iterator properties. In this regards, our example is trivial since the query in triples map <#Staff> is empty ("{}") and there is no iterator. Finally, the atomic abstract query shall be translated in the MongoDB query:

db.staff.find( { $or: [{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}],

"manages": {$exists:true, $ne:null] }, { "manages": true } ) More generally, the translation towards the MongoDB query language consists of two steps depicted in Figure 3. First, we translate abstract each query condition into the abstract representation of a MongoDB query. Several shortcomings may appear at this stage, such as untranslatable JSONPath expressions or unnecessary complexity. Thus, step 2 rewrites and optimizes this abstract representation into a union of valid, executable MongoDB queries. In this chapter, we describe the MongoDB and the abstract representation of a MongoDB query (section 4.1), and the JSONPath language (section 4.2). Then, we define two sets of the rules addressing (i) the translation of a projection from an atomic abstract query into an abstract MongoDB projection argument (section 4.4), (and (ii) the translation of a condition from an atomic abstract query into an abstract representation of a MongoDB query (section 4.4). Finally, helped by a second set of rules, we rewrite and optimize an abstract representation of a MongoDB query into a union of executable MongoDB queries (section 4.5). We also demonstrate that a condition on a JSONPath expression can always be rewritten into a union of valid MongoDB queries (rewritability property), and that the result shall return all matching documents (completeness property)

Limitations. In the current status of this work, we consider the translation of non-null and equality conditions into

MongoDB, however we do not consider the translation of SPARQL filters.

The MongoDB query language

The MongoDB database comes with a rich set of APIs to allow applications to query a database in an imperative way.

In addition, the MongoDB interactive interface defines a JSON-based declarative query language consisting of two mechanisms. The find method retrieves documents matching a set of conditions and returns a cursor to the matching documents. Optional modifiers amend the query to impose limits and sort orders. Alternatively, the aggregate method allows for the definition of processing pipelines: each document of a collection passes through the stages of a pipeline that creates a new collection and so on. That allows for richer aggregate computations but comes with a much higher resource consumption that entails more unpredictable performance issues. Thus, as a first approach, this work considers the find query method, hereafter called the MongoDB query language. We describe it here below, referring to the MongoDB Manual 10 3.0 (the latest at the time of writing).

MongoDB Find Query Method

The MongoDB find query method takes two arguments:

(1) The query parameter is a JSON document that describes conditions about the documents to search for in the database. Specific query operators are denoted by a heading '$' character. Here are a few examples:

-{"decade":{$exists:true}}: matches all documents with a field "decade".

10 https://docs.mongodb.org/manual/tutorial/query-documents/ -{"person.age":{$gte:18}}: matches all documents with a field "person" whose value is a document having a field "age" whose value is 18 or more.

-{"staff.0.role":{$eq:"manager"}}: matches all documents with an array "staff" whose first element (at index 0) has a field "role" with value "manager".

-{"staff":{$elemMatch:{"role":"developer"}}}: matches all documents with an array "staff" in which at least one element is a document having a field "role" with value "developer".

(2) The optional projection parameter specifies the fields from the matching documents to return. In the example below, collection "collection" is searched for documents about people whose age is at least 18; only the "person.name" field of each matching document is returned.

db.collection.find({"person.age":{$gte:18}}, {"person.name": true})

The MongoDB documentation provides a rich description of the query language that however lacks precision as to the formal semantics of some operators. For instance, the query {$or:[{"p.q":10},{"p.q":11}]} retrieves documents where field "p" is a document having a field "q" whose value is either 10 or 11. We may be tempted to write the same query in another way: {"p": {$or: [{"q":10},{"q":11}]}}, however this query is invalid. It is unclear in the documentation why the $or and $and operators cannot be used as a condition on a field, but have to be at the top-level of the query document, or nested in an $elemMatch, an $and or an $or operator. Recently, attempts were made to clarify this semantics while underlining some limitations and ambiguities: Botoeva et al. [START_REF] Botoeva | A formal presentation of MongoDB (Extended version)[END_REF] focus mainly on the aggregate query and ignores some of the operators we use in our translation, such as $where, $elemMatch, $regex and $size. On the other hand, Husson [START_REF] Husson | Une sémantique statique pour MongoDB[END_REF] describes the find query, yet some restrictions on the operator $where are not formalized.

Therefore, in Definition 13 we specify the subset of the query language that we consider in our approach, and we underline some limitations and ambiguities. Operator keywords are bold, square brackets ('[', ']'), curly brackets ('{', '}') and characters ":", ",", "/" and "." are part of the language. Parenthesis groups "(...)", characters "*", "+" and "|" are the conventional syntactic notation denoting occurrences and alternatives.

A comma-separated sequence of QUERY elements (in the top-level query and in the $elemMatch operator) implicitly denotes a logical AND on the QUERY elements. Similarly, the $and operator denotes a logical AND on an array of QUERY elements. The $and operator is necessary when the same field name or operator has to be specified more than once. For instance, to select documents with a field "age" between 18 and 30, the query "{"age":{$gte:18}, "age":{$lt:30}}" is invalid since a valid JSON document cannot have two fields with the same name. This cases requires using the $and operator: "$and: [{"age":{$gte:18}}, {"age":{$lt:30}}]".

The $elemMatch operator (in FIELD_QUERY) matches documents with an array field in which at least one element matches all the specified QUERY criteria.

The $where (WHERE_QUERY) operator passes a JavaScript expression or function to the query system. It provides greater flexibility than other operators. However, the JavaScript evaluation cannot take advantage of existing indexes and requires the database to process the JavaScript expression for each document. This issue can seriously hinder performances, and MongoDB strongly recommends to use $where only when the query cannot be expressed using another operator. The $where operator is valid only in the top-level query document: it cannot be used inside a nested query such as an $elemMatch. This restriction makes a strong difference with SQL, and has a major impact on the rewriting process.

The ARRAY_SLICE definition is separated from the above ones as an array slice does not apply in the query part but in the projection part of a MongoDB find query. For instance, query db.collection.find({comments:{$size: 100}}, {comments:{$slice: 5}}) selects documents that have an array "comments" with 100 elements, and projects only the first five elements.

Semantics Ambiguities

The MongoDB query language allows ambiguous short-cut expressions to name paths in the JSON documents. For instance, query {"p":{$eq:3}} matches documents where p is a field with value 3, such as {"p":3}. Surprisingly, it also matches documents where p is an array wherein at least one element has value 3, e.g. {"p": [START_REF] Bizer | D2R server -Publishing Relational Databases on the Semantic Web[END_REF][START_REF] Botoeva | A formal presentation of MongoDB (Extended version)[END_REF]}. But the latter document would equally be matched by query {"p":{$elemMatch:{$eq:3}}}. This gets even worse with a sequence of field names, as each field name may be considered for what it is, i.e. exactly one field, or as a short-cut for the elements of an array field. With this logic, query {"p.q":{$eq:3}} matches several types of documents depending on how we interpret p and q, such as {"p":{"q":3}}, {"p":[{"q":3}]} and {"p":[{"q":[3]}]}.

Consequently, given the ambiguous notation of the MongoDB query language, it is hardly possible to write a MongoDB query whose semantics would be provably equivalent to a SPARQL query. Let us further elaborate on the possible impact of such ambiguities on the query translation process. The xR2RML mapping of a MongoDB database is written with a certain schema in mind: although the database is schemaless, the mapping designer expects documents to follow a certain schema; this schema is denoted in the JSONPath expressions that he/she embeds in the mapping. In our translation method, we do not use shortcut notations, instead we only use the most specific notation, e.g. an array element is always queried using the $elemMatch operator. Thus, it is likely that the rewriting we come up with will indeed retrieve only the expected documents. Yet, we cannot ignore the possibility that the database contains other documents, with a somehow different schema, that shall also be retrieved by the query due to the ambiguous notation (even though this was not in the mapping designer's intention).

Example. We consider a MongoDB collection where documents are shaped like this one:

{"p": { "q":3, "r":4 } } An xR2RML mapping designer may use JSONPath expression $.p.q to get the value of q. When matching the xR2RML mapping with a SPARQL triple pattern, we may come up with an atomic abstract query where a condition is:

equals($.p.q, 3)
This condition shall be translated into the MongoDB query below:

db.collection.find({"p.q":{$eq: 3}})

This query indeed matches the document shown above, but it may also match somehow different documents, although this was not the intention of the mapping designer, e.g.:

{ "p": [ {"q":3}, … ] }
Such additional, non-expected documents may lead to the generation of unpredictable and possibly erroneous RDF triples.

Unfortunately, there does not seems to be a method ensuring that such flaw cannot occur. Yet, a good practice to limit the likelihood thereof is to filter irrelevant documents at the earliest stage. In the example above, we know that field "p" may be used as both a document field and an array field. Therefore, the query in the logical source should try to rule out documents where "p" is an array: 

Abstract Representation of a MongoDB Query

We define an abstract hierarchical representation of a MongoDB query. This representation allows for handy manipulation during the query construction and optimization phases. Definition 14 lists the clauses of this representation as well as their translation into a concrete query string, when relevant.

In the COMPARE clause definition, <op> stands for one of the MongoDB query compare operators: $eq, $ne, $lte, $lt, $gte, $gt, $size and $regex. Let us consider the following example abstract query:

AND( COMPARE(FIELD(p) FIELD(0), $eq, 10), FIELD(q) ELEMMATCH(COND(equals("val")) )

It matches all documents where "p" is an array field whose first element is 10, and "q" is an array field in which at least one element has value "val". Its concrete representation is:

$and: [ {"p.0": {$eq:10}}, {"q": {$elemMatch: {$eq:"val"}}} ].

The NOT_SUPPORTED clause helps keep track of any location, within the abstract query, where the condition cannot be translated into an equivalent MongoDB query element. It shall be used in the optimization phase.

The UNION clause represents a logical OR that shall be computed by the query processing engine based on the result of queries <query1>, <query2>, etc. It can be produced by the abstract MongoDB query optimization (Algorithm 3).

Note that this UNION clause applies to set of JSON documents retrieved from the database, whereas the UNION operator generated by function transm applies to triples. 

NOT_SUPPORTED → ∅ CONDJS(equals(v)) → == v CONDJS(equals("v")) → == "v" CONDJS(isNotNull) → != null UNION(<query1>, <query2>, …)
Same semantics as OR, but processed by the query processing engine

The JSONPath language

JSONPath11 is a domain specific language designed to read, parse and extract data from JSON documents. It was defined in 2007 by Stefan Goessner as an analogy to the XPath 12 standard for XML documents. As of today JSONPath is not a standard, however its definition remains stable and a large community provides and maintains implementations for various programming languages. Definition 15 describes the grammar of JSONPath. Bold characters ('$', '*', '.', '[', ']') are part of the language. In particular note that characters "(" and ")" are part of the language in the FILTER and CALC_INDEX expressions, whereas in FIELD_ALT and INDEX_ALT expressions they simple denote groups. Similarly, the "*" character is part of the language in expression WILDCARD, but denotes 0 to any occurrences in other expressions.

Let us give a few illustrating examples:

-$.names.*: selects all elements of array "names" like in: "{names: ["mark", "john"]}", or all fields of document "names" like in "{names: {firstname: "mark", lastname: "john"}}".

-$.books [START_REF] Bikakis | The SPARQL2XQuery interoperability framework: Utilizing Schema Mapping, Schema Transformation and Query Translation to Integrate XML and the Semantic Web[END_REF][START_REF] Bizer | D2R server -Publishing Relational Databases on the Semantic Web[END_REF]: selects the second (index 1) and fourth (index 3) elements of array "books".

-$.books [1:3]: selects all books from index 1 (inclusive) until index 3 (exclusive), that is at indexes 1 and 2.

-$.books[(@.length -1)] or $.books[-1:]: select the last element of array "books". In the "[()]" notation, "@" refers to the parent element "books".

-$.team[?(@.members <= 10)].name: select the name of teams that have 10 members or less, i.e. "team" is an array, among its elements we select those that have a field "members" whose value is 10 or less, and finally we select the field "name" of those elements. Unlike above, in the "[?()]" notation "@" refers to elements of the array.

-$..author: selects all "author" fields anywhere in the document. In an array slice, if the <start> is omitted it defaults to 0, e.g. $.books[:2] selects the first two books. If <end> is omitted, it defaults to the index of the last element of the array. <start> and <end> can be positive (the index is counted from the start of the array), or negative (the index is counted from the end of the array), e.g. $.books[-2:] selects the last two books.

Restrictions on the usage of JSONPath expressions

JSONPath is an expressive language that was designed for pragmatic purposes as an analogy of the XPath language. Unfortunately, it lacks the formalization level that can be expected from standards. As a result, its definition leaves room for interpretation; this is attested by the discrepancies between implementations. For the sake of clarity, below we specify some restrictions on the possible interpretations, and we restrict the use of some operators.

Script expressions:

The FILTER expression filters elements of an array based on <script expression> that must evaluate to a boolean. CALC_INDEX selects the element of an array at index <script expression> that evaluates to a positive integer. In both cases, the language definition says <script expression> is written in "the syntax of the underlying script engine". This design choice has a strong shortcoming: it binds the language definition to its implementations, since the underlying script engine depends on the implementation, and in the worst case there may even not be any underlying script engine at all. That made sense in the initial JavaScript implementation of Goessner, but this is subject to various interpretations in other implementations. For instance in the Java port 13 of Goessner's implementation, developers have chosen to implement a very limited subset of JavaScript.

In our rewriting approach, we stick to the idea that those expressions are JavaScript, keeping in mind that its support may vary depending on the JSONPath implementation that is being used.

Wildcard semantics:

In JSONPath, the wildcard '*' is equally applicable to arrays and documents. In an array it stands for any element of the array, while in a document it stands for any field of the document. In MongoDB conversely, documents and arrays are not treated equally: the $elemMatch operator applies specifically to arrays, and it is not possible to match any field in a document (there is no equivalent of the "*" for a document). Therefore, to be able to translate JSONPath expressions into MongoDB, we restrict the use of the wildcard to arrays only, which is its most common usage.

Filters:

In the JSONPath reference, it is unclear whether the filter notation [?(<script expression>)] applies to arrays, or to arrays and documents. Some implementations apply both with somewhat confusing semantics, e.g. in the expression $.p[?(@.q)]:

if "p" is an array then "@" refers to each of its elements, meaning that only elements with a field "q" are matched. The drawback is that it is not possible to write a condition about an element given by its index, e.g. to match arrays in which the 11 th element is 0, we would like to write $.p[?(@[10] == 0)], which is invalid because in that case "@" should refer to the array p but not to its elements.

-Conversely if "p" is a document, "@" refers to "p" itself, meaning that "p" matches only if it is a document with a field "q". Furthermore, some tests show that different implementations have made different interpretations in this matter. To get rid of any confusion, in this work we restrict the usage of filters "[?()]" to arrays only. Therefore expressions like $.p[?(…)] shall be understood as "p" being an array field, the "@" character refers to its elements.

Root element of JSON documents:

In MongoDB the root element of a document cannot be an array, e.g. ["mark","john"] is not a valid MongoDB document, but {"people":["mark","john"]} is valid. Consequently, the JSONPath expressions we consider must not start with array-specific elements. For instance, expressions "$[0]" and "$ [START_REF] Bikakis | The SPARQL2XQuery interoperability framework: Utilizing Schema Mapping, Schema Transformation and Query Translation to Integrate XML and the Semantic Web[END_REF][START_REF] Bizer | D2R server -Publishing Relational Databases on the Semantic Web[END_REF][START_REF] Chebotko | Semantics preserving SPARQL-to-SQL translation[END_REF]" are invalid in our context. Additionally, given the above restriction on the wildcard, expressions starting like "$.*" or "$[*]" are not supported in our context.

Descendent operator:

Unlike JSONPath, MongoDB does not provide a descendent operator that would look for a pattern at any depth of the documents. Consequently, our rewriting method does no support JSONPath expressions using the ".." operator.

Translation of Projections

The From part of an atomic abstract query lists JSONPath expressions whom JSON fields should be part of the query results. Given the restrictions on JSONPath expressions defined section 4.2, this section defines the recursive function proj that translates a JSONPath expression into the projection argument of MongoDB find query. More precisely, function proj builds a list of paths that shall be projected. For instance, the JSONPath expression "$.p.q" shall be translated into the abstract representation "FIELD(p) FIELD(q)" that, in turn, shall be translated into the concrete projection argument ""p.q":true".

Function proj implements a set of rules, listed in Algorithm 1, that apply when the JSONPath expression matches a certain pattern. The JSONPath expression is checked against the patterns in the order of the rules. When a match is found, the rule is applied and the search for a match stops. The projection argument of a MongoDB find query is fairly simple: it consists of a path followed by "true" to project the path, or "false" to not project the path. Notations "true" and "false" cannot be mixed: either named paths are explicitly projected with "true", or they are restricted, which implicitly projects all unnamed paths. In our case, we use the "true" notation to explicitly list projected paths.

A path may be a single field name e.g. "p", or a sequence of field names. In the latter, two semantics can apply to the path "p.q":

-If the value of "p" is an embedded document, then "p" is projected along with only the field "q" of embedded documents;

-If the value of "p" is an array, then "p" is projected along with all its elements, but only the field "q" of the elements is projected.

We now describe the way a JSONPath expression is treated by the rules in Algorithm 1: . Rule P2 is described last as it requires the understanding of other rules.

Rules P0 and P1

Rule P0 is the entry point of the translation process (a valid JSONPath expression starts with a "$" character): the heading "$" character is simply removed. Conversely, rule P1 is the termination point, that is, when the JSONPath expression has been fully parsed. The rule simply returns ∅ to stop the process. Implicitly, all FIELD clauses generated beforehand are to be translated into a projection argument.

Rule P3: Array Notations

Rule P3 deals with different types of array notations: wildcard, array index alternative and array slice. The MongoDB projection argument cannot select elements from an array: they are all projected, but we can specify which field of the elements are projected. Thus, whether all elements are selected with the wildcard, or only a subset with the alternative or slice, the translation simply goes on by parsing anything that comes after the array notation. Examples:

-JSONPath expression "$.p.*.q" is translated into the argument ""p.q":true" that projects the field "q" of all elements of "p". Similarly, in JSONPath expressions "$.p [START_REF] Bikakis | The SPARQL2XQuery interoperability framework: Utilizing Schema Mapping, Schema Transformation and Query Translation to Integrate XML and the Semantic Web[END_REF][START_REF] Bizer | D2R server -Publishing Relational Databases on the Semantic Web[END_REF][START_REF] Chebotko | Semantics preserving SPARQL-to-SQL translation[END_REF].q" and "$.p [2:4].q", the alternative and slice notations are ignored. Both are translated into the same projection argument ""p.q":true".

Rule P4: Field Names

Rule P4 deals with regular field names, and simply adds a FIELD clause each time a new field name is parsed.

Example: JSONPath expression "$.p.q.r" shall be translated into the abstract representation "FIELD(p) FIELD(q) FIELD(r)", which shall in be rewritten into the argument ""p.q.r": true".

Rule P2: JavaScript Filter and Calculated Array Index

JavaScript expressions, whether in a Boolean filter or a calculated index, are managed in a somewhat specific way. Let us take an example: JSONPath expression "$.p[?(@.q && @.r)].s" denotes documents with an array field "p", whose elements have a field "q" and a field "r", and we select the value of field "r", e.g. {"p": ["q":1, "r":2, "s":3]}.

To project all appropriate fields, we must produce the projection argument:

""p.q":true, "p.r":true, "p.s":true"".

In other words, we have to make a product of (i) the field named before the JavaScript filter, (ii) the fields named in the JavaScript filter, and (iii) the fields named after the JavaScript filter.

To that end, we first define function projJS(<JS expr>, <FIELD clause>) that returns a list of FIELD clauses, one for each field named in the JavaScript expression, and the additional FIELD clause provided as a second argument. Then, we denoted by the "X" the product between the FIELD clauses produced by either the proj or projJS functions: proj(<JP:F>[?(<bool_expr>)]<JP>) → proj(<JP :F>) X projJS(<bool_expr>, proj(<JP>))

Applied to the example above, we get: proj($.p[[?(@.q && @.r)].s)

→ proj(p) X projJS(@.q && @.r, proj(s))

→ FIELD(p) X ( FIELD(q), FIELD(r), FIELD(s) )

→ FIELD(p) FIELD(q), FIELD(p) FIELD(r), FIELD(p) FIELD(s)

This indeed generates the three expected paths: p.q, p.r and p.s. The management of JavaScript calculated array indexes follows the same procedure.

Query translation rules

Given the subset of the MongoDB query language that we consider in section 4.1, the JSONPath language and the restrictions mentioned in section 4.2, in this section we define the recursive function trans(JSONPath expression, <cond>) that translates a condition <cond> applied to a JSONPath expression into an abstract MongoDB query. <cond> stands for either isNotNull or equals(value). Function trans consists of a set of rules detailed in Algorithm 2, that apply if the JSONPath expression matches a certain pattern. The JSONPath expression is checked against the patterns in the order of the rules (0 to 9). When a match is found the rule is applied and the search stops.

Running Example. Before getting into the details, let us illustrate the approach using the running example. As already seen, the translation of triple pattern tp1 entails two atomic abstract queries (see section 3.5), among which the child query contains two conditions:

isNotNull($.manages.*), equals("Dunbar", $['lastname','familyname'])

Let us consider condition isNotNull($.manages.*). It amounts to evaluating trans($.manages.*, isNotNull) that goes through the following steps:

-Rule R0 first matches, returning trans(.manages.*, isNotNull).

-Then, rule R8 matches, it returns FIELD(manages) trans(.*, isNotNull).

-Lastly rules R7 and R1 translate trans(.*, isNotNull) into ELEMMATCH(COND(isNotNull)). This comes up with the abstract MongoDB query:

FIELD(manages) ELEMMATCH(COND(isNotNull)).
Applying Definition 14 to the abstract MongoDB query entails the final concrete query:

"manages": {$elemMatch: {$exists:true, $ne:null}}.

Following the same algorithm, the second condition, equals("Dunbar", $['lastname','familyname']), will be translated into the abstract query:

OR(FIELD(lastname) COND(equals("Dunbar")), FIELD(familyname) COND(equals("Dunbar")))

that is translated into the concrete query:

$or: [{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}]

Conventions. In the definition of the translation rules, we use the following notations:

-<cond>: is a condition to translate into MongoDB: either isNotNull or equals(<value>).

-<JP>: denotes a possibly empty JSONPath expression.

-<JP:F>: denotes a non-empty JSONPath sequence of field names and array indexes, , without the heading '$' character, e.g. ".p.q.r", ".p [START_REF] Haas | Optimizing Queries across Diverse Data Sources[END_REF]["r"]". -<bool expr>: denotes a JavaScript expression that evaluates to a boolean.

-<num expr>: denotes a JavaScript expression that evaluates to a positive integer. We also define the function replaceAt(<rep>, <path>), that replaces any occurrence of the '@' character with <rep> in string <path>. E.g. replaceAt("this.people", "@ < 10") returns "this.people < 10". 

R9

No other rule matched, the current expression is not supported trans(<JP>, <cond>) → NOT_SUPPORTED

Rule R0

Rule R0 is the entry point of the translation process since a valid JSONPath expression starts with a "$" character.

Rue R1

Conversely, rule R1 is the termination point: when the JSONPath expression has been fully parsed, the last element that is created is the condition in MongoDB, like "$eq: value" for an equality condition, or "$exists:true, $ne:null" for a not-null condition. If value is of a string datatype, it is surrounded with quotes.

Rule R2

A field alternative or array index alternative is translated into an OR clause, corresponding to the MongoDB $or operator. As underlined in section 4.1, the $or operator cannot be used as a condition on a field; for instance, the following query is invalid: "p.q": {$or: [{$eq: 10}, {$eq: 10}]}.

Instead, it has to be either at the top-level query or nested in an $elemMatch, $and or $or operator. For this reason, a sequence of field names and array indexes (<JP:F>) must precede the alternative pattern (["p","q",...] or [i,j,...]). In the rewriting, the <JP:F> sequence is prepended to each of the $or members. In the example below the ".p" stands for the <JP:F> term: Condition equals($.p.["q", "r"], 10) that, in turn, shall be translated into:

$or: [{"p.q": {$eq: 10}}, {"p.r": {$eq: 10}}]

Note that no assumption is made as to what may come after the alternative pattern, this is denoted in the rule by JSONPath <JP> following the alternative pattern.

Rule R3

Rule R3 matches an expression with a heading field alternative or array index alternative. Contrary to rule R2, the alternative pattern is not preceded by a <JP:F> sequence. This case occurs when the alternative is either the first pattern in the JSONPath expression, or when it comes after a term such as a JavaScript filter (R4), an array slice (R5) or a wildcard (R7). Example: Condition equals($.p.*["q", "r"], 10)

is translated into:

"p": {$elemMatch: {$or: [{"q": {$eq: 10}}, {"r": {$eq: 10}}]}}

Rule R4

A JavaScript (JS) filter is a boolean condition evaluated against elements of an array, where the "@" character stands for each array element, e.g. "$.people[?(@.role)]" matches all elements of array "people" that are documents having a field "role". Since a JS filter specifies a condition on all array elements, it is translated into a MongoDB query However, we have mentioned earlier that the $where operator can be used only as a member of the top-level query.

Several situations may occur:

-If a calculated array index is preceded by either a wildcard or a filter, its translation shall be embedded into an $elemMatch created by rules R7 or R4 respectively. Rule R6(a) makes this case impossible by returning NOT_SUPPORTED. -Yet, rule R6 (b and c) produces a $where operator nested in an $and operator. We show in section 4.5 that we can rewrite a query containing a $where nested in a combination of $and and $or operators into a union of valid MongoDB queries in which $where operators show only in the top-level query.

If the calculated array index is followed by a non-empty JSONPath expression, that subsequent expression has to be part of the JavaScript expression in the $where operator. This is exemplified by the "name" field in the example above. More generally, anything that follows the calculated array index should be rewritten in JavaScript. This is not always possible however, as illustrated by the two examples below:

(1) Condition equals($.p[(@.length -1)].*, "val"), could be rewritten in: This query is invalid since there is no equivalent to the wildcard in JavaScript.

(2) Similarly, condition equals($.p[(@.length -1)].r[?(@.q)].s, "val") could be rewritten in: But again this query is invalid since there is no JavaScript equivalent to the JSONPath notation ?(@.q). Yet, in both situations, we could figure out a way to achieve the translation through the definition of a JavaScript function that would parse the array. At this stage however, we choose not to go down that road, and we further discuss this choice in section 6.4. Therefore, in rule R6(c) we restrict terms that follow a calculated array index to a sequence of field names or array indexes, denoted by <JP2:F>.

Rule R7

As mentioned in section 4.2, the use of the wildcard within JSONPath expressions is restricted to the context of array fields, but it cannot apply to document fields. Hence, rule R7 simply translates a heading wildcard into an $elemMatch operator.

Rule R8

Other field names and array indexes are translated into their equivalent dot-separated MongoDB path. Example: condition isNotNull($.p [START_REF] Chebotko | Semantics preserving SPARQL-to-SQL translation[END_REF]["s"]) is translated into "p.5.s": {$exists: true}.

Rule R9

Rule R9 is the default rule. In case no other rule matched, the translation of the JSONPath expression to MongoDB query language is not supported. This applies in the following cases: -A calculated array index is preceded or followed by a wildcard, an alternative or a JavaScript filter, as explained in rule R6. -Unsupported array slice notation such as [m:n:s].

-JSONPath expressions entailing that the root document is an array and not a document, such as $.*, $[1,2,…] ,

$[?(…)] and $[(…)].

Translation of a JavaScript filter to MongoDB

Recursive function transJS translates a JavaScript filter into a MongoDB query. It consists of a set of rules, explicated in Algorithm 2, that apply if the JavaScript expression matches a certain pattern. The JavaScript expression is checked against the patterns in the order of the rules. When a match is found the corresponding rule is applied and the search stops.

In the rules definitions we use the following notations: -<JSpath>: denotes a non-empty JavaScript sequence of field names and array indexes, e.g. '.p.q.r', '.p [START_REF] Haas | Optimizing Queries across Diverse Data Sources[END_REF]'.

-The dotNotation(<JS_expr>) function converts a JavaScript path to a MongoDB query path consisting of field names and array indexes in dot notation. It removes the optional heading dot. e.g. "dotNotation(.p[5]r)" returns "p.5.r". -The transJsOp(op) functions converts a JavaScript comparison operator to its MongoDB equivalent: === → $eq, == → $eq, != → $ne, <= → $lte, >= → $gte, < → $lt, > → $gt, =~ → $regex.

The expressiveness of the MongoDB query language in terms of comparison is quite limited compared to JavaScript boolean conditions. As a result, when a JavaScript comparison cannot be turned in an equivalent MongoDB query, the rule returns the NOT_SUPPORTED clause that shall be used later on during the final translation phase. Rule J2 addresses the comparison of two document fields or two array fields such as "@.name != @.login". This is not permitted in MongoDB query language, yet it is possible to translate this condition using the $where operator. Typically rule J2 could return:

AND(EXISTS(<JS_expr1>), EXISTS(<JS_expr2>), WHERE("this<JS_expr1> <op> this<JS_expr2>"))

However the transJS function is used only in the context of an $elemMatch, and the $where operator is valid only in the top-level query. Therefore, rule J2 returns NOT_SUPPORTED.

Rules J3 and J4 deal with existential comparisons.

Rule J5 addresses tests on the length of an array field. The MongoDB $size operator allows for an equality test on the length of an array, but other types of comparison are not allowed. Similarly to the discussion above regarding rule J2, a $where operator could be used in J5(b) to return:

WHERE(this<JSpath>.length <op> <i>)

But again, the $where operator is valid only in the top-level query, consequently rule J 5(b) returns NOT_SUPPORTED.

Rule J6 addresses all other types of supported comparison between a field and a literal value <v>.

Finally, rule J7 applies when no other rule matched. It is used as the default for all non-supported types of JavaScript expression.

Query optimization and translation to a concrete MongoDB query

Functions trans() and transJS(), defined in section 4.4, translate a condition on a JSONPath expression into an abstract MongoDB query. Before rewriting the abstract query into a concrete query, several potential issues must be addressed: (i) An abstract query may contain unnecessary complexity, such as nested ORs, nested ANDs, sibling WHEREs, etc., that can hamper performances. (ii) An abstract query may contain operators NOT_SUPPORTED, indicating that a part of the JSONPath expression could not be translated into an equivalent MongoDB operator. Depending on the position of such an operator in the query, we rewrite the query into a concrete query that shall return all matching documents (the certain answers), as well as possibly non-matching documents that shall be ruled out afterwards. (iii) The WHERE operator may be nested beneath a sequence of ANDs and/or ORs, which is not valid in the MongoDB query language.

Those issues are addressed by means of two sets of rewriting rules, O1 to O5 and W1 to W6, defined in sections 4.5.1 and 4.5.2 respectively. Lastly, function rewrite (section 4.5.3) iteratively uses those rules to perform all possible rewritings and ultimately generate either one concrete MongoDB query or a union of concrete MongoDB queries.

Query optimization

Rules O1 to O5, in Algorithm 3, cope with issues (i) and (iii). Each rule applies to a query Q when Q matches the pattern in the head of the rule.

Algorithm 3: Optimization of an abstract MongoDB query

The "→" arrow means "is rewritten as". 

Since "C1 ∧ … ∧ Cn ∧ N" is more specific than "C1 ∧ … ∧ Cn" (C1 ∧ … ∧ Cn ⊆ C1 ∧ … ∧ Cn ∧ N)
, by simply removing the N component we widen the whole condition. Consequently, all matching documents shall be returned, but non-matching documents may be returned too, that shall be ruled out later on. -O5(b): A logical AND implicitly applies to members of an ELEMMATCH clause. Therefore, removing the NOT_SUPPORTED has the same effect as in O5(a). -O5(c) and O5(d): Contrary to the AND and ELEMATCH cases, we cannot simply remove the NOT_SUPPORTED clause from an OR or UNION clause as the query would only return a subset of the matching documents (C1 ∨… ∨ Cn ⊆ C1 ∨… ∨ Cn ∨ N). Instead, the OR or UNION clause is replaced with a NOT_SUPPORTED clause. Consequently, the issue is raised up to the parent clause, and it shall be managed at the next rewriting iteration. Iteratively, we raise up the NOT_SUPPORTED clause until it is eventually removed (cases AND or ELEMMATCH above), or it ends up in the top-level query. The latter is the worst case in which the query is no longer selective at and shall retrieve all the documents. -O5(e): Similarly to O5(c) and O5(d), a sequence of fields followed by a NOT_SUPPORTED clause is replaced with a NOT_SUPPORTED clause to raise up the issue to the parent clause.

Example. We illustrate Algorithm 3 in a dedicated example. Assume we wish to translate the condition below into a concrete MongoDB query: equals($.teams.0[?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)].name, "john")

The trans function translates this condition into an abstract MongoDB query. Below we detail the translation and mention the rules applied at each step: trans($.teams.0[?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)].name, equals("john")) =

This abstract MongoDB query can now be rewritten into the following concrete query:

"teams.0": {$elemMatch: {"name":{$eq:"john"}, "level":{$eq:"beginner"}, "score":{$gte:3}}}

Pull up WHERE clauses

By construction, a WHERE clause cannot be nested in an ELEMMATCH clause (rule R6). In addition, Algorithm 3 flattens nested OR and nested AND clauses, and merges sibling WHERE clauses. Consequently, a WHERE clause may be either in the top-level query (the query is thereby executable) or it may appear in one of the following patterns:

OR(…,W,…), AND(…,W,…), OR(…,AND(…,W,…),…), AND(…,OR(…,W,…),…), where "W" stands for a WHERE clause. In the case of those patterns, we have to "pull up" WHERE clauses to the top-level query, in order to address issue (iii).

Rewritings make use of a new clause, UNION, that we describe here: its semantics is equivalent to that of the OR clause, although the OR is processed by the MongoDB query (as an $or operator), while the UNION is computed outside of the database, by the query processing engine: the result of evaluating UNION(<query1>, <query2>) is the union of the results produced by evaluating <query1> and <query2> separately against the MongoDB database.

Recall that an AND clause in the top-level query can be replaced with its members, since the implicit semantics of the top-level query is to apply a logical AND between its members. Therefore, if is sufficient to come up with query rewritings that bring all WHERE clauses to the top-level or in an AND of the top-level query. To give an intuition of the method, the example below shows the rewriting of simple queries. "W" stands for a WHERE clause, "C" and "D" for any sub-query, and "→" stands for "is rewritten to".

-OR(C, W) → UNION(C, W): OR substituted with UNION, W is pulled up in the top-level query.

-AND(C, W) → (C,W): top-level AND replaced with its members, W is pulled up in the top-level query.

-OR(C, AND(D, W)) → UNION(C, AND(D, W)): OR substituted with UNION, W is pulled up in a top-level AND clause, that can be removed and replaced by its members. 

Rewritability and Completeness Properties

Finally, we define in Algorithm 4 the complete optimization and translation algorithm that iteratively uses rules O1 to O6 and W1 to W6 to perform all possible rewritings, and ultimately generate either one concrete MongoDB query or a union of concrete MongoDB queries.

Algorithm 4: Abstract MongoDB query optimization and translation into concrete MongoDB queries

Function rewrite(Q): do do Q ← apply rules O1 to O5 that match any sub-query of Q until no more rewriting can be performed do Q ← apply rules W1 to W6 that match any sub-query of Q until no more rewriting can be performed until no more rewriting can be performed by either rules O1 to O5 or W1 to W6 Q' ← translate Q as defined in Definition 14. return Q' A consequence of function rewrite is that we can always rewrite an abstract MongoDB query into a union of queries in which there is no more NOT_SUPPORTED clause and any WHERE clause only appears as a top-level object or in a top-level AND clause. This is summarized in the Theorem 1 that we demonstrate hereafter: Theorem 1. Let C be an equality or not-null condition on a JSONPath expression. Let Q = (Q1, …Qn) be the abstract MongoDB query produced by trans(C).

Rewritability: It is always possible to rewrite Q into a query Q' = UNION(Q ' 1,… Q ' m) such that ∀i ∈ [1, m] Q ' i
is a valid MongoDB query, i.e. Q ' i does not contain any NOT SUPPORTED clause, and a WHERE clause only shows at the top-level of Q ' i. Completeness: Q' retrieves all the certain answers, i.e. all the documents matching condition C. If Q contains at least one NOT SUPPORTED clause, then Q' may retrieve additional documents that do not match condition C.

Proof of Theorem 1:

Completeness. The completeness property is a result of how rule O5 deals with NOT_SUPPORTED clauses. For the sake of readability, we copy the demonstration already provided when describing O5.

Let C1,… Cn be any clauses and N be a NOT_SUPPORTED clause. We denote by C1 ∧ … ∧ Cn the set of documents matching all conditions C1 to Cn.

-O5(a): If a NOT_SUPPORTED clause occurs in an AND clause, it is simply removed.

Since "C1 ∧ … ∧ Cn ∧ N" is more specific than "C1 ∧ … ∧ Cn" (C1 ∧ … ∧ Cn ⊆ C1 ∧ … ∧ Cn ∧ N)
, by simply removing the N component we widen the whole condition. Consequently, all matching documents shall be returned, but non-matching documents may be returned too, that shall be ruled out later on. -O5(b): A logical AND implicitly applies to members of an ELEMMATCH clause. Therefore, removing the NOT_SUPPORTED has the same effect as in O5(a). -O5(c) and O5(d): Contrary to the AND and ELEMATCH cases, we cannot simply remove the NOT_SUPPORTED clause from an OR or UNION clause as the query would only return a subset of the matching documents (C1 ∨… ∨ Cn ⊆ C1 ∨… ∨ Cn ∨ N). Instead, the OR or UNION clause is replaced with a NOT_SUPPORTED clause. Consequently, the issue is raised up to the parent clause, and it shall be managed at the next iteration of function rewrite. Iteratively, we raise up the NOT_SUPPORTED clause until it is eventually removed (cases AND or ELEMMATCH above), or it ends up in the top-level query. The latter is the worst case in which the query is no longer selective at and shall retrieve all the documents. -O5(e): Similarly to O5(c) and O5(d), a sequence of fields followed by a NOT_SUPPORTED clause is replaced with a NOT_SUPPORTED clause to raise up the issue to the parent clause. The rewritings above show that, wherever the NOT_SUPPORTED clause shows, it is iteratively removed by the rewritings using rules O1 to O5 and W1 to W6. Hence the first part of the rewritability property: it is always possible to come up with a rewriting that does not contain any NOT_SUPPORTED clause. where "W" stands for a WHERE clause.

Rewritability

To prove Theorem 1, we must show that Algorithm 4 can rewrite a query so that the depth of a WHERE clause be 0. Toward that end, we define function depth that measures the depth of a MongoDB query consisting of AND, OR, UNION and WHERE clauses. First, we postulate: depth(C1/…/Cn) = depth(C1) + … + depth(Cn) where C1/…/Cn are clauses nested within one another depth(UNION) = 0 depth(AND) = 1 depth(OR) = 1 AND and OR count for 1, but UNION counts for 0: indeed UNION is not a MongoDB operator, instead it is meant to be processed outside of the database. Notation "C1/…/Cn" represents a nested query in which clause C1 is parent of clause C2 which is parent of clause C3 etc. until clause Cn. 

depthw(Q) = 1 depthw(Q') = 0

UNION(…,W,…)

The WHERE clause is a top-level query, the query is valid as is and no rewriting is needed.

UNION(…,AND(…,W,…),…)

Rule Thus, depthw(Q) = 1 and depthw(Q') = 1. Nevertheless, a UNION is either a top-level query, and in that case the inner ANDs are replaced by their members, or the UNION is nested within some other query and it will eventually be raised up to the top-level query by rulesW5 or W6. Hence, in all cases, we shall be able to come up with a query Q'' where depthw(Q'') = 0. By applying this process iteratively, it is easy to see that we ultimately come up with a rewriting that contains WHERE clauses only in the top-level query, hence the second part of the rewritability property. -Lines 2 and 3 regard the translation of the SPARQL graph pattern into an optimized abstract query (step 1).

-The for-loop from line 5 to line 25 deals with the individual atomic abstract queries. For each atomic query, the JSONPath expressions of the Project part are translated into an projection argument (lines 7-10), and the conditions of the Where part are translated into an abstract MongoDB query (lines [START_REF] Michel | Translation of Relational and Non-Relational Databases into RDF with xR2RML[END_REF][START_REF] Michel | xR2RML: Non-Relational Databases to RDF Mapping Language[END_REF][START_REF] Pérez | Semantics and complexity of SPARQL[END_REF][START_REF] Priyatna | Formalisation and Experiences of R2RML-based SPARQL to SQL query translation using Morph[END_REF][START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF][START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] which is in turn optimized and rewritten into a union of concrete MongoDB queries (line 18). Each concrete MongoDB query is then executed against the database and its results stored in set Ri (lines 20-24).

-On each Ri, the triples maps bound to Qi are applied (line 27): this generates the RDF terms that the query processing engine can now use to compute the abstract query operators (line 28). This produces a primary result RDF graph.

To work out those issues, introduces a final step called the late SPARQL query evaluation: the initial SPARQL query is evaluated against the primary RDF graph (line 30), which rules out all the non-matching triples that were generated due to issues above.

Conclusion, Discussion and Perspectives

In this document, we proposed a method to access arbitrary MongoDB JSON documents with SPARQL using custom mappings described in the xR2RML mapping language. We first defined a method that rewrites a SPARQL query into an abstract query independent of the target database, relying on bindings between a SPARQL triple pattern and xR2RML mappings. A set of rules translate the abstract query into an abstract representation of a MongoDB query, and we showed that the latter can always be rewritten into a union of valid concrete MongoDB queries that shall return all the matching documents. Finally we defined an algorithm that orchestrates the different steps until the evaluation of MongoDB queries and the generation of the RDF triples matching the SPARQL query.

Despite a comprehensive documentation, there is no formal description of the semantics of the MongoDB query language, and more importantly, ambiguities are voluntarily part of the language. Let us add that the JSONPath language used in the mappings to extract data from JSON documents is unclear and subject to divergent interpretations. Lastly, some JSONPath expressions cannot be translated into equivalent MongoDB queries. Consequently, the query translation method cannot ensure that query semantics be preserved. Nevertheless, we proved that rewritten queries retrieve all matching documents, in addition to possibly non matching ones. We overcome this issue by evaluating the SPARQL query against the triples generated from the database results. This guarantees semantics preservation, at the cost of an additional SPARQL evaluation. More generally the NoSQL trend pragmatically gave up on properties such as consistency and rich query features, as a trade-off to high throughput, high availability and horizontal elasticity. Therefore, it is likely that the hurdles we have encountered with MongoDB shall occur with other NoSQL databases.

Query optimization

Function transm translates a SPARQL query into an abstract query containing INNER JOIN, LEFT OUTER JOIN, FILTER and UNION operators. With SQL or XQuery whose expressiveness is similar to that of SPARQL, the abstract query can be translated into a single SQL query, as shown in various approaches [START_REF] Chebotko | Semantics preserving SPARQL-to-SQL translation[END_REF][START_REF] Sequeda | Ultrawrap: SPARQL execution on relational data[END_REF]8,[START_REF] Unbehauen | Accessing relational data on the web with SparqlMap[END_REF][START_REF] Rodríguez-Muro | Efficient SPARQL-to-SQL with R2RML mappings[END_REF][START_REF] Priyatna | Formalisation and Experiences of R2RML-based SPARQL to SQL query translation using Morph[END_REF]. Conversely, the expressiveness of the MongoDB query language is far more limited: joins are not supported and filters are supported with strong restrictions (e.g. no comparison between fields of a document, $where operator restricted to the toplevel query). This discrepancy entails that a SPARQL query shall be translated into possibly multiple independent queries, thereby delegating several steps to the query-processing engine. This is illustrated in Algorithm 3 that processes INNER JOIN, LEFT OUTER JOIN, FILTER and UNION operators between sets of JSON documents.

Evaluating concrete queries independently of each other can be the cause of performance issues. The problem of efficiently evaluating the abstract query amounts to a classical query plan optimization problem. Future works shall include the study of methods such as the bind join [START_REF] Haas | Optimizing Queries across Diverse Data Sources[END_REF] to inject intermediary results into a subsequent query. The join re-ordering based on the number of results that queries shall retrieve could also be used, very similarly to the methods applied in distributed SPARQL query engines [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF].

Limitations

At this point, several limitations must be highlighted, that we may consider in future works: SPARQL filters are not tackled in the translation of an abstract query into the MongoDB query language. We plan to address this in the future, although it is likely that the support shall be limited by the capabilities of the underlying database. For instance, SQL supports most of the SPARQL operators such as logics, comparison, arithmetic and unary operators. This is far from being the case in MongoDB. JavaScript functions can help in this matter, although we have to consider this option with reluctance due to the performance issues it entails (discussed below). Again, some filtering tasks shall be delegated to the query-processing engine to bridge the gap between SPARQL and MongoDB.

MongoDB find vs. aggregate queries

In a recent work, Botoeva et al. have proposed a generalization of the OBDA principles to support MongoDB [Botoeva et al., 2016b]. Their approach has similarities and discrepancies with ours, that we outline below. Botoeva et al. derive a set of type constraints (literal, object, array) from the mapping assertions, called the MongoDB database schema. Then, a relational view over the database is defined with respect to that schema, notably by flattening array fields. A SPARQL query is rewritten into relational algebra (RA) query, and RA expressions over the relational view are translated into MongoDB aggregate queries. Similarly, we translate a SPARQL query into an abstract representation (that is not the relational algebra) under xR2RML mappings. To deal with the tree form of JSON documents we use JSONPath expressions. This avoids the definition of a relational view over the database, but this also comes with additional complexity in the translation process, as translating conditions on JSONPath expressions is not straightforward. The mappings are quite similar in both approaches although xR2RML is more flexible: (i) class names (in triples ?x rdf:type A) and predicates can be built from database values whereas they are constant in the approach of Botoeva et al., and (ii) xR2RML allows to turn an array field into an RDF collection or container, while their work only supports the multiple-triples strategy. Finally, Botoeva et al. produce MongoDB aggregate queries: the major advantage is that a SPARQL 1.0 query is translated into a single semantics-preserving target query, thus delegating the whole processing to MongoDB. Yet, in practice, aggregate queries model processing pipelines. In some cases, they may perform extremely poorly in terms of memory and CPU consumption. This issue has been identified by the authors. Hence, they suggest that it might be necessary to decompose RA queries into smaller sub-queries, and finally perform the remaining steps in the queryprocessing engine. Our approach produces find queries that are indeed less expressive, but whose performance is easier to anticipate. This puts a higher burden on the query-processing engine (joins, unions and filtering), but having the job done outside of the database engine allows to leverage extensive works about query plan optimizations [START_REF] Haas | Optimizing Queries across Diverse Data Sources[END_REF][START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF]Macina et al., 2016], whereas this is not possible when the database performs an aggregate query in a black-box manner.

In the future, it would be interesting to see whether we could characterize mappings with respect to the type of query that shall perform best: single vs. multiple separate queries, find vs. aggregate, and figure out a balance between the two approaches.

Dealing with the MongoDB $where operator

In the MongoDB query language, the $where operator is valid only in the top-level query document. Using rules W1 to W6 we show that we can pull up a $where operator nested beneath AND or OR operators, but we cannot deal with a $where operator nested beneath an $elemMatch. By construction, rules in function trans (Algorithm 2) exclude the latter case by generating a NOT_SUPPORTED operator. In other words, trans drops the $where and postpones the evaluation of the condition to a later step: the effect is to widen the query that shall retrieve more documents than those matching the initial SPARQL query. Then, runs a late evaluation of the SPARQL query against the set of generated triples to make sure we produce only the expected triples.

An alternative is to push whatever needs to be in the $where operator by means of a JavaScript function. Let us consider the following example: a MongoDB instance stores JSON documents about bank account details, such as: We want to retrieve documents where credits equal debits in at least one account. The MongoDB $eq operator does not allow to specify the equality between two fields, therefore we must use the $where operator. We cannot write the following query: {"accounts": {$elemMatch: {$where: {"credits == debits"}}}} since the $where operator must be in the top-level query document. But we can write a JavaScript function that browses the "accounts" array to check if the condition is true for at least one element in the array: This option has the advantage of returning only the matching documents, but it has two shortcomings. (i) It may cause a serious performance penalty in the database: as we already mentioned, MongoDB cannot take advantage of indexes when executing JavaScript code, thus it shall retrieve all documents matching all conditions except the $where, then apply the JavaScript function to all of them. (ii) It can lead to the generation of complex JavaScript functions when it comes to translate rich JSONPath expressions. Conversely, in the method we have chosen, the database query shall be faster but the price is a larger amount of data retrieved and an additional SPARQL query evaluation to rule out non-matching triples. It is unclear, at this stage, whether one solution should be preferred to the other. But most likely, we can assume that the choice shall depend on the context.

In the subsequent sections we describe the execution of the transTPm function for each triple pattern, starting with tp2; then we describe the final computation of the INNER JOIN operator. 

Translation of tp2 into an abstract query

Triple pattern tp2: ?dept ex:hasSeniorMember ?senior. Note that in a MongoDB query, a projection clause can concern document fields but it cannot concern elements of an array. Thus, we cannot project field "name" of elements of array "members", we can only project field "members". Consequently, when translated to the MongoDB query language, the Project part shall only project fields "code" and "members": {"code":1, "members":1}.

Where ← genCond(tp2, <#Departments>, true):

-The subject of tp2 is a variable, this entails a non-null condition on the references of the subject map of <#Departments>:

isNotNull(getReferences(<#Departments>.subjectMap))

INNER JOIN

{ {"dept":"Sales", "code":"sa", "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}]} {"dept":"Human Resources", "code":"hr", "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]} } AS parent ON child/$.manages.* = parent/$.dept

We then compute the INNER JOIN operator, this returns only two documents:

{"manages":["R&D", "Human Resources"]}, {"dept":"Human Resources", "code":"hr", "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]}

Finally, applying the xR2RML triples maps to those results shall entail the triples that match the graph pattern in the SPARQL query: In this simple example, it is easy to notice that the final evaluation of the SPARQL query (, line 23) will not rule out any result. The answer to the SELECT clause is the binding of variable ?senior to value "R. Posner".
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  <AbstractQuery> ::= <AtomicQuery> | <Query> | <Query> FILTER <SPARQL filter> | <Query> LIMIT <integer> <Query> ::= <AbstractQuery> INNER JOIN <AbstractQuery> ON {v1, … vn} | <AtomicQuery> AS child INNER JOIN <AtomicQuery> AS parent ON child/<Ref> = parent/<Ref> | <AbstractQuery> LEFT OUTER JOIN <AbstractQuery> ON {v1, … vn} | <AbstractQuery> UNION <AbstractQuery> <AtomicQuery> ::= {From, Project, Where, Limit} <Ref> ::= a valid xR2RML reference

  rr:predicateObjectMap [ rr:predicate ex:seniorMembers; rr:objectMap [ xrr:reference "$.members[?(@.age >= 40)].name"; rr:termType xrr:RdfList. ] ].

  In this context, we obtain: join(tpb1, tpb2) = { (TM1a, TM2a), (TM1b, TM2a) } join(tpb2, tpb1) = { (TM2a, TM1a), (TM2a, TM1b) }

  bindm(bgp) = { (tp1, {<#Staff>}), (tp2, {<#Departments>}) } Hence, getBoundTMsm(gp, tp1, true) = {<#Staff>} getBoundTMsm(gp, tp2, true) = {<#Departments>} Now let us run function transTPm for tp2: tp2 = ?dept ex:hasSeniorMember ?senior. transTPm(tp2, true, ∞) = { From ← {[xrr:query "db.departments.find({})"]} Project ← genProjection(tp2, <#Departments>) Where ← genCond(tp2, <#Departments>, true) Limit ← ∞ } In the case of tp1, the bound triples map, <#Staff>, contains a referencing object map. Consequently, the translation entails an INNER JOIN operator on the xR2RML references mentioned in the joinCondition property of the referencing object map: tp1 = <http://example.org/staff/Dunbar> ex:manages ?dept transTPm(tp1, true, ∞) = { From ← {[xrr:query "db.staff.find({})"]} Project ← genProjection(tp1, <#Staff>) Where ← genCond(tp1, <#Staff>, true) } AS child INNER JOIN { From ← {[xrr:query "db.departments.find({})"]} Project ← genProjectionParent(tp1, <#Staff>) Where ← genCondParent(tp1, <#Staff>, true) } AS parent ON child/$.manages.* = parent/$.dept LIMIT ∞

  genCond(tp2, <#Departments>, true) = { isNotNull($.code), isNotNull($.members[?(@.age >= 40)].name) } (b) A constant term in the triple pattern (literal or IRI) entails an equality condition. In our running example, the subject part of tp1, <http://example.org/staff/Dunbar>, is matched with the template string "http://example.org/staff/{$['lastname','familyname']}" of <#Staff>'s subject map. This entails the equality condition:equals("Dunbar", $['lastname','familyname']),

  bindm(bgp) = { (tp1, {<#Staff>}), (tp2, {<#Departments>}) } We can write each triple pattern into an abstract query: transTPm(tp2, true, ∞) = { From ← { [xrr:query "db.departments.find({})"] } Project ← { $.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior } Where ← { isNotNull($.code), isNotNull($.members[?(@.age >= 40)].name) } } and transTPm(tp1, true, ∞) = { From ← { [xrr:query "db.staff.find({})"] } Project ← { $.manages.* } Where ← { equals("Dunbar", $['lastname','familyname']), xrr:query "db.departments.find({})"]} PProject ← { $.dept, $.code AS ?dept } PWhere ← { isNotNull($.dept), isNotNull($.code) } } AS parent ON child/$.manages.* = parent/$.dept

  Example. The translation of tp1 and tp2 entails the following abstract query: transm(bgp, true, ∞) = isNotNull($.members[?(@.age>=40)].name)} } AS parent ON child/$.manages.* = parent/$.dept

  xrr:query "db.staff.find({})"] } Project ← { $.manages.* } Where ← { equals("Dunbar", $['lastname','familyname']), isNotNull($.manages.*) } }

Figure 3 :

 3 Figure 3: Translation for the Abstract Query Language into the MongoDB Query Language

[Definition 13 :

 13 ] xrr:logicalSource [ xrr:query "db.collection.find({'p': {$not: {$type: 'array'}}})" ]; Grammar of a subset of the MongoDB query language TOP_LEVEL_QUERY ::= {} | { QUERY(, QUERY)*(, WHERE_QUERY)*} | { WHERE_QUERY(, WHERE_QUERY)* } QUERY ::= FIELD_QUERY | OR_QUERY | AND_QUERY FIELD_QUERY ::= PATH: {OP: LITERAL} | PATH: {$elemMatch: {QUERY(, QUERY)*}} | PATH: {$regex: /REGEX/} OP ::= $eq | $ne | $lt | $lte | $gt | $gte | $size OR_QUERY ::= $or: [{QUERY}(, {QUERY})+] AND_QUERY ::= $and: [{QUERY}(, {QUERY})+] PATH ::= "(FIELD_NAME|ARRAY_INDEX)(.(FIELD_NAME|ARRAY_INDEX))*" WHERE_QUERY ::= $where: JS_BOOL_EXP LITERAL ::= literal value possibly in double quotes, including specific values null, true, false FIELD_NAME ::= valid JSON field name ARRAY_INDEX ::= positive integer value JS_BOOL_EXP ::= valid JavaScript boolean expression REGEX ::= Perl compatible regular expression ARRAY_SLICE ::= {PATH: {$slice: <nb_of_elts>}} | {PATH: {$slice: [<skip>,<limit>]}}

Definition 15 :

 15 JSONPath grammar JSONPATH = $(WILDCARD | FIELD_NAME | ARRAY_INDEX | DESCENDANT | FIELD_ALT | INDEX_ALT | ARRAY_SLICE | FILTER | CALC_INDEX):<end>:<step>] | [<start>:<end>] | [<start>:] FILTER = [?(<script expression>)] CALC_INDEX = [(<script expression>)] Note: JSON field names with special characters such as '#', '&' or '/' etc. are supported by MongoDB, but in JSONPath they require the bracket notation, e.g. ["field/#1"].

Algorithm 1 :

 1 Translation of a JSONPath expression into a MongoDB projection argument (function proj(JSONPath expression)) P0 proj($<JP>) → proj(<JP>) P1 proj(∅) → ∅ P2 JavaScript filter and calculated array index (a) proj(<JP:F>[?(<bool_expr>)]<JP>) → proj(<JP :F>) X projJS(<bool_expr>, proj(<JP>)) (b) proj(<JP:F>[<num_expr>)]<JP>) → proj(<JP :F>) X projJS(<num_expr>, proj(<JP>)) P3 Array expressions: wildcard (a, b), array index alternative (c), array slice (d) (a) proj(.*<JP>) → proj(<JP>) (b) proj([*]<JP>,) → proj(<JP>) (c) proj([i, j ,...]<JP>) → proj(<JP>) (d) proj([<slice expression>]<JP>) → proj(<JP>) P4 Field name (a, b) or field alternative (c) (c) proj(.p<JP>) → FIELD(p) proj(<JP>) (d) proj(["p"]<JP>) → FIELD(p) proj(<JP>) (e) proj(["p","q",...]<JP>) → FIELD(p) proj(<JP>), FIELD(q) proj(<JP>), ...

Algorithm 2 :

 2 Translation of a condition on a JSONPath expression into an abstract MongoDB query (function trans(JSONPath expression, <cond>)) R0 trans($, <cond>) → NOT_SUPPORTED trans($<JP>, <cond>) → trans(<JP>, <cond>) R1 trans(∅, <cond>) → COND(<cond>) R2 Field alternative (a) or array index alternative (b) (a) trans(<JP:F>["p","q",...]<JP>, <cond>) → OR(trans(<JP:F>.p<JP>, <cond>), trans(<JP:F>.q<JP>, <cond>), ...) (b) trans(<JP:F>[i,j,...]<JP>, <cond>) → OR(trans(<JP:F>.i<JP>, <cond>), trans(<JP:F>.j<JP>, <cond>), ...) R3 Heading field alternative (a) or heading array index alternative (b) (a) trans(["p","q",...]<JP>, <cond>) → OR(trans(.p<JP>, <cond>), trans(.q<JP>, <cond>), ...) (b) trans([i,j,...]<JP>, <cond>) → OR(trans(.i<JP>, <cond>), trans(.j<JP>, <cond>), ...) R4 Heading JavaScript filter on array elements, e.g. $.p[?(@.q)].r trans([?(<bool_expr>)]<JP >, <cond>) → ELEMMATCH(trans(<JP >, <cond>), transJS(<bool_expr>)) R5 Array slice: last n elements (a), first n elements (b), ), from index m to n-1 or from m th to last to n th to last (c) (a) trans(<JP:F>[-<n>:]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), -<n>) (b) trans(<JP:F>[:<n>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), <n>) trans(<JP:F>[0:<n>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), <n>) (c) trans(<JP:F>[<m>:<n>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), <m>, (<n>-<m>)) trans(<JP:F>[-<m>:-<n>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), -<m>, (<m>-<n>)) R6 Calculated array index, e.g. $.p[(@.length -1)].q (a) trans(<JP1>[(<num_expr>)]<JP2>, <cond>) → NOT_SUPPORTED if <JP1> contains a wildcard or a JavaScript filter expression (b) trans(<JP:F >[(<num_expr>)], <cond>) → AND(EXISTS(<JP:F >), WHERE('this<JP:F>[replaceAt("this<JP:F>", <num_expr>)] CONDJS(<cond>'))) (c) trans(<JP1:F >[(<num_expr>)]<JP2:F>, <cond>) → AND(EXISTS(<JP1:F >), WHERE('this<JP1:F >[replaceAt("this<JP1:F>", <num_expr>)]<JP2:F> CONDJS(<cond>'))) R7 Heading wildcard (e) trans(.*<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>)) (f) trans([*]<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>)) R8 Heading field name or array index (f) trans(.p<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>) (g) trans(["p"]<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>) (h) trans([i]<JP>, <cond>) → FIELD(i) trans(<JP>, <cond>)

  is translated into OR(FIELD(p) FIELD(p) COND(equals, 10), FIELD(p) FIELD(r) COND(equals, 10))

$

  where:{"this.p[this.p.length-1].* == 'val'"}.

$

  and: [{p:$exists}, {$where: "this.p[this.p.length -1].r[?(@.q)].s == 'val'"}].

Algorithm 2 :

 2 Translation of a JavaScript filter into a MongoDB query (function transJS) J0 transJS(<JS_expr1> && <JS_expr2>) → AND(transJS(<JS_expr1>), transJS(<JS_expr2>)) J1 transJS(<JS_expr1> || <JS_expr2>) → OR(transJS(<JS_expr1>), transJS(<JS_expr2>)) J2 transJS(@<JS_expr1> <op> @<JS_expr2>) → NOT_SUPPORTED where <op> stands for one of {==, ===, !=, !==, <=, <, >=, >, %} J3 transJS(@<JSpath>) → EXISTS(dotNotation(<JSpath>)) J4 transJS(!@<JSpath>) → NOT_EXISTS(dotNotation(<JSpath>)) J5 (a) transJS(@<JSpath>.length == <i>) → COMPARE(dotNotation(<JSpath>), $size, <i>) (b) transJS(@<JSpath>.length <op> <i>) → NOT_SUPPORTED where <op> stands for one of {!=, <=, <, >=, >, %} J6 transJS(@<JSpath> <op> <v>) → COMPARE(dotNotation(<JSpath>), transJsOp(<op>), <v>) J7 transJS(<JS_expr>) → NOT_SUPPORTED Rules J0 and J1 deal with the logical AND and OR JavaScript operators.

O1

  Flatten nested AND, OR and UNION clauses: AND(C1,… Cn, AND(D1,… Dm,)) → AND(C1,… Cn, D1,… Dm) OR(C1,… Cn, OR(D1,… Dm,)) → OR(C1,… Cn, D1,… Dm) UNION(C1,… Cn, UNION(D1,… Dm,)) → UNION(C1,… Cn, D1,… Dm) O2 Merge ELEMMATCH with nested AND clauses: ELEMMATCH(C1,… Cn, AND(D1,… Dm,)) → ELEMMATCH(C1,… Cn, D1,… Dm). O3 Group WHERE clauses: OR(..., WHERE("W1"), WHERE("W2")) → OR(..., WHERE("(W1) || (W2)")). AND (..., WHERE("W1"), WHERE("W2")) → AND(..., WHERE("(W1) && (W2)")). UNION(..., WHERE("W1"), WHERE("W2")) → UNION(..., WHERE("(W1) || (W2)")). O4 Replace AND, OR or UNION clauses of one term with the term itself. This may occur as a consequence of the flattening of nested clauses or the grouping of WHERE clauses. O5 Remove NOT_SUPPORTED clauses: (a) AND(C1,… Cn, NOT_SUPPORTED) → AND(C1,… Cn) (b) ELEMMATCH(C1,… Cn, NOT_SUPPORTED) → ELEMMATCH(C1,… Cn) (c) OR(C1,… Cn, NOT_SUPPORTED) → NOT_SUPPORTED (d) UNION(C1,… Cn, NOT_SUPPORTED) → NOT_SUPPORTED (e) FIELD(…)… FIELD(…) NOT_SUPPORTED → NOT_SUPPORTED Rules O1 to O4 address issue (iii) by flattening nested OR, AND and UNION clauses, and merging sibling WHERE clauses. Rule O5 addresses issue (i) by removing NOT_SUPPORTED clauses while still making sure that the query returns all the correct answers. Let C1,… Cn be any clauses and N be a NOT_SUPPORTED clause. We denote by C1 ∧ … ∧ Cn the set of documents matching all conditions C1 to Cn. -O5(a): If a NOT_SUPPORTED clause occurs in an AND clause, it is simply removed.

  , NOT_SUPPORTED clauses. By construction, function trans may generate a NOT_SUPPORTED clause in the top-level query or in the following patterns: AND(…,N,…), ELEMMATCH(…,N,…), OR(…,N,…), UNION(…,N,…), FIELD(…)…FIELD(…) N, where "N" stands for a NOT_SUPPORTED clause. If it is in the top-level query, then Definition 14 rewrites it into the empty query that shall retrieve all documents of the collection. In the case of other patterns, when applying rewriting rule O5 we obtain: AND(…,N,…) → AND(…) ELEMMATCH(…,N,…) → ELEMMATCH(…) OR(…,N,…) → N UNION(…,N,…) → N FIELD(…)…FIELD(…) N → N The first two rewritings remove the NOT_SUPPORTED clause, coming up with a valid query. The next three rewritings raise the NOT_SUPPORTED up to the parent clause. Since nested AND/OR/UNION clauses are merged by rule O1, this may lead to one of the patterns below; we precise the way they are rewritten: AND(…,OR(…,N,…),…) → AND(…,N,…) → AND(…) AND(…,UNION(…,N,…),…) → AND(…,N,…) → AND(…) AND(…,FIELD(…)…FIELD(…) N,…) → AND(…,N,…) → AND(…) ELEMMATCH(…,OR(…,N,…),…) → ELEMMATCH(…,N,…) → ELEMMATCH(…) ELEMMATCH(…,UNION(…,N,…),…) → ELEMMATCH(…,N,…) → ELEMMATCH(…) ELEMMATCH(…,FIELD(…)…FIELD(…) N,…) → ELEMMATCH(…,N,…) → ELEMMATCH(…)

  We define function depthw(Q) as the depth of a clause WHERE within a query Q: depthw(C1, … Cn, W) = 0 (case of a top-level query) depthw(C1(… C2(… Cn(… W)))) = depth(C1/C2/…/Cn) Below we explore how rules W1 to W6 rewrite the nine patterns we listed above. For each one, we give the depth of the WHERE clause in the pattern and in the rewritten query. OR(…,W,…) Rule W1: Q: OR(C1,...Cn, W) → Q': UNION(OR(C1,...Cn), Q: OR(C1,...Cn, AND(D1,...Dm, W)) → Q': UNION(OR(C1,...Cn), AND(D1,...Dm, iif the AND clause is a top-level query object or under a UNION clause): Q: AND(C1,...Cn, W) → Q': (C1,...Cn, AND(C1,...Cn, UNION(D1,...Dm, W)) → Q': UNION((C1,...Cn, D1),... (C1,...Cn, Dm), (C1,...Cn, W)) depthw(Q) = 1 depthw(Q') = 1 OR(…,UNION(…,W,…),…) Rule W6: Q: OR(C1,...Cn, UNION(D1,...Dm, W) → Q': UNION(OR(C1,...Cn), D1, ...Dm, W))

  W3 (iif the AND clause is a top-level query object or under a UNION clause): Q: UNION(C1,...Cn, AND(D1,...Dm, W)) → Q': UNION(C1,...Cn, (D1,...Dm, W)) depthw(Q) = 1 depthw(Q') = 0 UNION(…,OR(…,W,…),…) We first apply rule W1 then rule O1 to merge nested UNIONs: Q: UNION(C1,...Cn, OR(D1,...Dm, W)) → UNION(C1,...Cn, UNION(OR(D1,...Dm), W)) → Q': UNION(C1,...Cn, OR(D1,...Dm), W)depthw(Q) = 1 depthw(Q') = 0In all the patterns above, the depth of the WHERE is always decreased by one using rules W1 to W6 and optionally rule O1, except for one where the depth is constant: inpattern AND(…,UNION(…,W,…),…), the resulting Q' query is: UNION(AND(C1,...Cn, D1),... AND(C1,...Cn, Dm), AND(C1,...Cn, W))

5

  Overall query translation and evaluation process Let us sum up the translation process, depicted by the picture below. In step 1, function transm (section 3) translates a SPARQL graph pattern into an abstract query under a set of xR2RML mappings denoted by m. It leverages function transTPm that translates a triple pattern tp into an abstract query under the set of mappings bound to tp by function bindm. The resulting abstract query contains atomic abstract queries of the form {From, Project, Where, Limit}. The Where part consists of isNotNull, equals and sparqlFilter conditions. In step 2, function proj (section 4.4) translates each projected JSONPath expression into a MongoDB projection argument, function trans (section 4.4) translates each isNotNull and equals condition on a JSONPath expression into an abstract representation of a MongoDB query, and function rewrite (section 4.5) optimizes and rewrites this abstract representation into a union of concrete MongoDB queries.The last step that we have not mentioned yet is the execution of MongoDB queries and translation of results into actual RDF triples, depicted by step 3. To propose a complete approach, Algorithm 3 describes how the different steps are orchestrated, from the SPARQL query rewriting until the final generation of the RDF triples that match the query graph pattern.

$

  where: {function() { \ result = false; \ for (i = 0; i < this.accounts.length; i++) \ result = result || ( this.accounts[i].credits == this.accounts[i].debits); \ return result }}

  getBoundTMsm(gp, tp2) returns triples map <#Departments>. transTPm(tp2, true) = From ← {[xrr:query "db.departments.find({})"]} Project ← genProjection(tp2, <#Departments>) Where ← genCond(tp2, <#Departments>, true) Let us detail the calculation of Project part (Algorithm 6) and Where part (Algorithm 9): Project: genProjection(tp2, <#Departments>) = ($.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior)

  

  8.1 Translation of tp2 into an abstract query ........................................................................................................................ 8.2 Translation of tp1 into an abstract query ........................................................................................................................

8.3 Abstract query optimization ............................................................................................................................................ 8.4 Rewriting atomic queries to MongoDB queries .............................................................................................................. 8.5 Complete transm processing ............................................................................................................................................

Listing 3: xR2RML Example Mapping Graph

  

<#Departments> xrr:logicalSource [ xrr:query "db.departments.find({})"; xrr:uniqueRef "$.code" ]; rr:subjectMap [ rr:template "http://example.org/dept/{$.code}" ]; rr:predicateObjectMap [ rr:predicate ex:hasSeniorMember; rr:objectMap [ xrr:reference "$.members[?(@.age >= 40)].name" ] ]. <#Staff> xrr:logicalSource [ xrr:query "db.staff.find({})" ]; rr:subjectMap [ rr:template "http://example.org/staff/{$['lastname','familyname']}" ]; rr:predicateObjectMap [ rr:predicate ex:manages; rr:objectMap [ rr:parentTriplesMap <#Departments>; rr:joinCondition [ rr:child "$.manages.*"; rr:parent "$.dept" ] ] ].

3 Rewriting a SPARQL Query into an Abstract Query under Normalized xR2RML Mappings

  

Definition 2: Function transm, translation of a SPARQL query into an abstract query Let m be an xR2RML mapping graph consisting of a set of xR2RML triples maps. Let gp be a well-designed SPARQL graph pattern. We denote by transm(gp) the translation, under m, of gp into an abstract query. transm is defined as follows: -transm(gp) = transm(gp, true, ∞) -if gp consists of a single triple pattern tp, transm(gp, f, l) = transTPm(tp, sparqlCond(tp, f), l)

  Example. Let us give a first simple illustration: our running example does not include any SPARQL filter to keep it easy to follow. The application of the transm function to the basic graph pattern bgp is as follows:

	transm(bgp)
	= transm(bgp, true, ∞)
	= transm(tp1, true, ∞) INNER JOIN transm(tp2, true, ∞) ON var(tp1) ⋂ var(tp2)
	= transTPm(tp1, true, ∞) INNER JOIN transTPm(tp2, true, ∞) ON {?dept}

  no description of the range function is provided, which leaves much room for interpretation. We give a complete description of what it means in our context.

	Definition 10: compatibility between term maps
	Let tm1 and tm2 be two xR2RML term maps. It holds that tm1 and tm2 are compatible, denoted by
	compatibleTermMaps(tm1, tm2), if none of the following assertions holds:
	(1) tm1 and tm2 have different term types (rr:Literal, rr:BlankNode, rr:IRI, xrr:RdfList, xrr:RdfSeq, xrr:RdfBag,
	xrr:RdfAlt).
	(2) tm1 and tm2 have different language tags, or one has a language tag and the other does not.
	(3) tm1 and tm2 have different data types, or one has a data type and the other does not.
	(4) tm1 and tm2 are both template-valued, and they have incompatible template strings.

tm1 (resp. tm2) is a ReferencingObjectMap and the subject map of its parent triples maps is not compatible with tm2 (resp. tm1), i.e. ¬compatibleTermMaps(tm1.parentTriplesMap.subjectMap, tm2), (resp. ¬compatibleTermMaps(tm1, tm2.parentTriplesMap.subjectMap)).

end for return Query Running Example. We

  

	2	Query ← <empty query>
	3	BoundTMs ← getBoundTMsm(gp, tp, f)
	4	for each TM ∈ BoundTMs do
	5	From ← <TM's logicalSource>
	6	Project ← genProjection(tp, TM)
	7	Where ← genCond(tp, TM, f)
	8	OM ← TM.predicateObjectMap.objectMap
	9	if OM is a referencing object map then
	10	childRef ← OM.joinCondition.child
	11	parentRef ← OM.joinCondition.parent
	12	PFrom ← <OM.parentTriplesMap's logical source>
	13	PProject ← genProjectionParent(tp, TM)
	14	PWhere ← genCondParent(tp, TM, f)
	15	
	16	
	17	
	18	
	19	
	20	
	21	
	22	
	23	
	24	
	25	

1 Function transTPm(tp, f, l): Q ← {From, Project, Where, ∞} AS child INNER JOIN {PFrom, PProject, PWhere, ∞} AS parent ON child/childRef = parent/parentRef LIMIT l else Q ← {From, Project, Where, l} end if Query ← Query UNION Q LIMIT l have already show that:

  Note that, since the joined references are not matched with a variable of the SPARQL query, they are projected without the AS operator.A last case regards constant term maps: when a SPARQL variable is matched with a constant term map, that constant value is projected as the variable. For instance, let us consider a new triple pattern tp3:

	genProjection(tp1, <#Staff>) = {$.manages.*}
	genProjectionParent(tp1, <#Staff>) = {$.dept, $.code AS ?dept}
	<http://example.org/staff/Dunbar> ?predicate ?dept
	Variable ?predicate is matched with the constant predicate map in triples map <#Staff>. To account for this constant
	projection, we would write:
	genProjection(tp3, <#Staff>) = {ex:manages AS ?predicate}

  This entails a not-null condition on the child reference in the first atomic query: isNotNull($.manages.*), and a not-null condition on the parent reference in the second atomic query: isNotNull($.dept). Finally, we get the following conditions for tp1: SPARQL filter. In (a) to (d), not-null or equality conditions are entailed. SPARQL filters, on the other hand, have a much richer variety of functions and operators, including a subset of XQuery 1.0 and XPath 2.0. By construction, the SPARQL filter f passed as argument of transTPm mentions only variable of the triple pattern. The atomic abstract query keeps track of the filter using notation sparqlFilter(f). If variables mentioned in the filter are matched with an xR2RML reference (a reference-valued term map or a template-valued term map), the xR2RML reference is provided in the Project part of the atomic query. Let us consider the example below:

	genCond(tp1, <#Staff>, true) = {
		equals("Dunbar", $['lastname','familyname']),
		isNotNull($.manages.*) }	// join condition
	genCondParent(tp1, <#Staff>, true) = {
		isNotNull($.dept),	// join condition
		isNotNull($.code) }	// variable ?dept
	(e) { From	← { … }
	Project ← { $.arrayField.* AS ?x }
	Where	← { sparqlFilter(?x >= 5 && ?x < 10) }
	}	

rr:joinCondition [ rr:child "$.manages.*"; rr:parent "$.dept"]

'http://domain/' || TABLE.ID) = 'http://domain/1'

  Such a query returns the expected results, but it is likely to perform very poorly: due to the concatenation, the query evaluation engine cannot take advantage of existing database indexes. Conversely, a much more efficient query would be:

SELECT … FROM … WHERE (SELECT ('http://domain/' || TABLE.ID)… FROM … WHERE TABLE.ID = 1

  $and:[{"staff":{$exists: true}}, {$where:"this.staff[this.staff.length -1].name == 'John'"}]

	Condition
	equals($.staff[(@.length -1)].name, "John"),
	shall translated by rule R6(c) into:

  AND(EXISTS(.teams.test), WHERE('this.teams.test[this.teams.test.length -1)].name CONDJS(equals("john"))')) )Then rule O4 replaces the OR of one term with the term itself:

	O4 UNION(
	AND(EXISTS(.teams.dev),
	WHERE('this.teams.dev[this.teams.dev.length -1)].name CONDJS(equals("john"))')),
	AND(EXISTS(.teams.test),
	WHERE('this.teams.test[this.teams.test.length -1)].name CONDJS(equals("john"))')) )
	Rules W2 and O4 basically replaced the top-level OR with a UNION. Now the abstract query is a union of two top-
	level AND operators that can simply be removed by rule W3:
	W3 UNION(
	(EXISTS(.teams.dev),
	WHERE('this.teams.dev[this.teams.dev.length -1)].name CONDJS(equals("john"))')),
	(EXISTS(.teams.test),
	WHERE('this.teams.test[this.teams.test.length -1)].name CONDJS(equals("john"))')) )
	Both queries can now be rewritten into executable concrete queries:

UNION( ( "teams.dev": {$exists: true}, $where: 'this.teams.dev[this.teams.dev.length -1)].name CONDJS(equals("john"))'), ( "teams.test": {$exists: true}, $where: 'this.teams.test[this.teams.test.length -1)].name CONDJS(equals("john"))') )

  Rewritability, WHERE clauses. By construction, function trans may generate a WHERE clause in the top-level query or nested in AND or OR clauses, but a WHERE clause cannot be nested in an ELEMMATCH clause. Furthermore, rules W1 to W6 may create UNION clauses, and Algorithm 3 flattens nested OR/AND/UNION clauses and merges sibling WHERE clauses. Consequently, a WHERE clause may be either in the top-level query (the query is thus executable) or in the following nine patterns:

	OR(…,W,…)
	OR(…,AND(…,W,…),…)
	OR(…,UNION(…,W,…),…)
	AND(…,W,…)
	AND(…,OR(…,W,…),…)
	AND(…,UNION(…,W,…),…)
	UNION(…,W,…)
	UNION(…,AND(…,W,…),…)
	UNION(…,OR(…,W,…),…)

  [ xrr:query "db.staff.find({})"; ]; rr:subjectMap [ rr:template "http://example.org/staff/{$['lastname','familyname']}" ];

	Listing 3: xR2RML Example Mapping Graph
	<#Departments>
	xrr:logicalSource [ xrr:query "db.departments.find({})" ];
	rr:subjectMap [ rr:template "http://example.org/dept/{$.code}" ];
	rr:predicateObjectMap [
	rr:predicate ex:hasSeniorMember;
	rr:objectMap [ xrr:reference "$.members[?(@.age >= 40)].name"; ];
	].
	<#Staff>
	xrr:logicalSource

rr:predicateObjectMap [ rr:predicate ex:manages; rr:objectMap [ rr:parentTriplesMap <#Departments>; rr:joinCondition [ rr:child "$.manages.*"; rr:parent "$.dept"; ] ] ].

  ://example.org/staff/Dunbar> ex:manages <http://example.org/dept/hr>. <http://example.org/staff/Dunbar> ex:manages <http://example.org/dept/rd>.

<http<http://example.org/dept/hr> ex:hasSeniorMember "R. Posner".

http://www.w3.org/2013/data/

https://www.mongodb.org/

https://www.google.com/trends/explore#q=mongodb,couchdb,couchbase,membase,hbase

http://www.indeed.com/jobtrends/mongodb,mongo,cassandra,hbase,couchdb,couchbase,membase,redis.html

https://blogs.the451group.com/information_management/tag/nosql/

http://www.w3.org/2013/csvw/wiki

http://franz.com/agraph/support/documentation/4.7/mongo-interface.html

http://allegrograph.com/

Recall that the term type may be explicitly stated with the rr:termType property, or have a default value. For instance, a template-valued term map has the rr:IRI default term type and a reference-valued term map has the rr:Literal default term type.

http://goessner.net/articles/JsonPath/

https://github.com/jayway/JsonPath

First, we change the natural left-to-right joins processing order: we embed the 2 nd and 3 rd atomic queries in curly brackets. The 2 nd and 3 rd atomic queries have the same From part, they are joined on variable ?dept, variable ?dept has the same projection in both queries: "$.code AS ?dept", and finally, that xR2RML reference "$.code" is declared as unique in both logical sources. Hence, this self-join can be eliminated. We perform the self-join elimination by merging the two queries together: we merge the Project parts on the one hand, and the Where parts on the other hand. We obtain the following optimized abstract query: is translated into:

"p": {$elemMatch: { "r": {$elemMatch: {$eq:"value"}}, "q": {$exists:true}}} R4 produces the first $elemMatch as well as the condition "q":{$exists:true}. The second $elemMatch is produced by rule R7 when processing the wildcard.

Rule R5

JSONPath and MongoDB query language have two different ways of denoting array slices. JSONPath uses notation

[<start>:<end>:<step>], where any of the three terms are optional, and <start> and <end> may be negative. MongoDB uses notation {$slice: <count>} or {$slice: [<start>, <count>]}, <count> may be negative in the first notation only, and in the second notation <start> may be negative. In JSONPath and MongoDB a negative value means "starting from the end of the array". Due to these discrepancies, the rewriting of JSONPath slices into MongoDB projections has limitations explicated in the table below: The JSONPath array slice notation is rewritten into the $slice operator that, unlike in other rules, is used as a projection parameter of the MongoDB find() method. Rule R5 must translate the JSONPath expression that comes before the array slice (<JP:F>) as well as the subsequent JSONPath expressions (<JP>) to generate the query parameter of the find() method. It does so by replacing the array slice by a wildcard ".*": trans(<JP:F>.*<JP>, <cond>). Hence, the query part applies to the whole array, while the projection part shall select only the expected elements.

JSONPath

Rule R6

A JSONPath calculated array index selects an element from an array using a JavaScript expression that evaluates to a positive integer. The script expression uses the "@" character instead of "this" to refer to the array. Let us consider this example query: equals($.staff[(@.length -1)].name, "John"), that matches all documents in which the last element of array "staff" has a field "name" with value "John". In MongoDB, there is no way to retrieve the size of an array nor to calculate such an index (the $size operator is not relevant here as it specifies a condition on the size of an array). The only way to specify a condition on an element whose index is calculated is to use the 

Algorithm 3: Pull-up of WHERE clauses to the top-level query

The "→" arrow means "is rewritten as".

W1 OR(C1,...Cn, W) → UNION(OR(C1,...Cn), W)

W2 OR(C1,...Cn, AND(D1,...Dm, W)) → UNION(OR(C1,...Cn), AND(D1,...Dm, W))

W3 AND(C1,...Cn, W) → (C1,...Cn, W), iif the AND clause is a top-level query object or under a UNION clause.

W4 AND(C1,...Cn, OR(D1,...Dm, W)) → UNION(AND(C1,...Cn, OR(D1,...Dm)), AND(C1,...Cn, W))

W5 AND(C1,...Cn, UNION(D1,...Dm)) → UNION(AND(C1,...Cn, D1),... AND(C1,...Cn, Dm))

Proof:

W6 OR(C1,...Cn, UNION(D1,...Dm)) → UNION(OR(C1,...Cn), D1, ...Dm))

We illustrate rules W1 to W6 in a second dedicated example. We wish to translate the condition below, stating that the last member of either team "dev" or "test" has the name "john": trans($.teams["dev","test"][(@.length -1)].name, equals("john"))

Function trans translates this condition into this abstract MongoDB query: Then we iteratively apply rules O1 to O6 and W1 to W6 as described in function rewrite (next section). First, rule W2 replaces the top-level OR with a UNION clause: At this point, we cannot guarantee that the RDF graph we have produced contains only RDF triples that match the SPARQL graph pattern. Let us remind why: (i) The ambiguous semantics of the MongoDB query language (underlined in section 4.1) entails that a MongoDB query cannot be guaranteed to have the same semantics as the triple pattern it stands for. All documents matching the SPARQL query are returned (the certain answers), but in addition, non-matching documents may be returned too. (ii) Yet, we proved in section 4.5.3 that the rewriting shall retrieve all matching documents. But again, nonmatching documents may be retrieved too. (iii) Lastly, at this stage, our method does not rewrite SPARQL filters, embedded in atomic abstract queries using sparqlFilter conditions, into appropriate MongoDB operators.

Appendix A

In this appendix, we provide the detailed algorithm of functions used in the transTPm function, defined in section 3.

Functions genProjection and genProjectionParent

We first describe function getReferences, a utility function used in subsequent functions. 

Functions genCond and genCondParent

We first describe function getValue that is used in subsequent functions.

Algorithm 8: Function getValue returns the value of the RDF term depending on the xR2RML term map where it is applied.

This is simply a utility function that applies the inverse expression in case of a template-valued term map, and returns the RDF term as is otherwise. 

Appendix B: Complete Running Example

In this example we assume we have set up a MongoDB database with two collections "staff" and "departments" given in Listing 1 and Listing 2 respectively. Collection "departments" lists the departments within a company, including a department code and its members. Members are given by their name and age. Collection "staff" lists people by their name (that may be either field "familyname" or "lastname"), and provides a list of departments that they manage, if any, in array field "manages".

Listing 1: Collection "staff" { "familyname":"Underwood", "manages":["Sales"] }, { "lastname":"Dunbar", "manages":["R&D", "Human Resources"] }, { "lastname":"Sharp", "manages":["Support", "Business Dev"] } Listing 2: Collection "departments" { "dept":"Sales", "code":"sa", "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}] }, { "dept":"R&D", "code":"rd", "members": [{"name":"J. Smith", "age":32}, {"name":"D. Duke", "age":23}] }, { "dept":"Human Resources", "code":"hr", "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38} }, { "dept":"Business Dev", "code":"bdev", "members": [{"name":"R. Danton", "age":36}, {"name":"E. Meetchum", "age":34} } The xR2RML mapping graph in Listing 3 consists of two triples maps <#Staff> and <#Departments>. Triples map <#Staff> has a referencing object map whose parent triples map is <#Departments>. Triples map <#Departments> generates triples with predicate ex:hasSeniorMember for each member of the department who is 40 years old or more. For the sake of simplicity the queries in both triples maps retrieve all documents of the collection with no other query filter.

We wish to translate the SPARQL query below, that aims at retrieving senior members of departments whose manager is "Dunbar". The query consists of one basic graph pattern bgp, itself consisting of two triple patterns tp1 and tp2: -The predicate of tp2 is constant, hence no condition is entailed.

-The object of tp2 is again a variable, this entails a second non-null condition: As the subject of tp1 is a constant, the reference in the subject map of triples map <#Staff> is not projected. Since the object map of <#Staff> is a referencing object map with parent triples map <#Departments>, the references in the join condition must be projected: this is achieved by genProjection on the side of <#Staff>, and by genProjectionParent on the side of <#Departments>. The object of tp1 is a variable, thus the reference of the corresponding term map must be projected too: this is the subject map of triples map <#Departments> projected by genProjectionParent:

When translated to the MongoDB query language, the Project part consists of: Child query: {"manages":1} Parent query: {"dept":1, "code":1}

Where part of the child query (Algorithm 9):

Where ← genCond(tp1, <#Staff>, true):

-The subject of tp1 is an IRI, this entails an equality condition on the references of the subject map: -The predicate of tp1 is constant, hence no condition is entailed.

-The object of tp1 matched with the subject map of triples map <#Departments>, this will be managed by genCondParent. Nevertheless we have to add a not-null condition on the child joined reference:

isNotNull($.manages.*)

Where part of the parent query:

Where ← genCondParent(tp1, <#Staff>, true):

-The object of tp1 is a variable, this entails a not-null condition. It is matched with the subject map of triples map 

Abstract query optimization

When we put the translation of tp1 and tp2 together we obtain the following abstract query: The 2 nd and 3 rd atomic queries have the same From part, thus entailing a self-join. To eliminate it we first rewrite the abstract query: we change the natural associative property of joins by embedding the 2 nd and 3 rd atomic queries in curly brackets.