
HAL Id: hal-01245883
https://hal.science/hal-01245883v4

Submitted on 12 Feb 2016 (v4), last revised 7 Nov 2016 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping-based SPARQL access to a MongoDB database
Franck Michel, Catherine Faron Zucker, Johan Montagnat

To cite this version:
Franck Michel, Catherine Faron Zucker, Johan Montagnat. Mapping-based SPARQL access to a
MongoDB database. [Research Report] CNRS. 2016. �hal-01245883v4�

https://hal.science/hal-01245883v4
https://hal.archives-ouvertes.fr

Mapping-based SPARQL access to a MongoDB database

1

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS

UMR7271

Mapping-based SPARQL Access to a MongoDB Database

Franck Michel, Catherine Faron-Zucker, Johan Montagnat

SPARKS Team

Rapport de Recherche

Version Date Description

V1 Dec. 2015 Initial version

V2 Dec. 2015 Rename operator WHERE into FILTER, minor fixes

V3 Jan. 2016
Project constant term maps in function genProjection and add
AS operator. Move section 4 on bindings to section 3.3. Add
section 3.5 about abstract query optimizations.

V4 Feb. 2016
Merge join condition with INNER JOIN abstract operator,
exemplify abstract query optimizations.

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS

2000, route des Lucioles - Les Algorithmes - bât. Euclide B 06900 Sophia Antipolis - France http://www.i3s.unice.fr

http://www.i3s.unice.fr/

Mapping-based SPARQL access to a MongoDB database

2

1 INTRODUCTION .. 3

2 THE XR2RML MAPPING LANGUAGE .. 4

2.1 Recalls on R2RML .. 4
2.2 xR2RML language description .. 5
2.3 Normalization and restriction of xR2RML within this document ... 6
2.4 Running Example .. 7

3 REWRITING A SPARQL QUERY INTO AN ABSTRACT QUERY ... 8

3.1 R2RML-based SPARQL-to-SQL methods ... 9
3.2 Abstract Query .. 9
3.3 Binding triples maps to triple patterns ... 11
3.4 Atomic Abstract Query.. 14
3.5 Abstract query optimization .. 17

4 TRANSLATION OF AN ABSTRACT QUERY INTO A MONGODB QUERY ... 19

4.1 The MongoDB query language ... 20
4.2 The JSONPath language .. 22
4.3 Conventions and formalism ... 24
4.4 Query translation rules .. 25

4.4.1 Rule R0 .. 27
4.4.2 Rue R1 ... 27
4.4.3 Rule R2 .. 27
4.4.4 Rule R3 .. 27
4.4.5 Rule R4 .. 27
4.4.6 Rule R5 .. 28
4.4.7 Rule R6 .. 28
4.4.8 Rule R7 .. 29
4.4.9 Rule R8 .. 29
4.4.10 Rule R9 ... 29
4.4.11 Translation of a JavaScript filter to MongoDB .. 29

4.5 Query optimization and translation to a concrete MongoDB query .. 30
4.5.1 Query optimization .. 31
4.5.2 Pull up WHERE clauses .. 32
4.5.3 Function rewrite .. 34

5 OVERALL QUERY TRANSLATION AND EVALUATION PROCESS ... 36

6 CONCLUSION, DISCUSSION AND PERSPECTIVES ... 38

6.1 Query optimization .. 38
6.2 Support of the SPARQL query language... 39
6.3 Dealing with the MongoDB $where operator ... 39

7 APPENDIX A ... 41

7.1 Functions genProjection and genProjectionParent .. 41
7.2 Function genCond and genCondParent ... 42

8 APPENDIX B: COMPLETE RUNNING EXAMPLE... 45

8.1 Translation of tp2 into an abstract query .. 46
8.2 Translation of tp1 into an abstract query .. 47
8.3 Abstract query optimization .. 48
8.4 Rewriting atomic queries to MongoDB queries .. 49
8.5 Complete transm processing ... 50

9 REFERENCES .. 51

Mapping-based SPARQL access to a MongoDB database

3

1 Introduction

The Web-scale data integration progressively becomes a reality, giving birth to the Web of Data. It is sustained and

promoted by the W3C Data Activity
1
 working group that aims at overcoming data diversity and support public and

private sector organizations in this matter. A key-point to the achievement of the Web of Data is that data be published

openly on the Web in a standard, machine-readable format, and linked with other related data sets. In this matter, an

extensive work has been achieved during the last years to expose legacy data as RDF.

At the same time, the success of NoSQL database platforms is no longer questioned today. Driven by major Web

companies, they have been developed to meet requirements of novel applications, hardly available in relational

databases (RDB), such as a flexible schema, high throughput, high availability and horizontal elasticity. Not only

NoSQL platforms are at the core of many applications dealing with big data, but they are also increasingly used as a

generic-purpose database in many domains. Today, this overwhelming success makes NoSQL databases a natural

candidate for RDF-based data integration systems, and potential significant contributors to feed the Web of Data.

In this regard, it shall be necessary to develop SPARQL access methods for heterogeneous databases with different

query languages. These methods shall vary greatly depending on the target database query capabilities: for instance

RDBs support joins, nested queries and string manipulations, but this is hardly the case of some NoSQL document

stores like MongoDB or CouchDB. Thus, rather than defining yet another SPARQL translation method for each and

every query language, we think it is beneficial to consider a two-step approach. First, given a set of mappings of the

target database to RDF, a SPARQL query is translated into a pivot abstract query by matching SPARQL graph

patterns with relevant mappings. This step can be made generic if the mapping language used is generic enough to

apply to a large and extensible set of databases. In a second step, the abstract query is translated into the target

database query language, taking into account the specific database capabilities.

Our goal, in this document, is to address this two-step method. Firstly, leveraging previous works on R2RML-based

SPARQL-to-SQL methods, we define a method to translate a SPARQL query into a pivot abstract query, utilizing

xR2RML [10] to describe the mapping of a target database to RDF. The method determines the minimal set of

mappings matching each SPARQL graph pattern, and takes into account join constraints implied by shared variables,

cross-references denoted in the mappings, and SPARQL filters. Common query optimization techniques are applied to

the abstract query in order to alleviate the work required in the second step. Secondly, we define a method to translate

such an abstract query into a concrete query using MongoDB as our target database. In recent years, MongoDB
2
 has

become the leader in the NoSQL market, as suggested by several indicators including Google searches
3
, job offerings

4

and LinkedIn member profiles mentioning MongoDB skills
5
. Some methods have been proposed to translate

MongoDB documents into RDF [10], or to use MongoDB as an RDF triple store [20]. Yet, to the best of our

knowledge, no work has been proposed so far to query arbitrary MongoDB documents using SPARQL.

In the rest of this section we review previous works related the translation of various data sources into RDF. Section 2

presents the xR2RML mapping language and introduces a running example. In section 3 we first describe a method to

rewrite a SPARQL query into a pivot abstract query under xR2RML mappings. This relies on bindings between a

SPARQL triple pattern and xR2RML mappings, detailed in section 3.3. Section 4 focuses more specifically on the

translation of an abstract query into MongoDB concrete queries. Section 5 recaps the whole method through an

algorithm that orchestrates the different steps, until the evaluation of MongoDB queries and the generation of the RDF

triples matching the SPARQL query. After a discussion and conclusion in section 6, appendix B (section 8) goes over

the running example that is been detailed throughout the previous sections.

1
 http://www.w3.org/2013/data/

2
 https://www.mongodb.org/

3
 https://www.google.com/trends/explore#q=mongodb,couchdb,couchbase,membase,hbase

4
 http://www.indeed.com/jobtrends/mongodb,mongo,cassandra,hbase,couchdb,couchbase,membase,redis.html

5
 https://blogs.the451group.com/information_management/tag/nosql/

Mapping-based SPARQL access to a MongoDB database

4

Related works.

Much work has been achieved during the last decade to expose legacy data as RDF, in which two approaches

generally apply: either the RDF graph is materialized by translating the data into RDF and loading it in a triple store

(in an ETL – Extract, Transform and Load - manner), or the raw data is unchanged and a query language such as

SPARQL is used to access the virtual RDF graph through query rewriting techniques. While materializing the RDF

graph can be needed in some contexts, it is often impossible in practice due to the size of generated graphs, and not

desirable when data freshness is at stake. Several methods have been proposed to achieve SPARQL access to

relational data, either in the context of RDF stores backed by RDBs [4,16,7] or using arbitrary relational schemas

[3,18,13,14]. R2RML [5], the W3C RDB-to-RDF mapping language recommendation is now a well accepted standard

and various SPARQL-to-SQL rewriting approaches rely on it [18,13,14]. Other solutions intend to map XML data to

RDF [2,1], and the CSV on the Web W3C working group
6
 makes a recommendation for the description of and access

to CSV data on the Web. RML [6] is an extension of R2RML that tackles the mapping of data sources with

heterogeneous data formats such as CSV/TSV, XML or JSON. The xR2RML mapping language [10] is an extension

of the R2RML and RML addressing the mapping of a large and extensible scope of non-relational databases to RDF.

Some works have been proposed to use MongoDB as an RDF triple store, and in this context they designed a method

to translate SPARQL queries into MongoDB queries [20]. MongoGraph
7
 is an extension of AllegroGraph

8
 to query

MongoDB documents with SPARQL queries. It follows an approach very similar to the Direct Mapping approach

defined in the context of RDBs [17]: each field of a MongoDB JSON document is translated into an ad-hoc predicate,

and a mapping links MongoDB document identifiers with URIs. SPARQL queries use the specific find predicate to

tell the SPARQL engine to query MongoDB. Despite those approaches, to the best of our knowledge, no work has

been proposed yet to translate a SPARQL query into the MongoDB query language and map arbitrary MongoDB

documents to RDF.

2 The xR2RML mapping language

The xR2RML mapping language [10] is designed to map an extensible scope of relational and non-relational

databases to RDF. Its flexibly adapts to heterogeneous query languages and data models thereby remaining

independent from any specific database. It is backward compatible with R2RML and it relies on RML for the handling

of various data formats.

Below we shortly describe the main xR2RML features, a complete specification of the language is available in [11].

We assume the following namespace prefix definitions:

xrr: <http://www.i3s.unice.fr/ns/xr2rml#>

rr: <http://www.w3.org/ns/r2rml#>

rml: <http://semweb.mmlab.be/ns/rml#>

ex: <http://example.com/ns#>

2.1 Recalls on R2RML

R2RML is a generic language meant to describe customized mappings that translate data from a relational database

into an RDF data set. An R2RML mapping is expressed as an RDF graph that consists of triples maps, each one

specifying how to map rows of a logical table to RDF triples. A triples map is composed of exactly one logical table

(property rr:logicalTable), one subject map (property rr:subjectMap) and any number of predicate-object maps

(property rr:predicateObjectMap). A logical table may be a table, an SQL view (property rr:tableName), or the

result of a valid SQL query (property rr:sqlQuery). A predicate-object map consists of predicate maps (property

rr:predicateMap) and object maps (property rr:objectMap). For each row of the logical table, the subject map

6
 http://www.w3.org/2013/csvw/wiki

7
 http://franz.com/agraph/support/documentation/4.7/mongo-interface.html

8
 http://allegrograph.com/

Mapping-based SPARQL access to a MongoDB database

5

generates a subject IRI, while each predicate-object map creates one or more predicate-object pairs. Triples are

produced by combining the subject IRI with each predicate-object pair. Additionally, triples are generated either in the

default graph or in a named graph specified using graph maps (property rr:graphMap).

Subject, predicate, object and graph maps are all R2RML term maps. A term map is a function that generates RDF

terms (either a literal, an IRI or a blank node) from elements of a logical table row. A term map must be exactly one of

the following: a constant-valued term map (property rr:constant) always generates the same value; a column-valued

term map (property rr:column) produces the value of a given column in the current row; a template-valued term map

(property rr:template) builds a value from a template string that references columns of the current row.

When a logical resource is cross-referenced, typically by means of a foreign key relationship, it may be used as the

subject of some triples and the object of some others. In such cases, a referencing object map uses IRIs produced by

the subject map of a (parent) triples map as the objects of triples produced by another (child) triples map. In case both

triples maps do not share the same logical table, a join query must be performed. A join condition (property

rr:joinCondition) names the columns from the parent and child triples maps, that must be joined (properties

rr:parent and rr:child).

Below we provide a short illustrative example. Triples map <#R2RML_Directors> uses table DIRECTORS to create

triples linking movie directors (whose IRIs are built from column NAME) with their birth date (column BIRTH_DATE).

<#R2RML_Directors>

 rr:logicalTable [rr:tableName "DIRECTORS"];

 rr:subjectMap [

 rr:template "http://example.org/dir/{NAME}";

 rr:class ex:Manager];

 rr:predicateObjectMap [

 rr:predicate ex:bithdate;

 rr:objectMap [

 rr:column "BIRTH_DATE";

 rr:datatype xsd:date]].

2.2 xR2RML language description

An xR2RML mapping defines a logical source (property xrr:logicalSource) as the result of executing a query

(property xrr:query) against an input database. The query is expressed in the query language of the target database.

Data from the logical source is mapped to RDF using triples maps. Like in R2RML a triples map consists of several

term maps that extract values from a query result set and translate them into terms of RDF triples. A subject map

generates the subject of RDF triples, and multiple predicate-object maps produce the predicate and object terms.

Optionally, a graph map is used to name a target graph. Listing 3 depicts two xR2RLM triples map <#Departments>

and <#Staff>.

xR2RML references. Term maps extract data from query results by evaluating xR2RML data element references,

hereafter named xR2RML references. The syntax of xR2RML references is called the reference formulation (as a

reference to the RML property of the same name), it depends on the target database: a column name in case of a

relational database, an XPath expression in case of a native XML database, or a JSONPath expression in case of JSON

documents like in MongoDB. An xR2RML processor is provided with a connection to the target database and the

reference formulation applicable to results of queries run against the connection. xR2RML references are used with

properties xrr:reference and rr:template. The xrr:reference property contains a single xR2RML reference,

whereas the rr:template property may contain several references in a template string.

Mapping-based SPARQL access to a MongoDB database

6

Iteration model. xR2RML implements a document-based iteration model: a document is basically one entry of a

result set returned by the target database, e.g. a JSON document retrieved from a NoSQL document store, rows of an

SQL result set or an XML document retrieved from an XML native database. In some contexts, this iteration model

may not be sufficient to address all needs: it may be needed to iterate on explicitly specified entries of a JSON

document or elements of an XML tree. To this end, xR2RML leverages the concept of iterator introduced in RML. An

iterator (property rml:iterator) specifies the iteration pattern to apply to data read from the input database. Its value

is an expression written using the syntax specified in the reference formulation. For instance, in the collection in

database Listing 2, if we were interested in team members rather than in departments, we would define an iterator in

the logical source of triples map <#Departments> to explicitly specify to iterate on elements of the members array:

<#Departments>

 xrr:logicalSource [xrr:query "db.departments.find({})"; rml: iterator "$.members.*"];

Mixed-syntax paths. xR2RML extends RML’s principle of data element references to allow referencing data

elements within mixed content. For instance, a JSON value may be embedded the cells of a relational table. In such

cases, properties xrr:reference and rr:template may accept mixed-syntax path expressions. An xR2RML mixed-

syntax path consists of the concatenation of several path expressions, each path being enclosed in a syntax path

constructor that makes explicit the path syntax. Existing constructors are: Column(), CSV(), TSV(), JSONPath() and

XPath(). For example, in a relational table, a text column NAME stores JSON-formatted values containing people's first

and last names, e.g.: {"First":"John", "Last":"Smith"}. Field FirstName can be referenced with the following

mixed-syntax path: Column(NAME)/JSONPath($.First).

RDF lists and collections. When the evaluation of an xR2RML reference produces several RDF terms, the xR2RML

processor creates one triple for each term. Alternatively, it can group them in an RDF list (rdf:List) or collection

(rdf:Seq, rdf:Bag and rdf:Alt). This is achieved using specific values of the rr:termType property within an object

map. Besides, property xrr:nestedTerMap is a means to create nested lists and collections, and to qualify terms of a

list or collection with a language tag or data type.

Cross-references. Like R2RML, xR2RML allows to model cross-references by means of referencing object

maps. A referencing object map uses values produced by the subject map of another triples map (the parent) as objects.

Properties rr:child and rr:parent specify the join condition between documents of the current triples map (the

child), and the parent triples map. In Listing 3 this is exemplified by triples map <#Staff> that has a referencing object

map whose parent triples map is <#Departments>.

The objects produced by a referencing object map can be grouped in an RDF collection or container, instead of being

the objects of multiple triples, using specific values of the property rr:termType, mentioned above.

Results of the joint query are grouped by child value, i.e.: objects generated by the parent triples map, referring to the

same child value, are grouped as members of an RDF collection or container.

2.3 Normalization and restriction of xR2RML within this document

To keep the document focused on the query translation question and for the sake of clarity, the running example in

section 2.3 does not use iterators nor mixed syntax paths.

In xR2RML, as in R2RML, a triples map may contain any number of predicate-object maps, and a predicate-object

map may contain any number (>1) of predicate maps and object maps. Although they do not explicitly mention it,

authors of [13] and [18] assume that a triples map contains only one predicate-object map, each having exactly one

predicate map and one object map. In [14] (appendix A), the authors propose an algorithm to normalize R2RML

mappings so as to comply with this assumption. We comply with it as it significantly simplifies the description of the

Mapping-based SPARQL access to a MongoDB database

7

algorithms, while keeping the full expressiveness of R2RML. In the following, we assume that a triples map contains

exactly one predicate-object map with exactly one predicate map and one object map.

Furthermore, the R2RML rr:class property introduces a specific way of producing triples such as "<A> rdf:type

". The mapping normalization in [14] proposes to replace any rr:class property by an equivalent predicate-object

map: [rr:predicate rdf:type; rr:object <A>.]. We also comply with this proposition as it allows for the

definition of a general method consistently dealing with all kinds of triple patterns, may they have the rdf:type

property or any other property.

2.4 Running Example

To illustrate the description of our method, we define a running example that we refer to all along this document.

Additionally, section 8 goes through the whole method and provides additional explanations.

Let us consider a MongoDB database with two collections “staff” and “departments” given in Listing 1 and Listing 2

respectively. Collection “departments” lists the departments within a company, including a department code and its

members. Members are given by their name and age. Collection “staff” lists people by their name (that may be either

field “familyname” or “lastname”), and provides a list of departments that they manage, if any, in array field

“manages”.

Listing 1: Collection “staff”

 { "familyname":"Underwood", "manages":["Sales"] },

 { "lastname":"Dunbar", "manages":["R&D", "Human Resources"] },

 { "lastname":"Sharp", "manages":["Support", "Business Dev"] }

Listing 2: Collection “departments”

 { "dept":"Sales", "code":"sa",

 "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}] },

 { "dept":"R&D", "code":"rd",

 "members": [{"name":"J. Smith", "age":32}, {"name":"D. Duke", "age":23}] },

 { "dept":"Human Resources", "code":"hr",

 "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38} },

 { "dept":"Business Dev", "code":"bdev",

 "members": [{"name":"R. Danton", "age":36}, {"name":"E. Meetchum", "age":34} }

Let us consider the xR2RML mapping graph in Listing 3, consisting of two triples maps <#Staff> and

<#Departments>. The logical source in triples map <#Staff> provides a MongoDB query db.staff.find({}) that

retrieves all documents in collection “staff”. The parameter “{}” is basically an empty filter. Similarly, the query

in <#Departments>’s logical sources retrieves all documents in collection “departments”. Triples map <#Staff>

has a referencing object map whose parent triples map is <#Departments>. Triples map <#Departments> generates

triples with predicate ex:hasSeniorMember for each member of the department who is 40 years old or more. For the

sake of simplicity the queries in both triples maps retrieve all documents of the collection with no other query filter.

Mapping-based SPARQL access to a MongoDB database

8

Listing 3: xR2RML Example Mapping Graph

<#Departments>

 xrr:logicalSource [xrr:query "db.departments.find({})"];

 rr:subjectMap [rr:template "http://example.org/dept/{$.code}"];

 rr:predicateObjectMap [

 rr:predicate ex:hasSeniorMember;

 rr:objectMap [xrr:reference "$.members[?(@.age >= 40)].name"]

].

<#Staff>

 xrr:logicalSource [xrr:query "db.staff.find({})"];

 rr:subjectMap [rr:template "http://example.org/staff/{$['lastname','familyname']}"];

 rr:predicateObjectMap [

 rr:predicate ex:manages;

 rr:objectMap [

 rr:parentTriplesMap <#Departments>;

 rr:joinCondition [

 rr:child "$.manages.*";

 rr:parent "$.dept"

]]].

We wish to query the above MongoDB database with the SPARQL below query to retrieve senior members of

departments whose manager is “Dunbar”. The query consists of one basic graph pattern bgp, itself consisting of two

triple patterns tp1 and tp2:

SELECT ?senior WHERE {

 <http://example.org/staff/Dunbar> ex:manages ?dept. // tp1

 ?dept ex:hasSeniorMember ?senior. } // tp2

We shall use this query throughout this document to illustrate the method.

3 Rewriting a SPARQL query into an abstract query

Various methods have been defined to translate SPARQL queries into another query language, that are generally

tailored to the expressiveness of the target query language. For instance, SPARQL-to-SQL methods harness the ability

of SQL to support joins, unions, nested queries and various string manipulation functions, to translate a SPARQL

query into a single, possibly deeply nested SQL query. Some of them rely on modern RDBs optimization engines to

rewrite the query in a more efficient way, although this is often not sufficient as attested by the focus on the generation

of pre-optimized queries e.g. using self-join elimination or by pushing down projections and selections [7,14,16,19]. A

conjunction of two basic graph patterns (BGP) generally results in the inner join of their respective translations; their

union results in an SQL UNION ALL clause; the SPARQL OPTIONAL keyword between two BGPs results in a left

outer join, and a SPARQL FILTER results in an encapsulating SQL SELECT in which the filter is translated into an

equivalent SQL WHERE clause. Similarly, the SPARQL-to-XQuery method proposed in [1] relies on the ability of

XQuery to support the same features. For instance a SPARQL FILTER is translated into an XPath condition and/or an

encapsulating XQuery For-Let-Where clause.

The rich expressiveness of SQL and XQuery makes it possible to translate a SPARQL query into a single, possibly

deeply nested, target query, whose semantics is strictly equivalent to that of the SPARQL query. In the general case

however, i.e. beyond the scope of SQL and XQuery, joins, unions and/or sub-queries may not be supported. NoSQL

databases typically make a trade-off between query language expressiveness and scalability. This is particularly the

case of MongoDB: joins are not supported, and unions and nested queries are supported under strong restrictions.

Mapping-based SPARQL access to a MongoDB database

9

Unions, joins and sub-queries may be delegated to the target database when it supports these operations, or processed

by the query processing engine otherwise. An xR2RML-based query processing engine for MongoDB shall evaluate

several queries separately (e.g. one per triple pattern), and perform joins and unions afterwards.

In this section we first review several R2RML-based SPARQL-to-SQL translation methods. We then define the

methods that generate the abstract query, figure out which candidate xR2RML mappings match a SPARQL graph

pattern, and generate the per-triples-map atomic abstract query.

3.1 R2RML-based SPARQL-to-SQL methods

Priyatna et al. [13] extend Chebotko's algorithm [4] that focused on the SPARQL-to-SQL query translation in the

context of a RDB-based triple stores. They redefine the original mappings to comply with the context of custom

mappings described in R2RML. Their method addresses the problem of eliminating null answers by adding not null

conditions for variables of a triple pattern. However it has two limitations:

(i) R2RML triples maps must have constant predicate maps, i.e. the predicates of the generated RDF triples cannot

be built using a value from the database.

(ii) Triple patterns are considered and translated independently of each other, even when variables are shared by

several triple patterns of a basic graph pattern; solutions that do not match a join between two or more triple

patterns are ruled out only during the final join step. The risk is to retrieve more data than actually necessary to

answer queries. This may be avoided by using query optimization techniques; however it seems more natural and

probably more efficient to take such constraints into account at the earliest step.

Unbehauen et al. [18] define the concept of compatibility between the RDF terms of a triple pattern and R2RML term

maps (subject, predicate or object map), and subsequently the concept of triple pattern binding. This helps to

effectively manage variable predicate maps, which clears the first aforementioned limitation. Furthermore, this

method considers the dependencies between triple patterns of a basic graph pattern. This helps reduce the number of

candidate triples maps for each triple pattern by pre-checking filters and join constraints implied by the variables

shared by several triple patterns. This clears the second aforementioned limitation. This whole mapping selection

process is generic and can be reused for xR2RML. Yet, two limitations can be noticed:

(i) Referencing object maps are not addressed, and therefore only a subpart of R2RML is supported: joins implied

by shared variables are dealt with but joins declared in the mapping graph are ignored.

(ii) The rewriting maps each term map to a set of columns, called column group, that enables filtering, join and data

type compatibility checks. This strongly relies on SQL capabilities (CASE, CAST, string concatenation, etc.),

making it hardly applicable out of the scope of SQL-based systems.

Rodríguez-Muro and Rezk [14] propose a different approach. They extend the ontop system that performs Ontology-

Based Data Access (OBDA), to support R2RML mappings. A SPARQL query and an R2RML mapping graph are

translated into a Datalog program. This formal representation is used to combine and apply optimization techniques

from logic programming and SQL querying. The optimized program is then translated into an executable SQL query.

It must be noticed that, at the time of writing, this is the only state-of-the-art method fully supporting SPARQL 1.1.

3.2 Abstract Query

Our pivot abstract query language complies with the following grammar:

Mapping-based SPARQL access to a MongoDB database

10

<AbstractQuery> ::= <AtomicQuery> | <Query> | <Query> FILTER <SPARQL filter>

<Query> ::= <AbstractQuery> INNER JOIN <AbstractQuery> ON {v1, … vn} |

 <AbstractQuery> AS child INNER JOIN <AbstractQuery> AS parent

 ON child/<Ref> = parent/<Ref> |

 <AbstractQuery> LEFT OUTER JOIN <AbstractQuery> ON {v1, … vn} |

 <AbstractQuery> UNION <AbstractQuery>

<AtomicQuery> ::= {From, Project, Where}

<Ref> ::= a valid xR2RML reference

Operators INNER JOIN…ON, LEFT OUTER JOIN…ON, UNION use the SQL syntax as an analogy, with the

difference that the semantics of UNION is that of the SQL UNION ALL, i.e. it keeps duplicate entries. They are

entailed by the dependencies between graph patterns of the SPARQL query. The first INNER JOIN notation is

entailed by the join constraints implied by shared variables. The second INNER JOIN notation, including the “AS

child”, “AS parent” and “ON child/<Ref> = parent/<Ref>” notations, is entailed by the join constraints expressed in

xR2RML mappings using referencing object maps. Their computation shall be delegated to the target database if it

supports them (i.e. if the target query language has equivalent operators, this is the case of a relational database), or

they may be computed by the query processing engine otherwise (case of MongoDB). Atomic abstract queries

(<AtomicQuery>) are entailed by translating a triple pattern under a set of xR2RML triples maps.

Function transm (Definition 1) translates a well-designed SPARQL graph pattern [12] into an abstract query that

makes no assumption on the target database capabilities. It extends the translation algorithms defined in [4], [18] and

[13].

Running Example. Let us give a first simple illustration: our running example does not include any SPARQL filter to

keep it easy to follow. The application of the transm function to the basic graph pattern bgp is as follows:

transm(bgp, true)

 = transm(tp1, true) INNER JOIN transm(tp2, true) ON var(tp1) ⋂ var(tp2)

 = transTPm(tp1, true) INNER JOIN transTPm(tp2, true) ON {?dept}

Definition 1: Function transm, translation of a SPARQL query into an abstract query

Let m be an xR2RML mapping graph consisting of a set of xR2RML triples maps. Let gp be a well-designed SPARQL

graph pattern.

transm(gp) is the translation, under m, of gp into an abstract query. transm is defined as follows:

- transm(gp) = transm(gp, true)

- if gp consists of a single triple pattern tp, transm(gp, f) = transTPm(tp, sparqlCond(tp, f))

- if gp is (P FILTER f’), transm(gp, f) = transm(P, f && f’) FILTER sparqlCond(P, f && f’)

- if gp is (P1 AND P2), transm(gp, f) = transm(P1, f) INNER JOIN transm(P2, f) ON var(P1) ⋂ var(P2)

- if gp is (P1 OPTIONAL P2),

 transm (gp, f) = transm(P1, f) LEFT OUTER JOIN transm(P2, f) ON var(P1) ⋂ var(P2)

- if gp is (P1 UNION P2), transm (gp) =

transm(P1, f) LEFT OUTER JOIN transm(P2, f) ON var(P1) ⋂ var(P2)

UNION

transm(P2, f) LEFT OUTER JOIN transm(P1, f) ON var(P1) ⋂ var(P2)

To limit the negative impact on performances of running multiple separate queries, each query must be as selective as

possible. In this goal we propose a generalized management of SPARQL filters: we wish to push down SPARQL

filters into the translation of each triple pattern, in order to make inner queries more selective and limit the size of

intermediate results. A SPARQL filter f can be considered as a conjunction of n conditions (n >= 1): C1 && ... Cn.

We discriminate between conditions with respect to two criteria:

Mapping-based SPARQL access to a MongoDB database

11

(i) A condition wherein all variables show in a single triple pattern tp of the SPARQL query is pushed into the

translation of tp using function transTPm, defined in section 3.4. This ensures that filters are applied at the earliest

stage, as opposed to the encapsulating SELECT-WHERE strategy in SPARQL-to-SQL translations.

(ii) For a condition wherein at least one variable is shared by several triple patterns, a FILTER operator is created to

represent the join criteria.

Notice that a condition may match both criteria. The discrimination between SPARQL filter conditions is

implemented by the sparqlCond function (Definition 2).

Definition 2: Function sparqlCond, splitting SPARQL filter conditions per graph pattern

Let gp be a well-designed SPARQL graph pattern and f be the conjunctive SPARQL filter “C1 && … && Cn”, where

C1 to Cn are SPARQL conditions. Function sparqlCond is defined as follows:

- if gp consists of a single triple pattern tp, sparqlCond(tp, f) is the conjunction of conditions Ci such that all the

variables in Ci appear in tp.

- if gp is any other graph pattern, sparqlCond(gp, f) is the conjunction of conditions Ci such that at least one

variable in Ci is shared by several triple patterns of gp.

We illustrate this process with a dedicated example (out of the scope of the running example). We apply the transm

function to the SPARQL below, in which we denote by tp1 to tp4 the triple patterns and C1 to C4 the conditions of the

SPARQL filter.

SELECT ?name1 ?name2 WHERE

{ ?x foaf:name ?name1. // tp1

 ?x foaf:mbox ?mbox1. // tp2

 ?y foaf:name ?name2. // tp3

 OPTIONAL {?y foaf:mbox ?mbox2.} // tp4

 FILTER { lang(?name1) IN ("EN","FR") && // C1

 ?y != ?mbox2 && // C2

 contains(str(?mbox2), "astring") && // C3

 (?mbox1 != ?mbox2 || ?name1 != ?name2) // C4

 }

}

We denote by F the whole SPARQL filter, i.e. C1 && C2 && C3 && C4.

tp1: no condition involves both ?x and ?name1, but C1 involves only ?name1. Condition C4 involves ?name1 but it also

involves variables that are not in tp1. Hence sparqlCond(tp1, F) returns only C1.

tp2: no condition involves both ?x and ?mbox1, nor either ?x or ?mbox1, sparqlCond(tp2, F) returns ∅.

tp3: no condition involves both ?y and ?name2, nor either ?y or ?name2, sparqlCond(tp3, F) returns ∅.

tp4: condition C2 involves both variables ?y and ?mbox2, and C3 involves only ?mbox2. Therefore sparqlCond(tp4, F)

returns “C2 && C3”.

Lastly, only conditions C2 and C4 involve variables from several triples patterns. We come up with the following

abstract query:

transTPm(tp1, C1) INNER JOIN transTPm(tp2, ∅) ON {?x}

 INNER JOIN transTPm(tp3, ∅) ON ∅

 LEFT OUTER JOIN transTPm(tp4, C2 && C3) ON {?y}

WHERE C2 && C4

3.3 Binding triples maps to triple patterns

To define function transTPm, which translates SPARQL triple patterns into unions of atomic abstract queries, we need

to figure out which ones of the xR2RML triple maps are likely to generate RDF triples matching the triple pattern. We

need to introduce the concept of triple pattern binding:

Mapping-based SPARQL access to a MongoDB database

12

Definition 3: Triple pattern binding (adapted from Unbehauen et al. [18])

Let m be an xR2RML mapping graph consisting of a set of xR2RML triples map, and tp be a triple pattern.

A triples map TM ∈ m is bound to tp if it is likely to produce triples matching tp.

A triple pattern binding is a pair (tp, TMSet) where TMSet is the set of triples maps of m that are bound to tp.

Function bindm, along with functions join, reduce and compatible (defined later in this section), determines, for a

graph pattern gp, the bindings of each triple pattern of gp. It takes into account join constraints implied by shared

variables, and the SPARQL filter constraints whose unsatisfiability can be verified statically. Functions bindm, join,

reduce and compatible were introduced by Unbehauen et al [18] in the SPARQL-to-SQL context, but important

details were left untold. In particular, the authors did not formally define what the compatibility between a term map

and a triple pattern term means, and they did not investigate the static compatibility between a term map and a

SPARQL filter. In this section we provide a comprehensive definition of these functions and we extend them to fit in

our context of an abstract query language.

We denote by TM.sub, TM.pred and TM.obj respectively the subject map, the predicate map and the object map of

triples map TM. TM.pred = TM.predicateObjectMap.predicatMap, and

TM.obj = TM.predicateObjectMap.objectMap.

Definition 4: function bindm

Let m be a mapping graph consisting of a set of xR2RML triples maps, and gp be a well-designed graph pattern.

bindm(gp) is the set of triple pattern bindings of gp under m, defined recursively as follows:

- bindm(gp) = bindm(gp, true)

- if gp consists of a single triple pattern tp, bindm(gp, f) is the pair (tp, TMSet) where TMSet = {TM | TM ∈ m ∧

compatible(TM.sub, tp.sub, f) ∧ compatible(TM.pred, tp.pred, f) ∧ compatible(TM.obj, tp.obj, f)}

- if gp is (P1 AND P2), bindm(gp, f) = reduce(bindm(P1, f), bindm(P2, f)) ∪ reduce(bindm(P2, f), bindm(P1, f))

- if gp is (P1 OPTIONAL P2), bindm(gp, f) = bindm(P1, f) ∪ reduce(bindm(P2, f), bindm(P1, f))

- if gp is (P1 UNION P2), bindm(gp, f) = bindm(P1, f) ∪ bindm(P2, f)

- if gp is (P FILTER f’), bindm(gp, f) = bindm(P, f && f’)

Function compatible is detailed in Definition 7, function reduce in Definition 6. In our running example, function

bindm infers two triple pattern bindings:

bindm(bgp) = { (tp1, {<#Staff>}) , (tp2, {<#Departments>)} }

Definition 5: function join

Let m ∈ M be a set of xR2RML triples maps, tpb1=(tp1, TMSet1) and tpb2=(tp2, TMSet2) be triple pattern bindings

with TMSet1 ⊆ m and TMSet2 ⊆ m, V be the set of variables shared by tp1 and tp2.

Let postp: V → {sub, pred, obj} be the function that returns the position of a variable v ∈ V in triple pattern tp.

join(tpb1, tpb2) is the set of pairs (TM1, TM2) ∈ TMSet1×TMSet2, such that for each v ∈ V, it holds that

compatibleTermMaps(TM1.postp1(v), TM2.postp2(v)).

In other words, function join returns the pair (TM1, TM2) if, for each variable v shared by tp1 and tp2, the term maps

associated to v in TM1 and TM2 are compatible, i.e. the term map of TM1 at the position of v in tp1 is compatible with

the term map of TM2 at the position of v in tp2.

Example:

 tp1 = ?x knows ?y, postp1(?y) = obj,

 tp2 = ?y knows <#me>, postp2(?y) = sub.

 tpb1 = (tp1, {TM1}), tpb2 = (tp2, {TM2})

 join(tpb1, tpb2) = {(TM1, TM2)} if the object map of TM1 is compatible with the subject map of TM2.

Mapping-based SPARQL access to a MongoDB database

13

Note that join(tpb1, tpb2) and join(tpb2, tpb1) contain the same pairs with the difference that in each pair the terms are

switched.

Definition 6: function reduce

Let m ∈ M be a set of triples maps, tpb1 = (tp1, TMSet1) and tpb2 = (tp2, TMSet2) be triple pattern bindings with

TMSet1 ⊆ m and TMSet2 ⊆ m.

reduce(tpb1, tpb2) is the binding of tp1 to triples maps from the projection of the first component of pairs obtained

from join(tpb1, tpb2).

In other words, if tp1 and tp2 have a shared variable v, function reduce(tpb1, tpb2) returns the reduced bindings of tp1

such that the term maps associated to v in the bindings of tp1 are compatible with the term maps associated to v in the

bindings of tp2.

Example:

join(tpb1, tpb2) = {(TM1, TM2), (TM1, TM3)} => reduce(tpb1, tpb2) = (tp1, {TM1})

join(tpb2, tpb1) = {(TM2, TM1), (TM3, TM1)} => reduce(tpb2, tpb1) = (tp2, {TM2,TM3})

Function compatible(termMap, tpTerm, f) checks if a term map (termMap) is compatible with a term of a triple pattern

(tpTerm) and a SPARQL filter f, i.e. that there is no contradiction between tpTerm and termMap, and between f and

termMap. Note that [18] simply defines the compatibility of termMap and tpTerm as: tpTerm ∈ range(termMap), but

no description of the range function is provided. Below we give a description of what it means in our context. In

Definition 7 and Definition 8 we mention the term type of a term map. Recall that the term type may be explicitly

stated with the rr:termType property, or have a default value as per the xR2RML language specification. For instance

a template-valued term map has the rr:IRI default term type and a reference-valued term map has the rr:Literal default

term type.

Definition 7: compatibility between a term map, a triple pattern term and a SPARQL filter

Let tpTerm be a term of a triple pattern, termMap be a term map of an xR2RML triples map TM and f be a SPARQL

filter.

It holds that termMap is compatible with tpTerm and f, denoted by compatible(termMap, tpTerm, f), if termMap is

compatible with filter f denoted by compatibleFilter(termMap, f), and either (i) tpTerm is a variable or (ii) none of

the following assertions holds:

- tpTerm is a literal and the term type of termMap is not rr:Literal;

- tpTerm is an IRI and the term type of termMap is not rr:IRI;

- tpTerm is a blank node and the term type of termMap is not one of {rr:BlankNode, xrr:RdfList, xrr:RdfBag,

xrr:RdfSeq, xrr:RdfAlt};

- tpTerm is a literal with a language tag L, and the language of termMap is either undefined or different from L;

- tpTerm is a literal with a datatype T, and the datatype of termMap is either undefined or different from T;

- termMap is constant-valued with value V, and tpTerm is different from V;

- termMap is template-valued with template string T, and tpTerm does not match T;

- termMap is a ReferencingObjectMap and the subject map of the parent triples map is not compatible with

tpTerm, i.e. ¬compatible (termMap.parentTriplesMap.subjectMap, tpTerm, f).

Function compatibleFilter(termMap, f) checks if a term map is compatible with a SPARQL filter f, i.e. that the filter is

satisfiable for RDF terms generated by the term map.

Mapping-based SPARQL access to a MongoDB database

14

Definition 8: compatibility between a term map and a SPARQL filter

Let termMap be an xR2RML term map and f be a SPARQL filter. It holds that termMap is compatible with f, denoted

as compatibleFilter(termMap, f) if f =“true” or none of the following assertions holds:

- a necessary condition of f is isIRI(?var) and the term type of termMap is not rr:IRI;

- a necessary condition of f is isLiteral(?var) and the term type of termMap is not rr:Literal;

- a necessary condition of f is isBlank(?var) and the term type of termMap is not rr:BlankNode;

- a necessary condition of f is lang(?var)="L" or langMatches(lang(?var),"L"), and the language of termMap

is either not defined or different from L;

- a necessary condition of f is datatype(?var)=<T> and the datatype of termMap is either undefined or different

from <T>;

The compatibility between two term maps is defined by [18] as the condition:

range(termMap1) ⋂ range(termMap2) ≠ ∅

Again, no description of the range function is provided, which leaves much room for interpretation. We give a

complete description of what it means in our context.

Definition 9: compatibility between term maps

Let termMap1 and termMap2 be two xR2RML term maps.

It holds that termMap1 and termMap2 are compatible, denoted by compatibleTermMaps(termMap1, termMap2) if

none of the following assertions holds:

(1) termMap1 and termMap2 have different term types (rr:Literal, rr:BlankNode, rr:IRI, xrr:RdfList, xrr:RdfSeq,

xrr:RdfBag, xrr:RdfAlt).

(2) termMap1 and termMap2 have different language tags, or one has a language tag and the other does not.

(3) termMap1 and termMap2 are both template-valued, and they have incompatible template strings.

(4) termMap1 (resp. termMap2) is a ReferencingObjectMap and the subject map of its parent triples maps is not

compatible with termMap2 (resp. termMap1), i.e.

 ¬compatibleTermMaps(termMap1.parentTriplesMap.subjectMap, termMap2),

 (resp. ¬compatibleTermMaps(termMap1, termMap2.parentTriplesMap.subjectMap))

The negation of any of the assertions (1) to (4) is a sufficient condition to entail that two term maps are not

compatible. Note that we could have considered the additional assertion (5):

termMap1 and termMap2 have different types (constant-valued, reference-valued or template-valued).

In practice, if assertion (5) is true, then indeed both term maps will often generate different values, thus they are not

compatible. However, in some contexts, assertion (5) may be true although term maps are compatible. For instance, a

reference-valued term map returning a URL from the database and a template-valued term map building a URL from

some other value may return some common values. Therefore, considering assertion (5) in our definition may lead to

state that two term maps are not compatible although they are, in turn the evaluation result will lack some matching

triples.

3.4 Atomic Abstract Query

The transm function relies on the transTPm function (Definition 10) to translate a single triple pattern into an abstract

query under the set of compatible xR2RML triples maps (the triples maps of m bound to the triple pattern). From the

definition of the bindm function we know that several triples maps can be bound to one triple pattern tp, each of them

may produce a subset of the triples matching tp. In other words, the RDF triples matching tp are obtained by the union

of the triples generated by all the triples maps bound to tp. Therefore, the result query is a union of all per-triple-map

queries.

Mapping-based SPARQL access to a MongoDB database

15

Definition 10: Function transTPm:

Let m be an xR2RML mapping graph consisting of a set of xR2RML triples maps, gp be a well-designed graph

pattern, tp a triple pattern of gp, and f be a SPARQL filter expression. Let getBoundTMsm be the function that, given

gp, tp and f, returns the set of triples maps of m that are bound to tp.

transTPm(tp, f) is the translation, under getBoundTMsm(gp, tp, f), of “tp FILTER f” into an abstract query whereof

results can be translated into triples matching “tp FILTER f”. The resulting abstract query uses atomic abstract

queries denoted by {From, Project, Where}:

- The From part consists of the triples map logical source;

- The Project part is the set of xR2RML references that shall be projected in the target query, i.e. the references

needed to generate the RDF terms of the result triples;

- The Where part is a set of conditions applied to xR2RML references, entailed by matching the triples map with

the triple pattern and f.

Function transTPm is described in further details in Algorithm 1. The algorithms of functions genProjection,

genProjectionParent, genCond and genCondParent are given in section 7.

Algorithm 1 : Translation of a triple pattern into an abstract query (function transTPm)

Function transTPm(tp, f):
 Query ← <empty query>
 BoundTMs ← getBoundTMsm(gp, tp, f)
 for each TM ∈ BoundTMs do

 From ← <TM's logicalSource>
 Project ← genProjection(tp, TM)
 Where ← genCond(tp, TM, f)

 OM ← TM.predicateObjectMap.objectMap
 if OM is a referencing object map then

 childRef ← OM.joinCondition.child
 parentRef ← OM.joinCondition.parent

 PFrom ← <OM.parentTriplesMap's logical source>
 PProject ← genProjectionParent(tp, TM)
 PWhere ← genCondParent(tp, TM, f)

 Q ← {From, Project, Where} AS child
 INNER JOIN
 {PFrom, PProject, PWhere} AS parent
 ON child/childRef = parent/parentRef
 else
 Q ← {From, Project, Where}
 end if
 Query ← Query UNION Q
 end for
 return Query

Running Example. By simplification we use the notation getBoundTMsm(gp, tp) (without parameter f) as a shortcut of

getBoundTMsm(gp, tp, true) i.e. when the SPARQL query has no filter. Function getBoundTMsm selects bindings

calculated by function bindm: getBoundTMsm(gp, tp1) returns {<#Staff>}, while getBoundTMsm(gp, tp2) returns

{<#Departments>}.

tp2 = ?dept ex:hasSeniorMember ?senior.

transTPm(tp2, true) =

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← genProjection(tp2, <#Departments>)

 Where ← genCond(tp2, <#Departments>, true) }

Mapping-based SPARQL access to a MongoDB database

16

In the case of tp1, the bound triples map, <#Staff>, contains a referencing object map. Consequently the translation

entails an INNER JOIN operator on the xR2RML references mentioned in the joinCondition property of the

referencing object map:

tp1 = <http://example.org/staff/Dunbar> ex:manages ?dept

transTPm(tp1, true) =

 { From ← {[xrr:query "db.staff.find({})"]}

 Project ← genProjection(tp1, <#Staff>)

 Where ← genCond(tp1, <#Staff>, true)

 } AS child

 INNER JOIN

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← genProjectionParent(tp1, <#Staff>)

 Where ← genCondParent(tp1, <#Staff>, true)

 } AS parent

 ON child/$.manages.* = parent/$.dept

From. The From part provides the concrete query that the abstract query relies on. It contains the logical source of

triples map TM that consists of the xrr:query property and an optional iterator (property rml:iterator). In our

running example, the From part of tp2 is simply:

 {[xrr:query "db.departments.find({})"]}

In the case of tp1, two atomic abstract queries are created, each referring to the logical source of one triples map.

Project. The genProjection and genProjectionParent functions select the xR2RML references that must be projected

i.e. returned as part of the query result. An xR2RML reference may be e.g. a column name in an RDB, a JSONPath

expression for MongoDB or an XPath expression for a native XML database. Thus, projecting an xR2RML reference

in the relational case simply means that a column name appears in the SQL SELECT clause. Alternatively, with

MongoDB, projecting an xR2RML reference means projecting fields mentioned in the JSONPath expression.

If a, xR2RML reference corresponds to a variable in the triple pattern then it is always projected followed by the

notation “AS <variable name>”. In our running example, the subject and object of tp2 are both variables; “?dept”,

respectively “?senior”. The references of the subject map ($.code) and object map ($.members[?(@.age >=

40)].name) that they are matched with must be projected. Consequently:

 genProjection(tp2, <#Departments>) = {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

Other projected references shall vary depending on the target database capabilities: in an RDB, columns of a join

condition do not need to be projected since the database can compute the join operation. Conversely, in MongoDB,

since a join shall be processed by the query processing engine, joined references must be projected. This is illustrated

using tp1 in our running example. <#Staff> has a referencing object map, thus the child and parent joined references

must be projected. This is achieved by function genProjection that projects the child reference $.manages.*, and

function genProjectionParent that projects the parent reference $.dept:

 genProjection(tp1, <#Staff>) = {$.manages.*}

 genProjectionParent(tp1, <#Staff>) = {$.dept ,$.code AS ?dept}

Note that since the joined references are not matched with a variable of the SPARQL query they are projected without

the AS operator.

Where. The genCond function computes the Where part by matching each triple pattern term with its corresponding

term map in each triples map.

- A variable in a triple pattern entails a non-null condition on the corresponding reference in the term map. Let us

exemplify this: the subject part of tp2, variable ?dept, is matched with the subject map of triples map

<#Departments>, whose template string is "http://example.org/dept/{$.code}". Without any further

knowledge on ?dept, the match states that the subject map must return a valid value, in other words the reference

Mapping-based SPARQL access to a MongoDB database

17

"$.code" must not return null. This entails a condition: isNotNull($.code). When applied to the object of tp2,

the same method entails a second not-null condition: isNotNull($.members[?(@.age >= 40)].name).

- When a term of the triple pattern is matched with a constant term map, no condition is entailed. E.g.: the predicate

part of tp2, ex:hasSeniorManager, matches the constant predicate map of triples map <#Departments>. There is

nothing more we can deduct from this. As a result, the evaluation of function genCond on tp2 is as follows:

 genCond(tp2, <#Departments>, true) = {isNotNull($.code),

 isNotNull($.members[?(@.age >= 40)].name)}

- A constant term in the triple pattern (literal or IRI) entails an equality condition. In our running example, the

subject part of tp1, <http://example.org/staff/Dunbar>, is matched with the subject map of <#Staff>, whose

template string is "http://example.org/staff/{$['lastname','familyname']}". This entails the equality

condition:

 equals("Dunbar", $['lastname','familyname']),

stating that either “lastname” or “familyname” must equal “Dunbar”.

- When a referencing object map is involved with either a variable or a constant term, a not-null condition must be

added to ensure that the joined references return proper values. In our running example the object of tp1, variable

?dept, is matched with the referencing object map of <#Staff>. This entails a new not-null condition on the child

joined reference: isNotNull($.manages.*). As a result, the evaluation of function genCond on tp1 is as follows:

 genCond(tp1, <#Staff>, true) = {equals("Dunbar", $['lastname','familyname']),

 isNotNull($.manages.*)}

A second atomic abstract query is entailed due to the referencing object map of <#Staff>, in which the Where part

is computed by function genCondParent. The Where part contains the peer not-null condition for the parent joined

reference: isNotNull($.dept). In addition, since the subject map of the parent triples map serves as the object

map, conditions are generated similarly to what we explained above: equals conditions for constant values and

isNotNull conditions for variables. In our case, variable ?dept is matched with the subject map of

<#Departments>. Finally:

 genCondParent(tp1, <#Staff>, true) = {isNotNull($.dept), // join condition

 isNotNull($.code)} // variable ?dept

Furthermore, if a variable of the triple pattern is mentioned in the SPARQL filter f passed as argument of transTPm,

functions genCond and genCondParent generate a condition sparqlFilter(<xR2RML reference>, f).

3.5 Abstract query optimization

At this point, our method produces abstract queries that are effective, i.e. they preserve the semantics of SPARQL

queries. Yet, their structure may show unnecessary complexity, and entail inefficient queries when translated into a

target query language. Although we may postpone the query optimization to translation into a concrete query

language, it is interesting to figure out what optimizations can be done on the abstract representation first, and leave

only database-specific optimizations to the latter stage. SPARQL-to-SQL methods proposed various SQL query

optimizations [19,14,7], that are often independent of SQL. Below we review some of these techniques referring to the

terminology defined in [19]. We show that some of them are implemented in our method by construction, and how

others apply in the context of our abstract query language.

Filter Optimization. In a naive approach, strings generated by R2RML templates are dealt with using an SQL

comparison of the resulting strings rather than the database values used in the template. This is notably the case of

IRIs that are generally built as a template. As a consequence, the query evaluation cannot take advantage of existing

indexes and performs poorly. Conversely in our approach, equality conditions apply to xR2RML references rather

than on the generated IRIs, hence the Filter Optimization is enforced by construction.

Mapping-based SPARQL access to a MongoDB database

18

Filter pushing. As we have already mentioned, the translation of a SPARQL filter into an encapsulating \textsc{select

where} clause tends to lower the selectivity of inner queries, and the query evaluation process may have to deal with

unnecessarily large intermediate results. In our approach, Filter pushing is achieved by construction by pushing down

SPARQL filters, as much as possible, in the translation of each triple pattern.

Self-Join Elimination. A self-join may occur when several triples maps share the same logical source. This can result

in several triple patterns being translated into atomic abstract queries with the same From part, i.e. that refer to the

same logical source. The Self-Join Elimination consists in merging the criteria of two atomic queries into a single

equivalent query.

Optional-Self-Join Elimination. The self-join issue can equally occur in the case of an OPTIONAL triple pattern that

is translated into a LEFT OUTER JOIN. Similarly to the Self-Join Elimination, we can merge abstract atomic queries

with the difference that null values must be allowed for terms that only show in the right operand of the left join. As a

result, isNotNull conditions of the right operand are removed, and equals conditions of the form equals(expr,

value) are replaced with a new type of condition including an isNull condition and OR operator:

isNull(expr) OR equals(expr, value)

Self-Union Elimination. A UNION operator can be created either due to the SPARQL UNION operator or during the

translation of a triple pattern to which several triples maps are bound (in function transTPm). Similarly to the Self-Join

Elimination, a union of several atomic abstract queries sharing the same logical source can be merged in a single one.

In future works, we intend to study the relevance and applicability and other optimizations to our abstract query

representation, such as the Projection Pushing [7] that helps to efficiently deal with queries such as SELECT DISTINCT

?p WHERE {?s ?p ?o}, and the detection of some Unsatisfiable Conditions described in[14].

Running Example.

When we put the translation of tp1 and tp2 together we obtain the following abstract query:

transm(bgp, true) =

 { From ← {[xrr:query "db.staff.find({})"]}

 Project ← {$.manages.*}

 Where ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}

 } AS child

 INNER JOIN

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.dept, $.code AS ?dept}

 Where ← {isNotNull($.code), isNotNull($.dept)}

 } AS parent

 ON child/$.manages.* = parent/$.dept

 INNER JOIN

 { From ← [xrr:query "db.departments.find({})"]

 Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

 Where ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) }

 ON {?dept}

The 2
nd

 and 3
rd

 atomic queries have the same From part, thus entailing a self-join. To eliminate it we first rewrite the

abstract query: we change the natural associative property of joins by embedding the 2
nd

 and 3
rd

 atomic queries in

curly brackets.

transm(bgp, true) =

 { From ← {[xrr:query "db.staff.find({})"]}

 Project ← {$.manages.*}

 Where ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}

 } AS child

Mapping-based SPARQL access to a MongoDB database

19

 INNER JOIN

 {

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.dept, $.code AS ?dept}

 Where ← {isNotNull($.code), isNotNull($.dept)} }

 INNER JOIN

 { From ← [xrr:query "db.departments.find({})"]

 Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

 Where ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) }

 ON {?dept}

 } AS parent

 ON child/$.manages.* = parent/$.dept

Now we can perform a self-join elimination by merging the two queries together: we merge the Project parts on the

one hand, and the Where parts on the other hand. We obtain the following optimized abstract query:

transm(bgp, true) =

 { From ← {[xrr:query "db.staff.find({}})"]}

 Project ← {$.manages.*}

 Where ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}

 } AS child

 INNER JOIN

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.dept, $.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

 Where ← {isNotNull($.code), isNotNull($.dept), isNotNull($.members[?(@.age>=40)].name)}

 } AS parent

 ON child/$.manages.* = parent/$.dept

4 Translation of an abstract query into a MongoDB query

Let us sum up the whole process so far. Function transm translates a SPARQL query into an abstract query. INNER

JOIN, LEFT OUTER JOIN, FILTER and UNION operators are entailed by the dependencies between graph patterns

of the SPARQL query. UNION and INNER JOIN operators may also arise from the rewriting of a triple pattern: a

UNION when a triple pattern tp is bound to more than one triples map, and an INNER JOIN when a triples map

contains a referencing object map. Function transTPm, defined in section 3, returns atomic abstract queries of the form

{From, Project, Where}. The From part contains the triples maps logical source that consists of a concrete MongoDB

query (property xrr:query) and an optional iterator (property rml:iteraotr). The Where part is calculated by

matching triple pattern terms with term maps; this shall generate either not-null conditions for SPARQL variables or

equality conditions for constant terms. SPARQL filters are encapsulated in a specific sparqlFilter condition.

In sections 4 and 5 we continue the process with the concrete case of MongoDB. In this case, xR2RML references are

JSONPath expressions, thus the Where part is a set of conditions on JSONPath expressions, either

isNotNull(JSONPath), equals(JSONPath, value), or sparqlFilter(JSONPath, filter). We study further-on how to

translate not-null and equality conditions on JSONPath expressions into valid MongoDB queries.

In the current status of this work, we do not consider SPARQL filters in the translation into the MongoDB query

language.

The process we define in this section first translates isNotNull and equals conditions of the Where part into MongoDB

queries. Since conditions of the Where part are about JSONPath expression we have to investigate how to rewrite

JSONPath expressions into equivalent MongoDB queries. For instance in our running example, the condition:
equals("Dunbar", $['lastname','familyname'])

shall be translated into a concrete MongoDB query:

Mapping-based SPARQL access to a MongoDB database

20

$or[{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}]

The generated MongoDB query shall augment the query of the From part. In this regards our example is trivial since

the query in the <#Staff> triples map is empty: "{}". The final query is exactly what we generated above.

The query produced by the translation process may contain several shortcomings: (i) the query may contain

unnecessary complexity such as nested operators; (ii) it is not always possible to translate any arbitrary JSONPath

expression into an equivalent MongoDB query; (iii) the query may contain $where operators at any depth although

this is not valid in the MongoDB query language. Therefore, in a second step, the translation process performs various

rewritings and optimizations.

4.1 The MongoDB query language

The MongoDB database comes with a rich set of APIs to allow applications to query a database in an imperative way.

In addition, the MongoDB shell is a JavaScript interface that defines a declarative query language that we hereafter

denote by the MongoDB query language
9
. In this work we refer to the language as described in the MongoDB Manual

3.0 (the latest at the time of writing). The db.collection.find() method accepts two parameters: a query string and a

projection string, and returns a cursor to the matching documents. Optional modifiers amend the query to impose

limits, skips, and sort orders. Both the query and projection parameters are JSON documents.

(1) The query parameter describes conditions about the documents to search for in the database. In the query

document, specific query operators are marked with a heading ‘$’ character. We illustrate this with a few examples:

- {"decade":{$exists:true}}: matches all documents with a field ”decade”.

- {"person.age":{$gte:18}}: matches all documents with a field ”person” whose value is a document having a

field ”age” whose value is 18 or more.

- {"staff.0.role":{$eq:"manager"}}: matches all documents with an array ”staff” whose first element is a

document having a field ”role” with value ”manager”.

- {"staff":{$elemMatch:{"role":"developer"}}}: matches all documents with an array ”staff” in which at least

one element is a document having a field ”role” with value ”developer”.

(2) The projection parameter specifies the fields from the matching documents to return. In this example request:

db.collection.find({"person.age":{$gte:18}}, {"person.name": true})

the first parameter matches all documents about people whose age is at least 18, and the second parameter specifies

that only their name must be returned: no other fields, including “age”, are returned.

The MongoDB documentation provides a rich description of the query language. Nevertheless, it lacks precision as to

the formal semantics of some operators. For instance the query {$or:[{"p.q":10},{"p.q":11}]} retrieves

documents where field “p” is a document having a field “q” whose value is either 10 or 11. We may be tempted to

write the same query in another way: {"p": {$or: [{"q":10},{"q":11}]}}, however this query is invalid. It is

unclear in the documentation why the $or and $and operators cannot be used as a condition on a field, but have to be

at the top-level of the query document, or nested in an $elemMatch, an $and or an $or operator. To the best of our

knowledge, at the time of writing, there is no published work that clarifies the semantics of the language. Therefore, in

Definition 11 we describe the subset of the query language that we use in our approach, and we underline some

limitations and ambiguities. Operator keywords are bold, square brackets ('[', ']'), curly brackets ('{', '}') and characters

“:”, “,”, “/” and “.” are part of the language. Parenthesis groups "(...)", characters “*”, “+” and “|” are the syntactic

notation denoting occurrences and alternatives.

A sequence of comma-separated QUERY elements (in the top-level query and in the $elemMatch operator) is

implicitly interpreted as a logical AND between the elements. Additionally, the $and operator performs a logical AND

operation on an array of QUERY expressions and selects the documents that satisfy all the expressions in the array.

9
 https://docs.mongodb.org/manual/tutorial/query-documents/

Mapping-based SPARQL access to a MongoDB database

21

The $and operator is necessary when the same field or operator has to be specified in multiple expressions (as queries

are valid JSON documents, thus they cannot have twice the same field name).

The $elemMatch operator matches documents with an array field in which at least one element matches all the

specified QUERY criteria.

The $where operator passes a JavaScript expression or function to the query system. It provides greater flexibility than

other operators. However, the JavaScript evaluation cannot take advantage of existing indexes and requires that the

database processes the JavaScript expression for each document. This issue can seriously hinder performances, and

MongoDB strongly recommends to use $where only when the query cannot be expressed using another operator.

The $where operator is valid only in the top-level query document: it cannot be used inside a nested query such as an

$elemMatch. This restriction makes a strong difference with SQL, and has a major impact on the rewriting process.

The ARRAY_SLICE definition is separated from the above ones as an array slice does not apply in the query part but

in the projection part of a MongoDB request (second parameter of the find method). For instance, query
db.collection.find({comments:{$size: 100}}, {comments:{$slice: 5}})

selects documents that have an array “comments” with 100 elements, and projects only the first five elements.

Definition 11: Grammar of a subset of the MongoDB query language

TOP_LEVEL_QUERY = {} |

 { QUERY(, QUERY)*(, WHERE_QUERY)*} |

 { WHERE_QUERY(, WHERE_QUERY)* }

QUERY = FIELD_QUERY | OR_QUERY | AND_QUERY

FIELD_QUERY = PATH: {OP: LITERAL} |

 PATH: {$elemMatch: {QUERY(, QUERY)*}} |

 PATH: {$regex: /REGEX/}

OP = $eq | $ne | $lt | $lte | $gt | $gte | $size

OR_QUERY = $or: [{QUERY}(, {QUERY})+]

AND_QUERY = $and: [{QUERY}(, {QUERY})+]

PATH = "(FIELD_NAME|ARRAY_INDEX)(.(FIELD_NAME|ARRAY_INDEX))*"

WHERE_QUERY = $where: JS_BOOL_EXP

LITERAL = literal value possibly in double quotes,

 including specific values null, true, false

FIELD_NAME = valid JSON field name

ARRAY_INDEX = positive integer value

JS_BOOL_EXP = valid JavaScript boolean expression

REGEX = Perl compatible regular expression

ARRAY_SLICE = {PATH: {$slice: <nb_of_elts>}} | {PATH: {$slice: [<skip>,<limit>]}}

Ambiguous semantics of field names:

The MongoDB query language allows ambiguous short-cut expressions to name paths in the JSON documents. For

instance, query {"p":{$eq:3}} matches documents where p is a field with value 3, such as {p:3}. Surprisingly it also

matches documents where p is an array wherein at least one element has value 3, e.g. {p:[3,4]}, that would equally

be matched by query {"p":{$elemMatch:{$eq:3}}}. This gets even worse with a sequence of field names, as each

field name may be considered for what it is, exactly one field, or for a short-cut for the elements of an array field.

With this logic, query {"p.q":{$eq:3}} matches several types of documents depending on how we interpret p and q,

such as {p:{q:3,r:4}}, {p:[{q:3,r:4},{q:5}]} and {p:[{q:[3,4],r:5},{q:[6,7]}]}.

Mapping-based SPARQL access to a MongoDB database

22

These simple examples entail an important conclusion: given the ambiguous notation of the MongoDB query

language, it is hardly possible to write a MongoDB query whose semantics would be strictly equivalent to a SPARQL

query. Consequently, whatever the rewriting we can come up with, we shall always have to run the initial SPARQL

query against the generated triples to make sure that we rule out triples generated because of this ambiguity, but that

do not match the SPARQL query.

4.2 The JSONPath language

JSONPath
10

 is a domain specific language designed to read, parse and extract data from JSON documents. It was

defined in 2007 by Stefan Goessner as an analogy to the XPath
11

 standard for XML documents. As of today JSONPath

is not a standard, however its definition remains stable and a large community provides and maintains

implementations for various programming languages. Definition 12 describes the grammar of JSONPath. Bold

characters (‘$’, ‘*’, ‘.’, ‘[‘, ‘]’) are part of the language. In particular note that characters “(“ and “)” are part of the

language in the FILTER and CALC_INDEX expressions, whereas in FIELD_ALT and INDEX_ALT expressions

they simple denote groups. Similarly, the “*” character is part of the language in expression WILDCARD, but denotes

0 to any occurrences in other expressions.

Let us give a few illustrating examples:

- $.names.*: selects all elements of array “names” like in: "{names: ["mark", "john"]}", or all fields of

document “names” like in "{names: {firstname: "mark", lastname: "john"}}".

- $.books[1,3]: selects the second (index 1) and fourth (index 3) elements of array “books”.

- $.books[1:3]: selects all books from index 1 (inclusive) until index 3 (exclusive), that is at indexes 1 and 2.

- $.books[(@.length - 1)] or $.books[-1:]: select the last element of array “books”. In the “[()]” notation, “@”

refers to the parent element “books”.

- $.team[?(@.members <= 10)].name: select the name of teams that have 10 members or less, i.e. “team” is an

array, among its elements we select those that have a field “members” whose value is 10 or less, and finally we

select the field “name” of those elements. Unlike above, in the “[?()]” notation “@” refers to elements of the

array.

- $..author: selects all “author” fields anywhere in the document.

Definition 12: JSONPath grammar

JSONPATH = $(WILDCARD | FIELD_NAME | ARRAY_INDEX | DESCENDANT | FIELD_ALT |

 INDEX_ALT | ARRAY_SLICE | FILTER | CALC_INDEX)*

WILDCARD = .*|[*]

FIELD_NAME = FIELD_NAME_DOT | FIELD_NAME_BRKT

FIELD_NAME_DOT = .<name>

FIELD_NAME_BRKT = ["<name>"]

ARRAY_INDEX = [<int>]

DESCENDANT = ..

FIELD_ALT = ["<name>"(,"<name>")+]

INDEX_ALT = [<int>(,<int>)+]

ARRAY_SLICE = [<start>:<end>:<step>] | [<start>:<end>] | [<start>:]

FILTER = [?(<script expression>)]

CALC_INDEX = [(<script expression>)]

In an array slice, if the <start> is omitted it defaults to 0, e.g. $.books[:2] selects the first two books. If <end> is

omitted it defaults to the index of the last element of the array. <start> and <end> can be positive (the index is counted

10

 http://goessner.net/articles/JsonPath/
11

 http://www.w3.org/TR/1999/REC-xpath-19991116/

Mapping-based SPARQL access to a MongoDB database

23

from the start of the array), or negative (the index is counted from the end of the array), e.g. $.books[-2:] selects the

last two books.

Restrictions on the usage of JSONPath expressions

Script expressions:

The FILTER expression filters elements of an array based on <script expression> that must evaluate to a boolean.

CALC_INDEX selects the element of an array at index <script expression> that evaluates to a positive integer. In both

cases, the language definition says <script expression> is written in “the syntax of the underlying script engine”. This

design choice has a strong shortcoming: it binds the language definition to its implementations, since the underlying

script engine depends on the implementation, and in the worst case there may even not be any underlying script engine

at all. That made sense in the initial JavaScript implementation of Goessner, but this is subject to various

interpretations in other implementations. For instance in the Java port
12

 of Goessner's implementation, developers

have chosen to implement a very limited subset of JavaScript.

In our rewriting approach, we stick to the idea that those expressions are JavaScript, keeping in mind that its support

may vary depending on the JSONPath implementation that is being used.

Wildcard semantics:

In JSONPath, the wildcard '*' is equally applicable to arrays and documents. In an array it stands for any element of

the array, while in a document it stands for any field of the document. In MongoDB conversely, documents and arrays

are not treated equally: the $elemMatch operator applies specifically to arrays, and it is not possible to match any field

in a document (there is no equivalent of the “*” for a document). Therefore, to be able to translate JSONPath

expressions into MongoDB, we restrict the use of the wildcard to arrays only, which is its most common usage.

Filters:

In the JSONPath reference, it is unclear whether the filter notation [?(<script expression>)] applies to arrays, or to

arrays and documents. Some implementations apply both with somehow confusing semantics, e.g. in the expression

$.p[?(@.q)]:

- if “p” is an array then “@” refers to each of its elements, meaning that only elements with a field “q” are matched.

The drawback is that it is not possible to write a condition about an element given by its index, e.g. to match

arrays in which the 11
th
 element is 0, we would like to write $.p[?(@[10] == 0)], which is invalid because in

that case “@” should refer to the array p but not to its elements.

- Conversely if “p” is a document, “@” refers to “p” itself, meaning that “p” matches only if it is a document with a

field “q”.

Besides some tests show that different implementations have made different interpretations in this matter. To get rid of

any confusion, in this work we restrict the usage of filters “[?()]” to arrays only. Therefore expressions like $.p[?(…)]

shall be understood as “p” being an array field, the “@” character refers to its elements.

Root element of JSON documents:

In MongoDB the root element of a document cannot be an array, e.g. ["mark","john"] is not a valid MongoDB

document, but {"people":["mark","john"]} is valid. Consequently, the JSONPath expressions we consider must

not start with array-specific elements. For instance, expressions "$[0]" and "$[1,3,5]" are invalid in our context.

Additionally, given the above restriction on the wildcard, expressions starting like "$.*" or "$[*]" are not supported

in our context.

Descendent operator:

Unlike JSONPath, MongoDB does not provide a descendent operator that would look for a pattern at any depth of the

documents. Consequently, our rewriting method does no support JSONPath expressions using the “..” operator.

12

 https://github.com/jayway/JsonPath

Mapping-based SPARQL access to a MongoDB database

24

4.3 Conventions and formalism

We define an abstract hierarchical representation of a MongoDB query. This representation allows for handy

manipulation during the query construction and optimization phases. Definition 13 lists the clauses of this

representation as well as their translation into a concrete query string, when relevant.

In the COMPARE clause definition, <op> stands for one of the MongoDB query compare operators: $eq, $ne, $lte,

$lt, $gte, $gt, $size and $regex. Let us consider the following example abstract query:

AND(COMPARE(FIELD(p) FIELD(0), $eq, 10), FIELD(q) ELEMMATCH(COND(equals("val")))

It matches all documents where “p” is an array field whose first element is 10, and “q” is an array field in which at

least one element has value “val”. Its concrete representation is:

$and: [{"p.0": {$eq:10}}, {"q": {$elemMatch: {$eq:"val"}}}].

Definition 13: Abstract MongoDB query

AND(<expr1>, <expr2>, …) → $and:[<expr1>,<expr2>, …]

OR(<expr1>, <expr2>, …) → $or:[<expr1>,<expr2>, …]

WHERE(<JavaScript expr>) → $where:'<JavaScript expr>'

ELEMMATCH(<exp1>,<exp2>, …) → $elemMatch:{<exp1>,<exp2>, …}

FIELD(p1) FIELD(p2)... FIELD(pn) → "p1.p2….pn":

SLICE(<expr>, <number>) → <expr>:{$slice: <number>}

COND(equals(v)) → $eq:v

COND(isNotNull) → $exists:true, $ne:null

EXISTS(<expr>) → <expr>:{$exists: true}

NOT_EXISTS(<expr>) → <expr>:{$exists: false}

COMPARE(<expr>, <op>, <v>) → <expr>:{<op>: <v>}

NOT_SUPPORTED → ∅

CONDJS(equals(v)) → == v

CONDJS(equals("v")) → == "v"

CONDJS(isNotNull) → != null

UNION(<query1>, <query2>, …) Same semantics as OR, but processed by the query processing
engine

The NOT_SUPPORTED clause helps keep track of any location, within the abstract query, where the condition

cannot be translated into an equivalent MongoDB query element. It shall be used in the optimization phase.

The UNION clause represents a logical OR that shall be computed by the query processing engine based on the result

of queries <query1>, <query2>, etc. It can be produced by the abstract MongoDB query optimization (Algorithm 4).

Note that this UNION clause applies to set of JSON documents retrieved from the database, whereas the UNION

operator generated by function transm applies to triples.

In the definition of the translation rules we use the following notations:

- <cond>: is a condition to translate into MongoDB: either isNotNull or equals(value).

- <JP>: denotes a possibly empty JSONPath expression.

- <JP:F>: denotes a non-empty JSONPath sequence of field names and array indexes, e.g. “.p.q.r”, “.p[10]["r"]”.

- <bool expr>: denotes a JavaScript expression that evaluates to a boolean.

- <num expr>: denotes a JavaScript expression that evaluates to a positive integer.

Finally, we define the function replaceAt(<rep>, <path>), that replaces any occurrence of the '@' character with

<rep> in string <path>. E.g. replaceAt("this.people", "@ < 10") returns "this.people < 10".

Mapping-based SPARQL access to a MongoDB database

25

4.4 Query translation rules

Given the subset of the MongoDB query language that we consider in section 4.1, the JSONPath language and the

restrictions mentioned in section 4.2, and the formalism defined in section 4.3, in this section we define the recursive

function trans(JSONPath expression, <cond>) that translates a condition <cond> applied to a JSONPath expression

into an abstract MongoDB query. <cond> stands for either isNotNull or equals(value). Function trans consists of a set

of rules detailed in Algorithm 2, that apply if the JSONPath expression matches a certain pattern. The JSONPath

expression is checked against the patterns in the order of the rules (0 to 9). When a match is found the rule is applied

and the search stops.

Before getting into the details, let us illustrate the approach using the running example. As already seen, the translation

of triple pattern tp1 entails two atomic abstract queries (see section 3.4), among which the child query contains two

conditions:

 isNotNull($.manages.*),

 equals("Dunbar", $['lastname','familyname'])

Let us consider condition isNotNull($.manages.*). It amounts to evaluating trans($.manages.*, isNotNull)

that goes through the following steps:

- Rule R0 first matches, returning trans(.manages.*, isNotNull).

- Then, rule R8 matches, it returns FIELD(manages) trans(.*, isNotNull).

- Lastly rules R7 and R1 translate trans(.*, isNotNull) into ELEMMATCH(COND(isNotNull)).

This comes up with the abstract MongoDB query:

FIELD(manages) ELEMMATCH(COND(isNotNull)).

Applying Definition 13 to the abstract MongoDB query entails the final concrete query:

 "manages": {$elemMatch: {$exists:true, $ne:null}}.

Following the same algorithm, the second condition, equals("Dunbar", $['lastname','familyname']), will be

translated into the abstract query:

 OR(FIELD(lastname) COND(equals("Dunbar")), FIELD(familyname) COND(equals("Dunbar")))

that is translated into the concrete query:

 $or: [{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}]

Mapping-based SPARQL access to a MongoDB database

26

Algorithm 2: Translation of a condition on a JSONPath expression into an abstract MongoDB query (function

trans(JSONPath expression, <cond>))

R0 trans($, <cond>) → ∅

trans($<JP>, <cond>) → trans(<JP>, <cond>)

R1 trans(∅, <cond>) → COND(<cond>)

R2 Field alternative (a) or array index alternative (b)

(a) trans(<JP:F>["p","q",...]<JP>, <cond>) →

OR(trans(<JP:F>.p<JP>, <cond>), trans(<JP:F>.q<JP>, <cond>), ...)

(b) trans(<JP:F>[i,j,...]<JP>, <cond>) →

OR(trans(<JP:F>.i<JP>, <cond>), trans(<JP:F>.j<JP>, <cond>), ...)

R3 Heading field alternative (a) or heading array index alternative (b)

(a) trans(["p","q",...]<JP>, <cond>) →

OR(trans(.p<JP>, <cond>), trans(.q<JP>, <cond>), ...)

(b) trans([i,j,...]<JP>, <cond>) →

OR(trans(.i<JP>, <cond>), trans(.j<JP>, <cond>), ...)

R4 Heading JavaScript filter on array elements, e.g. $.p[?(@.q)].r

trans([?(<bool_expr>)]<JP >, <cond>) → ELEMMATCH(trans(<JP >, <cond>), transJS(<bool_expr>))

R5 Array slice: n last elements (a) or n first elements (b)

(a) trans(<JP:F>[-<start>:]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), -<start>)

(b) trans(<JP:F>[:<end>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), <end>)

trans(<JP:F>[0:<end>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), <end>)

R6 Calculated array index, e.g. $.p[(@.length - 1)].q

(a) trans(<JP1>[(<num_expr>)]<JP2>, <cond>) → NOT_SUPPORTED

if <JP1> contains a wildcard or a filter expression
(b) trans(<JP:F >[(<num_expr>)], <cond>) →

AND(EXISTS(<JP:F >),

WHERE('this<JP:F>[replaceAt("this<JP:F >", <num_expr>)] CONDJS(<cond>')))

(c) trans(<JP1:F >[(<num_expr>)]<JP2:F>, <cond>) →

AND(EXISTS(<JP1:F >),

WHERE('this<JP1:F >[replaceAt("this<JP1:F >", <num_expr>)]<JP2:F> CONDJS(<cond>')))

R7 Heading wildcard

(a) trans(.*<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>))

(b) trans([*]<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>))

R8 Heading field name or array index

(a) trans(.p<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>)

(b) trans(["p"]<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>)

(c) trans([i]<JP>, <cond>) → FIELD(i) trans(<JP>, <cond>)

R9 No other rule matched, the current expression is not supported

trans(<JP>, <cond>) → NOT_SUPPORTED

Mapping-based SPARQL access to a MongoDB database

27

4.4.1 Rule R0

Rule R0 is the entry point of the translation process since a valid JSONPath expression starts with a “$” character. At

this stage, invalid or unsupported JSONPath expressions (see restrictions in section 4.2) shall be taken care of.

4.4.2 Rue R1

Conversely, rule R1 is the termination point: when the JSONPath expression has been fully parsed, the last element

that is created is the condition in MongoDB, like “$eq: value” for an equality condition, or “$exists:true, $ne:null” for

a not-null condition.

4.4.3 Rule R2

A field alternative or array index alternative is translated into an $or operator. As underlined in section 4.1, the $or

operator cannot be used as a condition on a field, but has to be either at the top-level query or nested in an

$elemMatch, $and or $or operator. For this reason, a sequence of field names and array indexes (<JP:F>) must

precede the alternative pattern (["p","q",...] or [i,j,...]). In the rewriting, the <JP:F> sequence is prepended to each of

the $or members. In the example below the “.p” stands for the <JP:F> term:

Condition
equals($.p.["q", "r"], 10)

is translated into:
$or: [{"p.q": {$eq: 10}}, {"p.r": {$eq: 10}}]

Note that no assumption is made as to what may come after the alternative pattern, this is denoted in the rule by

JSONPath <JP> following the alternative pattern.

4.4.4 Rule R3

Rule R3 matches an expression with a heading field alternative or array index alternative. Contrary to rule R2, the

alternative pattern is not preceded by a <JP:F> sequence. This case occurs when the alternative is either the first

pattern in the JSONPath expression, or when it comes after a term such as a JavaScript filter (R4), an array slice (R5)

or a wildcard (R7). Example:

Condition
equals($.p.*["q", "r"], 10)

is translated into:
"p": {$elemMatch: {$or: [{"q": {$eq: 10}}, {"r": {$eq: 10}}]}}

4.4.5 Rule R4

A JavaScript (JS) filter is a boolean condition evaluated against elements of an array, where the “@” character stands

for each array element, e.g. “$.people[?(@.role)]” matches all elements of array “people” that are documents having a

field “role”. Since a JS filter specifies a condition on all array elements, it is translated into a MongoDB query

embedded in an $elemMatch operator. Function transJS (see section 4.4.11) parses the JS expression and translates it.

Example:

Condition
equals($.p[?(@.q)].r.*, "value")

is translated into:

"p": {$elemMatch: {

"r": {$elemMatch: {$eq:"value"}},

"q": {$exists:true}}}

R4 produces the first $elemMatch as well as the condition "q":{$exists:true}. The second $elemMatch is produced

by rule R7 when processing the wildcard.

Mapping-based SPARQL access to a MongoDB database

28

4.4.6 Rule R5

JSONPath and MongoDB query language have two different ways of denoting array slices. JSONPath uses notation

[<start>:<end>:<step>], where any of the three terms are optional, and <start> and <end> may be negative.

MongoDB uses notation {$slice: <count>} or {$slice: [<start>, <count>]}, <count> may be negative in the

first notation only, <start> may be negative in both notations. In JSONPath and MongoDB a negative value means

“starting from the end of the array”. Due to these discrepancies, the rewriting of JSONPath slices into MongoDB

projections has limitations explicated in the table below:

Semantics JSONPath MongoDB query language

From index 0 to index n-1 (first n elements) array[:n] "array" : {$slice: n}

Last n elements array[-n:] "array" : {$slice: -n}

From index m until the last element array[m:] n/a

From index m to index n-1 array[m:n] n/a

From index m to index n-1 by step s [m:n:s] n/a

Consequently rules R5 (a) and (b) only cover the first two lines of the table. Other forms of JSONPath slice shall be

treated in the default rule R9.

The JSONPath array slice notation is rewritten into the $slice operator that, unlike in other rules, is used as a

projection parameter of the MongoDB find() method. Rule R5 must translate the JSONPath expression that comes

before the array slice (<JP:F>) as well as the subsequent JSONPath expressions (<JP>) to generate the query

parameter of the find() method. It does so by replacing the array slice by a wildcard “.*”: trans(<JP:F>.*<JP>,

<cond>). Hence, the query part applies to the whole array, while the projection part shall select only the expected

elements.

4.4.7 Rule R6

A JSONPath calculated array index selects an element from an array using a JavaScript expression that evaluates to a

positive integer. The script expression uses the “@” character instead of “this” to refer to the array element.

Let us consider this example query: equals($.staff[(@.length - 1)].name, "John"), that matches all documents

in which the last element of array “staff” has a field “name” with value “John”. In MongoDB, there is no way to

retrieve the size of an array nor to calculate such an index (the $size operator is not relevant here as it specifies a

condition on the size of an array). The only way to specify a condition on an element whose index is calculated is to

use the $where operator. For instance,

Condition

 equals($.staff[(@.length - 1)].name, "John"),

shall translated by rule R6(c) into:

 $and:[{"staff":{$exists: true}}, {$where:"this.staff[this.staff.length - 1].name == 'John'"}]

Here we notice that rule R6 (b and c) produces a $where operator nested in an $and operator. As already underlined,

the $where operator is valid only in the top-level query. We show in section 4.5 that we can rewrite a query containing

a $where nested in a combination of $and and $or operators into a union of MongoDB queries in which a $where

shows only in the top-level query. If a rule produces a $where inside an $elemMatch operator, there is no way we can

rewrite this query into multiple valid queries. The $elemMatch operator is used to translate either a JS filter (R4) or

wildcard (R7). Consequently, rule R6(a) makes those cases impossible by returning NOT_SUPPORTED in case a

calculated array index is preceded by a wildcard or a filter.

If the calculated array index is followed by a JSONPath expression, that subsequent expression has to be part of the

JavaScript expression in the $where operator. This is exemplified by the “name” field in the example above. More

Mapping-based SPARQL access to a MongoDB database

29

generally, anything that follows the calculated array index should be rewritten in JavaScript. This is not always

possible however, as illustrated by the two examples below:

(1) Condition equals($.p[(@.length - 1)].*, "val"), could be rewritten in:

$where:{"this.p[this.p.length-1].* == 'val'"}. This query is invalid since there is no equivalent to the

wildcard in JavaScript.

(2) Similarly, condition equals($.p[(@.length - 1)].r[?(@.q)].s, "val") could be rewritten in:

$and: [{p:$exists}, {$where: "this.p[this.p.length - 1].r[?(@.q)].s == 'val'"}]. But again this query

is invalid since there is no JavaScript equivalent to the JSONPath notation ?(@.q).

Therefore, although JavaScript functions could be written to address this kind of issue, we choose not to go through

this solution at this stage and further discuss this choice in section 6.3. Therefore, in rule R6(c) we restrict terms that

follow a calculated array index to a sequence of field names or array indexes, denoted <JP2:F>.

4.4.8 Rule R7

As mentioned in section 4.2, the use of the wildcard is restricted to the context of arrays. Hence, rule R7 simply

translates a heading wildcard into an $elemMatch operator.

4.4.9 Rule R8

Other field names and array indexes are translated into their equivalent dot-separated MongoDB path. Example:

condition isNotNull($.p[5]["s"]) is translated into "p.5.s": {$exists: true}.

4.4.10 Rule R9

Rule R9 is the default rule. In case no other rule matched, the translation of the JSONPath expression to MongoDB

query language is not supported. This applies in the following cases:

- A calculated array index is preceded or followed by a wildcard, an alternative or a JavaScript filter, as explained

in rule R6.

- Unsupported array slice notation such as [m:n].

- JSONPath expressions entailing that the root document is an array and not a document, such as $.*, $[1,2,…] ,

$[?(…)] and $[(…)].

4.4.11 Translation of a JavaScript filter to MongoDB

Recursive function transJS translates a JavaScript filter into a MongoDB query. It consists of a set of rules, explicated

in Algorithm 3, that apply if the JavaScript expression matches a certain pattern. The JavaScript expression is checked

against the patterns in the order of the rules. When a match is found the corresponding rule is applied and the search

stops.

In the rules definitions we use the following notations:

- <JSpath>: denotes a non-empty JavaScript sequence of field names and array indexes, e.g. ’.p.q.r’, ’.p[10]’.

- The dotNotation(<JS_expr>) function converts a JavaScript path to a MongoDB query path consisting of field

names and array indexes in dot notation. It removes the optional heading dot. e.g. “dotNotation(.p[5]r)” returns

“p.5.r”.

- The transJsOp(op) functions converts a JavaScript comparison operator to its MongoDB equivalent: === → $eq,

== → $eq, != → $ne, <= → $lte, >= → $gte, < → $lt, > → $gt, =~ → $regex.

The expressiveness of the MongoDB query language in terms of comparison is quite limited compared to JavaScript

boolean conditions. As a result, when a JavaScript comparison cannot be turned in an equivalent MongoDB query, the

rule returns the NOT_SUPPORTED clause that shall be used later on during the final translation phase.

Mapping-based SPARQL access to a MongoDB database

30

Algorithm 3: Translation of a JavaScript filter into a MongoDB query (function transJS)

J0 transJS(<JS_expr1> && <JS_expr2>) → AND(transJS(<JS_expr1>), transJS(<JS_expr2>))

J1 transJS(<JS_expr1> || <JS_expr2>) → OR(transJS(<JS_expr1>), transJS(<JS_expr2>))

J2 transJS(@<JS_expr1> <op> @<JS_expr2>) → NOT_SUPPORTED
 where <op> stands for one of {==, ===, !=, !==, <=, <, >=, >, %}

J3 transJS(@<JSpath>) → EXISTS(dotNotation(<JSpath>))

J4 transJS(!@<JSpath>) → NOT_EXISTS(dotNotation(<JSpath>))

J5 (a) transJS(@<JSpath>.length == <i>) → COMPARE(dotNotation(<JSpath>), $size, <i>)

(b) transJS(@<JSpath>.length <op> <i>) → NOT_SUPPORTED

 where <op> stands for one of {!=, <=, <, >=, >, %}

J6 transJS(@<JSpath> <op> <v>) → COMPARE(dotNotation(<JSpath>), transJsOp(<op>), <v>)

J7 transJS(<JS_expr>) → NOT_SUPPORTED

Rules J0 and J1 deal with the logical AND and OR JavaScript operators.

Rule J2 addresses the comparison of two document fields or two array fields such as “@.name != @.login”. This is

not permitted in MongoDB query language, yet it is possible to translate this condition using the $where operator.

Typically rule J2 could return:

AND(EXISTS(<JS_expr1>), EXISTS(<JS_expr2>), WHERE("this<JS_expr1> <op> this<JS_expr2>"))

However the transJS function is used only in the context of an $elemMatch, and the $where operator is valid only in

the top-level query. Therefore, rule J2 returns NOT_SUPPORTED.

Rules J3 and J4 deal with existential comparisons.

Rule J5 addresses tests on the length of an array field. The MongoDB $size operator allows for an equality test on the

length of an array, but other types of comparison are not allowed. Similarly to the discussion above regarding rule J2,

a $where operator could be used in J5(b) to return:

WHERE(this<JSpath>.length <op> <i>)

But again, the $where operator is valid only in the top-level query, consequently rule J 5(b) returns

NOT_SUPPORTED.

Rule J6 addresses all other types of supported comparison between a field and a literal value <v>.

Finally, rule J7 applies when no other rule matched. It is used as the default for all non-supported types of JavaScript

expression.

4.5 Query optimization and translation to a concrete MongoDB query

Functions trans() and transJS(), defined in section 4.4, translate a condition on a JSONPath expression into an abstract

MongoDB query. Before rewriting the abstract query into a concrete query, several potential issues must be addressed:

(i) An abstract query may contain unnecessary complexity, such as nested ORs, nested ANDs, sibling WHEREs,

etc., that can hamper performances.

(ii) An abstract query may contain operators NOT_SUPPORTED, indicating that a part of the JSONPath expression

could not be translated into an equivalent MongoDB operator. Depending on the position of such an operator in

the query, we rewrite the query into a concrete query that shall return all matching documents (the certain

answers), as well as possibly non-matching documents that shall be ruled out afterwards.

(iii) The WHERE operator may be nested beneath a sequence of ANDs and/or ORs, which is not valid in the

MongoDB query language.

Mapping-based SPARQL access to a MongoDB database

31

Those issues are addressed by means of two sets of rewriting rules, O1 to O5 and W1 to W6, defined in sections 4.5.1

and 4.5.2 respectively. Lastly, function rewrite (section 4.5.3) iteratively uses those rules to perform all possible

rewritings and ultimately generate either one concrete MongoDB query or a union of concrete MongoDB queries.

4.5.1 Query optimization

Issues (i) and (ii) are addressed by a set of rewriting rules defined in Algorithm 4. A rule applies to a query Q when Q

matches the pattern in the head of the rule.

Algorithm 4: Optimization of an abstract MongoDB query

The “→” arrow means “is rewritten as”.

O1 Flatten nested AND, OR and UNION clauses:
AND(C1,… Cn, AND(D1,… Dm,)) → AND(C1,… Cn, D1,… Dm)
OR(C1,… Cn, OR(D1,… Dm,)) → OR(C1,… Cn, D1,… Dm)
UNION(C1,… Cn, UNION(D1,… Dm,)) → UNION(C1,… Cn, D1,… Dm)

O2 Merge ELEMMATCH with nested AND clauses:
ELEMMATCH(C1,… Cn, AND(D1,… Dm,)) → ELEMMATCH(C1,… Cn, D1,… Dm).

O3 Group WHERE clauses:
OR(..., WHERE("W1"), WHERE("W2")) → OR(..., WHERE("(W1) || (W2)")).
AND (..., WHERE("W1"), WHERE("W2")) → AND(..., WHERE("(W1) && (W2)")).
UNION(..., WHERE("W1"), WHERE("W2")) → UNION(..., WHERE("(W1) || (W2)")).

O4 Replace AND, OR or UNION clauses of one term with the term itself.
This may occur as a consequence of the flattening of nested clauses or the grouping of WHERE clauses.

O5

Remove NOT_SUPPORTED clauses:

- AND(C1,… Cn, NOT_SUPPORTED) → AND(C1,… Cn): since C1 ∧ … ∧ Cn ⊇ C1 ∧ … ∧ Cn ∧ N, this rewriting

widens the condition. Hence, all matching documents (the certain answers) are returned, in addition to

possibly non-matching documents.

- ELEMMATCH(C1,… Cn, NOT_SUPPORTED) → ELEMMATCH(C1,… Cn): same reason as above given that

an AND implicitly applies to members of an ELEMMATCH.

- OR(C1,… Cn, NOT_SUPPORTED) → NOT_SUPPORTED. Contrary to the AND and ELEMATCH cases, we

cannot simply remove the NOT_SUPPORTED. The query would only return a subset of the matching

documents since C1 ∨… ∨ Cn ⊆ C1 ∨… ∨ Cn ∨ N. Instead, we replace the whole OR clause with a

NOT_SUPPORTED clause. This way, the NOT_SUPPORTED issue is raised up to the parent clause, and it

shall be managed at the next execution of the function. Iteratively, we raise up a NOT_SUPPORTED

clause until it is eventually removed (cases AND and ELEMMATCH above), or it ends up in the top-level

query. The latter is the worst case in which the query shall retrieve all documents.

- UNION(C1,… Cn, NOT_SUPPORTED) → NOT_SUPPORTED: same reason as above.

- FIELD(…)… FIELD(…) NOT_SUPPORTED → NOT_SUPPORTED

We illustrate Algorithm 4 in a dedicated example. Assume we wish to translate the condition below into a concrete

MongoDB query:

equals($.teams.0[?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)].name, "john")

The trans function translates this condition into an abstract MongoDB query. Below we detail the translation and

mention the rules applied at each step:

trans($.teams.0[?(@.level=="beginner" &&

 @.score>=3 && @.isPlayer<>@.isGoal)].name, equals("john")) =

Mapping-based SPARQL access to a MongoDB database

32

R0,R8 FIELD(teams.0) trans([?(@.level=="beginner" &&

 @.score>=3 && @.isPlayer<>@.isGoal)].name, equals("john")) =

R4 FIELD(teams.0) ELEMMATCH(trans(.name, equals("john")),

 transJS([?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)])) =

R8,R1 FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"),

 transJS([?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)])) =

J0,J6 FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"),

 AND(COMPARE(level, ==, "beginner"), AND(COMPARE(@.score, >=, 3), NOT_SUPPORTED)))

Notice that J6 translates condition @.isPlayer<>@.isGoal into a NOT_SUPPORTED clause since MongoDB cannot

compare fields of a JSON document. From this stage, rule O1 flattens nested ANDs, and rule O2 removes the

unnecessary AND clause beneath the ELEMMATCH:

O1 FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"),

 AND(COMPARE(level, ==, "beginner"), COMPARE(score, >=, 3), NOT_SUPPORTED)) =

O2 FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"),

 COMPARE(level, ==, "beginner"), COMPARE(score, >=, 3), NOT_SUPPORTED) =

Lastly, rule O5 takes care of removing the NOT_SUPPORTED clause:

O5 FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"),

 COMPARE(level, ==, "beginner"),

 COMPARE(score, >=, 3))

This abstract MongoDB query can now be rewritten into the following concrete query:

 "teams.0": {$elemMatch: {"name":{$eq:"john"}, "level":{$eq:"beginner"}, "score":{$gte:3}}}

4.5.2 Pull up WHERE clauses

By construction, a WHERE clause cannot be nested in an ELEMMATCH clause (rule R6). In addition, Algorithm 4

flattens nested OR and nested AND clauses, and merges sibling WHERE clauses. Consequently, a WHERE clause

may be either in the top-level query (the query is thereby executable) or it may appear in one of the following patterns:

OR(…,W,…), AND(…,W,…), OR(…,AND(…,W,…),…), AND(…,OR(…,W,…),…), where “W” stands for a WHERE clause. In

the case of those patterns, we have to “pull up” WHERE clauses to the top-level query, in order to address issue (iii).

Rewritings make use of a new clause, UNION, that we describe here: its semantics is equivalent to that of the OR

clause, although the OR is processed by the MongoDB query (as an $or operator), while the UNION is computed

outside of the database, by the query processing engine: the result of evaluating UNION(<query1>, <query2>) is the

union of the results produced by evaluating <query1> and <query2> separately against the MongoDB database.

Recall that an AND clause in the top-level query can be replaced with its members, since the implicit semantics of the

top-level query is to apply a logical AND between its members. Therefore, if is sufficient to come up with query

rewritings that bring all WHERE clauses to the top-level or in an AND of the top-level query. To give an intuition of

the method, the example below shows the rewriting of simple queries. “W” stands for a WHERE clause, “C” and “D”

for any sub-query, and “→” stands for “is rewritten to”.

- OR(C, W) → UNION(C, W): OR substituted with UNION, W is pulled up in the top-level query.

- AND(C, W) → (C,W): top-level AND replaced with its members, W is pulled up in the top-level query.

- OR(C, AND(D, W)) → UNION(C, AND(D, W)): OR substituted with UNION, W is pulled up in a top-level AND

clause, that can be removed and replaced by its members.

- AND(C, OR(D, W)) → UNION(AND(C, D), AND(C, W)): this is a straightforward application of the theorem:

C ∧ (D ∨ W) ⇔ (C ∧ D) ∨ (C ∧ W). W is pulled up in a top-level AND clause, that can be removed and replaced

by its members.

Mapping-based SPARQL access to a MongoDB database

33

Rewriting rules W1 to W6 defined in Algorithm 5 generalize these examples. Rules W1 to W4 reflect exactly the

example above. Since they may create UNION clauses nested beneath AND or OR clauses, additional rules W5 and

W6 rewrite such queries to pull up UNION clauses in the top-level query. They can be illustrated by those two

additional examples:

- AND(C, UNION(D, W)) → UNION(AND(C, D), AND(C, W)).

- OR(C, UNION(D, W)) → UNION(C, D, W).

Note that the case of nested UNION clauses is dealt with by rule O1 in Algorithm 4.

Algorithm 5: Pull-up of WHERE clauses to the top-level query

The “→” arrow means “is rewritten as”.

W1 OR(C1,...Cn, W) → UNION(OR(C1,...Cn), W)

W2 OR(C1,...Cn, AND(D1,...Dm, W)) → UNION(OR(C1,...Cn), AND(D1,...Dm, W))

Proof: C1 ∨… ∨ Cn ∨ (D1 ∧… ∧ Dm ∧ W) ⇔ (C1 ∨… ∨ Cn) ∨ (D1 ∧… ∧ Dm ∧ W)

Therefore, eval(C1 ∨… ∨ Cn ∨ (D1 ∧… ∧ Dm ∧ W)) = eval(C1 ∨… ∨ Cn) ∪ eval(D1 ∧… ∧ Dm ∧ W).

W3 AND(C1,...Cn, W) → (C1,...Cn, W), iif the AND clause is a top-level query object or under a UNION clause.

W4 AND(C1,...Cn, OR(D1,...Dm, W)) → UNION(AND(C1,...Cn, OR(D1,...Dm)), AND(C1,...Cn, W))

Proof: C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm ∨ W) ⇔ (C1 ∧… ∧ Cn) ∧ ((D1 ∨… ∨ Dm) ∨ W)

 ⇔ ((C1 ∧… ∧ Cn) ∧ (D1 ∨… ∨ Dm)) ∨ ((C1 ∧… ∧ Cn) ∧ W)

Therefore, eval(C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm ∨ W)) = eval(C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm)) ∪ eval(C1 ∧… ∧ Cn ∧ W)

W5 AND(C1,...Cn, UNION(D1,...Dm)) → UNION(AND(C1,...Cn, D1),... AND(C1,...Cn, Dm))

Proof: C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm) ⇔ (C1 ∧… ∧ Cn) ∧ (D1 ∨… ∨ Dm)

 ⇔ (C1 ∧… ∧ Cn ∧ D1) ∨… ∨ (C1 ∧… ∧ Cn ∧ Dm)

Therefore, eval(C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm)) = eval(C1 ∧… ∧ Cn ∧ D1) ∪… ∪ eval(C1 ∧… ∧ Cn ∧ Dm)

W6 OR(C1,...Cn, UNION(D1,...Dm)) → UNION(OR(C1,...Cn), D1, ...Dm))

We illustrate rules W1 to W6 in a second dedicated example. We wish to translate the condition below, stating that the

last member of either team “dev” or “test” has the name “john”:

 trans($.teams["dev","test"][(@.length - 1)].name, equals("john"))

Function trans translates this condition into this abstract MongoDB query:

 OR(AND(EXISTS(.teams.dev),

 WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))')),

 AND(EXISTS(.teams.test),

 WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')))

Then we iteratively apply rules O1 to O6 and W1 to W6 as described in function rewrite (next section). First, rule W2

replaces the top-level OR with a UNION clause:

W2 UNION(

 OR(AND(EXISTS(.teams.dev),

 WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))'))),

 AND(EXISTS(.teams.test),

 WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')))

Then rule O4 replaces the OR of one term with the term itself:
O4 UNION(

 AND(EXISTS(.teams.dev),

 WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))')),

 AND(EXISTS(.teams.test),

Mapping-based SPARQL access to a MongoDB database

34

 WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')))

Rules W2 and O4 basically replaced the top-level OR with a UNION. Now the abstract query is a union of two top-

level AND operators that can simply be removed by rule W3:

W3 UNION(

 (EXISTS(.teams.dev),

 WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))')),

 (EXISTS(.teams.test),

 WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')))

Both queries can now be rewritten into executable concrete queries:

UNION(("teams.dev": {$exists: true},

 $where: 'this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))'),

 ("teams.test": {$exists: true},

 $where: 'this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')

)

4.5.3 Function rewrite

Finally we define in Algorithm 6 the complete optimization and translation algorithm that iteratively uses rules O1 to

O6 and W1 to W6 to perform all possible rewritings, and ultimately generate either one concrete MongoDB query or a

union of concrete MongoDB queries.

Algorithm 6: Abstract MongoDB query optimization and translation into concrete MongoDB queries

Function rewrite(Q):
do

do
Q ← apply rules O1 to O5 that match any sub-query of Q

until no more rewriting can be performed
do

Q ← apply rules W1 to W6 that match any sub-query of Q
until no more rewriting can be performed

until no more rewriting can be performed by either rules O1 to O5 or W1 to W6
Q‘ ← translate Q as defined in Definition 13.
return Q’

A consequence of function rewrite is that we can always rewrite an abstract MongoDB query into a union of queries in

which there is no more NOT_SUPPORTED clause and any WHERE clause only appears as a top-level object or in a

top-level AND clause. This is summarized in the Theorem 1:

Theorem 1. Let C be an equality or not-null condition on a JSONPath expression. Let Q = (Q1, …Qn) be the abstract

MongoDB query produced by trans(C).

Rewritability: It is always possible to rewrite Q into a query Q’ = UNION(Q
’
1,… Q

’
m) such that ∀i ∈ [1, m] Q

’
i is a

valid MongoDB query, i.e. Q
’
i does not contain any NOT SUPPORTED clause, and a WHERE clause only shows at

the top-level of Q
’
i.

Completeness: Q’ retrieves all the certain answers, i.e. all the documents matching condition C. If Q contains at least

one NOT SUPPORTED clause, then Q’ may retrieve additional documents that do not match condition C.

Proof of Theorem 1:

Completeness. The result on the completeness of results has been proven in the description of rule O5 when dealing

with NOT_SUPPORTED clauses.

Rewritability, NOT_SUPPORTED clauses. By construction, function trans may generate a NOT_SUPPORTED

clause in the top-level query or in the following patterns: AND(…,N,…), ELEMMATCH(…,N,…), OR(…,N,…),

Mapping-based SPARQL access to a MongoDB database

35

UNION(…,N,…), FIELD(…)…FIELD(…) N, where “N” stands for a NOT_SUPPORTED clause. If it is in the top-level

query, then Definition 13 rewrites it into the empty query that shall retrieve all documents of the collection. In the

case of other patterns, when applying rewriting rule O5 we obtain:

AND(…,N,…) → AND(…)

ELEMMATCH(…,N,…) → ELEMMATCH(…)

OR(…,N,…) → N

UNION(…,N,…) → N

FIELD(…)…FIELD(…) N → N

The first two rewritings remove the NOT_SUPPORTED clause, coming up with a valid query. The next three

rewritings raise the NOT_SUPPORTED up to the parent clause. Since nested AND/OR/UNION clauses are merged

by rule O1, this may lead to one of the patterns below; we precise the way they are rewritten:

AND(…,OR(…,N,…),…) → AND(…,N,…) → AND(…)

AND(…,UNION(…,N,…),…) → AND(…,N,…) → AND(…)

AND(…,FIELD(…)…FIELD(…) N,…) → AND(…,N,…) → AND(…)

ELEMMATCH(…,OR(…,N,…),…) → ELEMMATCH(…,N,…) → ELEMMATCH(…)

ELEMMATCH(…,UNION(…,N,…),…) → ELEMMATCH(…,N,…) → ELEMMATCH(…)

ELEMMATCH(…,FIELD(…)…FIELD(…) N,…) → ELEMMATCH(…,N,…) → ELEMMATCH(…)

The rewritings above show that, wherever the NOT_SUPPORTED clause shows, it is iteratively removed by the

rewritings using rules O1 to O5 and W1 to W6.

Hence the first part of the rewritability property: it is always possible to come up with a rewriting that does not

contain any NOT_SUPPORTED clause.

Rewritability, WHERE clauses. By construction, function trans may generate a WHERE clause in the top-level

query or nested in AND or OR clauses, but a WHERE clause cannot be nested in an ELEMMATCH clause.

Furthermore, rules W1 to W6 may create UNION clauses, and Algorithm 4 flattens nested OR/AND/UNION clauses

and merges sibling WHERE clauses. Consequently, a WHERE clause may be either in the top-level query (the query

is thus executable) or in the following nine patterns:
OR(…,W,…)
OR(…,AND(…,W,…),…)
OR(…,UNION(…,W,…),…)
AND(…,W,…)
AND(…,OR(…,W,…),…)
AND(…,UNION(…,W,…),…)
UNION(…,W,…)
UNION(…,AND(…,W,…),…)
UNION(…,OR(…,W,…),…)

where “W” stands for a WHERE clause.

To prove Theorem 1, we need a measure of the depth of a WHERE clause within a query. We first define the depth

function as follows:

depth(UNION) = 0

depth(AND) = 1

depth(OR) = 1

depth(C1/…/Cn) = depth(C1) + … + depth(Cn)

Intuitively, function depth measures the depth of a MongoDB query made of nested clauses AND, OR or UNION,

and possibly containing WHERE clauses. AND and OR count for 1, but UNION counts for 0: indeed UNION is not a

MongoDB operator, instead it is meant to be processed outside of the database. Notation "C1/…/Cn" represents a

nested query in which clause C1 is parent of clause C2 which is parent of clause C3 etc. until clause Cn.

We define function depthw(Q) as the depth of a clause WHERE within a query Q:

depthw(C1, … Cn, W) = 0 (case of a top-level query)

depthw(C1(… C2(… Cn(… W)))) = depth(C1/C2/…/Cn)

Below we explore how rules W1 to W6 rewrite the nine patterns we listed above. For each one, we give the depth of

the WHERE clause in the pattern and in the rewritten query.

Mapping-based SPARQL access to a MongoDB database

36

OR(…,W,…)

Rule W1: Q: OR(C1,...Cn, W) → Q’: UNION(OR(C1,...Cn), W)

depthw(Q) = 1

depthw(Q’) = 0

OR(…,AND(…,W,…),…)

Rule W2: Q: OR(C1,...Cn, AND(D1,...Dm, W)) → Q’: UNION(OR(C1,...Cn), AND(D1,...Dm, W))

depthw(Q) = 2

depthw(Q’) = 1

AND(…,W,…)

Rule W3: Q: AND(C1,...Cn, W) → Q’: (C1,...Cn, W)

 (W3 applies iif the AND clause is a top-level query object or under a UNION clause)

depthw(Q) = 1

depthw(Q’) = 0

AND(…,OR(…,W,…),…)

Rule W4: Q: AND(C1,...Cn, OR(D1,...Dm, W)) →

 Q’: UNION(AND(C1,...Cn, OR(c)), AND(C1,...Cn, W))

depthw(Q) = 2

depthw(Q’) = 1

AND(…,UNION(…,W,…),…)

We first apply rule W5, then rule W3:

Q: AND(C1,...Cn, UNION(D1,...Dm, W)) →

 UNION(AND(C1,...Cn, D1),... AND(C1,...Cn, Dm), AND(C1,...Cn, W)) →

 Q’: UNION((C1,...Cn, D1),... (C1,...Cn, Dm), (C1,...Cn, W))

depthw(Q) = 1

depthw(Q’) = 0

OR(…,UNION(…,W,…),…)

Rule W6: Q: OR(C1,...Cn, UNION(D1,...Dm, W) → Q’: UNION(OR(C1,...Cn), D1, ...Dm, W))

depthw(Q) = 1

depthw(Q’) = 0

UNION(…,W,…) The WHERE clause is a top-level query, the query is valid as is and no rewriting is needed.

UNION(…,AND(…,W,…),…)

Rule W3: Q: UNION(C1,...Cn, AND(D1,...Dm, W)) → Q’: UNION(C1,...Cn, (D1,...Dm, W))

 (W3 applies iif the AND clause is a top-level query object or under a UNION clause)

depthw(Q) = 1

depthw(Q’) = 0

UNION(…,OR(…,W,…),…)

We first apply rule W1 then rule O1 to merge nested UNIONs:

Q: UNION(C1,...Cn, OR(D1,...Dm, W)) →

 UNION(C1,...Cn, UNION(OR(D1,...Dm), W)) →

 Q’: UNION(C1,...Cn, OR(D1,...Dm), W)

depthw(Q) = 1

depthw(Q’) = 0

In all patterns listed above, we have shown that the depth of the WHERE is always decreased by one using rules W1

to W6 and optionally rule O1. By applying this process iteratively it is easy to see that we ultimately come up with a

rewriting that contains WHERE clauses only in the top-level query.

Hence the second part of the rewritability property.

5 Overall query translation and evaluation process

Let us sum up the translation process. Function transm (section 3) translates a SPARQL query into an abstract query,

helped by function transTPm that translates a triple pattern tp into a union of per-triples-map queries containing

abstract queries {From, Project, Where}, under a set of triples maps bound to tp. The Where part consists of isNotNull,

and equals conditions. Functions trans (section 4.4) and rewrite (section 4.5) translate each isNotNull and equals

condition on a JSONPath expression into a concrete MongoDB query or a union of concrete MongoDB queries.

Mapping-based SPARQL access to a MongoDB database

37

Algorithm 7: Overall SPARQL-to-MongoDB query processing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Function process(sparqlQuery):

abstractQuery ← transm(sparqlQuery)

Optimize abstractQuery: perform self-join, optional-self-join and self-union elimination

for each atomic abstract query Qi = {From, Project, Where} ∈ abstractQuery do

Q ← true

for each cond ∈ Where | cond is a isNotNull or equals condition do

<JSONPath>, <condition> ← cond

Q ← AND(Q, trans(<JSONPath>, <condition>))

end if

end for

Q i’ ← rewrite(Q) // Qi’ is either a concrete query or a union of concrete queries

if Qi’ is a valid MongoDB query

Ri ← execute(Qi’)

else // Qi’ is UNION(q1, …, qn)

Ri ← execute(q1) ∪ … ∪ execute(qn)

end if

end for

// Compute UNION, INNER JOIN, LEFT OUTER JOIN and FILTER operators

R ← evaluate operators on all Ri (results of each atomic query Qi)

// Generate the triples corresponding to documents of R

primaryGraph ← Apply the triples map corresponding to each Qi

// Late SPARQL query evaluation

resultGraph ← evaluate sparqlQuery on primaryGraph

return resultGraph

The rewritten concrete queries have several limitations though:

(i) The ambiguous semantics of the MongoDB query language (underlined in section 4.1) entails that a MongoDB

query cannot be guaranteed to have the same semantics as the triple pattern it stands for. Consequently, all

documents matching the SPARQL query are returned (the certain answers), but in addition, non-matching

documents may be returned.

(ii) Some JSONPath elements are not supported in the rewriting process as they have no equivalent in MongoDB

(restrictions listed in section 4.2). Nevertheless, the rewriting process ensures that all matching documents are

returned, but again, non-matching documents may be returned too (Algorithm 5).

(iii) In a MongoDB query, a projection clause can concern document fields but it cannot concern elements of an array.

Therefore, it cannot be guaranteed that only needed fields be projected.

(iv) Lastly, at this stage, our method does not deal with SPARQL filters embedded in atomic abstract queries using

sparqlFilter conditions, although they are managed at the upper level in the abstract query using operator

FILTER.

To work around those issues, the overall query processing works in several steps detailed in Algorithm 7:

- For each atomic abstract query {From, Project, Where}, the query translation engine creates concrete MongoDB

queries (lines 4-11). It executes the concrete queries against the database, and from the result JSON documents it

computes the UNION clauses that may be produced by the rewrite function (lines 12-16).

- When all {From, Project, Where} queries have been executed, the query processing engine computes the INNER

JOIN, LEFT OUTER JOIN, FILTER and UNION operators on the results of each atomic query (line 19).

Mapping-based SPARQL access to a MongoDB database

38

- It produces RDF triples by applying the triples map to the result JSON documents (line 21). This entails the

evaluation of the JSONPath expressions (the term maps references) against the documents. This clears hurdles (ii)

and (iii). The result triples are materialized and stored into a primary result graph.

- Finally, the SPARQL query is evaluated against the primary result graph (line 23). This rules out all non-matching

triples that were generated due to issues (i) and (iv).

6 Conclusion, Discussion and perspectives

In this document we proposed a method to access arbitrary MongoDB JSON documents with SPARQL using custom

mappings described in the xR2RML mapping language. We first defined a method that rewrites a SPARQL query into

an abstract query independent of the target database, relying on bindings between a SPARQL triple pattern and

xR2RML mappings. A set of rules translate the abstract query into an abstract representation of a MongoDB query,

and we showed that the latter can always be rewritten into a union of valid concrete MongoDB queries that shall

return all the matching documents. Finally we defined an algorithm that orchestrates the different steps until the

evaluation of MongoDB queries and the generation of the RDF triples matching the SPARQL query.

Despite a comprehensive documentation, there is no formal description of the semantics of the MongoDB query

language, and more importantly, ambiguities are voluntarily part of the language. Let us add that the JSONPath

language used in the mappings to extract data from JSON documents is unclear and subject to divergent

interpretations. Lastly, some JSONPath expressions cannot be translated into equivalent MongoDB queries.

Consequently, the query translation method cannot ensure that query semantics be preserved. Nevertheless, we proved

that rewritten queries retrieve all matching documents, in addition to possibly non matching ones. We overcome this

issue by evaluating the SPARQL query against the triples generated from the database results. This guarantees

semantics preservation, at the cost of an additional SPARQL evaluation. More generally the NoSQL trend

pragmatically gave up on properties such as consistency and rich query features, as a trade-off to high throughput,

high availability and horizontal elasticity. Therefore, it is likely that the hurdles we have encountered with MongoDB

shall occur with other NoSQL databases.

6.1 Query optimization

Function transm translates a SPARQL query into an abstract query containing INNER JOIN, LEFT OUTER JOIN,

FILTER and UNION operators. With SQL or XQuery whose expressiveness is similar to that of SPARQL, the

abstract query can be translated into a single SQL query, as shown in various approaches [4,16,7,18,14,13].

Conversely, the expressiveness of the MongoDB query language is far more limited: joins are not supported and filters

are supported with strong restrictions (e.g. no comparison between fields of a document, $where operator restricted to

the top-level query). This discrepancy entails that a SPARQL query shall be translated into possibly multiple

independent queries, thereby delegating several steps to the query processing engine. This is illustrated in Algorithm

7: line 19 processes other INNER JOIN, LEFT OUTER JOIN, FILTER and UNION operators between sets of JSON

documents.

Evaluating concrete queries independently of each other can be the cause of performance issues. The problem of

efficiently evaluating the abstract query amounts to a classical query plan optimization problem. Future works shall

include the study of methods such as the bind join [9] to inject intermediary results into a subsequent query. The join

re-ordering based on the number of results that queries shall retrieve could also be used, very similarly to the methods

applied in distributed SPARQL query engines [15,8].

Mapping-based SPARQL access to a MongoDB database

39

6.2 Support of the SPARQL query language

Our method deals with SPARQL filters in the abstract query, however at this stage, named graphs and solution

modifiers (DISTINCT, OFFSET, LIMIT, ORDER BY, HAVING) are not considered. Furthermore, as mentioned in

section 4, SPARQL filters are not tackled in the translation of an abstract query into the MongoDB query language.

We plan to address this in the future, although it is likely that the support shall be limited by the capabilities of the

underlying database. For instance, SQL supports most of the SPARQL operators such as logics, comparison,

arithmetic and unary operators. This is far from being the case in MongoDB. As illustrated in section 6.3, JavaScript

functions can help in this matter, although we have to consider this option with reluctance due to the performance

issues it entails. Again, some filtering tasks shall be delegated to the query processing engine to bridge the gap

between SPARQL and MongoDB.

The issue is even more striking if we consider the SPARQL 1.1
13

 features such as property paths, assignments

(VALUE, BIND), negation (NOT EXISTS, MINUS) and functions on strings. Such features shall not be translated

into MongoDB queries, and we shall not escape the late evaluation of the SPARQL query against the triples generated

at an earlier step, as we propose in Algorithm 7.

6.3 Dealing with the MongoDB $where operator

In the MongoDB query language, the $where operator is valid only in the top-level query document. Using rules W1

to W6 we show that we can pull up a $where operator nested beneath AND or OR operators, but we cannot deal with

a $where operator nested beneath an $elemMatch. By construction, rules in function trans (Algorithm 2) exclude the

latter case by generating a NOT_SUPPORTED operator. In other words, trans drops the $where and postpones the

evaluation of the condition to a later step: the effect is to widen the query that shall retrieve more documents than

those matching the initial SPARQL query. Then, Algorithm 7 runs a late evaluation of the SPARQL query against the

set of generated triples to make sure we produce only the expected triples.

An alternative is to push whatever needs to be in the $where operator by means of a JavaScript function. Let us

consider the following example: a MongoDB instance stores JSON documents about bank account details, such as:

{accounts: [

 {current: { credits: 100, debits: 50}},

 {savings: { credits: 80, debits: 80}}

]}

We want to retrieve documents where credits equal debits in at least one account. The MongoDB $eq operator does

not allow to specify the equality between two fields, therefore we must use the $where operator. We cannot write the

following query: {"accounts": {$elemMatch: {$where: {"credits == debits"}}}} since the $where operator

must be in the top-level query document. But we can write a JavaScript function that browses the "accounts" array to

check if the condition is true for at least one element in the array:

$where: {function() { \

 result = false; \

 for (i = 0; i < this.accounts.length; i++) \

 result = result || (this.accounts[i].credits == this.accounts[i].debits); \

 return result }}

This option has the advantage of returning only the matching documents, but it has two shortcomings. (i) It may cause

a serious performance penalty in the database: as we already mentioned, MongoDB cannot take advantage of indexes

when executing JavaScript code, thus it shall retrieve all documents matching all conditions except the $where, then

apply the JavaScript function to all of them. (ii) It can lead to the generation of complex JavaScript functions when it

comes to translate rich JSONPath expressions. Conversely, in the method we have chosen, the database query shall be

13

 http://www.w3.org/TR/sparql11-query/

Mapping-based SPARQL access to a MongoDB database

40

faster but the price is a larger amount of data retrieved and an additional SPARQL query evaluation to rule out non-

matching triples. It is unclear, at this stage, whether one solution should be preferred to the other. But most likely, we

can assume that the choice shall depend on the context.

Mapping-based SPARQL access to a MongoDB database

41

7 Appendix A

In this appendix we provide the detailed algorithm of functions used in the transTPm function, defined in section 3.

7.1 Functions genProjection and genProjectionParent

We first describe function getReferences, a utility function used in subsequent functions.

Algorithm 8: Function getReferences returns the references associated with an xR2RML term map

Function getReferences(termMap):
 case type(termMap)
 template-valued : termVal ← getTemplateReferences(termMap.template)
 reference-valued : termVal ← termMap.reference
 constant-valued : termVal ← termMap.constant
 end case
 return termVal

Algorithm 9: Generates the list of xR2RML references that must be projected in the abstract query

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp.

Function genProjection(tp, TM):

 refList ← <empty list>

 if type(tp.sub) is VARIABLE then
 refList ← refList | getReferences(TM.subjectMap) AS tp.sub
 end if

 if type(tp.pred) is VARIABLE then
 refList ← refList | getReferences(TM.predicateObjectMap.predicateMap) AS tp.pred
 end if

 OM ← TM.predicateObjectMap.objectMap
 if OM is a ReferencingObjectMap then
 // Since we do not know the target database, the join may have to be done by the query processing engine.

 // Hence, the joined fields are always projected, whether tp.obj is an IRI or a variable:

 refList ← refList | getReferences(OM.joinCondition.child)

 else if type(tp.obj) is VARIABLE then
 refList ← refList | getReferences(OM) AS tp.obj
 end if

 return refList

Mapping-based SPARQL access to a MongoDB database

42

Algorithm 10: Generates the list of xR2RML references from a parent triples map that must be projected in

the abstract query

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp, its object map is a referencing object
map (it refers to a parent triples map).

Function genProjectionParent(tp, TM):

 refList ← <empty list>
 ROM ← TM.predicateObjectMap.objectMap // Referencing Object Map

 // Joined fields are always projected, whether tp.obj is an IRI or a variable:

 refList ← refList | getReferences(ROM.joinCondition.parent)

 // If tp.obj is a variable, the subject of the parent TM is projected too

 if type(tp.obj) is VARIABLE then
 refList ← refList | getReferences(ROM.parentTriplesMap.subjectMap) AS tp.obj
 end if

 return refList

7.2 Function genCond and genCondParent

We first describe function getValue that is used in subsequent functions.

Algorithm 11: Function getValue returns the value of the RDF term depending on the xR2RML term map

where it is applied.

This is simply a utility function that applies the inverse expression in case of a template-valued term map, and returns

the RDF term as is otherwise.

Function getValue(rdfTerm, termMap):
 case type(termMap)
 template-valued : termVal ← inverseExpression(rdfTerm, termMap.inverseExpression)
 reference-valued : termVal ← rdfTerm
 constant-valued : termVal ← rdfTerm
 end case

 return termVal

Algorithm 12: Generate the conditions to match a triple pattern with a triples map

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp, f is a SPARQL filter.

Function genCond(tp, TM, f):

cond ← <empty list>

// Subject part
if type(TM.subject) is reference-valued or template-valued then
 case type(tp.sub)
 IRI:
 cond ← cond | equals(getValue(tp.sub, TM.subjectMap), getReferences(TM.subjectMap))

 VARIABLE:
 if f contains a condition mentioning tp.sub then
 cond ← cond | sparqlFilter(getReferences(TM.subjectMap), f)
 else
 cond ← cond | isNotNull(getReferences(TM.subjectMap))
 end if

 end case
end if

// Predicate part

Mapping-based SPARQL access to a MongoDB database

43

PM ← TM.predicateObjectMap.predicateMap
if type(PM) is reference-valued or template-valued then
 case type(tp.pred)
 IRI:
 cond ← cond | equals(getValue(tp.pred, PM), getReferences(PM))

 VARIABLE :
 if f contains a condition mentioning tp.pred then
 cond ← cond | sparqlFilter(getReferences(PM), f)
 else
 cond ← cond | isNotNull(getReferences(PM))
 end if
 end case
end if

// Object part
OM ← TM.predicateObjectMap.objectMap
case type(tp.obj)

LITERAL:
if type(OM) is reference-valued or template-valued then

 cond ← cond | equals(getValue(tp.obj, OM), getReferences(OM))

end if

IRI:
if OM is a ReferencingObjectMap then

cond ← cond | isNotNull(OM.joinCondition.child)

else if type(OM) is reference-valued or template-valued then

cond ← cond | equals(getValue(tp.obj, OM), getReferences(OM))

end if

VARIABLE:
if OM is a ReferencingObjectMap then

cond ← cond | isNotNull(OM.joinCondition.child)

else if type(OM) is reference-valued or template-valued then

if f contains a condition mentioning tp.obj then
 cond ← cond | sparqlFilter(getReferences(OM), f)
else
 cond ← cond | isNotNull(getReferences(OM))
end if

end if
end case

Mapping-based SPARQL access to a MongoDB database

44

Algorithm 13: Generate the conditions to match the object of a triple pattern with a referencing object map

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp and its object map is a referencing
object map (it refers to a parent triples map), f is a SPARQL filter.

Function genCondParent(tp, TM, f):

cond ← <empty list>

OM ← TM.predicateObjectMap.objectMap
case type(tp.obj)

IRI:
// tp.obj is a constant IRI to be matched with the subject of the parent TM:
// add an equality condition for each reference in the subject map of the parent TM
if type(OM.parentTriplesMap.subjectMap) is reference-valued or template-valued then

 obj_value ← getValue(tp.obj, OM.parentTriplesMap.subjectMap)

 cond ← cond | equals(obj_value, getReferences(OM.parentTriplesMap.subjectMap))

end if

// And in any case add a non null condition to satisfy the join
cond ← cond | isNotNull(OM.joinCondition.parent)

VARIABLE:
// tp.obj is a SPARQL variable to be matched with the subject of the parent TM
if type(OM.parentTriplesMap.subjectMap) is reference-valued or template-valued then

if f contains a condition mentioning tp.obj then
 cond ← cond | sparqlFilter(getReferences(OM.parentTriplesMap.subjectMap), f)
else
 cond ← cond | isNotNull(getReferences(OM.parentTriplesMap.subjectMap))
end if

end if
// And in any case add a non null condition to satisfy the join
cond ← cond | isNotNull(OM.joinCondition.parent)

end case

Mapping-based SPARQL access to a MongoDB database

45

8 Appendix B: Complete Running Example

In this example we assume we have set up a MongoDB database with two collections “staff” and “departments”

given in Listing 1 and Listing 2 respectively. Collection “departments” lists the departments within a company,

including a department code and its members. Members are given by their name and age. Collection “staff” lists

people by their name (that may be either field “familyname” or “lastname”), and provides a list of departments that

they manage, if any, in array field “manages”.

Listing 1: Collection “staff”

 { "familyname":"Underwood", "manages":["Sales"] },

 { "lastname":"Dunbar", "manages":["R&D", "Human Resources"] },

 { "lastname":"Sharp", "manages":["Support", "Business Dev"] }

Listing 2: Collection “departments”

 { "dept":"Sales", "code":"sa",

 "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}] },

 { "dept":"R&D", "code":"rd",

 "members": [{"name":"J. Smith", "age":32}, {"name":"D. Duke", "age":23}] },

 { "dept":"Human Resources", "code":"hr",

 "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38} },

 { "dept":"Business Dev", "code":"bdev",

 "members": [{"name":"R. Danton", "age":36}, {"name":"E. Meetchum", "age":34} }

The xR2RML mapping graph in Listing 3 consists of two triples maps <#Staff> and <#Departments>. Triples map

<#Staff> has a referencing object map whose parent triples map is <#Departments>. Triples map <#Departments>

generates triples with predicate ex:hasSeniorMember for each member of the department who is 40 years old or more.

For the sake of simplicity the queries in both triples maps retrieve all documents of the collection with no other query

filter.

We wish to translate the SPARQL query below, that aims at retrieving senior members of departments whose manager

is “Dunbar”. The query consists of one basic graph pattern bgp, itself consisting of two triple patterns tp1 and tp2:

 SELECT ?senior WHERE {

 <http://example.org/staff/Dunbar> ex:manages ?dept. // tp1

 ?dept ex:hasSeniorMember ?senior. } // tp2

We execute the SPARQL query processing function (Algorithm 7). First, the transm function translates the SPARQL

query into an abstract query (Algorithm 7, line 2). The execution of the transm function (Definition 1) returns:

 transm(bgp, true)

 = transm(tp1, true) INNER JOIN transm(tp2, true) ON var(tp1) ⋂ var(tp2)

 = transTPm(tp1, true) INNER JOIN transTPm(tp2, true) ON {?dept}

Function bindm (Definition 4) infers two triple pattern bindings:

 bindm(bgp) = { (tp1, {<#Staff>}) , (tp2, {<#Departments>)} }

In the subsequent sections we describe the execution of the transTPm function for each triple pattern, starting with tp2;

then we describe the final computation of the INNER JOIN operator.

Mapping-based SPARQL access to a MongoDB database

46

Listing 3: xR2RML Example Mapping Graph

<#Departments>

 xrr:logicalSource [xrr:query "db.departments.find({})"];

 rr:subjectMap [rr:template "http://example.org/dept/{$.code}"];

 rr:predicateObjectMap [

 rr:predicate ex:hasSeniorMember;

 rr:objectMap [xrr:reference "$.members[?(@.age >= 40)].name";];

].

<#Staff>

 xrr:logicalSource [xrr:query "db.staff.find({})";];

 rr:subjectMap [rr:template "http://example.org/staff/{$['lastname','familyname']}"];

 rr:predicateObjectMap [

 rr:predicate ex:manages;

 rr:objectMap [

 rr:parentTriplesMap <#Departments>;

 rr:joinCondition [

 rr:child "$.manages.*";

 rr:parent "$.dept";

]]].

8.1 Translation of tp2 into an abstract query

Triple pattern tp2: ?dept ex:hasSeniorMember ?senior.

getBoundTMsm(gp, tp2) returns triples map <#Departments>.

transTPm(tp2, true) =

 From ← {[xrr:query "db.departments.find({})"]}

 Project ← genProjection(tp2, <#Departments>)

 Where ← genCond(tp2, <#Departments>, true)

Let us detail the calculation of Project part (Algorithm 9) and Where part (Algorithm 12):

Project:

genProjection(tp2, <#Departments>) = ($.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior)

Note that in a MongoDB query, a projection clause can concern document fields but it cannot concern elements of an

array. Thus, we cannot project field “name” of elements of array “members”, we can only project field “members”.

Consequently, when translated to the MongoDB query language, the Project part shall only project fields “code” and

“members”: {"code":1, "members":1}.

Where ← genCond(tp2, <#Departments>, true):

- The subject of tp2 is a variable, this entails a non-null condition on the references of the subject map of

<#Departments>:

isNotNull(getReferences(<#Departments>.subjectMap))

that we can rewrite:

isNotNull($.code)

- The predicate of tp2 is constant, hence no condition is entailed.

- The object of tp2 is again a variable, this entails a second non-null condition:

isNotNull($.members[?(@.age >= 40)].name))

Mapping-based SPARQL access to a MongoDB database

47

Finally, transTPm(tp2, true) =

 From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

 Where ← {isNotNull($.code), isNotNull($.members[?(@.age >= 40)].name)}

8.2 Translation of tp1 into an abstract query

Triple pattern tp1: <http://example.org/staff/Dunbar> ex:manages ?dept.

getBoundTMsm(gp, tp1) returns triples map <#Staff>.

transTPm(tp1, true) =

 { From ← {[xrr:query "db.staff.find({})"]}

 Project ← genProjection(tp1, <#Staff>)

 Where ← genCond(tp1, <#Staff>, true)

 } AS child

 INNER JOIN

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← genProjectionParent(tp1, <#Staff>)

 Where ← genCondParent(tp1, <#Staff>, true)

 } AS parent

 ON child/$.manages.* = parent/$.dept

Project (Algorithm 9):

As the subject of tp1 is a constant, the reference in the subject map of triples map <#Staff> is not projected. Since the

object map of <#Staff> is a referencing object map with parent triples map <#Departments>, the references in the

join condition must be projected: this is achieved by genProjection on the side of <#Staff>, and by

genProjectionParent on the side of <#Departments>. The object of tp1 is a variable, thus the reference of the

corresponding term map must be projected too: this is the subject map of triples map <#Departments> projected by

genProjectionParent:

genProjection(tp1, <#Staff>) = {$.manages.*}

genProjectionParent(tp1, <#Staff>) = {$.dept ,$.code AS ?dept}

When translated to the MongoDB query language, the Project part consists of:

Child query: {"manages":1}

Parent query: {"dept":1, "code":1}

Where part of the child query (Algorithm 12):

Where ← genCond(tp1, <#Staff>, true):

- The subject of tp1 is an IRI, this entails an equality condition on the references of the subject map:

equals(getValue(tp1.sub, <#Staff>.subjectMap), getReferences(<#Staff>.subjectMap))

that we can rewrite:

equals("Dunbar", $['lastname','familyname'])

- The predicate of tp1 is constant, hence no condition is entailed.

- The object of tp1 matched with the subject map of triples map <#Departments>, this will be managed by

genCondParent. Nevertheless we have to add a not-null condition on the child joined reference:

isNotNull($.manages.*)

Where part of the parent query:

Where ← genCondParent(tp1, <#Staff>, true):

- The object of tp1 is a variable, this entails a not-null condition. It is matched with the subject map of triples map

<#Departments>. Hence:

isNotNull(getReferences(<#Departments>.subjectMap)) = isNotNull($.code)

Mapping-based SPARQL access to a MongoDB database

48

- We must also add a not-null condition on the parent joined reference:

isNotNull($.dept)

Finally, transTPm(tp1, true) =
 { From ← {[xrr:query "db.staff.find({})"]}

 Project ← {$.manages.*}

 Where ← {equals("Dunbar", $['lastname','familyname']), isNotNull($.manages.*)}

 } AS child

 INNER JOIN

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.dept, $.code AS ?dept}

 Where ← {isNotNull($.code), isNotNull($.dept)}

 } AS parent

 ON (child/$.manages.* = parent/$.dept)

8.3 Abstract query optimization

When we put the translation of tp1 and tp2 together we obtain the following abstract query:

transm(bgp, true) =

 { From ← {[xrr:query "db.staff.find({})"]}

 Project ← {$.manages.*}

 Where ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}

 } AS child

 INNER JOIN

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.dept, $.code AS ?dept}

 Where ← {isNotNull($.code), isNotNull($.dept)}

 } AS parent

 ON child/$.manages.* = parent/$.dept

 INNER JOIN

 { From ← [xrr:query "db.departments.find({})"]

 Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

 Where ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) }

 ON {?dept}

The 2
nd

 and 3
rd

 atomic queries have the same From part, thus entailing a self-join. To eliminate it we first rewrite the

abstract query: we change the natural associative property of joins by embedding the 2
nd

 and 3
rd

 atomic queries in

curly brackets.

transm(bgp, true) =

 { From ← {[xrr:query "db.staff.find({})"]}

 Project ← {$.manages.*}

 Where ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}

 } AS child

 INNER JOIN

 {

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.dept, $.code AS ?dept}

 Where ← {isNotNull($.code), isNotNull($.dept)} }

 INNER JOIN

 { From ← [xrr:query "db.departments.find({})"]

 Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

 Where ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) }

 ON {?dept}

 } AS parent

 ON child/$.manages.* = parent/$.dept

Mapping-based SPARQL access to a MongoDB database

49

Now we can perform a self-join elimination by merging the two queries together: we merge the Project parts on the

one hand, and the Where parts on the other hand. We obtain the following optimized abstract query:

transm(bgp, true) =

 { From ← {[xrr:query "db.staff.find({}})"]}

 Project ← {$.manages.*}

 Where ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}

 } AS child

 INNER JOIN

 { From ← {[xrr:query "db.departments.find({})"]}

 Project ← {$.dept, $.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior}

 Where ← {isNotNull($.code), isNotNull($.dept), isNotNull($.members[?(@.age>=40)].name)}

 } AS parent

 ON child/$.manages.* = parent/$.dept

8.4 Rewriting atomic queries to MongoDB queries

Child query

Each condition of the Where part in translated into an abstract MongoDB query (Algorithm 7, lines 6-10). Below we

detail the execution of the trans function (section 4.4) by indicating the rules matched at each step:

Q1 ← trans($['lastname', 'familyname'], equals("Dunbar")) =

 R0 trans(['lastname', 'familyname'], equals("Dunbar")) =

 R3 OR(trans(.lastname, equals("Dunbar")), trans(.familyname, equals("Dunbar"))) =

 R8,R1 OR(FIELD(lastname) COND(equals("Dunbar")), FIELD(familyname) COND(equals("Dunbar")))

Q2 ← trans($.manages.*, isNotNull) =

 R0 trans(.manages.*, isNotNull) =

 R8,R7,R1 FIELD(manages) ELEMMATCH(COND(sNotNull))

Q1 and Q2 are translated into either a concrete query or a union of concrete queries (Algorithm 7, line 11):

Qi' ← rewrite(AND(AND(true,Q1),Q2) =

 { $or: [{lastname: {$eq: "Dunbar"}}, {familyname: {$eq: "Dunbar"}}],

 "manages": {$elemMatch: {$exists:true, $ne:null}}}

Q1’ is inserted in the MongoDB find request along with the Project part, for the child query:

db.departments.find(

 {$or: [{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}],

 "manages": {$elemMatch: {$exists:true, $ne:null}}},

 {"manages": 1})

The request returns one document (Algorithm 7, lines 12-16):

Ri ← {"manages":["R&D", "Human Resources"]}

Parent query

Each condition of the Where part is translated into an abstract MongoDB query (Algorithm 7, lines 6-10). Below we

detail the execution of the trans function (section 4.4) by indicating the rules matched at each step:

Q1 ← trans($.code, isNotNull) =

 R0 trans(.code, isNotNull) =

 R8,R1 FIELD(code) COND(isNotNull)

Q2 ← trans($.dept, isNotNull) = FIELD(dept) COND(isNotNull)

Q3 ← trans($.members[?(@.age >= 40)].name), isNotNull) =

Mapping-based SPARQL access to a MongoDB database

50

 R0 trans(.members[?(@.age >= 40)].name, isNotNull) =

 R8 FIELD(members) trans([?(@.age >= 40)].name, isNotNull) =

 R4 FIELD(members) ELEMMATCH(trans(.name, isNotNull), transJS(?(@.age >= 40))) =

 R8,R1 FIELD(members) ELEMMATCH(FIELD(name) COND(isNotNull), transJS(@.age >= 40)) =

 J6 FIELD(members) ELEMMATCH(FIELD(name) COND(isNotNull), COMPARE(age, $gte, 40))

Q1, Q2 and Q3 are translated into either a concrete query or a union of concrete queries (Algorithm 7, line 11):

Qi' ← rewrite(AND(AND(AND(true,Q1),Q2),Q3) =

 {"code": {$exists:true, $ne:null},

 "dept": {$exists:true, $ne:null},

 "members": {$elemMatch: {"name": {$exists:true, $ne:null}, "age": {$gte:40}}}}

Qi’ is inserted in the MongoDB find request along with the Project part:

db.departments.find(

 {"code": {$exists:true, $ne:null},

 "dept": {$exists:true, $ne:null},

 "members": {$elemMatch: {"name": {$exists:true, $ne:null}, "age": {$gte:40}}}},

 {dept:1, code:1, members:1}) // project part

The request returns two documents (Algorithm 7, lines 12-16):

Ri ← {"dept":"Sales", "code":"sa",

 "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}]}

 {"dept":"Human Resources", "code":"hr",

 "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]}

8.5 Complete transm processing

Now we rewrite the optimized abstract query obtained in section 8.3 by replacing each atomic abstract query with its

respective results:

 {

 {"manages":["R&D", "Human Resources"]}

 } AS child

 INNER JOIN

 {

 {"dept":"Sales", "code":"sa",

 "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}]}

 {"dept":"Human Resources", "code":"hr",

 "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]}

 } AS parent

 ON child/$.manages.* = parent/$.dept

We then compute the INNER JOIN operator, this returns only two documents:

 {"manages":["R&D", "Human Resources"]},

 {"dept":"Human Resources", "code":"hr",

 "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]}

Finally, applying the xR2RML triples maps to those results shall entail the triples that match the graph pattern in the

SPARQL query:

<http://example.org/staff/Dunbar> ex:manages <http://example.org/dept/hr>.

<http://example.org/staff/Dunbar> ex:manages <http://example.org/dept/rd>.

<http://example.org/dept/hr> ex:hasSeniorMember "R. Posner".

In this simple example, it is easy to notice that the final evaluation of the SPARQL query (Algorithm 7, line 23) will

not rule out any result. The answer to the SELECT clause is the binding of variable ?senior to value "R. Posner".

Mapping-based SPARQL access to a MongoDB database

51

9 References

[1] N. Bikakis, C. Tsinaraki, I. Stavrakantonakis, N. Gioldasis, S. Christodoulakis, The SPARQL2XQuery

interoperability framework: Utilizing Schema Mapping, Schema Transformation and Query Translation to

Integrate XML and the Semantic Web, World Wide Web. 18 (2015) 403–490.

[2] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, A. Polleres, Mapping between RDF and XML with

XSPARQL, J. Data Semant. 1 (2012) 147–185.

[3] C. Bizer, R. Cyganiak, D2R server - Publishing Relational Databases on the Semantic Web, in: Proceeding 5th

Int. Semantic Web Conf. ISWC 2006, 2006.

[4] A. Chebotko, S. Lu, F. Fotouhi, Semantics preserving SPARQL-to-SQL translation, Data Knowl. Eng. 68

(2009) 973–1000.

[5] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language, (2012).

[6] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, RML: A Generic

Language for Integrated RDF Mappings of Heterogeneous Data, in: Proc. 7th Workshop Linked Data Web

LDOW2014, Seoul, Korea, 2014.

[7] B. Elliott, E. Cheng, C. Thomas-Ogbuji, Z.M. Ozsoyoglu, A complete translation from SPARQL into efficient

SQL, in: Proc. Int. Database Eng. Appl. Symp. 2009, ACM, 2009: pp. 31–42.

[8] O. Görlitz, S. Staab, SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions, in: Proc. 2nd

Int. Workshop Consum. Linked Data, Bonn, Germany, 2011.

[9] L. Haas, D. Kossmann, E. Wimmers, J. Yang, Optimizing Queries across Diverse Data Sources, in: 23rd Int.

Conf. Very Large Data Bases VLDB 1997, San Francisco, CA, 1997: pp. 276–285.

[10] F. Michel, L. Djimenou, C. Faron-Zucker, J. Montagnat, Translation of Relational and Non-Relational

Databases into RDF with xR2RML, in: Proceeding WebIST2015 Conf., Lisbon, Portugal, 2015: pp. 443–454.

[11] F. Michel, L. Djimenou, C. Faron-Zucker, J. Montagnat, xR2RML: Non-Relational Databases to RDF Mapping

Language, 2014.

[12] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, ACM Trans. Database Syst. 34

(2009) 1–45.

[13] F. Priyatna, O. Corcho, J. Sequeda, Formalisation and Experiences of R2RML-based SPARQL to SQL query

translation using Morph, in: Proceeding World Wide Web Conf. 2014, Seoul, Korea, 2014.

[14] M. Rodríguez-Muro, M. Rezk, Efficient SPARQL-to-SQL with R2RML mappings, Web Semant. Sci. Serv.

Agents World Wide Web. 33 (2015) 141–169.

[15] A. Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, Fedx: Optimization techniques for federated query

processing on linked data, in: 10th Int. Conf. Semantic Web ISWC11, Springer, 2011: pp. 601–616.

[16] J.F. Sequeda, D.P. Miranker, Ultrawrap: SPARQL execution on relational data, Web Semant. Sci. Serv. Agents

World Wide Web. 22 (2013) 19–39.

[17] J. Sequeda, S.H. Tirmizi, Ó. Corcho, D.P. Miranker, Survey of directly mapping SQL databases to the Semantic

Web, Knowl. Eng Rev. 26 (2011) 445–486.

[18] J. Unbehauen, C. Stadler, S. Auer, Accessing relational data on the web with SparqlMap, in: Semantic Technol.,

Springer, 2013: pp. 65–80.

[19] J. Unbehauen, C. Stadler, S. Auer, Optimizing SPARQL-to-SQL Rewriting, in: Proc. IIWAS 13, ACM, 2013:

p. 324.

[20] D. Tomaszuk, Polskie Towarzystwo Logiki i Filozofii Nauki, eds., Document-oriented triplestore based on

RDF/JSON, in: Log. Philos. Comput. Sci., University of Białystok, 2010: pp. 125–140.

	1 Introduction
	2 The xR2RML mapping language
	2.1 Recalls on R2RML
	2.2 xR2RML language description
	2.3 Normalization and restriction of xR2RML within this document
	2.4 Running Example

	3 Rewriting a SPARQL query into an abstract query
	3.1 R2RML-based SPARQL-to-SQL methods
	3.2 Abstract Query
	3.3 Binding triples maps to triple patterns
	3.4 Atomic Abstract Query
	1.1
	1.1
	3.5 Abstract query optimization

	4 Translation of an abstract query into a MongoDB query
	4.1 The MongoDB query language
	4.2 The JSONPath language
	4.3 Conventions and formalism
	4.4 Query translation rules
	4.4.1 Rule R0
	4.4.2 Rue R1
	4.4.3 Rule R2
	4.4.4 Rule R3
	4.4.5 Rule R4
	4.4.6 Rule R5
	4.4.7 Rule R6
	4.4.8 Rule R7
	4.4.9 Rule R8
	4.4.10 Rule R9
	4.4.11 Translation of a JavaScript filter to MongoDB

	4.5 Query optimization and translation to a concrete MongoDB query
	4.5.1 Query optimization
	4.5.2 Pull up WHERE clauses
	4.5.3 Function rewrite

	5 Overall query translation and evaluation process
	6 Conclusion, Discussion and perspectives
	6.1 Query optimization
	6.2 Support of the SPARQL query language
	6.3 Dealing with the MongoDB $where operator

	7 Appendix A
	7.1 Functions genProjection and genProjectionParent
	7.2 Function genCond and genCondParent

	8 Appendix B: Complete Running Example
	1.1
	8.1 Translation of tp2 into an abstract query
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	8.2 Translation of tp1 into an abstract query
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	8.3 Abstract query optimization
	8.4 Rewriting atomic queries to MongoDB queries
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	8.5 Complete transm processing

	9 References

