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1 Introduction 

The Web-scale data integration progressively becomes a reality, giving birth to the Web of Data. It is sustained and 

promoted by the W3C Data Activity
1
 working group that aims at overcoming data diversity and support public and 

private sector organizations in this matter. A key-point to the achievement of the Web of Data is that data be published 

openly on the Web in a standard, machine-readable format, and linked with other related data sets. In this matter, an 

extensive work has been achieved during the last years to expose legacy data as RDF.  

 

At the same time, the success of NoSQL database platforms is no longer questioned today. Driven by major Web 

companies, they have been developed to meet requirements of novel applications, hardly available in relational 

databases (RDB), such as a flexible schema, high throughput, high availability and horizontal elasticity. Not only 

NoSQL platforms are at the core of many applications dealing with big data, but they are also increasingly used as a 

generic-purpose database in many domains. Today, this overwhelming success makes NoSQL databases a natural 

candidate for RDF-based data integration systems, and potential significant contributors to feed the Web of Data. 

 

In this regard, it shall be necessary to develop SPARQL access methods for heterogeneous databases with different 

query languages. These methods shall vary greatly depending on the target database query capabilities: for instance 

RDBs support joins, nested queries and string manipulations, but this is hardly the case of some NoSQL document 

stores like MongoDB or CouchDB. Thus, rather than defining yet another SPARQL translation method for each and 

every query language, we think it is beneficial to consider a two-step approach. First, given a set of mappings of the 

target database to RDF, a SPARQL query is translated into a pivot abstract query by matching SPARQL graph 

patterns with relevant mappings. This step can be made generic if the mapping language used is generic enough to 

apply to a large and extensible set of databases. In a second step, the abstract query is translated into the target 

database query language, taking into account the specific database capabilities. 

 

Our goal, in this document, is to address this two-step method. Firstly, leveraging previous works on R2RML-based 

SPARQL-to-SQL methods, we define a method to translate a SPARQL query into a pivot abstract query, utilizing 

xR2RML [10] to describe the mapping of a target database to RDF. The method determines the minimal set of 

mappings matching each SPARQL graph pattern, and takes into account join constraints implied by shared variables, 

cross-references denoted in the mappings, and SPARQL filters. Common query optimization techniques are applied to 

the abstract query in order to alleviate the work required in the second step. Secondly, we define a method to translate 

such an abstract query into a concrete query using MongoDB as our target database. In recent years, MongoDB
2
 has 

become the leader in the NoSQL market, as suggested by several indicators including Google searches
3
, job offerings

4
 

and LinkedIn member profiles mentioning MongoDB skills
5
. Some methods have been proposed to translate 

MongoDB documents into RDF [10], or to use MongoDB as an RDF triple store [20]. Yet, to the best of our 

knowledge, no work has been proposed so far to query arbitrary MongoDB documents using SPARQL. 

 

In the rest of this section we review previous works related the translation of various data sources into RDF. Section 2 

presents the xR2RML mapping language and introduces a running example. In section 3 we first describe a method to 

rewrite a SPARQL query into a pivot abstract query under xR2RML mappings. This relies on bindings between a 

SPARQL triple pattern and xR2RML mappings, detailed in section 3.3. Section 4 focuses more specifically on the 

translation of an abstract query into MongoDB concrete queries. Section 5 recaps the whole method through an 

algorithm that orchestrates the different steps, until the evaluation of MongoDB queries and the generation of the RDF 

triples matching the SPARQL query. After a discussion and conclusion in section 6, appendix B (section 8) goes over 

the running example that is been detailed throughout the previous sections. 

                                                      
1
 http://www.w3.org/2013/data/ 

2
 https://www.mongodb.org/ 

3
 https://www.google.com/trends/explore#q=mongodb,couchdb,couchbase,membase,hbase 

4
 http://www.indeed.com/jobtrends/mongodb,mongo,cassandra,hbase,couchdb,couchbase,membase,redis.html 

5
 https://blogs.the451group.com/information_management/tag/nosql/ 
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Related works. 

Much work has been achieved during the last decade to expose legacy data as RDF, in which two approaches 

generally apply: either the RDF graph is materialized by translating the data into RDF and loading it in a triple store 

(in an ETL – Extract, Transform and Load - manner), or the raw data is unchanged and a query language such as 

SPARQL is used to access the virtual RDF graph through query rewriting techniques. While materializing the RDF 

graph can be needed in some contexts, it is often impossible in practice due to the size of generated graphs, and not 

desirable when data freshness is at stake. Several methods have been proposed to achieve SPARQL access to 

relational data, either in the context of RDF stores backed by RDBs [4,16,7] or using arbitrary relational schemas 

[3,18,13,14]. R2RML [5], the W3C RDB-to-RDF mapping language recommendation is now a well accepted standard 

and various SPARQL-to-SQL rewriting approaches rely on it [18,13,14]. Other solutions intend to map XML data to 

RDF [2,1], and the CSV on the Web W3C working group
6
 makes a recommendation for the description of and access 

to CSV data on the Web. RML [6] is an extension of R2RML that tackles the mapping of data sources with 

heterogeneous data formats such as CSV/TSV, XML or JSON. The xR2RML mapping language [10] is an extension 

of the R2RML and RML addressing the mapping of a large and extensible scope of non-relational databases to RDF. 

Some works have been proposed to use MongoDB as an RDF triple store, and in this context they designed a method 

to translate SPARQL queries into MongoDB queries [20]. MongoGraph
7
 is an extension of AllegroGraph

8
 to query 

MongoDB documents with SPARQL queries. It follows an approach very similar to the Direct Mapping approach 

defined in the context of RDBs [17]: each field of a MongoDB JSON document is translated into an ad-hoc predicate, 

and a mapping links MongoDB document identifiers with URIs. SPARQL queries use the specific find predicate to 

tell the SPARQL engine to query MongoDB. Despite those approaches, to the best of our knowledge, no work has 

been proposed yet to translate a SPARQL query into the MongoDB query language and map arbitrary MongoDB 

documents to RDF. 

2 The xR2RML mapping language 

The xR2RML mapping language [10] is designed to map an extensible scope of relational and non-relational 

databases to RDF. Its flexibly adapts to heterogeneous query languages and data models thereby remaining 

independent from any specific database. It is backward compatible with R2RML and it relies on RML for the handling 

of various data formats.  

 

Below we shortly describe the main xR2RML features, a complete specification of the language is available in [11]. 

We assume the following namespace prefix definitions: 

xrr: <http://www.i3s.unice.fr/ns/xr2rml#> 

rr:  <http://www.w3.org/ns/r2rml#> 

rml: <http://semweb.mmlab.be/ns/rml#> 

ex:  <http://example.com/ns#> 

2.1 Recalls on R2RML 

R2RML is a generic language meant to describe customized mappings that translate data from a relational database 

into an RDF data set. An R2RML mapping is expressed as an RDF graph that consists of triples maps, each one 

specifying how to map rows of a logical table to RDF triples. A triples map is composed of exactly one logical table 

(property rr:logicalTable), one subject map  (property  rr:subjectMap) and any number of predicate-object maps 

(property rr:predicateObjectMap). A logical table may be a table, an SQL view (property rr:tableName), or the 

result of a valid SQL query (property rr:sqlQuery). A predicate-object map consists of predicate maps (property 

rr:predicateMap) and object maps (property rr:objectMap). For each row of the logical table, the subject map 

                                                      
6
 http://www.w3.org/2013/csvw/wiki 

7
 http://franz.com/agraph/support/documentation/4.7/mongo-interface.html 

8
 http://allegrograph.com/ 
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generates a subject IRI, while each predicate-object map creates one or more predicate-object pairs. Triples are 

produced by combining the subject IRI with each predicate-object pair. Additionally, triples are generated either in the 

default graph or in a named graph specified using graph maps (property rr:graphMap). 

 

Subject, predicate, object and graph maps are all R2RML term maps. A term map is a function that generates RDF 

terms (either a literal, an IRI or a blank node) from elements of a logical table row. A term map must be exactly one of 

the following: a constant-valued term map (property rr:constant) always generates the same value; a column-valued 

term map (property rr:column) produces the value of a given column in the current row; a template-valued term map 

(property rr:template) builds a value from a template string that references columns of the current row. 

 

When a logical resource is cross-referenced, typically by means of a foreign key relationship, it may be used as the 

subject of some triples and the object of some others. In such cases, a referencing object map uses IRIs produced by 

the subject map of a (parent) triples map as the objects of triples produced by another (child) triples map. In case both 

triples maps do not share the same logical table, a join query must be performed. A join condition (property 

rr:joinCondition) names the columns from the parent and child triples maps, that must be joined (properties 

rr:parent and rr:child). 

 

Below we provide a short illustrative example. Triples map <#R2RML_Directors> uses table DIRECTORS to create 

triples linking movie directors (whose IRIs are built from column NAME) with their birth date (column BIRTH_DATE). 

 

<#R2RML_Directors> 

   rr:logicalTable [rr:tableName "DIRECTORS" ]; 

   rr:subjectMap [ 

      rr:template "http://example.org/dir/{NAME}"; 

      rr:class ex:Manager ]; 

   rr:predicateObjectMap [ 

       rr:predicate ex:bithdate; 

       rr:objectMap [ 

          rr:column "BIRTH_DATE"; 

          rr:datatype xsd:date ] ]. 

2.2 xR2RML language description 

An xR2RML mapping defines a logical source (property xrr:logicalSource) as the result of executing a query 

(property xrr:query) against an input database. The query is expressed in the query language of the target database. 

Data from the logical source is mapped to RDF using triples maps. Like in R2RML a triples map consists of several 

term maps that extract values from a query result set and translate them into terms of RDF triples. A subject map 

generates the subject of RDF triples, and multiple predicate-object maps produce the predicate and object terms. 

Optionally, a graph map is used to name a target graph. Listing 3 depicts two xR2RLM triples map <#Departments> 

and <#Staff>. 

 

xR2RML references. Term maps extract data from query results by evaluating xR2RML data element references, 

hereafter named xR2RML references. The syntax of xR2RML references is called the reference formulation (as a 

reference to the RML property of the same name), it depends on the target database: a column name in case of a 

relational database, an XPath expression in case of a native XML database, or a JSONPath expression in case of JSON 

documents like in MongoDB. An xR2RML processor is provided with a connection to the target database and the 

reference formulation applicable to results of queries run against the connection. xR2RML references are used with 

properties xrr:reference and rr:template. The xrr:reference property contains a single xR2RML reference, 

whereas the rr:template property may contain several references in a template string.  
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Iteration model. xR2RML implements a document-based iteration model: a document is basically one entry of a 

result set returned by the target database, e.g. a JSON document retrieved from a NoSQL document store, rows of an 

SQL result set or an XML document retrieved from an XML native database. In some contexts, this iteration model 

may not be sufficient to address all needs: it may be needed to iterate on explicitly specified entries of a JSON 

document or elements of an XML tree. To this end, xR2RML leverages the concept of iterator introduced in RML. An 

iterator (property rml:iterator) specifies the iteration pattern to apply to data read from the input database. Its value 

is an expression written using the syntax specified in the reference formulation. For instance, in the collection in 

database Listing 2, if we were interested in team members rather than in departments, we would define an iterator in 

the logical source of triples map <#Departments> to explicitly specify to iterate on elements of the members array: 

<#Departments> 

   xrr:logicalSource [ xrr:query "db.departments.find({})"; rml: iterator "$.members.*" ]; 

 

Mixed-syntax paths. xR2RML extends RML’s principle of data element references to allow referencing data 

elements within mixed content. For instance, a JSON value may be embedded the cells of a relational table. In such 

cases, properties xrr:reference and rr:template may accept mixed-syntax path expressions. An xR2RML mixed-

syntax path consists of the concatenation of several path expressions, each path being enclosed in a syntax path 

constructor that makes explicit the path syntax. Existing constructors are: Column(), CSV(), TSV(), JSONPath() and 

XPath(). For example, in a relational table, a text column NAME stores JSON-formatted values containing people's first 

and last names, e.g.: {"First":"John", "Last":"Smith"}. Field FirstName can be referenced with the following 

mixed-syntax path: Column(NAME)/JSONPath($.First). 

 

RDF lists and collections. When the evaluation of an xR2RML reference produces several RDF terms, the xR2RML 

processor creates one triple for each term. Alternatively, it can group them in an RDF list (rdf:List) or collection 

(rdf:Seq, rdf:Bag and rdf:Alt). This is achieved using specific values of the rr:termType property within an object 

map. Besides, property xrr:nestedTerMap is a means to create nested lists and collections, and to qualify terms of a 

list or collection with a language tag or data type. 

 

Cross-references. Like R2RML, xR2RML allows to model cross-references by means of referencing object 

maps. A referencing object map uses values produced by the subject map of another triples map (the parent) as objects. 

Properties rr:child and rr:parent specify the join condition between documents of the current triples map (the 

child), and the parent triples map. In Listing 3 this is exemplified by triples map <#Staff> that has a referencing object 

map whose parent triples map is <#Departments>.  

The objects produced by a referencing object map can be grouped in an RDF collection or container, instead of being 

the objects of multiple triples, using specific values of the property rr:termType, mentioned above. 

Results of the joint query are grouped by child value, i.e.: objects generated by the parent triples map, referring to the 

same child value, are grouped as members of an RDF collection or container. 

2.3 Normalization and restriction of xR2RML within this document 

To keep the document focused on the query translation question and for the sake of clarity, the running example in 

section 2.3 does not use iterators nor mixed syntax paths. 

 

In xR2RML, as in R2RML, a triples map may contain any number of predicate-object maps, and a predicate-object 

map may contain any number (>1) of predicate maps and object maps. Although they do not explicitly mention it, 

authors of [13] and [18] assume that a triples map contains only one predicate-object map, each having exactly one 

predicate map and one object map. In [14] (appendix A), the authors propose an algorithm to normalize R2RML 

mappings so as to comply with this assumption. We comply with it as it significantly simplifies the description of the 
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algorithms, while keeping the full expressiveness of R2RML. In the following, we assume that a triples map contains 

exactly one predicate-object map with exactly one predicate map and one object map. 

 

Furthermore, the R2RML rr:class property introduces a specific way of producing triples such as "<A> rdf:type 

<B>". The mapping normalization in [14] proposes to replace any rr:class property by an equivalent predicate-object 

map: [rr:predicate rdf:type; rr:object <A>.]. We also comply with this proposition as it allows for the 

definition of a general method consistently dealing with all kinds of triple patterns, may they have the rdf:type 

property or any other property. 

2.4 Running Example 

To illustrate the description of our method, we define a running example that we refer to all along this document. 

Additionally, section 8 goes through the whole method and provides additional explanations. 

 

Let us consider a MongoDB database with two collections “staff” and “departments” given in Listing 1 and Listing 2 

respectively. Collection “departments” lists the departments within a company, including a department code and its 

members. Members are given by their name and age. Collection “staff” lists people by their name (that may be either 

field “familyname” or “lastname”), and provides a list of departments that they manage, if any, in array field 

“manages”. 

 

Listing 1: Collection “staff” 

  { "familyname":"Underwood", "manages":["Sales"] }, 

  { "lastname":"Dunbar", "manages":["R&D", "Human Resources"] }, 

  { "lastname":"Sharp", "manages":["Support", "Business Dev"] } 

 

Listing 2: Collection “departments” 

  { "dept":"Sales", "code":"sa", 

    "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}]  }, 

  { "dept":"R&D", "code":"rd", 

    "members": [{"name":"J. Smith", "age":32}, {"name":"D. Duke", "age":23}] }, 

  { "dept":"Human Resources", "code":"hr", 

    "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38} }, 

  { "dept":"Business Dev", "code":"bdev", 

    "members": [{"name":"R. Danton", "age":36}, {"name":"E. Meetchum", "age":34} } 

 

Let us consider the xR2RML mapping graph in Listing 3, consisting of two triples maps <#Staff> and 

<#Departments>. The logical source in triples map <#Staff> provides a MongoDB query db.staff.find({}) that 

retrieves all documents in collection “staff”. The parameter “{}” is basically an empty filter. Similarly, the query 

in <#Departments>’s logical sources retrieves all documents in collection “departments”. Triples map <#Staff> 

has a referencing object map whose parent triples map is <#Departments>. Triples map <#Departments> generates 

triples with predicate ex:hasSeniorMember for each member of the department who is 40 years old or more. For the 

sake of simplicity the queries in both triples maps retrieve all documents of the collection with no other query filter. 
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Listing 3: xR2RML Example Mapping Graph 

<#Departments> 

   xrr:logicalSource [ xrr:query "db.departments.find({})" ]; 

   rr:subjectMap [ rr:template "http://example.org/dept/{$.code}" ]; 

   rr:predicateObjectMap [ 

      rr:predicate ex:hasSeniorMember; 

      rr:objectMap [ xrr:reference "$.members[?(@.age >= 40)].name" ] 

   ]. 

 

<#Staff> 

   xrr:logicalSource [ xrr:query "db.staff.find({})" ]; 

   rr:subjectMap [ rr:template "http://example.org/staff/{$['lastname','familyname']}" ]; 

   rr:predicateObjectMap [ 

      rr:predicate ex:manages; 

      rr:objectMap [ 

         rr:parentTriplesMap <#Departments>; 

         rr:joinCondition [ 

            rr:child "$.manages.*"; 

            rr:parent "$.dept" 

         ]  ]  ]. 

 

We wish to query the above MongoDB database with the SPARQL below query to retrieve senior members of 

departments whose manager is “Dunbar”. The query consists of one basic graph pattern bgp, itself consisting of two 

triple patterns tp1 and tp2: 

SELECT ?senior WHERE { 

    <http://example.org/staff/Dunbar> ex:manages ?dept. // tp1 

    ?dept ex:hasSeniorMember ?senior. }    // tp2 

We shall use this query throughout this document to illustrate the method. 

3 Rewriting a SPARQL query into an abstract query 

Various methods have been defined to translate SPARQL queries into another query language, that are generally 

tailored to the expressiveness of the target query language. For instance, SPARQL-to-SQL methods harness the ability 

of SQL to support joins, unions, nested queries and various string manipulation functions, to translate a SPARQL 

query into a single, possibly deeply nested SQL query. Some of them rely on modern RDBs optimization engines to 

rewrite the query in a more efficient way, although this is often not sufficient as attested by the focus on the generation 

of pre-optimized queries e.g. using self-join elimination or by pushing down projections and selections [7,14,16,19]. A 

conjunction of two basic graph patterns (BGP) generally results in the inner join of their respective translations; their 

union results in an SQL UNION ALL clause; the SPARQL OPTIONAL keyword between two BGPs results in a left 

outer join, and a SPARQL FILTER results in an encapsulating SQL SELECT in which the filter is translated into an 

equivalent SQL WHERE clause. Similarly, the SPARQL-to-XQuery method proposed in [1] relies on the ability of 

XQuery to support the same features. For instance a SPARQL FILTER is translated into an XPath condition and/or an 

encapsulating XQuery For-Let-Where clause. 

 

The rich expressiveness of SQL and XQuery makes it possible to translate a SPARQL query into a single, possibly 

deeply nested, target query, whose semantics is strictly equivalent to that of the SPARQL query. In the general case 

however, i.e. beyond the scope of SQL and XQuery, joins, unions and/or sub-queries may not be supported. NoSQL 

databases typically make a trade-off between query language expressiveness and scalability. This is particularly the 

case of MongoDB: joins are not supported, and unions and nested queries are supported under strong restrictions. 
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Unions, joins and sub-queries may be delegated to the target database when it supports these operations, or processed 

by the query processing engine otherwise. An xR2RML-based query processing engine for MongoDB shall evaluate 

several queries separately (e.g. one per triple pattern), and perform joins and unions afterwards. 

 

In this section we first review several R2RML-based SPARQL-to-SQL translation methods. We then define the 

methods that generate the abstract query, figure out which candidate xR2RML mappings match a SPARQL graph 

pattern, and generate the per-triples-map atomic abstract query. 

3.1 R2RML-based SPARQL-to-SQL methods 

Priyatna et al. [13] extend Chebotko's algorithm [4] that focused on the SPARQL-to-SQL query translation in the 

context of a RDB-based triple stores. They redefine the original mappings to comply with the context of custom 

mappings described in R2RML. Their method addresses the problem of eliminating null answers by adding not null 

conditions for variables of a triple pattern. However it has two limitations:  

(i) R2RML triples maps must have constant predicate maps, i.e. the predicates of the generated RDF triples cannot 

be built using a value from the database. 

(ii) Triple patterns are considered and translated independently of each other, even when variables are shared by 

several triple patterns of a basic graph pattern; solutions that do not match a join between two or more triple 

patterns are ruled out only during the final join step. The risk is to retrieve more data than actually necessary to 

answer queries. This may be avoided by using query optimization techniques; however it seems more natural and 

probably more efficient to take such constraints into account at the earliest step. 

 

Unbehauen et al. [18] define the concept of compatibility between the RDF terms of a triple pattern and R2RML term 

maps (subject, predicate or object map), and subsequently the concept of triple pattern binding. This helps to 

effectively manage variable predicate maps, which clears the first aforementioned limitation. Furthermore, this 

method considers the dependencies between triple patterns of a basic graph pattern. This helps reduce the number of 

candidate triples maps for each triple pattern by pre-checking filters and join constraints implied by the variables 

shared by several triple patterns. This clears the second aforementioned limitation. This whole mapping selection 

process is generic and can be reused for xR2RML. Yet, two limitations can be noticed:  

(i) Referencing object maps are not addressed, and therefore only a subpart of R2RML is supported: joins implied 

by shared variables are dealt with but joins declared in the mapping graph are ignored.  

(ii) The rewriting maps each term map to a set of columns, called column group, that enables filtering, join and data 

type compatibility checks. This strongly relies on SQL capabilities (CASE, CAST, string concatenation, etc.), 

making it hardly applicable out of the scope of SQL-based systems. 

 

Rodríguez-Muro and Rezk [14] propose a different approach. They extend the ontop system that performs Ontology-

Based Data Access (OBDA), to support R2RML mappings. A SPARQL query and an R2RML mapping graph are 

translated into a Datalog program. This formal representation is used to combine and apply optimization techniques 

from logic programming and SQL querying. The optimized program is then translated into an executable SQL query. 

It must be noticed that, at the time of writing, this is the only state-of-the-art method fully supporting SPARQL 1.1. 

3.2 Abstract Query 

Our pivot abstract query language complies with the following grammar: 
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<AbstractQuery> ::= <AtomicQuery> | <Query> | <Query> FILTER <SPARQL filter> 

<Query>         ::= <AbstractQuery> INNER JOIN <AbstractQuery> ON {v1, … vn} | 

                    <AbstractQuery> AS child INNER JOIN <AbstractQuery> AS parent  

                                    ON child/<Ref> = parent/<Ref> | 

                    <AbstractQuery> LEFT OUTER JOIN <AbstractQuery> ON {v1, … vn} | 

                    <AbstractQuery> UNION <AbstractQuery> 

<AtomicQuery>   ::= {From, Project, Where} 

<Ref>           ::= a valid xR2RML reference 

 

Operators INNER JOIN…ON, LEFT OUTER JOIN…ON, UNION use the SQL syntax as an analogy, with the 

difference that the semantics of UNION is that of the SQL UNION ALL, i.e. it keeps duplicate entries. They are 

entailed by the dependencies between graph patterns of the SPARQL query. The first INNER JOIN notation is 

entailed by the join constraints implied by shared variables. The second INNER JOIN notation, including the “AS 

child”, “AS parent” and “ON child/<Ref> = parent/<Ref>” notations, is entailed by the join constraints expressed in 

xR2RML mappings using referencing object maps. Their computation shall be delegated to the target database if it 

supports them (i.e. if the target query language has equivalent operators, this is the case of a relational database), or 

they may be computed by the query processing engine otherwise (case of MongoDB). Atomic abstract queries 

(<AtomicQuery>) are entailed by translating a triple pattern under a set of xR2RML triples maps.  

 

Function transm (Definition 1) translates a well-designed SPARQL graph pattern [12] into an abstract query that 

makes no assumption on the target database capabilities. It extends the translation algorithms defined in [4], [18] and 

[13]. 

 

Running Example. Let us give a first simple illustration: our running example does not include any SPARQL filter to 

keep it easy to follow. The application of the transm function to the basic graph pattern bgp is as follows: 

transm(bgp, true) 

   = transm(tp1, true) INNER JOIN transm(tp2, true) ON var(tp1) ⋂ var(tp2) 

   = transTPm(tp1, true) INNER JOIN transTPm(tp2, true) ON {?dept} 

 

Definition 1: Function transm, translation of a SPARQL query into an abstract query 

Let m be an xR2RML mapping graph consisting of a set of xR2RML triples maps. Let gp be a well-designed SPARQL 

graph pattern. 

transm(gp) is the translation, under m, of gp into an abstract query. transm is defined as follows: 

- transm(gp) = transm(gp, true) 

- if gp consists of a single triple pattern tp, transm(gp, f) = transTPm(tp, sparqlCond(tp, f)) 

- if gp is (P FILTER f’), transm(gp, f) = transm(P, f &&  f’) FILTER sparqlCond(P, f &&  f’) 

- if gp is (P1 AND P2), transm(gp, f) = transm(P1, f) INNER JOIN  transm(P2, f) ON  var(P1) ⋂ var(P2) 

- if gp is (P1 OPTIONAL P2), 

 transm (gp, f) = transm(P1, f) LEFT OUTER  JOIN  transm(P2, f) ON var(P1) ⋂ var(P2) 

- if gp is (P1 UNION P2), transm (gp) =  

transm(P1, f) LEFT OUTER  JOIN  transm(P2, f) ON var(P1) ⋂ var(P2) 

UNION 

transm(P2, f) LEFT OUTER  JOIN  transm(P1, f) ON var(P1) ⋂ var(P2) 

 

To limit the negative impact on performances of running multiple separate queries, each query must be as selective as 

possible. In this goal we propose a generalized management of SPARQL filters: we wish to push down SPARQL 

filters into the translation of each triple pattern, in order to make inner queries more selective and limit the size of 

intermediate results. A SPARQL filter f can be considered as a conjunction of n conditions (n >= 1): C1 && ... Cn. 

We discriminate between conditions with respect to two criteria: 
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(i) A condition wherein all variables show in a single triple pattern tp of the SPARQL query is pushed into the 

translation of tp using function transTPm, defined in section 3.4. This ensures that filters are applied at the earliest 

stage, as opposed to the encapsulating SELECT-WHERE strategy in SPARQL-to-SQL translations. 

(ii) For a condition wherein at least one variable is shared by several triple patterns, a FILTER operator is created to 

represent the join criteria. 

Notice that a condition may match both criteria. The discrimination between SPARQL filter conditions is 

implemented by the sparqlCond function (Definition 2). 

 

Definition 2: Function sparqlCond, splitting SPARQL filter conditions per graph pattern 

Let gp be a well-designed SPARQL graph pattern and f be the conjunctive SPARQL filter “C1 && … && Cn”, where 

C1 to Cn are SPARQL conditions. Function sparqlCond is defined as follows: 

- if gp consists of a single triple pattern tp, sparqlCond(tp, f) is the conjunction of conditions Ci such that all the 

variables in Ci appear in tp. 

- if gp is any other graph pattern, sparqlCond(gp, f) is the conjunction of conditions Ci such that at least one 

variable in Ci is shared by several triple patterns of gp. 

 

We illustrate this process with a dedicated example (out of the scope of the running example). We apply the transm 

function to the SPARQL below, in which we denote by tp1 to tp4 the triple patterns and C1 to C4 the conditions of the 

SPARQL filter. 

SELECT ?name1 ?name2 WHERE  

{ ?x foaf:name ?name1.                            // tp1 

  ?x foaf:mbox ?mbox1.                            // tp2 

  ?y foaf:name ?name2.                            // tp3 

  OPTIONAL {?y foaf:mbox ?mbox2.}                 // tp4 

  FILTER { lang(?name1) IN ("EN","FR") &&         // C1 

           ?y != ?mbox2 &&                        // C2 

           contains(str(?mbox2), "astring") &&    // C3 

           (?mbox1 != ?mbox2 || ?name1 != ?name2) // C4 

         } 

} 

We denote by F the whole SPARQL filter, i.e. C1 && C2 && C3 && C4. 

tp1: no condition involves both ?x and ?name1, but C1 involves only ?name1. Condition C4 involves ?name1 but it also 

involves variables that are not in tp1. Hence sparqlCond(tp1, F) returns only C1. 

tp2: no condition involves both ?x and ?mbox1, nor either ?x or ?mbox1, sparqlCond(tp2, F) returns ∅. 

tp3: no condition involves both ?y and ?name2, nor either ?y or ?name2, sparqlCond(tp3, F) returns ∅. 

tp4: condition C2 involves both variables ?y and ?mbox2, and C3 involves only ?mbox2. Therefore sparqlCond(tp4, F) 

returns “C2 && C3”. 

 

Lastly, only conditions C2 and C4 involve variables from several triples patterns. We come up with the following 

abstract query: 

transTPm(tp1, C1) INNER JOIN transTPm(tp2, ∅) ON {?x}  

                 INNER JOIN transTPm(tp3, ∅) ON ∅ 

                 LEFT OUTER JOIN transTPm(tp4, C2 && C3) ON {?y} 

WHERE C2 && C4 

3.3 Binding triples maps to triple patterns 

To define function transTPm, which translates SPARQL triple patterns into unions of atomic abstract queries, we need 

to figure out which ones of the xR2RML triple maps are likely to generate RDF triples matching the triple pattern. We 

need to introduce the concept of triple pattern binding: 
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Definition 3: Triple pattern binding (adapted from Unbehauen et al. [18]) 

Let m be an xR2RML mapping graph consisting of a set of xR2RML triples map, and tp be a triple pattern. 

A triples map TM ∈ m is bound to tp if it is likely to produce triples matching tp. 

A triple pattern binding is a pair (tp, TMSet) where TMSet is the set of triples maps of m that are bound to tp. 

 

Function bindm, along with functions join, reduce and compatible (defined later in this section), determines, for a 

graph pattern gp, the bindings of each triple pattern of gp. It takes into account join constraints implied by shared 

variables, and the SPARQL filter constraints whose unsatisfiability can be verified statically. Functions bindm, join, 

reduce and compatible were introduced by Unbehauen et al [18] in the SPARQL-to-SQL context, but important 

details were left untold. In particular, the authors did not formally define what the compatibility between a term map 

and a triple pattern term means, and they did not investigate the static compatibility between a term map and a 

SPARQL filter. In this section we provide a comprehensive definition of these functions and we extend them to fit in 

our context of an abstract query language.  

 

We denote by TM.sub, TM.pred and TM.obj respectively the subject map, the predicate map and the object map of 

triples map TM. TM.pred = TM.predicateObjectMap.predicatMap, and  

TM.obj = TM.predicateObjectMap.objectMap. 

 

Definition 4: function bindm 

Let m be a mapping graph consisting of a set of xR2RML triples maps, and gp be a well-designed graph pattern. 

bindm(gp) is the set of triple pattern bindings of gp under m, defined recursively as follows: 

- bindm(gp) = bindm(gp, true) 

- if gp consists of a single triple pattern tp, bindm(gp, f) is the pair (tp, TMSet) where TMSet = {TM | TM ∈ m ∧  

compatible(TM.sub, tp.sub, f) ∧  compatible(TM.pred, tp.pred, f) ∧  compatible(TM.obj, tp.obj, f)} 

- if gp is (P1 AND P2), bindm(gp, f) = reduce(bindm(P1, f), bindm(P2, f)) ∪  reduce(bindm(P2, f), bindm(P1, f)) 

- if gp is (P1 OPTIONAL P2), bindm(gp, f) = bindm(P1, f) ∪  reduce(bindm(P2, f), bindm(P1, f)) 

- if gp is (P1 UNION P2), bindm(gp, f) = bindm(P1, f) ∪  bindm(P2, f) 

- if gp is (P FILTER f’), bindm(gp, f) = bindm(P, f &&  f’) 

 

Function compatible is detailed in Definition 7, function reduce in Definition 6. In our running example, function 

bindm infers two triple pattern bindings: 

bindm(bgp) = { (tp1, {<#Staff>}) , (tp2, {<#Departments>)} } 

 

Definition 5: function join 

Let m ∈ M be a set of xR2RML triples maps, tpb1=(tp1, TMSet1) and tpb2=(tp2, TMSet2) be triple pattern bindings 

with TMSet1 ⊆ m and TMSet2 ⊆ m, V be the set of variables shared by tp1 and tp2. 

Let postp: V → {sub, pred, obj} be the function that returns the position of a variable v ∈ V in triple pattern tp. 

join(tpb1, tpb2) is the set of pairs (TM1, TM2) ∈ TMSet1×TMSet2, such that for each v ∈ V, it holds that 

compatibleTermMaps(TM1.postp1(v), TM2.postp2(v)). 

 

In other words, function join returns the pair (TM1, TM2) if, for each variable v shared by tp1 and tp2, the term maps 

associated to v in TM1 and TM2 are compatible, i.e. the term map of TM1 at the position of v in tp1 is compatible with 

the term map of TM2 at the position of v in tp2. 

Example: 

    tp1 = ?x knows ?y,     postp1(?y) = obj, 

    tp2 = ?y knows <#me>,  postp2(?y) = sub. 

    tpb1 = (tp1, {TM1}), tpb2 = (tp2, {TM2}) 

    join(tpb1, tpb2) = {(TM1, TM2)} if the object map of TM1 is compatible with the subject map of TM2. 
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Note that join(tpb1, tpb2) and join(tpb2, tpb1) contain the same pairs with the difference that in each pair the terms are 

switched. 

 

Definition 6: function reduce 

Let m ∈ M be a set of triples maps, tpb1 = (tp1, TMSet1) and tpb2 = (tp2, TMSet2) be triple pattern bindings with 

TMSet1 ⊆ m and TMSet2 ⊆ m. 

reduce(tpb1, tpb2) is the binding of tp1 to triples maps from the projection of the first component of pairs obtained 

from join(tpb1, tpb2). 

 

In other words, if tp1 and tp2 have a shared variable v, function reduce(tpb1, tpb2) returns the reduced bindings of tp1 

such that the term maps associated to v in the bindings of tp1 are compatible with the term maps associated to v in the 

bindings of tp2. 

Example:  

join(tpb1, tpb2) = {(TM1, TM2), (TM1, TM3)} => reduce(tpb1, tpb2) = (tp1, {TM1}) 

join(tpb2, tpb1) = {(TM2, TM1), (TM3, TM1)} => reduce(tpb2, tpb1) = (tp2, {TM2,TM3}) 

 

Function compatible(termMap, tpTerm, f) checks if a term map (termMap) is compatible with a term of a triple pattern 

(tpTerm) and a SPARQL filter f, i.e. that there is no contradiction between tpTerm and termMap, and between f and 

termMap. Note that [18] simply defines the compatibility of termMap and tpTerm as: tpTerm ∈ range(termMap), but 

no description of the range function is provided. Below we give a description of what it means in our context. In 

Definition 7 and Definition 8 we mention the term type of a term map. Recall that the term type may be explicitly 

stated with the rr:termType property, or have a default value as per the xR2RML language specification. For instance 

a template-valued term map has the rr:IRI default term type and a reference-valued term map has the rr:Literal default 

term type. 

 

Definition 7: compatibility between a term map, a triple pattern term and a SPARQL filter 

Let tpTerm be a term of a triple pattern, termMap be a term map of an xR2RML triples map TM and f be a SPARQL 

filter. 

It holds that termMap is compatible with tpTerm and f, denoted by compatible(termMap, tpTerm, f), if termMap is 

compatible with filter f denoted by compatibleFilter(termMap, f), and either (i) tpTerm is a variable or (ii) none of 

the following assertions holds: 

- tpTerm is a literal and the term type of termMap is not rr:Literal; 

- tpTerm is an IRI and the term type of termMap is not rr:IRI; 

- tpTerm is a blank node and the term type of termMap is not one of {rr:BlankNode, xrr:RdfList, xrr:RdfBag, 

xrr:RdfSeq, xrr:RdfAlt}; 

- tpTerm is a literal with a language tag L, and the language of termMap is either undefined or different from L; 

- tpTerm is a literal with a datatype T, and the datatype of termMap is either undefined or different from T; 

- termMap is constant-valued with value V, and tpTerm is different from V; 

- termMap is template-valued with template string T, and tpTerm does not match T; 

- termMap is a ReferencingObjectMap and the subject map of the parent triples map is not compatible with 

tpTerm, i.e. ¬compatible (termMap.parentTriplesMap.subjectMap, tpTerm, f). 

 

Function compatibleFilter(termMap, f) checks if a term map is compatible with a SPARQL filter f, i.e. that the filter is 

satisfiable for RDF terms generated by the term map. 
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Definition 8: compatibility between a term map and a SPARQL filter 

Let termMap be an xR2RML term map and f be a SPARQL filter. It holds that termMap is compatible with f, denoted 

as compatibleFilter(termMap, f) if f =“true” or none of the following assertions holds: 

- a necessary condition of f is isIRI(?var) and the term type of termMap is not rr:IRI; 

- a necessary condition of f is isLiteral(?var) and the term type of termMap is not rr:Literal; 

- a necessary condition of f is isBlank(?var) and the term type of termMap is not rr:BlankNode; 

- a necessary condition of f is lang(?var)="L" or langMatches(lang(?var),"L"), and the language of termMap 

is either not defined or different from L; 

- a necessary condition of f is datatype(?var)=<T> and the datatype of termMap is either undefined or different 

from <T>; 

 

The compatibility between two term maps is defined by [18] as the condition:  

range(termMap1) ⋂ range(termMap2) ≠ ∅ 

Again, no description of the range function is provided, which leaves much room for interpretation. We give a 

complete description of what it means in our context. 

 

Definition 9: compatibility between term maps 

Let termMap1 and termMap2 be two xR2RML term maps. 

It holds that termMap1 and termMap2 are compatible, denoted by compatibleTermMaps(termMap1, termMap2) if 

none of the following assertions holds: 

(1) termMap1 and termMap2 have different term types (rr:Literal, rr:BlankNode, rr:IRI, xrr:RdfList, xrr:RdfSeq, 

xrr:RdfBag, xrr:RdfAlt). 

(2) termMap1 and termMap2 have different language tags, or one has a language tag and the other does not. 

(3) termMap1 and termMap2 are both template-valued, and they have incompatible template strings. 

(4) termMap1 (resp. termMap2) is a ReferencingObjectMap and the subject map of its parent triples maps is not 

compatible with termMap2 (resp. termMap1), i.e. 

 ¬compatibleTermMaps(termMap1.parentTriplesMap.subjectMap, termMap2), 

 (resp. ¬compatibleTermMaps(termMap1, termMap2.parentTriplesMap.subjectMap)) 

 

The negation of any of the assertions (1) to (4) is a sufficient condition to entail that two term maps are not 

compatible. Note that we could have considered the additional assertion (5): 

termMap1 and termMap2 have different types (constant-valued, reference-valued or template-valued). 

In practice, if assertion (5) is true, then indeed both term maps will often generate different values, thus they are not 

compatible. However, in some contexts, assertion (5) may be true although term maps are compatible. For instance, a 

reference-valued term map returning a URL from the database and a template-valued term map building a URL from 

some other value may return some common values. Therefore, considering assertion (5) in our definition may lead to 

state that two term maps are not compatible although they are, in turn the evaluation result will lack some matching 

triples. 

3.4 Atomic Abstract Query 

The transm function relies on the transTPm function (Definition 10) to translate a single triple pattern into an abstract 

query under the set of compatible xR2RML triples maps (the triples maps of m bound to the triple pattern). From the 

definition of the bindm function we know that several triples maps can be bound to one triple pattern tp, each of them 

may produce a subset of the triples matching tp. In other words, the RDF triples matching tp are obtained by the union 

of the triples generated by all the triples maps bound to tp. Therefore, the result query is a union of all per-triple-map 

queries. 
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Definition 10: Function transTPm: 

Let m be an xR2RML mapping graph consisting of a set of xR2RML triples maps, gp be a well-designed graph 

pattern, tp a triple pattern of gp, and f be a SPARQL filter expression. Let getBoundTMsm be the function that, given 

gp, tp and f, returns the set of triples maps of m that are bound to tp. 

transTPm(tp, f) is the translation, under getBoundTMsm(gp, tp, f), of “tp FILTER f” into an abstract query whereof 

results can be translated into triples matching “tp FILTER f”. The resulting abstract query uses atomic abstract 

queries denoted by {From, Project, Where}: 

- The From part consists of the triples map logical source; 

- The Project part is the set of xR2RML references that shall be projected in the target query, i.e. the references 

needed to generate the RDF terms of the result triples; 

- The Where part is a set of conditions applied to xR2RML references, entailed by matching the triples map with 

the triple pattern and f. 

 

Function transTPm is described in further details in Algorithm 1. The algorithms of functions genProjection, 

genProjectionParent, genCond and genCondParent are given in section 7. 

 

Algorithm 1 : Translation of a triple pattern into an abstract query (function transTPm) 

Function transTPm(tp, f): 
  Query ← <empty query> 
  BoundTMs ← getBoundTMsm(gp, tp, f) 
  for each TM ∈ BoundTMs do 

     From ← <TM's logicalSource> 
     Project ← genProjection(tp, TM) 
     Where ← genCond(tp, TM, f) 

    OM ← TM.predicateObjectMap.objectMap 
     if OM is a referencing object map then 

         childRef ← OM.joinCondition.child 
         parentRef ← OM.joinCondition.parent 

         PFrom ← <OM.parentTriplesMap's logical source> 
         PProject ← genProjectionParent(tp, TM) 
         PWhere ← genCondParent(tp, TM, f) 

         Q ← {From, Project, Where} AS child 
                 INNER JOIN 
                 {PFrom, PProject, PWhere} AS parent 
                 ON child/childRef = parent/parentRef 
     else 
         Q ← {From, Project, Where} 
     end if 
     Query ← Query UNION Q 
  end for 
  return Query 

 

Running Example. By simplification we use the notation getBoundTMsm(gp, tp) (without parameter f) as a shortcut of 

getBoundTMsm(gp, tp, true) i.e. when the SPARQL query has no filter. Function getBoundTMsm selects bindings 

calculated by function bindm: getBoundTMsm(gp, tp1) returns {<#Staff>}, while getBoundTMsm(gp, tp2) returns 

{<#Departments>}. 

tp2 = ?dept ex:hasSeniorMember ?senior. 

transTPm(tp2, true) = 

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← genProjection(tp2, <#Departments>) 

      Where   ← genCond(tp2, <#Departments>, true) } 
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In the case of tp1, the bound triples map, <#Staff>, contains a referencing object map. Consequently the translation 

entails an INNER JOIN operator on the xR2RML references mentioned in the joinCondition property of the 

referencing object map: 

tp1 = <http://example.org/staff/Dunbar> ex:manages ?dept 

transTPm(tp1, true) = 

    { From    ← {[xrr:query "db.staff.find({})"]} 

      Project ← genProjection(tp1, <#Staff>) 

      Where   ← genCond(tp1, <#Staff>, true) 

    } AS child 

    INNER JOIN  

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← genProjectionParent(tp1, <#Staff>) 

      Where   ← genCondParent(tp1, <#Staff>, true) 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

 

From. The From part provides the concrete query that the abstract query relies on. It contains the logical source of 

triples map TM that consists of the xrr:query property and an optional iterator (property rml:iterator). In our 

running example, the From part of tp2 is simply: 

   {[xrr:query "db.departments.find({})"]} 

In the case of tp1, two atomic abstract queries are created, each referring to the logical source of one triples map. 

 

Project. The genProjection and genProjectionParent functions select the xR2RML references that must be projected 

i.e. returned as part of the query result. An xR2RML reference may be e.g. a column name in an RDB, a JSONPath 

expression for MongoDB or an XPath expression for a native XML database. Thus, projecting an xR2RML reference 

in the relational case simply means that a column name appears in the SQL SELECT clause. Alternatively, with 

MongoDB, projecting an xR2RML reference means projecting fields mentioned in the JSONPath expression.  

If a, xR2RML reference corresponds to a variable in the triple pattern then it is always projected followed by the 

notation “AS <variable name>”. In our running example, the subject and object of tp2 are both variables; “?dept”, 

respectively “?senior”. The references of the subject map ($.code) and object map ($.members[?(@.age >= 

40)].name) that they are matched with must be projected. Consequently: 

 genProjection(tp2, <#Departments>) = {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

Other projected references shall vary depending on the target database capabilities: in an RDB, columns of a join 

condition do not need to be projected since the database can compute the join operation. Conversely, in MongoDB, 

since a join shall be processed by the query processing engine, joined references must be projected. This is illustrated 

using tp1 in our running example. <#Staff> has a referencing object map, thus the child and parent joined references 

must be projected. This is achieved by function genProjection that projects the child reference $.manages.*, and 

function genProjectionParent that projects the parent reference $.dept: 

   genProjection(tp1, <#Staff>) = {$.manages.*} 

   genProjectionParent(tp1, <#Staff>) = {$.dept ,$.code AS ?dept} 

Note that since the joined references are not matched with a variable of the SPARQL query they are projected without 

the AS operator. 

 

Where. The genCond function computes the Where part by matching each triple pattern term with its corresponding 

term map in each triples map. 

- A variable in a triple pattern entails a non-null condition on the corresponding reference in the term map. Let us 

exemplify this: the subject part of tp2, variable ?dept, is matched with the subject map of triples map 

<#Departments>, whose template string is "http://example.org/dept/{$.code}". Without any further 

knowledge on ?dept, the match states that the subject map must return a valid value, in other words the reference 
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"$.code" must not return null. This entails a condition: isNotNull($.code). When applied to the object of tp2, 

the same method entails a second not-null condition: isNotNull($.members[?(@.age >= 40)].name). 

- When a term of the triple pattern is matched with a constant term map, no condition is entailed. E.g.: the predicate 

part of tp2, ex:hasSeniorManager, matches the constant predicate map of triples map <#Departments>. There is 

nothing more we can deduct from this. As a result, the evaluation of function genCond on tp2 is as follows: 

      genCond(tp2, <#Departments>, true) = {isNotNull($.code),  

                                            isNotNull($.members[?(@.age >= 40)].name)} 

- A constant term in the triple pattern (literal or IRI) entails an equality condition. In our running example, the 

subject part of tp1, <http://example.org/staff/Dunbar>, is matched with the subject map of <#Staff>, whose 

template string is "http://example.org/staff/{$['lastname','familyname']}". This entails the equality 

condition: 

   equals("Dunbar", $['lastname','familyname']), 

stating that either “lastname” or “familyname” must equal “Dunbar”. 

- When a referencing object map is involved with either a variable or a constant term, a not-null condition must be 

added to ensure that the joined references return proper values. In our running example the object of tp1, variable 

?dept, is matched with the referencing object map of <#Staff>. This entails a new not-null condition on the child 

joined reference: isNotNull($.manages.*). As a result, the evaluation of function genCond on tp1 is as follows: 

   genCond(tp1, <#Staff>, true) = {equals("Dunbar", $['lastname','familyname']), 

                                   isNotNull($.manages.*)} 

A second atomic abstract query is entailed due to the referencing object map of <#Staff>, in which the Where part 

is computed by function genCondParent. The Where part contains the peer not-null condition for the parent joined 

reference: isNotNull($.dept). In addition, since the subject map of the parent triples map serves as the object 

map, conditions are generated similarly to what we explained above: equals conditions for constant values and 

isNotNull conditions for variables. In our case, variable ?dept is matched with the subject map of 

<#Departments>. Finally: 

   genCondParent(tp1, <#Staff>, true) = {isNotNull($.dept), // join condition 

                                         isNotNull($.code)} // variable ?dept 

 

Furthermore, if a variable of the triple pattern is mentioned in the SPARQL filter f passed as argument of transTPm, 

functions genCond and genCondParent generate a condition sparqlFilter(<xR2RML reference>, f). 

3.5 Abstract query optimization 

At this point, our method produces abstract queries that are effective, i.e. they preserve the semantics of SPARQL 

queries. Yet, their structure may show unnecessary complexity, and entail inefficient queries when translated into a 

target query language. Although we may postpone the query optimization to translation into a concrete query 

language, it is interesting to figure out what optimizations can be done on the abstract representation first, and leave 

only database-specific optimizations to the latter stage. SPARQL-to-SQL methods proposed various SQL query 

optimizations [19,14,7], that are often independent of SQL. Below we review some of these techniques referring to the 

terminology defined in [19]. We show that some of them are implemented in our method by construction, and how 

others apply in the context of our abstract query language. 

 

Filter Optimization. In a naive approach, strings generated by R2RML templates are dealt with using an SQL 

comparison of the resulting strings rather than the database values used in the template. This is notably the case of 

IRIs that are generally built as a template. As a consequence, the query evaluation cannot take advantage of existing 

indexes and performs poorly. Conversely in our approach, equality conditions apply to xR2RML references rather 

than on the generated IRIs, hence the Filter Optimization is enforced by construction. 
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Filter pushing. As we have already mentioned, the translation of a SPARQL filter into an encapsulating \textsc{select 

where} clause tends to lower the selectivity of inner queries, and the query evaluation process may have to deal with 

unnecessarily large intermediate results. In our approach, Filter pushing is achieved by construction by pushing down 

SPARQL filters, as much as possible, in the translation of each triple pattern. 

 

Self-Join Elimination. A self-join may occur when several triples maps share the same logical source. This can result 

in several triple patterns being translated into atomic abstract queries with the same From part, i.e. that refer to the 

same logical source. The Self-Join Elimination consists in merging the criteria of two atomic queries into a single 

equivalent query. 

 

Optional-Self-Join Elimination. The self-join issue can equally occur in the case of an OPTIONAL triple pattern that 

is translated into a LEFT OUTER JOIN. Similarly to the Self-Join Elimination, we can merge abstract atomic queries 

with the difference that null values must be allowed for terms that only show in the right operand of the left join. As a 

result, isNotNull conditions of the right operand are removed, and equals conditions of the form equals(expr, 

value) are replaced with a new type of condition including an isNull condition and OR operator: 

isNull(expr) OR equals(expr, value) 

 

Self-Union Elimination. A UNION operator can be created either due to the SPARQL UNION operator or during the 

translation of a triple pattern to which several triples maps are bound (in function transTPm). Similarly to the Self-Join 

Elimination, a union of several atomic abstract queries sharing the same logical source can be merged in a single one. 

 

In future works, we intend to study the relevance and applicability and other optimizations to our abstract query 

representation, such as the Projection Pushing [7] that helps to efficiently deal with queries such as SELECT DISTINCT 

?p WHERE {?s ?p ?o}, and the detection of some Unsatisfiable Conditions described in[14]. 

 

Running Example. 

When we put the translation of tp1 and tp2 together we obtain the following abstract query: 

transm(bgp, true) = 

    { From    ← {[xrr:query "db.staff.find({})"]} 

      Project ← {$.manages.*} 

      Where   ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}  

    } AS child 

    INNER JOIN  

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← {$.dept, $.code AS ?dept} 

      Where   ← {isNotNull($.code), isNotNull($.dept)} 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

    INNER JOIN  

    { From    ← [xrr:query "db.departments.find({})"] 

      Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

      Where   ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) } 

    ON {?dept} 

 

The 2
nd

 and 3
rd

 atomic queries have the same From part, thus entailing a self-join. To eliminate it we first rewrite the 

abstract query: we change the natural associative property of joins by embedding the 2
nd

 and 3
rd

 atomic queries in 

curly brackets. 

transm(bgp, true) = 

    { From    ← {[xrr:query "db.staff.find({})"]} 

      Project ← {$.manages.*} 

      Where   ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}  

    } AS child 
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    INNER JOIN  

    { 

        { From    ← {[xrr:query "db.departments.find({})"]} 

          Project ← {$.dept, $.code AS ?dept} 

          Where   ← {isNotNull($.code), isNotNull($.dept)} }  

        INNER JOIN  

        { From    ← [xrr:query "db.departments.find({})"] 

          Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

          Where   ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) } 

        ON {?dept} 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

 

Now we can perform a self-join elimination by merging the two queries together: we merge the Project parts on the 

one hand, and the Where parts on the other hand. We obtain the following optimized abstract query: 

transm(bgp, true) = 

    { From    ← {[xrr:query "db.staff.find({}})"]} 

      Project ← {$.manages.*} 

      Where   ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}  

    } AS child 

    INNER JOIN  

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← {$.dept, $.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

      Where   ← {isNotNull($.code), isNotNull($.dept), isNotNull($.members[?(@.age>=40)].name)} 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

4 Translation of an abstract query into a MongoDB query 

Let us sum up the whole process so far. Function transm translates a SPARQL query into an abstract query. INNER 

JOIN, LEFT OUTER JOIN, FILTER and UNION operators are entailed by the dependencies between graph patterns 

of the SPARQL query. UNION and INNER JOIN operators may also arise from the rewriting of a triple pattern: a 

UNION when a triple pattern tp is bound to more than one triples map, and an INNER JOIN when a triples map 

contains a referencing object map. Function transTPm, defined in section 3, returns atomic abstract queries of the form 

{From, Project, Where}. The From part contains the triples maps logical source that consists of a concrete MongoDB 

query (property xrr:query) and an optional iterator (property rml:iteraotr). The Where part is calculated by 

matching triple pattern terms with term maps; this shall generate either not-null conditions for SPARQL variables or 

equality conditions for constant terms. SPARQL filters are encapsulated in a specific sparqlFilter condition.  

 

In sections 4 and 5 we continue the process with the concrete case of MongoDB. In this case, xR2RML references are 

JSONPath expressions, thus the Where part is a set of conditions on JSONPath expressions, either 

isNotNull(JSONPath), equals(JSONPath, value), or sparqlFilter(JSONPath, filter). We study further-on how to 

translate not-null and equality conditions on JSONPath expressions into valid MongoDB queries. 

 

In the current status of this work, we do not consider SPARQL filters in the translation into the MongoDB query 

language. 

 

The process we define in this section first translates isNotNull and equals conditions of the Where part into MongoDB 

queries. Since conditions of the Where part are about JSONPath expression we have to investigate how to rewrite 

JSONPath expressions into equivalent MongoDB queries. For instance in our running example, the condition:  
equals("Dunbar", $['lastname','familyname']) 

shall be translated into a concrete MongoDB query: 
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$or[{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}] 

The generated MongoDB query shall augment the query of the From part. In this regards our example is trivial since 

the query in the <#Staff> triples map is empty: "{}". The final query is exactly what we generated above. 

 

The query produced by the translation process may contain several shortcomings: (i) the query may contain 

unnecessary complexity such as nested operators; (ii) it is not always possible to translate any arbitrary JSONPath 

expression into an equivalent MongoDB query; (iii) the query may contain $where operators at any depth although 

this is not valid in the MongoDB query language. Therefore, in a second step, the translation process performs various 

rewritings and optimizations. 

4.1 The MongoDB query language 

The MongoDB database comes with a rich set of APIs to allow applications to query a database in an imperative way. 

In addition, the MongoDB shell is a JavaScript interface that defines a declarative query language that we hereafter 

denote by the MongoDB query language
9
. In this work we refer to the language as described in the MongoDB Manual 

3.0 (the latest at the time of writing). The db.collection.find() method accepts two parameters: a query string and a 

projection string, and returns a cursor to the matching documents. Optional modifiers amend the query to impose 

limits, skips, and sort orders. Both the query and projection parameters are JSON documents.  

 

(1) The query parameter describes conditions about the documents to search for in the database. In the query 

document, specific query operators are marked with a heading ‘$’ character. We illustrate this with a few examples: 

- {"decade":{$exists:true}}: matches all documents with a field ”decade”. 

- {"person.age":{$gte:18}}: matches all documents with a field ”person” whose value is a document having a 

field ”age” whose value is 18 or more. 

- {"staff.0.role":{$eq:"manager"}}: matches all documents with an array ”staff” whose first element is a 

document having a field ”role” with value ”manager”. 

- {"staff":{$elemMatch:{"role":"developer"}}}: matches all documents with an array ”staff” in which at least 

one element is a document having a field ”role” with value ”developer”. 

(2) The projection parameter specifies the fields from the matching documents to return. In this example request: 

db.collection.find({"person.age":{$gte:18}}, {"person.name": true}) 

the first parameter matches all documents about people whose age is at least 18, and the second parameter specifies 

that only their name must be returned: no other fields, including “age”, are returned. 

 

The MongoDB documentation provides a rich description of the query language. Nevertheless, it lacks precision as to 

the formal semantics of some operators. For instance the query {$or:[{"p.q":10},{"p.q":11}]} retrieves 

documents where field “p” is a document having a field “q” whose value is either 10 or 11. We may be tempted to 

write the same query in another way: {"p": {$or: [{"q":10},{"q":11}]}}, however this query is invalid. It is 

unclear in the documentation why the $or and $and operators cannot be used as a condition on a field, but have to be 

at the top-level of the query document, or nested in an $elemMatch, an $and or an $or operator. To the best of our 

knowledge, at the time of writing, there is no published work that clarifies the semantics of the language. Therefore, in 

Definition 11 we describe the subset of the query language that we use in our approach, and we underline some 

limitations and ambiguities. Operator keywords are bold, square brackets ('[', ']'), curly brackets ('{', '}') and characters 

“:”, “,”, “/” and “.” are part of the language. Parenthesis groups "(...)", characters “*”, “+” and “|” are the syntactic 

notation denoting occurrences and alternatives. 

 

A sequence of comma-separated QUERY elements (in the top-level query and in the $elemMatch operator) is 

implicitly interpreted as a logical AND between the elements. Additionally, the $and operator performs a logical AND 

operation on an array of QUERY expressions and selects the documents that satisfy all the expressions in the array. 

                                                      
9
 https://docs.mongodb.org/manual/tutorial/query-documents/ 
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The $and operator is necessary when the same field or operator has to be specified in multiple expressions (as queries 

are valid JSON documents, thus they cannot have twice the same field name). 

 

The $elemMatch operator matches documents with an array field in which at least one element matches all the 

specified QUERY criteria. 

 

The $where operator passes a JavaScript expression or function to the query system. It provides greater flexibility than 

other operators. However, the JavaScript evaluation cannot take advantage of existing indexes and requires that the 

database processes the JavaScript expression for each document. This issue can seriously hinder performances, and 

MongoDB strongly recommends to use $where only when the query cannot be expressed using another operator.  

 

The $where operator is valid only in the top-level query document: it cannot be used inside a nested query such as an 

$elemMatch. This restriction makes a strong difference with SQL, and has a major impact on the rewriting process. 

 

The ARRAY_SLICE definition is separated from the above ones as an array slice does not apply in the query part but 

in the projection part of a MongoDB request (second parameter of the find method). For instance, query 
db.collection.find({comments:{$size: 100}}, {comments:{$slice: 5}})  

selects documents that have an array “comments” with 100 elements, and projects only the first five elements. 

 

Definition 11: Grammar of a subset of the MongoDB query language 

TOP_LEVEL_QUERY = {} |  

                  { QUERY(, QUERY)*(, WHERE_QUERY)*} | 

                  { WHERE_QUERY(, WHERE_QUERY)* } 

QUERY           = FIELD_QUERY | OR_QUERY | AND_QUERY 

FIELD_QUERY     = PATH: {OP: LITERAL} | 

                  PATH: {$elemMatch: {QUERY(, QUERY)*}} | 

                  PATH: {$regex: /REGEX/} 

OP              = $eq | $ne | $lt | $lte | $gt | $gte | $size 

OR_QUERY        = $or: [{QUERY}(, {QUERY})+] 

AND_QUERY       = $and: [{QUERY}(, {QUERY})+] 

PATH            = "(FIELD_NAME|ARRAY_INDEX)(.(FIELD_NAME|ARRAY_INDEX))*" 

WHERE_QUERY     = $where: JS_BOOL_EXP 

LITERAL         = literal value possibly in double quotes, 

                  including specific values null, true, false 

FIELD_NAME      = valid JSON field name 

ARRAY_INDEX     = positive integer value 

JS_BOOL_EXP     = valid JavaScript boolean expression 

REGEX           = Perl compatible regular expression 

ARRAY_SLICE     = {PATH: {$slice: <nb_of_elts>}} | {PATH: {$slice: [<skip>,<limit>]}} 

 

Ambiguous semantics of field names: 

The MongoDB query language allows ambiguous short-cut expressions to name paths in the JSON documents. For 

instance, query {"p":{$eq:3}} matches documents where p is a field with value 3, such as {p:3}. Surprisingly it also 

matches documents where p is an array wherein at least one element has value 3, e.g. {p:[3,4]}, that would equally 

be matched by query {"p":{$elemMatch:{$eq:3}}}. This gets even worse with a sequence of field names, as each 

field name may be considered for what it is, exactly one field, or for a short-cut for the elements of an array field. 

With this logic, query {"p.q":{$eq:3}} matches several types of documents depending on how we interpret p and q, 

such as {p:{q:3,r:4}}, {p:[{q:3,r:4},{q:5}]} and {p:[{q:[3,4],r:5},{q:[6,7]}]}.  
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These simple examples entail an important conclusion: given the ambiguous notation of the MongoDB query 

language, it is hardly possible to write a MongoDB query whose semantics would be strictly equivalent to a SPARQL 

query. Consequently, whatever the rewriting we can come up with, we shall always have to run the initial SPARQL 

query against the generated triples to make sure that we rule out triples generated because of this ambiguity, but that 

do not match the SPARQL query. 

4.2 The JSONPath language 

JSONPath
10

 is a domain specific language designed to read, parse and extract data from JSON documents. It was 

defined in 2007 by Stefan Goessner as an analogy to the XPath
11

 standard for XML documents. As of today JSONPath 

is not a standard, however its definition remains stable and a large community provides and maintains 

implementations for various programming languages. Definition 12 describes the grammar of JSONPath. Bold 

characters (‘$’, ‘*’, ‘.’, ‘[‘, ‘]’) are part of the language. In particular note that characters “(“ and “)” are part of the 

language in the FILTER and CALC_INDEX expressions, whereas in FIELD_ALT and INDEX_ALT expressions 

they simple denote groups. Similarly, the “*” character is part of the language in expression WILDCARD, but denotes 

0 to any occurrences in other expressions. 

 

Let us give a few illustrating examples: 

- $.names.*: selects all elements of array “names” like in: "{names: ["mark", "john"]}", or all fields of 

document “names” like in "{names: {firstname: "mark", lastname: "john"}}". 

- $.books[1,3]: selects the second (index 1) and fourth (index 3) elements of array “books”. 

- $.books[1:3]: selects all books from index 1 (inclusive) until index 3 (exclusive), that is at indexes 1 and 2. 

- $.books[(@.length - 1)] or $.books[-1:]: select the last element of array “books”. In the “[()]” notation, “@” 

refers to the parent element “books”. 

- $.team[?(@.members <= 10)].name: select the name of teams that have 10 members or less, i.e. “team” is an 

array, among its elements we select those that have a field “members” whose value is 10 or less, and finally we 

select the field “name” of those elements. Unlike above, in the “[?()]” notation “@” refers to elements of the 

array. 

- $..author: selects all “author” fields anywhere in the document. 

 

Definition 12: JSONPath grammar 

JSONPATH        = $(WILDCARD | FIELD_NAME | ARRAY_INDEX | DESCENDANT | FIELD_ALT | 

                  INDEX_ALT | ARRAY_SLICE | FILTER | CALC_INDEX)* 

WILDCARD        = .*|[*] 

FIELD_NAME      = FIELD_NAME_DOT | FIELD_NAME_BRKT 

FIELD_NAME_DOT  = .<name> 

FIELD_NAME_BRKT = ["<name>"] 

ARRAY_INDEX     = [<int>] 

DESCENDANT      = .. 

FIELD_ALT       = ["<name>"(,"<name>")+] 

INDEX_ALT       = [<int>(,<int>)+] 

ARRAY_SLICE     = [<start>:<end>:<step>] | [<start>:<end>] | [<start>:] 

FILTER          = [?(<script expression>)] 

CALC_INDEX      = [(<script expression>)] 

 

In an array slice, if the <start> is omitted it defaults to 0, e.g. $.books[:2] selects the first two books. If <end> is 

omitted it defaults to the index of the last element of the array. <start> and <end> can be positive (the index is counted 

                                                      
10

 http://goessner.net/articles/JsonPath/ 
11

 http://www.w3.org/TR/1999/REC-xpath-19991116/ 
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from the start of the array), or negative (the index is counted from the end of the array), e.g. $.books[-2:] selects the 

last two books. 

 

Restrictions on the usage of JSONPath expressions 

 

Script expressions: 

The FILTER expression filters elements of an array based on <script expression> that must evaluate to a boolean. 

CALC_INDEX selects the element of an array at index <script expression> that evaluates to a positive integer. In both 

cases, the language definition says <script expression> is written in “the syntax of the underlying script engine”. This 

design choice has a strong shortcoming: it binds the language definition to its implementations, since the underlying 

script engine depends on the implementation, and in the worst case there may even not be any underlying script engine 

at all. That made sense in the initial JavaScript implementation of Goessner, but this is subject to various 

interpretations in other implementations. For instance in the Java port
12

 of Goessner's implementation, developers 

have chosen to implement a very limited subset of JavaScript. 

In our rewriting approach, we stick to the idea that those expressions are JavaScript, keeping in mind that its support 

may vary depending on the JSONPath implementation that is being used. 

 

Wildcard semantics: 

In JSONPath, the wildcard '*' is equally applicable to arrays and documents. In an array it stands for any element of 

the array, while in a document it stands for any field of the document. In MongoDB conversely, documents and arrays 

are not treated equally: the $elemMatch operator applies specifically to arrays, and it is not possible to match any field 

in a document (there is no equivalent of the “*” for a document). Therefore, to be able to translate JSONPath 

expressions into MongoDB, we restrict the use of the wildcard to arrays only, which is its most common usage. 

 

Filters: 

In the JSONPath reference, it is unclear whether the filter notation [?(<script expression>)] applies to arrays, or to 

arrays and documents. Some implementations apply both with somehow confusing semantics, e.g. in the expression 

$.p[?(@.q)]: 

- if “p” is an array then “@” refers to each of its elements, meaning that only elements with a field “q” are matched. 

The drawback is that it is not possible to write a condition about an element given by its index, e.g. to match 

arrays in which the 11
th
 element is 0, we would like to write $.p[?(@[10] == 0)], which  is invalid because in 

that case “@” should refer to the array p but not to its elements. 

- Conversely if “p” is a document, “@” refers to “p” itself, meaning that “p” matches only if it is a document with a 

field “q”. 

Besides some tests show that different implementations have made different interpretations in this matter. To get rid of 

any confusion, in this work we restrict the usage of filters “[?()]” to arrays only. Therefore expressions like $.p[?(…)] 

shall be understood as “p” being an array field, the “@” character refers to its elements. 

 

Root element of JSON documents: 

In MongoDB the root element of a document cannot be an array, e.g. ["mark","john"] is not a valid MongoDB 

document, but {"people":["mark","john"]} is valid. Consequently, the JSONPath expressions we consider must 

not start with array-specific elements. For instance, expressions "$[0]" and "$[1,3,5]" are invalid in our context. 

Additionally, given the above restriction on the wildcard, expressions starting like "$.*" or "$[*]" are not supported 

in our context. 

 

Descendent operator: 

Unlike JSONPath, MongoDB does not provide a descendent operator that would look for a pattern at any depth of the 

documents. Consequently, our rewriting method does no support JSONPath expressions using the “..” operator. 

                                                      
12

 https://github.com/jayway/JsonPath 
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4.3 Conventions and formalism 

We define an abstract hierarchical representation of a MongoDB query. This representation allows for handy 

manipulation during the query construction and optimization phases. Definition 13 lists the clauses of this 

representation as well as their translation into a concrete query string, when relevant. 

 

In the COMPARE clause definition, <op> stands for one of the MongoDB query compare operators: $eq, $ne, $lte, 

$lt, $gte, $gt, $size and $regex. Let us consider the following example abstract query: 

AND( COMPARE(FIELD(p) FIELD(0), $eq, 10), FIELD(q) ELEMMATCH(COND(equals("val")) ) 

It matches all documents where “p” is an array field whose first element is 10, and “q” is an array field in which at 

least one element has value “val”. Its concrete representation is: 

$and: [ {"p.0": {$eq:10}}, {"q": {$elemMatch: {$eq:"val"}}} ]. 

 

Definition 13: Abstract MongoDB query  

AND(<expr1>, <expr2>, …)            → $and:[<expr1>,<expr2>, …] 

OR(<expr1>, <expr2>, …) → $or:[<expr1>,<expr2>, …] 

WHERE(<JavaScript expr>) → $where:'<JavaScript expr>' 

ELEMMATCH(<exp1>,<exp2>, …) → $elemMatch:{<exp1>,<exp2>, …} 

FIELD(p1) FIELD(p2)... FIELD(pn) → "p1.p2….pn": 

SLICE(<expr>, <number>) → <expr>:{$slice: <number>} 

COND(equals(v)) → $eq:v 

COND(isNotNull) → $exists:true, $ne:null 

EXISTS(<expr>) → <expr>:{$exists: true} 

NOT_EXISTS(<expr>) → <expr>:{$exists: false} 

COMPARE(<expr>, <op>, <v>) → <expr>:{<op>: <v>} 

NOT_SUPPORTED  → ∅ 

CONDJS(equals(v)) → == v 

CONDJS(equals("v"))  → == "v" 

CONDJS(isNotNull) → != null 

UNION(<query1>, <query2>, …) Same semantics as OR, but processed by the query processing 
engine 

 

The NOT_SUPPORTED clause helps keep track of any location, within the abstract query, where the condition 

cannot be translated into an equivalent MongoDB query element. It shall be used in the optimization phase. 

 

The UNION clause represents a logical OR that shall be computed by the query processing engine based on the result 

of queries <query1>, <query2>, etc. It can be produced by the abstract MongoDB query optimization (Algorithm 4). 

Note that this UNION clause applies to set of JSON documents retrieved from the database, whereas the UNION 

operator generated by function transm applies to triples. 

 

In the definition of the translation rules we use the following notations: 

- <cond>: is a condition to translate into MongoDB: either isNotNull or equals(value). 

- <JP>: denotes a possibly empty JSONPath expression. 

- <JP:F>: denotes a non-empty JSONPath sequence of field names and array indexes, e.g. “.p.q.r”, “.p[10]["r"]”. 

- <bool expr>: denotes a JavaScript expression that evaluates to a boolean. 

- <num expr>: denotes a JavaScript expression that evaluates to a positive integer. 

 

Finally, we define the function replaceAt(<rep>, <path>),  that replaces any occurrence of the '@' character with 

<rep> in string <path>. E.g. replaceAt("this.people", "@ < 10") returns "this.people < 10". 
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4.4 Query translation rules 

Given the subset of the MongoDB query language that we consider in section 4.1, the JSONPath language and the 

restrictions mentioned in section 4.2, and the formalism defined in section 4.3, in this section we define the recursive 

function trans(JSONPath expression, <cond>) that translates a condition <cond> applied to a JSONPath expression 

into an abstract MongoDB query. <cond> stands for either isNotNull or equals(value). Function trans consists of a set 

of rules detailed in Algorithm 2, that apply if the JSONPath expression matches a certain pattern. The JSONPath 

expression is checked against the patterns in the order of the rules (0 to 9). When a match is found the rule is applied 

and the search stops. 

 

Before getting into the details, let us illustrate the approach using the running example. As already seen, the translation 

of triple pattern tp1 entails two atomic abstract queries (see section 3.4), among which the child query contains two 

conditions: 

   isNotNull($.manages.*), 

   equals("Dunbar", $['lastname','familyname']) 

 

Let us consider condition isNotNull($.manages.*). It amounts to evaluating trans($.manages.*, isNotNull) 

that goes through the following steps: 

- Rule R0 first matches, returning trans(.manages.*, isNotNull). 

- Then, rule R8 matches, it returns FIELD(manages) trans(.*, isNotNull). 

- Lastly rules R7 and R1 translate trans(.*, isNotNull) into ELEMMATCH(COND(isNotNull)). 

This comes up with the abstract MongoDB query: 

FIELD(manages) ELEMMATCH(COND(isNotNull)). 

Applying Definition 13 to the abstract MongoDB query entails the final concrete query:  

   "manages": {$elemMatch: {$exists:true, $ne:null}}. 

 

Following the same algorithm, the second condition, equals("Dunbar", $['lastname','familyname']), will be 

translated into the abstract query: 

   OR(FIELD(lastname) COND(equals("Dunbar")), FIELD(familyname) COND(equals("Dunbar"))) 

that is translated into the concrete query: 

   $or: [{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}] 
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Algorithm 2: Translation of a condition on a JSONPath expression into an abstract MongoDB query (function 

trans(JSONPath expression, <cond>)) 

  

R0 trans($, <cond>) → ∅ 

trans($<JP>, <cond>) → trans(<JP>, <cond>) 

 

R1 trans(∅, <cond>) → COND(<cond>) 

 

R2 Field alternative (a) or array index alternative (b) 

(a) trans(<JP:F>["p","q",...]<JP>, <cond>) →  

OR(trans(<JP:F>.p<JP>, <cond>), trans(<JP:F>.q<JP>, <cond>), ...) 

(b) trans(<JP:F>[i,j,...]<JP>, <cond>) → 

OR(trans(<JP:F>.i<JP>, <cond>), trans(<JP:F>.j<JP>, <cond>), ...) 

 

R3 Heading field alternative (a) or heading array index alternative (b) 

(a) trans(["p","q",...]<JP>, <cond>) → 

OR(trans(.p<JP>, <cond>), trans(.q<JP>, <cond>), ...) 

(b) trans([i,j,...]<JP>, <cond>) → 

OR(trans(.i<JP>, <cond>), trans(.j<JP>, <cond>), ...) 

 

R4 Heading JavaScript filter on array elements, e.g. $.p[?(@.q)].r 

trans([?(<bool_expr>)]<JP >, <cond>) → ELEMMATCH(trans(<JP >, <cond>), transJS(<bool_expr>)) 

 

R5 Array slice: n last elements (a) or n first elements (b) 

(a) trans(<JP:F>[-<start>:]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), -<start>) 

(b) trans(<JP:F>[:<end>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), <end>) 

trans(<JP:F>[0:<end>]<JP>, <cond>) → trans(<JP:F>.*<JP>, <cond>) SLICE(dotNotation(<JP:F>), <end>) 

 

R6 Calculated array index, e.g. $.p[(@.length - 1)].q 

(a) trans(<JP1>[(<num_expr>)]<JP2>, <cond>) → NOT_SUPPORTED  

if <JP1> contains a wildcard or a filter expression 
(b) trans(<JP:F >[(<num_expr>)], <cond>) →  

AND(EXISTS(<JP:F >), 

WHERE('this<JP:F>[replaceAt("this<JP:F >", <num_expr>)] CONDJS(<cond>'))) 

(c) trans(<JP1:F >[(<num_expr>)]<JP2:F>, <cond>) →  

AND(EXISTS(<JP1:F >), 

WHERE('this<JP1:F >[replaceAt("this<JP1:F >", <num_expr>)]<JP2:F> CONDJS(<cond>'))) 

 

R7 Heading wildcard 

(a) trans(.*<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>)) 

(b) trans([*]<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>)) 

 

R8 Heading field name or array index 

(a) trans(.p<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>) 

(b) trans(["p"]<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>) 

(c) trans([i]<JP>, <cond>) → FIELD(i) trans(<JP>, <cond>) 

 

R9 No other rule matched, the current expression is not supported 

trans(<JP>, <cond>) → NOT_SUPPORTED 
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4.4.1 Rule R0 

Rule R0 is the entry point of the translation process since a valid JSONPath expression starts with a “$” character. At 

this stage, invalid or unsupported JSONPath expressions (see restrictions in section 4.2) shall be taken care of. 

4.4.2 Rue R1 

Conversely, rule R1 is the termination point: when the JSONPath expression has been fully parsed, the last element 

that is created is the condition in MongoDB, like “$eq: value” for an equality condition, or “$exists:true, $ne:null” for 

a not-null condition. 

4.4.3 Rule R2 

A field alternative or array index alternative is translated into an $or operator. As underlined in section 4.1, the $or 

operator cannot be used as a condition on a field, but has to be either at the top-level query or nested in an 

$elemMatch, $and or $or operator. For this reason, a sequence of field names and array indexes (<JP:F>) must 

precede the alternative pattern (["p","q",...] or [i,j,...]). In the rewriting, the <JP:F> sequence is prepended to each of 

the $or members. In the example below the “.p” stands for the <JP:F> term: 

Condition 
equals($.p.["q", "r"], 10) 

is translated into: 
$or: [{"p.q": {$eq: 10}}, {"p.r": {$eq: 10}}] 

 

Note that no assumption is made as to what may come after the alternative pattern, this is denoted in the rule by 

JSONPath <JP> following the alternative pattern. 

4.4.4 Rule R3 

Rule R3 matches an expression with a heading field alternative or array index alternative. Contrary to rule R2, the 

alternative pattern is not preceded by a <JP:F> sequence. This case occurs when the alternative is either the first 

pattern in the JSONPath expression, or when it comes after a term such as a JavaScript filter (R4), an array slice (R5) 

or a wildcard (R7). Example: 

Condition 
equals($.p.*["q", "r"], 10) 

is translated into: 
"p": {$elemMatch: {$or: [{"q": {$eq: 10}}, {"r": {$eq: 10}}]}} 

4.4.5 Rule R4 

A JavaScript (JS) filter is a boolean condition evaluated against elements of an array, where the “@” character stands 

for each array element, e.g. “$.people[?(@.role)]” matches all elements of array “people” that are documents having a 

field “role”. Since a JS filter specifies a condition on all array elements, it is translated into a MongoDB query 

embedded in an $elemMatch operator. Function transJS (see section 4.4.11) parses the JS expression and translates it. 

Example: 

 

Condition  
equals($.p[?(@.q)].r.*, "value") 

is translated into: 

"p": {$elemMatch: { 

"r": {$elemMatch: {$eq:"value"}},  

"q": {$exists:true}}} 

R4 produces the first $elemMatch as well as the condition "q":{$exists:true}. The second $elemMatch is produced 

by rule R7 when processing the wildcard. 
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4.4.6 Rule R5 

JSONPath and MongoDB query language have two different ways of denoting array slices. JSONPath uses notation 

[<start>:<end>:<step>], where any of the three terms are optional, and <start> and <end> may be negative. 

MongoDB uses notation {$slice: <count>} or {$slice: [<start>, <count>]}, <count> may be negative in the 

first notation only, <start> may be negative in both notations. In JSONPath and MongoDB a negative value means 

“starting from the end of the array”. Due to these discrepancies, the rewriting of JSONPath slices into MongoDB 

projections has limitations explicated in the table below: 

Semantics JSONPath MongoDB query language 

From index 0 to index n-1 (first n elements) array[:n] "array" : {$slice: n} 

Last n elements array[-n:] "array" : {$slice: -n} 

From index m until the last element array[m:] n/a 

From index m to index n-1 array[m:n] n/a 

From index m to index n-1 by step s [m:n:s] n/a 

 

Consequently rules R5 (a) and (b) only cover the first two lines of the table. Other forms of JSONPath slice shall be 

treated in the default rule R9. 

 

The JSONPath array slice notation is rewritten into the $slice operator that, unlike in other rules, is used as a 

projection parameter of the MongoDB find() method. Rule R5 must translate the JSONPath expression that comes 

before the array slice (<JP:F>) as well as the subsequent JSONPath expressions (<JP>) to generate the query 

parameter of the find() method. It does so by replacing the array slice by a wildcard “.*”: trans(<JP:F>.*<JP>, 

<cond>). Hence, the query part applies to the whole array, while the projection part shall select only the expected 

elements. 

4.4.7 Rule R6 

A JSONPath calculated array index selects an element from an array using a JavaScript expression that evaluates to a 

positive integer. The script expression uses the “@” character instead of “this” to refer to the array element.  

 

Let us consider this example query: equals($.staff[(@.length - 1)].name, "John"), that matches all documents 

in which the last element of array “staff” has a field “name” with value “John”. In MongoDB, there is no way to 

retrieve the size of an array nor to calculate such an index (the $size operator is not relevant here as it specifies a 

condition on the size of an array). The only way to specify a condition on an element whose index is calculated is to 

use the $where operator. For instance,  

Condition  

   equals($.staff[(@.length - 1)].name, "John"), 

shall translated by rule R6(c) into: 

   $and:[{"staff":{$exists: true}}, {$where:"this.staff[this.staff.length - 1].name == 'John'"}] 

 

Here we notice that rule R6 (b and c) produces a $where operator nested in an $and operator. As already underlined, 

the $where operator is valid only in the top-level query. We show in section 4.5 that we can rewrite a query containing 

a $where nested in a combination of $and and $or operators into a union of MongoDB queries in which a $where 

shows only in the top-level query. If a rule produces a $where inside an $elemMatch operator, there is no way we can 

rewrite this query into multiple valid queries. The $elemMatch operator is used to translate either a JS filter (R4) or 

wildcard (R7). Consequently, rule R6(a) makes those cases impossible by returning NOT_SUPPORTED in case a 

calculated array index is preceded by a wildcard or a filter. 

 

If the calculated array index is followed by a JSONPath expression, that subsequent expression has to be part of the 

JavaScript expression in the $where operator. This is exemplified by the “name” field in the example above. More 
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generally, anything that follows the calculated array index should be rewritten in JavaScript. This is not always 

possible however, as illustrated by the two examples below: 

(1) Condition equals($.p[(@.length - 1)].*, "val"), could be rewritten in: 

$where:{"this.p[this.p.length-1].* == 'val'"}. This query is invalid since there is no equivalent to the 

wildcard in JavaScript. 

(2) Similarly, condition equals($.p[(@.length - 1)].r[?(@.q)].s, "val") could be rewritten in: 

$and: [{p:$exists}, {$where: "this.p[this.p.length - 1].r[?(@.q)].s == 'val'"}]. But again this query 

is invalid since there is no JavaScript equivalent to the JSONPath notation ?(@.q). 

Therefore, although JavaScript functions could be written to address this kind of issue, we choose not to go through 

this solution at this stage and further discuss this choice in section 6.3. Therefore, in rule R6(c) we restrict terms that 

follow a calculated array index to a sequence of field names or array indexes, denoted <JP2:F>. 

4.4.8 Rule R7 

As mentioned in section 4.2, the use of the wildcard is restricted to the context of arrays. Hence, rule R7 simply 

translates a heading wildcard into an $elemMatch operator. 

4.4.9 Rule R8 

Other field names and array indexes are translated into their equivalent dot-separated MongoDB path. Example: 

condition isNotNull($.p[5]["s"]) is translated into "p.5.s": {$exists: true}. 

4.4.10 Rule R9 

Rule R9 is the default rule. In case no other rule matched, the translation of the JSONPath expression to MongoDB 

query language is not supported. This applies in the following cases: 

- A calculated array index is preceded or followed by a wildcard, an alternative or a JavaScript filter, as explained 

in rule R6. 

- Unsupported array slice notation such as [m:n]. 

- JSONPath expressions entailing that the root document is an array and not a document, such as $.*, $[1,2,…] , 

$[?(…)] and $[(…)]. 

4.4.11 Translation of a JavaScript filter to MongoDB 

Recursive function transJS translates a JavaScript filter into a MongoDB query. It consists of a set of rules, explicated 

in Algorithm 3, that apply if the JavaScript expression matches a certain pattern. The JavaScript expression is checked 

against the patterns in the order of the rules. When a match is found the corresponding rule is applied and the search 

stops. 

 

In the rules definitions we use the following notations: 

- <JSpath>: denotes a non-empty JavaScript sequence of field names and array indexes, e.g. ’.p.q.r’, ’.p[10]’. 

- The dotNotation(<JS_expr>) function converts a JavaScript path to a MongoDB query path consisting of field 

names and array indexes in dot notation. It removes the optional heading dot. e.g. “dotNotation(.p[5]r)” returns 

“p.5.r”. 

- The transJsOp(op) functions converts a JavaScript comparison operator to its MongoDB equivalent: === → $eq, 

== → $eq, != → $ne, <= → $lte, >= → $gte, < → $lt, > → $gt, =~ → $regex. 

 

The expressiveness of the MongoDB query language in terms of comparison is quite limited compared to JavaScript 

boolean conditions. As a result, when a JavaScript comparison cannot be turned in an equivalent MongoDB query, the 

rule returns the NOT_SUPPORTED clause that shall be used later on during the final translation phase. 
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Algorithm 3: Translation of a JavaScript filter into a MongoDB query (function transJS) 

J0 transJS(<JS_expr1> && <JS_expr2>) → AND(transJS(<JS_expr1>), transJS(<JS_expr2>)) 

J1 transJS(<JS_expr1> || <JS_expr2>) → OR(transJS(<JS_expr1>), transJS(<JS_expr2>)) 

J2 transJS(@<JS_expr1> <op> @<JS_expr2>) → NOT_SUPPORTED 
      where <op> stands for one of {==, ===, !=, !==, <=, <, >=, >, %} 

J3 transJS(@<JSpath>) → EXISTS(dotNotation(<JSpath>)) 

J4 transJS(!@<JSpath>) → NOT_EXISTS(dotNotation(<JSpath>)) 

J5 (a) transJS(@<JSpath>.length == <i>) → COMPARE(dotNotation(<JSpath>), $size, <i>) 

(b) transJS(@<JSpath>.length <op> <i>) → NOT_SUPPORTED  

     where <op> stands for one of {!=, <=, <, >=, >, %} 

J6 transJS(@<JSpath> <op> <v>) → COMPARE(dotNotation(<JSpath>), transJsOp(<op>), <v>) 

J7 transJS(<JS_expr>) → NOT_SUPPORTED 

 

Rules J0 and J1 deal with the logical AND and OR JavaScript operators. 

 

Rule J2 addresses the comparison of two document fields or two array fields such as “@.name != @.login”. This is 

not permitted in MongoDB query language, yet it is possible to translate this condition using the $where operator. 

Typically rule J2 could return: 

AND(EXISTS(<JS_expr1>), EXISTS(<JS_expr2>), WHERE("this<JS_expr1> <op> this<JS_expr2>")) 

However the transJS function is used only in the context of an $elemMatch, and the $where operator is valid only in 

the top-level query. Therefore, rule J2 returns NOT_SUPPORTED. 

 

Rules J3 and J4 deal with existential comparisons. 

 

Rule J5 addresses tests on the length of an array field. The MongoDB $size operator allows for an equality test on the 

length of an array, but other types of comparison are not allowed. Similarly to the discussion above regarding rule J2, 

a $where operator could be used in J5(b) to return: 

WHERE(this<JSpath>.length <op> <i>) 

But again, the $where operator is valid only in the top-level query, consequently rule J 5(b) returns 

NOT_SUPPORTED. 

 

Rule J6 addresses all other types of supported comparison between a field and a literal value <v>. 

 

Finally, rule J7 applies when no other rule matched. It is used as the default for all non-supported types of JavaScript 

expression. 

4.5 Query optimization and translation to a concrete MongoDB query 

Functions trans() and transJS(), defined in section 4.4, translate a condition on a JSONPath expression into an abstract 

MongoDB query. Before rewriting the abstract query into a concrete query, several potential issues must be addressed: 

(i) An abstract query may contain unnecessary complexity, such as nested ORs, nested ANDs, sibling WHEREs, 

etc., that can hamper performances. 

(ii) An abstract query may contain operators NOT_SUPPORTED, indicating that a part of the JSONPath expression 

could not be translated into an equivalent MongoDB operator. Depending on the position of such an operator in 

the query, we rewrite the query into a concrete query that shall return all matching documents (the certain 

answers), as well as possibly non-matching documents that shall be ruled out afterwards. 

(iii) The WHERE operator may be nested beneath a sequence of ANDs and/or ORs, which is not valid in the 

MongoDB query language. 
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Those issues are addressed by means of two sets of rewriting rules, O1 to O5 and W1 to W6, defined in sections 4.5.1 

and 4.5.2 respectively. Lastly, function rewrite (section 4.5.3) iteratively uses those rules to perform all possible 

rewritings and ultimately generate either one concrete MongoDB query or a union of concrete MongoDB queries. 

4.5.1 Query optimization 

Issues (i) and (ii) are addressed by a set of rewriting rules defined in Algorithm 4. A rule applies to a query Q when Q 

matches the pattern in the head of the rule.  

 

Algorithm 4: Optimization of an abstract MongoDB query  

The “→” arrow means “is rewritten as”. 

O1 Flatten nested AND, OR and UNION clauses: 
AND(C1,… Cn, AND(D1,… Dm,)) → AND(C1,… Cn, D1,… Dm) 
OR(C1,… Cn, OR(D1,… Dm,)) → OR(C1,… Cn, D1,… Dm) 
UNION(C1,… Cn, UNION(D1,… Dm,)) → UNION(C1,… Cn, D1,… Dm) 

 

O2 Merge ELEMMATCH with nested AND clauses:  
ELEMMATCH(C1,… Cn, AND(D1,… Dm,)) → ELEMMATCH(C1,… Cn, D1,… Dm). 

 

O3 Group WHERE clauses: 
OR(..., WHERE("W1"), WHERE("W2")) → OR(..., WHERE("(W1) || (W2)")).  
AND (..., WHERE("W1"), WHERE("W2")) → AND(..., WHERE("(W1) && (W2)")). 
UNION(..., WHERE("W1"), WHERE("W2")) → UNION(..., WHERE("(W1) || (W2)")). 

 

O4 Replace AND, OR or UNION clauses of one term with the term itself.  
This may occur as a consequence of the flattening of nested clauses or the grouping of WHERE clauses. 
 

O5 

 

Remove NOT_SUPPORTED clauses: 

- AND(C1,… Cn, NOT_SUPPORTED) → AND(C1,… Cn): since C1 ∧ … ∧ Cn ⊇ C1 ∧ … ∧ Cn ∧ N, this rewriting 

widens the condition. Hence, all matching documents (the certain answers) are returned, in addition to 

possibly non-matching documents. 

- ELEMMATCH(C1,… Cn, NOT_SUPPORTED) → ELEMMATCH(C1,… Cn): same reason as above given that 

an AND implicitly applies to members of an ELEMMATCH. 

- OR(C1,… Cn, NOT_SUPPORTED) → NOT_SUPPORTED. Contrary to the AND and ELEMATCH cases, we 

cannot simply remove the NOT_SUPPORTED. The query would only return a subset of the matching 

documents since C1 ∨… ∨ Cn ⊆ C1 ∨… ∨ Cn ∨ N. Instead, we replace the whole OR clause with a 

NOT_SUPPORTED clause. This way, the NOT_SUPPORTED issue is raised up to the parent clause, and it 

shall be managed at the next execution of the function. Iteratively, we raise up a NOT_SUPPORTED 

clause until it is eventually removed (cases AND and ELEMMATCH above), or it ends up in the top-level 

query. The latter is the worst case in which the query shall retrieve all documents. 

- UNION(C1,… Cn, NOT_SUPPORTED) → NOT_SUPPORTED: same reason as above. 

- FIELD(…)… FIELD(…) NOT_SUPPORTED →  NOT_SUPPORTED 

 

We illustrate Algorithm 4 in a dedicated example. Assume we wish to translate the condition below into a concrete 

MongoDB query: 

equals($.teams.0[?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)].name, "john") 

The trans function translates this condition into an abstract MongoDB query. Below we detail the translation and 

mention the rules applied at each step: 

trans($.teams.0[?(@.level=="beginner" && 

         @.score>=3 && @.isPlayer<>@.isGoal)].name, equals("john")) = 
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R0,R8 FIELD(teams.0) trans([?(@.level=="beginner" && 

          @.score>=3 && @.isPlayer<>@.isGoal)].name, equals("john")) = 

R4    FIELD(teams.0) ELEMMATCH( trans(.name, equals("john")),  

          transJS([?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)])) = 

R8,R1 FIELD(teams.0) ELEMMATCH( FIELD(name) COND(equals, "john"),  

         transJS([?(@.level=="beginner" && @.score>=3 && @.isPlayer<>@.isGoal)])) = 

J0,J6 FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"), 

         AND(COMPARE(level, ==, "beginner"), AND(COMPARE(@.score, >=, 3), NOT_SUPPORTED))) 

Notice that J6 translates condition @.isPlayer<>@.isGoal into a NOT_SUPPORTED clause since MongoDB cannot 

compare fields of a JSON document. From this stage, rule O1 flattens nested ANDs, and rule O2 removes the 

unnecessary AND clause beneath the ELEMMATCH: 

O1    FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"), 

         AND(COMPARE(level, ==, "beginner"), COMPARE(score, >=, 3), NOT_SUPPORTED)) = 

O2    FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"), 

         COMPARE(level, ==, "beginner"), COMPARE(score, >=, 3), NOT_SUPPORTED) = 

Lastly, rule O5 takes care of removing the NOT_SUPPORTED clause: 

O5    FIELD(teams.0) ELEMMATCH(FIELD(name) COND(equals, "john"), 

                               COMPARE(level, ==, "beginner"), 

                               COMPARE(score, >=, 3)) 

This abstract MongoDB query can now be rewritten into the following concrete query: 

  "teams.0": {$elemMatch: {"name":{$eq:"john"}, "level":{$eq:"beginner"}, "score":{$gte:3}}} 

4.5.2 Pull up WHERE clauses 

By construction, a WHERE clause cannot be nested in an ELEMMATCH clause (rule R6). In addition, Algorithm 4 

flattens nested OR and nested AND clauses, and merges sibling WHERE clauses. Consequently, a WHERE clause 

may be either in the top-level query (the query is thereby executable) or it may appear in one of the following patterns: 

OR(…,W,…), AND(…,W,…), OR(…,AND(…,W,…),…), AND(…,OR(…,W,…),…), where “W” stands for a WHERE clause. In 

the case of those patterns, we have to “pull up” WHERE clauses to the top-level query, in order to address issue (iii). 

 

Rewritings make use of a new clause, UNION, that we describe here: its semantics is equivalent to that of the OR 

clause, although the OR is processed by the MongoDB query (as an $or operator), while the UNION is computed 

outside of the database, by the query processing engine: the result of evaluating UNION(<query1>, <query2>) is the 

union of the results produced by evaluating <query1> and <query2> separately against the MongoDB database. 

 

Recall that an AND clause in the top-level query can be replaced with its members, since the implicit semantics of the 

top-level query is to apply a logical AND between its members. Therefore, if is sufficient to come up with query 

rewritings that bring all WHERE clauses to the top-level or in an AND of the top-level query. To give an intuition of 

the method, the example below shows the rewriting of simple queries. “W” stands for a WHERE clause, “C” and “D” 

for any sub-query, and “→” stands for “is rewritten to”. 

- OR(C, W) → UNION(C, W): OR substituted with UNION, W is pulled up in the top-level query. 

- AND(C, W) → (C,W): top-level AND replaced with its members, W is pulled up in the top-level query. 

- OR(C, AND(D, W)) → UNION(C, AND(D, W)): OR substituted with UNION, W is pulled up in a top-level AND 

clause, that can be removed and replaced by its members. 

- AND(C, OR(D, W)) → UNION(AND(C, D), AND(C, W)): this is a straightforward application of the theorem:  

C ∧ (D ∨ W) ⇔ (C ∧ D) ∨ (C ∧ W). W is pulled up in a top-level AND clause, that can be removed and replaced 

by its members. 
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Rewriting rules W1 to W6 defined in Algorithm 5 generalize these examples. Rules W1 to W4 reflect exactly the 

example above. Since they may create UNION clauses nested beneath AND or OR clauses, additional rules W5 and 

W6 rewrite such queries to pull up UNION clauses in the top-level query. They can be illustrated by those two 

additional examples: 

- AND(C, UNION(D, W)) → UNION(AND(C, D), AND(C, W)). 

- OR(C, UNION(D, W)) → UNION(C, D, W). 

Note that the case of nested UNION clauses is dealt with by rule O1 in Algorithm 4. 

 

Algorithm 5: Pull-up of WHERE clauses to the top-level query 

The “→” arrow means “is rewritten as”. 

W1 OR(C1,...Cn, W) → UNION(OR(C1,...Cn), W) 

 

W2 OR(C1,...Cn, AND(D1,...Dm, W)) → UNION(OR(C1,...Cn), AND(D1,...Dm, W)) 

Proof: C1 ∨… ∨ Cn ∨  (D1 ∧… ∧ Dm ∧ W) ⇔ (C1 ∨… ∨ Cn) ∨  (D1 ∧… ∧ Dm ∧ W)  

Therefore, eval(C1 ∨… ∨ Cn ∨  (D1 ∧… ∧ Dm ∧ W)) = eval(C1 ∨… ∨ Cn) ∪ eval(D1 ∧… ∧ Dm ∧ W). 

 

W3 AND(C1,...Cn, W) → (C1,...Cn, W), iif the AND clause is a top-level query object or under a UNION clause. 

 

W4 AND(C1,...Cn, OR(D1,...Dm, W)) → UNION(AND(C1,...Cn, OR(D1,...Dm)), AND(C1,...Cn, W)) 

Proof: C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm ∨ W) ⇔ (C1 ∧… ∧ Cn) ∧ ((D1 ∨… ∨ Dm) ∨ W) 

          ⇔ ((C1 ∧… ∧ Cn) ∧ (D1 ∨… ∨ Dm)) ∨  ((C1 ∧… ∧ Cn) ∧ W) 

Therefore, eval(C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm ∨ W)) = eval(C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm)) ∪ eval(C1 ∧… ∧ Cn ∧ W) 

 

W5 AND(C1,...Cn, UNION(D1,...Dm)) → UNION(AND(C1,...Cn, D1),... AND(C1,...Cn, Dm)) 

Proof: C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm) ⇔ (C1 ∧… ∧ Cn) ∧ (D1 ∨… ∨ Dm)  

   ⇔ (C1 ∧… ∧ Cn ∧ D1) ∨… ∨ (C1 ∧… ∧ Cn ∧ Dm) 

Therefore, eval(C1 ∧… ∧ Cn ∧ (D1 ∨… ∨ Dm)) = eval(C1 ∧… ∧ Cn ∧ D1) ∪… ∪ eval(C1 ∧… ∧ Cn ∧ Dm) 

 

W6 OR(C1,...Cn, UNION(D1,...Dm)) → UNION(OR(C1,...Cn), D1, ...Dm)) 

 

We illustrate rules W1 to W6 in a second dedicated example. We wish to translate the condition below, stating that the 

last member of either team “dev” or “test” has the name “john”: 

   trans($.teams["dev","test"][(@.length - 1)].name, equals("john")) 

Function trans translates this condition into this abstract MongoDB query: 

   OR( AND(EXISTS(.teams.dev), 

           WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))')), 

       AND(EXISTS(.teams.test), 

           WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))'))) 

Then we iteratively apply rules O1 to O6 and W1 to W6 as described in function rewrite (next section). First, rule W2 

replaces the top-level OR with a UNION clause: 

W2 UNION( 

     OR(AND(EXISTS(.teams.dev), 

        WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))'))), 

     AND(EXISTS(.teams.test), 

        WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')) ) 

Then rule O4 replaces the OR of one term with the term itself: 
O4 UNION( 

     AND(EXISTS(.teams.dev), 

         WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))')), 

     AND(EXISTS(.teams.test), 



Mapping-based SPARQL access to a MongoDB database 

34 

 

         WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')) ) 

Rules W2 and O4 basically replaced the top-level OR with a UNION. Now the abstract query is a union of two top-

level AND operators that can simply be removed by rule W3: 

W3 UNION( 

     (EXISTS(.teams.dev), 

         WHERE('this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))')), 

     (EXISTS(.teams.test), 

         WHERE('this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))')) ) 

Both queries can now be rewritten into executable concrete queries: 

UNION( ( "teams.dev": {$exists: true}, 

         $where: 'this.teams.dev[this.teams.dev.length - 1)].name CONDJS(equals("john"))'), 

       ( "teams.test": {$exists: true}, 

         $where: 'this.teams.test[this.teams.test.length - 1)].name CONDJS(equals("john"))') 

     ) 

4.5.3 Function rewrite 

Finally we define in Algorithm 6 the complete optimization and translation algorithm that iteratively uses rules O1 to 

O6 and W1 to W6 to perform all possible rewritings, and ultimately generate either one concrete MongoDB query or a 

union of concrete MongoDB queries. 

 

Algorithm 6: Abstract MongoDB query optimization and translation into concrete MongoDB queries 

Function rewrite(Q): 
do 

do 
Q ← apply rules O1 to O5 that match any sub-query of Q 

until no more rewriting can be performed 
do 

Q ← apply rules W1 to W6 that match any sub-query of Q 
until no more rewriting can be performed 

until no more rewriting can be performed by either rules O1 to O5 or W1 to W6 
Q‘ ← translate Q as defined in Definition 13. 
return Q’ 
 

A consequence of function rewrite is that we can always rewrite an abstract MongoDB query into a union of queries in 

which there is no more NOT_SUPPORTED clause and any WHERE clause only appears as a top-level object or in a 

top-level AND clause. This is summarized in the Theorem 1: 

 

Theorem 1. Let C be an equality or not-null condition on a JSONPath expression. Let Q = (Q1, …Qn) be the abstract 

MongoDB query produced by trans(C). 

Rewritability: It is always possible to rewrite Q into a query Q’ = UNION(Q
’
1,… Q

’
m) such that ∀i ∈ [1, m] Q

’
i is a 

valid MongoDB query, i.e. Q
’
i does not contain any NOT SUPPORTED clause, and a WHERE clause only shows at 

the top-level of Q
’
i. 

Completeness:  Q’ retrieves all the certain answers, i.e. all the documents matching condition C. If Q contains at least 

one NOT SUPPORTED clause, then Q’ may retrieve additional documents that do not match condition C. 

 

 

Proof of Theorem 1: 

 

Completeness. The result on the completeness of results has been proven in the description of rule O5 when dealing 

with NOT_SUPPORTED clauses. 

 

Rewritability, NOT_SUPPORTED clauses. By construction, function trans may generate a NOT_SUPPORTED 

clause in the top-level query or in the following patterns: AND(…,N,…), ELEMMATCH(…,N,…), OR(…,N,…), 
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UNION(…,N,…), FIELD(…)…FIELD(…) N, where “N” stands for a NOT_SUPPORTED clause. If it is in the top-level 

query, then Definition 13 rewrites it into the empty query that shall retrieve all documents of the collection. In the 

case of other patterns, when applying rewriting rule O5 we obtain: 

AND(…,N,…) → AND(…) 

ELEMMATCH(…,N,…) → ELEMMATCH(…) 

OR(…,N,…) → N 

UNION(…,N,…) → N 

FIELD(…)…FIELD(…) N → N 

The first two rewritings remove the NOT_SUPPORTED clause, coming up with a valid query. The next three 

rewritings raise the NOT_SUPPORTED up to the parent clause. Since nested AND/OR/UNION clauses are merged 

by rule O1, this may lead to one of the patterns below; we precise the way they are rewritten: 

AND(…,OR(…,N,…),…) → AND(…,N,…) → AND(…) 

AND(…,UNION(…,N,…),…) → AND(…,N,…) → AND(…) 

AND(…,FIELD(…)…FIELD(…) N,…) → AND(…,N,…) → AND(…) 

ELEMMATCH(…,OR(…,N,…),…) → ELEMMATCH(…,N,…) → ELEMMATCH(…) 

ELEMMATCH(…,UNION(…,N,…),…) → ELEMMATCH(…,N,…) → ELEMMATCH(…) 

ELEMMATCH(…,FIELD(…)…FIELD(…) N,…) → ELEMMATCH(…,N,…) → ELEMMATCH(…) 

The rewritings above show that, wherever the NOT_SUPPORTED clause shows, it is iteratively removed by the 

rewritings using rules O1 to O5 and W1 to W6. 

Hence the first part of the rewritability property: it is always possible to come up with a rewriting that does not 

contain any NOT_SUPPORTED clause. 

 

Rewritability, WHERE clauses. By construction, function trans may generate a WHERE clause in the top-level 

query or nested in AND or OR clauses, but a WHERE clause cannot be nested in an ELEMMATCH clause. 

Furthermore, rules W1 to W6 may create UNION clauses, and Algorithm 4 flattens nested OR/AND/UNION clauses 

and merges sibling WHERE clauses. Consequently, a WHERE clause may be either in the top-level query (the query 

is thus executable) or in the following nine patterns:  
OR(…,W,…) 
OR(…,AND(…,W,…),…) 
OR(…,UNION(…,W,…),…) 
AND(…,W,…) 
AND(…,OR(…,W,…),…) 
AND(…,UNION(…,W,…),…) 
UNION(…,W,…) 
UNION(…,AND(…,W,…),…) 
UNION(…,OR(…,W,…),…) 

where “W” stands for a WHERE clause. 
 
To prove Theorem 1, we need a measure of the depth of a WHERE clause within a query. We first define the depth 

function as follows: 

depth(UNION) = 0 

depth(AND) = 1 

depth(OR) = 1 

depth(C1/…/Cn) = depth(C1) + … + depth(Cn) 

Intuitively, function depth measures the depth of a MongoDB query made of nested clauses AND, OR or UNION, 

and possibly containing WHERE clauses. AND and OR count for 1, but UNION counts for 0: indeed UNION is not a 

MongoDB operator, instead it is meant to be processed outside of the database. Notation "C1/…/Cn" represents a 

nested query in which clause C1 is parent of clause C2 which is parent of clause C3 etc. until clause Cn. 

 

We define function depthw(Q) as the depth of a clause WHERE within a query Q: 

depthw(C1, … Cn, W) = 0     (case of a top-level query) 

depthw(C1(… C2(… Cn(… W)))) = depth(C1/C2/…/Cn) 
 
Below we explore how rules W1 to W6 rewrite the nine patterns we listed above. For each one, we give the depth of 

the WHERE clause in the pattern and in the rewritten query. 
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OR(…,W,…) 

Rule W1:  Q: OR(C1,...Cn, W) → Q’: UNION(OR(C1,...Cn), W) 

depthw(Q) = 1 

depthw(Q’) = 0 

OR(…,AND(…,W,…),…) 

Rule W2:  Q: OR(C1,...Cn, AND(D1,...Dm, W)) → Q’: UNION(OR(C1,...Cn), AND(D1,...Dm, W)) 

depthw(Q) = 2 

depthw(Q’) = 1 

AND(…,W,…) 

Rule W3:  Q: AND(C1,...Cn, W) → Q’: (C1,...Cn, W) 

    (W3 applies  iif the AND clause is a top-level query object or under a UNION clause) 

depthw(Q) = 1 

depthw(Q’) = 0 

AND(…,OR(…,W,…),…) 

Rule W4:   Q: AND(C1,...Cn, OR(D1,...Dm, W)) →  

                               Q’: UNION(AND(C1,...Cn, OR(c)), AND(C1,...Cn, W)) 

depthw(Q) = 2 

depthw(Q’) = 1 

AND(…,UNION(…,W,…),…) 

We first apply rule W5, then rule W3: 

Q: AND(C1,...Cn, UNION(D1,...Dm, W)) →  

            UNION(AND(C1,...Cn, D1),... AND(C1,...Cn, Dm), AND(C1,...Cn, W)) → 

      Q’: UNION((C1,...Cn, D1),... (C1,...Cn, Dm), (C1,...Cn, W)) 

depthw(Q) = 1 

depthw(Q’) = 0 

OR(…,UNION(…,W,…),…) 

Rule W6:  Q: OR(C1,...Cn, UNION(D1,...Dm, W) → Q’: UNION(OR(C1,...Cn), D1, ...Dm, W)) 

depthw(Q) = 1 

depthw(Q’) = 0 

UNION(…,W,…) The WHERE clause is a top-level query, the query is valid as is and no rewriting is needed. 

UNION(…,AND(…,W,…),…) 

Rule W3:  Q: UNION(C1,...Cn, AND(D1,...Dm, W)) → Q’: UNION(C1,...Cn, (D1,...Dm, W)) 

   (W3 applies  iif the AND clause is a top-level query object or under a UNION clause) 

depthw(Q) = 1 

depthw(Q’) = 0 

UNION(…,OR(…,W,…),…) 

We first apply rule W1 then rule O1 to merge nested UNIONs: 

Q: UNION(C1,...Cn, OR(D1,...Dm, W)) →  

                              UNION(C1,...Cn, UNION(OR(D1,...Dm), W)) → 

                        Q’: UNION(C1,...Cn, OR(D1,...Dm), W) 

depthw(Q) = 1 

depthw(Q’) = 0 

 
In all patterns listed above, we have shown that the depth of the WHERE is always decreased by one using rules W1 

to W6 and optionally rule O1. By applying this process iteratively it is easy to see that we ultimately come up with a 

rewriting that contains WHERE clauses only in the top-level query. 

Hence the second part of the rewritability property. 

5 Overall query translation and evaluation process 

Let us sum up the translation process. Function transm (section 3) translates a SPARQL query into an abstract query, 

helped by function transTPm that translates a triple pattern tp into a union of per-triples-map queries containing 

abstract queries {From, Project, Where}, under a set of triples maps bound to tp. The Where part consists of isNotNull, 

and equals conditions. Functions trans (section 4.4) and rewrite (section 4.5) translate each isNotNull and equals 

condition on a JSONPath expression into a concrete MongoDB query or a union of concrete MongoDB queries.  
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Algorithm 7: Overall SPARQL-to-MongoDB query processing 

1 

2 

3 

4 

5 

6 
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15 
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17 
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19 

20 

21 

22 

23 

24 

Function process(sparqlQuery): 

abstractQuery ← transm(sparqlQuery) 

Optimize abstractQuery: perform self-join, optional-self-join and self-union elimination 

for each atomic abstract query Qi = {From, Project, Where} ∈ abstractQuery do 

Q ← true 

for each cond ∈ Where | cond is a isNotNull or equals condition do 

<JSONPath>, <condition> ← cond 

Q ← AND(Q, trans(<JSONPath>, <condition>)) 

end if 

end for 

Q i’ ← rewrite(Q)  // Qi’ is either a concrete query or a union of concrete queries 

if Qi’ is a valid MongoDB query 

Ri ← execute(Qi’) 

else // Qi’ is UNION(q1, …, qn) 

Ri ← execute(q1) ∪ … ∪ execute(qn) 

end if 

end for 

// Compute UNION, INNER JOIN, LEFT OUTER JOIN and FILTER operators  

R ← evaluate operators on all Ri (results of each atomic query Qi) 

// Generate the triples corresponding to documents of R 

primaryGraph ← Apply the triples map corresponding to each Qi 

// Late SPARQL query evaluation  

resultGraph ← evaluate sparqlQuery on primaryGraph 

return resultGraph 

  

The rewritten concrete queries have several limitations though: 

(i) The ambiguous semantics of the MongoDB query language (underlined in section 4.1) entails that a MongoDB 

query cannot be guaranteed to have the same semantics as the triple pattern it stands for. Consequently, all 

documents matching the SPARQL query are returned (the certain answers), but in addition, non-matching 

documents may be returned. 

(ii) Some JSONPath elements are not supported in the rewriting process as they have no equivalent in MongoDB 

(restrictions listed in section 4.2). Nevertheless, the rewriting process ensures that all matching documents are 

returned, but again, non-matching documents may be returned too (Algorithm 5). 

(iii) In a MongoDB query, a projection clause can concern document fields but it cannot concern elements of an array. 

Therefore, it cannot be guaranteed that only needed fields be projected. 

(iv) Lastly, at this stage, our method does not deal with SPARQL filters embedded in atomic abstract queries using 

sparqlFilter conditions, although they are managed at the upper level in the abstract query using operator 

FILTER. 

 

To work around those issues, the overall query processing works in several steps detailed in Algorithm 7: 

- For each atomic abstract query {From, Project, Where}, the query translation engine creates concrete MongoDB 

queries (lines 4-11). It executes the concrete queries against the database, and from the result JSON documents it 

computes the UNION clauses that may be produced by the rewrite function (lines 12-16). 

- When all {From, Project, Where} queries have been executed, the query processing engine computes the INNER 

JOIN, LEFT OUTER JOIN, FILTER and UNION operators on the results of each atomic query (line 19). 
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- It produces RDF triples by applying the triples map to the result JSON documents (line 21). This entails the 

evaluation of the JSONPath expressions (the term maps references) against the documents. This clears hurdles (ii) 

and (iii). The result triples are materialized and stored into a primary result graph. 

- Finally, the SPARQL query is evaluated against the primary result graph (line 23). This rules out all non-matching 

triples that were generated due to issues (i) and (iv). 

6 Conclusion, Discussion and perspectives 

In this document we proposed a method to access arbitrary MongoDB JSON documents with SPARQL using custom 

mappings described in the xR2RML mapping language. We first defined a method that rewrites a SPARQL query into 

an abstract query independent of the target database, relying on bindings between a SPARQL triple pattern and 

xR2RML mappings. A set of rules translate the abstract query into an abstract representation of a MongoDB query, 

and we showed that the latter can always be rewritten into a union of valid concrete MongoDB queries that shall 

return all the matching documents. Finally we defined an algorithm that orchestrates the different steps until the 

evaluation of MongoDB queries and the generation of the RDF triples matching the SPARQL query.  

 

Despite a comprehensive documentation, there is no formal description of the semantics of the MongoDB query 

language, and more importantly, ambiguities are voluntarily part of the language. Let us add that the JSONPath 

language used in the mappings to extract data from JSON documents is unclear and subject to divergent 

interpretations. Lastly, some JSONPath expressions cannot be translated into equivalent MongoDB queries. 

Consequently, the query translation method cannot ensure that query semantics be preserved. Nevertheless, we proved 

that rewritten queries retrieve all matching documents, in addition to possibly non matching ones. We overcome this 

issue by evaluating the SPARQL query against the triples generated from the database results. This guarantees 

semantics preservation, at the cost of an additional SPARQL evaluation. More generally the NoSQL trend 

pragmatically gave up on properties such as consistency and rich query features, as a trade-off to high throughput, 

high availability and horizontal elasticity. Therefore, it is likely that the hurdles we have encountered with MongoDB 

shall occur with other NoSQL databases. 

6.1 Query optimization 

Function transm translates a SPARQL query into an abstract query containing INNER JOIN, LEFT OUTER JOIN, 

FILTER and UNION operators. With SQL or XQuery whose expressiveness is similar to that of SPARQL, the 

abstract query can be translated into a single SQL query, as shown in various approaches [4,16,7,18,14,13]. 

Conversely, the expressiveness of the MongoDB query language is far more limited: joins are not supported and filters 

are supported with strong restrictions (e.g. no comparison between fields of a document, $where operator restricted to 

the top-level query). This discrepancy entails that a SPARQL query shall be translated into possibly multiple 

independent queries, thereby delegating several steps to the query processing engine. This is illustrated in Algorithm 

7: line 19 processes other INNER JOIN, LEFT OUTER JOIN, FILTER and UNION operators between sets of JSON 

documents. 

 

Evaluating concrete queries independently of each other can be the cause of performance issues. The problem of 

efficiently evaluating the abstract query amounts to a classical query plan optimization problem. Future works shall 

include the study of methods such as the bind join [9] to inject intermediary results into a subsequent query. The join 

re-ordering based on the number of results that queries shall retrieve could also be used, very similarly to the methods 

applied in distributed SPARQL query engines [15,8]. 
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6.2 Support of the SPARQL query language 

Our method deals with SPARQL filters in the abstract query, however at this stage, named graphs and solution 

modifiers (DISTINCT, OFFSET, LIMIT, ORDER BY, HAVING) are not considered. Furthermore, as mentioned in 

section 4, SPARQL filters are not tackled in the translation of an abstract query into the MongoDB query language. 

We plan to address this in the future, although it is likely that the support shall be limited by the capabilities of the 

underlying database. For instance, SQL supports most of the SPARQL operators such as logics, comparison, 

arithmetic and unary operators. This is far from being the case in MongoDB. As illustrated in section 6.3, JavaScript 

functions can help in this matter, although we have to consider this option with reluctance due to the performance 

issues it entails. Again, some filtering tasks shall be delegated to the query processing engine to bridge the gap 

between SPARQL and MongoDB. 

 

The issue is even more striking if we consider the SPARQL 1.1
13

 features such as property paths, assignments 

(VALUE, BIND), negation (NOT EXISTS, MINUS) and functions on strings. Such features shall not be translated 

into MongoDB queries, and we shall not escape the late evaluation of the SPARQL query against the triples generated 

at an earlier step, as we propose in Algorithm 7. 

6.3 Dealing with the MongoDB $where operator 

In the MongoDB query language, the $where operator is valid only in the top-level query document. Using rules W1 

to W6 we show that we can pull up a $where operator nested beneath AND or OR operators, but we cannot deal with 

a $where operator nested beneath an $elemMatch. By construction, rules in function trans (Algorithm 2) exclude the 

latter case by generating a NOT_SUPPORTED operator. In other words, trans drops the $where and postpones the 

evaluation of the condition to a later step: the effect is to widen the query that shall retrieve more documents than 

those matching the initial SPARQL query. Then, Algorithm 7 runs a late evaluation of the SPARQL query against the 

set of generated triples to make sure we produce only the expected triples. 

 

An alternative is to push whatever needs to be in the $where operator by means of a JavaScript function. Let us 

consider the following example: a MongoDB instance stores JSON documents about bank account details, such as: 

{accounts: [ 

   {current: { credits: 100, debits: 50}}, 

   {savings: { credits: 80, debits: 80}} 

]} 

We want to retrieve documents where credits equal debits in at least one account. The MongoDB $eq operator does 

not allow to specify the equality between two fields, therefore we must use the $where operator. We cannot write the 

following query: {"accounts": {$elemMatch: {$where: {"credits == debits"}}}} since the $where operator 

must be in the top-level query document. But we can write a JavaScript function that browses the "accounts" array to 

check if the condition is true for at least one element in the array: 

$where: {function() { \ 

  result = false; \ 

  for (i = 0; i < this.accounts.length; i++) \ 

    result = result || ( this.accounts[i].credits == this.accounts[i].debits); \ 

  return result }} 

  

This option has the advantage of returning only the matching documents, but it has two shortcomings. (i) It may cause 

a serious performance penalty in the database: as we already mentioned, MongoDB cannot take advantage of indexes 

when executing JavaScript code, thus it shall retrieve all documents matching all conditions except the $where, then 

apply the JavaScript function to all of them. (ii) It can lead to the generation of complex JavaScript functions when it 

comes to translate rich JSONPath expressions. Conversely, in the method we have chosen, the database query shall be 

                                                      
13

 http://www.w3.org/TR/sparql11-query/ 
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faster but the price is a larger amount of data retrieved and an additional SPARQL query evaluation to rule out non-

matching triples. It is unclear, at this stage, whether one solution should be preferred to the other. But most likely, we 

can assume that the choice shall depend on the context. 
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7 Appendix A 

In this appendix we provide the detailed algorithm of functions used in the transTPm function, defined in section 3. 

7.1 Functions genProjection and genProjectionParent 

We first describe function getReferences, a utility function used in subsequent functions. 

 

Algorithm 8: Function getReferences returns the references associated with an xR2RML term map 

Function getReferences(termMap): 
    case type(termMap) 
        template-valued   : termVal ← getTemplateReferences(termMap.template) 
        reference-valued : termVal ← termMap.reference 
        constant-valued   : termVal ←  termMap.constant 
    end case 
    return termVal 

 

Algorithm 9: Generates the list of xR2RML references that must be projected in the abstract query 

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp. 

Function genProjection(tp, TM): 

    refList ← <empty list> 

    if type(tp.sub) is VARIABLE then 
        refList ← refList | getReferences(TM.subjectMap) AS tp.sub 
    end if 

    if type(tp.pred) is VARIABLE then 
        refList ← refList | getReferences(TM.predicateObjectMap.predicateMap) AS tp.pred 
    end if 

    OM ← TM.predicateObjectMap.objectMap 
    if OM is a ReferencingObjectMap then 
        // Since we do not know the target database, the join may have to be done by the query processing engine. 

        // Hence, the joined fields are always projected, whether tp.obj is an IRI or a variable:  

        refList ← refList | getReferences(OM.joinCondition.child) 

    else if type(tp.obj) is VARIABLE then 
        refList ← refList | getReferences(OM) AS tp.obj 
    end if 

    return refList 
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Algorithm 10: Generates the list of xR2RML references from a parent triples map that must be projected in 

the abstract query 

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp, its object map is a referencing object 
map (it refers to a parent triples map). 

Function genProjectionParent(tp, TM): 

    refList ← <empty list> 
    ROM ← TM.predicateObjectMap.objectMap    // Referencing Object Map 

    // Joined fields are always projected, whether tp.obj is an IRI or a variable:  

    refList ← refList | getReferences(ROM.joinCondition.parent) 

    // If tp.obj is a variable, the subject of the parent TM is projected too 

    if type(tp.obj) is VARIABLE then 
        refList ← refList | getReferences(ROM.parentTriplesMap.subjectMap) AS tp.obj 
    end if 

    return refList 

7.2 Function genCond and genCondParent 

We first describe function getValue that is used in subsequent functions. 

 

Algorithm 11: Function getValue returns the value of the RDF term depending on the xR2RML term map 

where it is applied.  

This is simply a utility function that applies the inverse expression in case of a template-valued term map, and returns 

the RDF term as is otherwise. 

Function  getValue(rdfTerm, termMap): 
    case type(termMap) 
        template-valued   : termVal ← inverseExpression(rdfTerm, termMap.inverseExpression) 
        reference-valued : termVal ← rdfTerm 
        constant-valued   : termVal ← rdfTerm 
    end case 

    return termVal 

 

Algorithm 12: Generate the conditions to match a triple pattern with a triples map 

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp, f is a SPARQL filter. 

Function genCond(tp, TM, f): 

cond ← <empty list>     

// Subject part 
if type(TM.subject) is reference-valued or template-valued then 
    case type(tp.sub) 
        IRI: 
            cond ← cond | equals(getValue(tp.sub, TM.subjectMap), getReferences(TM.subjectMap)) 

        VARIABLE:  
            if f contains a condition mentioning tp.sub then 
                cond ← cond | sparqlFilter(getReferences(TM.subjectMap), f) 
            else 
                cond ← cond | isNotNull(getReferences(TM.subjectMap)) 
            end if 

    end case 
end if 

// Predicate part 
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PM ← TM.predicateObjectMap.predicateMap 
if type(PM) is reference-valued or template-valued then 
    case type(tp.pred) 
        IRI: 
            cond ← cond | equals(getValue(tp.pred, PM), getReferences(PM)) 

        VARIABLE  : 
            if f contains a condition mentioning tp.pred then 
                cond ← cond | sparqlFilter(getReferences(PM), f) 
            else 
                cond ← cond | isNotNull(getReferences(PM)) 
            end if 
    end case 
end if     

// Object part 
OM ← TM.predicateObjectMap.objectMap 
case type(tp.obj) 

LITERAL: 
if type(OM) is reference-valued or template-valued then 

    cond ← cond | equals(getValue(tp.obj, OM), getReferences(OM)) 

end if 

IRI: 
if OM is a ReferencingObjectMap then 

cond ← cond | isNotNull(OM.joinCondition.child) 

else if type(OM) is reference-valued or template-valued then 

cond ← cond | equals(getValue(tp.obj, OM), getReferences(OM)) 

end if 

VARIABLE: 
if OM is a ReferencingObjectMap then 

cond ← cond | isNotNull(OM.joinCondition.child) 

else if type(OM) is reference-valued or template-valued then 

if f contains a condition mentioning tp.obj then 
    cond ← cond | sparqlFilter(getReferences(OM), f) 
else 
    cond ← cond | isNotNull(getReferences(OM)) 
end if 

end if 
end case 
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Algorithm 13: Generate the conditions to match the object of a triple pattern with a referencing object map 

Input: tp is a triple pattern, TM is an xR2RML triples map bound to tp and its object map is a referencing 
object map (it refers to a parent triples map), f is a SPARQL filter. 

Function genCondParent(tp, TM, f): 

cond ← <empty list>     

OM ← TM.predicateObjectMap.objectMap 
case type(tp.obj) 

IRI: 
// tp.obj is a constant IRI to be matched with the subject of the parent TM: 
// add an equality condition for each reference in the subject map of the parent TM 
if type(OM.parentTriplesMap.subjectMap) is reference-valued or template-valued then 

    obj_value ← getValue(tp.obj, OM.parentTriplesMap.subjectMap) 

    cond ← cond | equals(obj_value, getReferences(OM.parentTriplesMap.subjectMap)) 

end if 

// And in any case add a non null condition to satisfy the join 
cond ← cond | isNotNull(OM.joinCondition.parent) 

VARIABLE: 
// tp.obj is a SPARQL variable to be matched with the subject of the parent TM 
if type(OM.parentTriplesMap.subjectMap) is reference-valued or template-valued then 

if f contains a condition mentioning tp.obj then 
    cond ← cond | sparqlFilter(getReferences(OM.parentTriplesMap.subjectMap), f) 
else 
    cond ← cond | isNotNull(getReferences(OM.parentTriplesMap.subjectMap)) 
end if 

end if 
// And in any case add a non null condition to satisfy the join 
cond ← cond | isNotNull(OM.joinCondition.parent) 

end case 
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8 Appendix B: Complete Running Example 

In this example we assume we have set up a MongoDB database with two collections “staff” and “departments” 

given in Listing 1 and Listing 2 respectively. Collection “departments” lists the departments within a company, 

including a department code and its members. Members are given by their name and age. Collection “staff” lists 

people by their name (that may be either field “familyname” or “lastname”), and provides a list of departments that 

they manage, if any, in array field “manages”. 

 

Listing 1: Collection “staff” 

  { "familyname":"Underwood", "manages":["Sales"] }, 

  { "lastname":"Dunbar", "manages":["R&D", "Human Resources"] }, 

  { "lastname":"Sharp", "manages":["Support", "Business Dev"] } 

 

Listing 2: Collection “departments” 

  { "dept":"Sales", "code":"sa", 

    "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}]  }, 

  { "dept":"R&D", "code":"rd", 

    "members": [{"name":"J. Smith", "age":32}, {"name":"D. Duke", "age":23}]  }, 

  { "dept":"Human Resources", "code":"hr", 

    "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}  }, 

  { "dept":"Business Dev", "code":"bdev", 

    "members": [{"name":"R. Danton", "age":36}, {"name":"E. Meetchum", "age":34}  } 

 

The xR2RML mapping graph in Listing 3 consists of two triples maps <#Staff> and <#Departments>. Triples map 

<#Staff> has a referencing object map whose parent triples map is <#Departments>. Triples map <#Departments> 

generates triples with predicate ex:hasSeniorMember for each member of the department who is 40 years old or more. 

For the sake of simplicity the queries in both triples maps retrieve all documents of the collection with no other query 

filter. 

 

We wish to translate the SPARQL query below, that aims at retrieving senior members of departments whose manager 

is “Dunbar”. The query consists of one basic graph pattern bgp, itself consisting of two triple patterns tp1 and tp2: 

   SELECT ?senior WHERE { 

      <http://example.org/staff/Dunbar> ex:manages ?dept. // tp1 

      ?dept ex:hasSeniorMember ?senior. }   // tp2 

 

We execute the SPARQL query processing function (Algorithm 7). First, the transm function translates the SPARQL 

query into an abstract query (Algorithm 7, line 2). The execution of the transm function (Definition 1) returns: 

   transm(bgp, true) 

   = transm(tp1, true) INNER JOIN transm(tp2, true) ON var(tp1) ⋂ var(tp2) 

   = transTPm(tp1, true) INNER JOIN transTPm(tp2, true) ON {?dept} 

 

Function bindm (Definition 4) infers two triple pattern bindings:  

   bindm(bgp) = { (tp1, {<#Staff>}) , (tp2, {<#Departments>)} } 

 

In the subsequent sections we describe the execution of the transTPm function for each triple pattern, starting with tp2; 

then we describe the final computation of the INNER JOIN operator. 
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Listing 3: xR2RML Example Mapping Graph 

<#Departments> 

   xrr:logicalSource [ xrr:query "db.departments.find({})" ]; 

   rr:subjectMap [ rr:template "http://example.org/dept/{$.code}" ]; 

   rr:predicateObjectMap [ 

      rr:predicate ex:hasSeniorMember; 

      rr:objectMap [ xrr:reference "$.members[?(@.age >= 40)].name"; ]; 

   ]. 

 

<#Staff> 

   xrr:logicalSource [ xrr:query "db.staff.find({})"; ]; 

   rr:subjectMap [ rr:template "http://example.org/staff/{$['lastname','familyname']}" ]; 

   rr:predicateObjectMap [ 

      rr:predicate ex:manages; 

      rr:objectMap [ 

         rr:parentTriplesMap <#Departments>; 

         rr:joinCondition [ 

            rr:child "$.manages.*"; 

            rr:parent "$.dept"; 

         ] ] ]. 

8.1 Translation of tp2 into an abstract query 

Triple pattern tp2: ?dept ex:hasSeniorMember ?senior. 

getBoundTMsm(gp, tp2) returns triples map <#Departments>. 

 

transTPm(tp2, true) = 

    From    ← {[xrr:query "db.departments.find({})"]} 

    Project ← genProjection(tp2, <#Departments>) 

    Where   ← genCond(tp2, <#Departments>, true) 

 

Let us detail the calculation of Project part (Algorithm 9) and Where part (Algorithm 12): 

 

Project: 

genProjection(tp2, <#Departments>) = ($.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior) 

Note that in a MongoDB query, a projection clause can concern document fields but it cannot concern elements of an 

array. Thus, we cannot project field “name” of elements of array “members”, we can only project field “members”. 

Consequently, when translated to the MongoDB query language, the Project part shall only project fields “code” and 

“members”: {"code":1, "members":1}. 

 

Where ← genCond(tp2, <#Departments>, true): 

- The subject of tp2 is a variable, this entails a non-null condition on the references of the subject map of 

<#Departments>:  

isNotNull(getReferences(<#Departments>.subjectMap)) 

that we can rewrite: 

isNotNull($.code) 

- The predicate of tp2 is constant, hence no condition is entailed. 

- The object of tp2 is again a variable, this entails a second non-null condition:  

isNotNull($.members[?(@.age >= 40)].name)) 
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Finally, transTPm(tp2, true) = 

    From    ← {[xrr:query "db.departments.find({})"]} 

    Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

    Where   ← {isNotNull($.code), isNotNull($.members[?(@.age >= 40)].name)} 

8.2 Translation of tp1 into an abstract query 

Triple pattern tp1: <http://example.org/staff/Dunbar> ex:manages ?dept. 

getBoundTMsm(gp, tp1) returns triples map <#Staff>.  

 

transTPm(tp1, true) = 

    { From    ← {[xrr:query "db.staff.find({})"]} 

      Project ← genProjection(tp1, <#Staff>) 

      Where   ← genCond(tp1, <#Staff>, true) 

    } AS child 

    INNER JOIN  

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← genProjectionParent(tp1, <#Staff>) 

      Where   ← genCondParent(tp1, <#Staff>, true) 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

 

Project (Algorithm 9): 

As the subject of tp1 is a constant, the reference in the subject map of triples map <#Staff> is not projected. Since the 

object map of <#Staff> is a referencing object map with parent triples map <#Departments>, the references in the 

join condition must be projected: this is achieved by genProjection on the side of <#Staff>, and by 

genProjectionParent on the side of <#Departments>. The object of tp1 is a variable, thus the reference of the 

corresponding term map must be projected too: this is the subject map of triples map <#Departments> projected by 

genProjectionParent: 

genProjection(tp1, <#Staff>) = {$.manages.*} 

genProjectionParent(tp1, <#Staff>) = {$.dept ,$.code AS ?dept} 

When translated to the MongoDB query language, the Project part consists of: 

Child  query: {"manages":1} 

Parent query: {"dept":1, "code":1} 

 

Where part of the child query (Algorithm 12): 

Where ← genCond(tp1, <#Staff>, true): 

- The subject of tp1 is an IRI, this entails an equality condition on the references of the subject map: 

equals(getValue(tp1.sub, <#Staff>.subjectMap), getReferences(<#Staff>.subjectMap)) 

that we can rewrite: 

equals("Dunbar", $['lastname','familyname']) 

- The predicate of tp1 is constant, hence no condition is entailed. 

- The object of tp1 matched with the subject map of triples map <#Departments>, this will be managed by 

genCondParent. Nevertheless we have to add a not-null condition on the child joined reference: 

isNotNull($.manages.*) 

 

Where part of the parent query: 

Where ← genCondParent(tp1, <#Staff>, true): 

- The object of tp1 is a variable, this entails a not-null condition. It is matched with the subject map of triples map 

<#Departments>. Hence: 

isNotNull(getReferences(<#Departments>.subjectMap)) = isNotNull($.code) 
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- We must also add a not-null condition on the parent joined reference: 

isNotNull($.dept) 

 

Finally, transTPm(tp1, true) = 
    { From    ← {[xrr:query "db.staff.find({})"]} 

      Project ← {$.manages.*} 

      Where   ← {equals("Dunbar", $['lastname','familyname']), isNotNull($.manages.*)}  

    } AS child 

    INNER JOIN  

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← {$.dept, $.code AS ?dept} 

      Where   ← {isNotNull($.code), isNotNull($.dept)} 

    }  AS parent 

    ON (child/$.manages.* = parent/$.dept) 

8.3 Abstract query optimization 

When we put the translation of tp1 and tp2 together we obtain the following abstract query: 

transm(bgp, true) = 

    { From    ← {[xrr:query "db.staff.find({})"]} 

      Project ← {$.manages.*} 

      Where   ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}  

    } AS child 

    INNER JOIN  

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← {$.dept, $.code AS ?dept} 

      Where   ← {isNotNull($.code), isNotNull($.dept)} 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

    INNER JOIN  

    { From    ← [xrr:query "db.departments.find({})"] 

      Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

      Where   ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) } 

    ON {?dept} 

 

The 2
nd

 and 3
rd

 atomic queries have the same From part, thus entailing a self-join. To eliminate it we first rewrite the 

abstract query: we change the natural associative property of joins by embedding the 2
nd

 and 3
rd

 atomic queries in 

curly brackets. 

transm(bgp, true) = 

    { From    ← {[xrr:query "db.staff.find({})"]} 

      Project ← {$.manages.*} 

      Where   ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}  

    } AS child 

    INNER JOIN  

    { 

        { From    ← {[xrr:query "db.departments.find({})"]} 

          Project ← {$.dept, $.code AS ?dept} 

          Where   ← {isNotNull($.code), isNotNull($.dept)} }  

        INNER JOIN  

        { From    ← [xrr:query "db.departments.find({})"] 

          Project ← {$.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

          Where   ← { isNotNull($.code), isNotNull($.members[?(@.age>=40)].name) } 

        ON {?dept} 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 
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Now we can perform a self-join elimination by merging the two queries together: we merge the Project parts on the 

one hand, and the Where parts on the other hand. We obtain the following optimized abstract query: 

transm(bgp, true) = 

    { From    ← {[xrr:query "db.staff.find({}})"]} 

      Project ← {$.manages.*} 

      Where   ← {equals("Dunbar", $['lastname', 'familyname']), isNotNull($.manages.*)}  

    } AS child 

    INNER JOIN  

    { From    ← {[xrr:query "db.departments.find({})"]} 

      Project ← {$.dept, $.code AS ?dept, $.members[?(@.age>=40)].name AS ?senior} 

      Where   ← {isNotNull($.code), isNotNull($.dept), isNotNull($.members[?(@.age>=40)].name)} 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

8.4 Rewriting atomic queries to MongoDB queries 

Child query 

Each condition of the Where part in translated into an abstract MongoDB query (Algorithm 7, lines 6-10). Below we 

detail the execution of the trans function (section 4.4) by indicating the rules matched at each step: 

 

Q1 ← trans($['lastname', 'familyname'], equals("Dunbar")) = 

   R0    trans(['lastname', 'familyname'], equals("Dunbar")) = 

   R3    OR(trans(.lastname, equals("Dunbar")), trans(.familyname, equals("Dunbar"))) = 

   R8,R1 OR(FIELD(lastname) COND(equals("Dunbar")), FIELD(familyname) COND(equals("Dunbar"))) 

 

Q2 ← trans($.manages.*, isNotNull) = 

   R0    trans(.manages.*, isNotNull) = 

   R8,R7,R1 FIELD(manages) ELEMMATCH(COND(sNotNull)) 

 

Q1 and Q2 are translated into either a concrete query or a union of concrete queries (Algorithm 7, line 11): 

Qi' ← rewrite(AND(AND(true,Q1),Q2) = 

    { $or: [{lastname: {$eq: "Dunbar"}}, {familyname: {$eq: "Dunbar"}}], 

      "manages": {$elemMatch: {$exists:true, $ne:null}}} 

 

Q1’ is inserted in the MongoDB find request along with the Project part, for the child query: 

db.departments.find( 

   {$or: [{"lastname": {$eq: "Dunbar"}}, {"familyname": {$eq: "Dunbar"}}], 

    "manages": {$elemMatch: {$exists:true, $ne:null}}}, 

   {"manages": 1} ) 

 

The request returns one document (Algorithm 7, lines 12-16): 

Ri ← {"manages":["R&D", "Human Resources"]} 

Parent query 

Each condition of the Where part is translated into an abstract MongoDB query (Algorithm 7, lines 6-10). Below we 

detail the execution of the trans function (section 4.4) by indicating the rules matched at each step: 

 

Q1 ← trans($.code, isNotNull) = 

   R0    trans(.code, isNotNull) = 

   R8,R1 FIELD(code) COND(isNotNull) 

 

Q2 ← trans($.dept, isNotNull) = FIELD(dept) COND(isNotNull) 

 

Q3 ← trans($.members[?(@.age >= 40)].name), isNotNull) = 
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   R0    trans(.members[?(@.age >= 40)].name, isNotNull) = 

   R8    FIELD(members) trans([?(@.age >= 40)].name, isNotNull) = 

   R4    FIELD(members) ELEMMATCH(trans(.name, isNotNull), transJS(?(@.age >= 40))) = 

   R8,R1 FIELD(members) ELEMMATCH(FIELD(name) COND(isNotNull), transJS(@.age >= 40)) = 

   J6    FIELD(members) ELEMMATCH(FIELD(name) COND(isNotNull), COMPARE(age, $gte, 40)) 

 

Q1, Q2 and Q3 are translated into either a concrete query or a union of concrete queries (Algorithm 7, line 11): 

Qi' ← rewrite(AND(AND(AND(true,Q1),Q2),Q3) = 

        {"code": {$exists:true, $ne:null}, 

         "dept": {$exists:true, $ne:null}, 

         "members": {$elemMatch: {"name": {$exists:true, $ne:null}, "age": {$gte:40}}}} 

 

Qi’ is inserted in the MongoDB find request along with the Project part: 

db.departments.find( 

        {"code": {$exists:true, $ne:null}, 

         "dept": {$exists:true, $ne:null}, 

         "members": {$elemMatch: {"name": {$exists:true, $ne:null}, "age": {$gte:40}}}}, 

        {dept:1, code:1, members:1})  // project part 

 

The request returns two documents (Algorithm 7, lines 12-16): 

Ri ← {"dept":"Sales", "code":"sa",  

      "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}]} 

     {"dept":"Human Resources", "code":"hr", 

      "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]} 

8.5 Complete transm processing 

Now we rewrite the optimized abstract query obtained in section 8.3 by replacing each atomic abstract query with its 

respective results: 

    { 

     {"manages":["R&D", "Human Resources"]}  

    } AS child 

    INNER JOIN  

    { 

     {"dept":"Sales", "code":"sa",  

      "members":[{"name":"P. Russo", "age":28}, {"name":"J. Mendez", "age":43}]} 

     {"dept":"Human Resources", "code":"hr", 

      "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]} 

    } AS parent 

    ON child/$.manages.* = parent/$.dept 

 

We then compute the INNER JOIN operator, this returns only two documents: 

     {"manages":["R&D", "Human Resources"]}, 

     {"dept":"Human Resources", "code":"hr", 

      "members": [{"name":"R. Posner", "age":46}, {"name":"D. Stamper", "age":38}]} 

 

Finally, applying the xR2RML triples maps to those results shall entail the triples that match the graph pattern in the 

SPARQL query: 

<http://example.org/staff/Dunbar> ex:manages <http://example.org/dept/hr>. 

<http://example.org/staff/Dunbar> ex:manages <http://example.org/dept/rd>. 

<http://example.org/dept/hr> ex:hasSeniorMember "R. Posner". 

 

In this simple example, it is easy to notice that the final evaluation of the SPARQL query (Algorithm 7, line 23) will 

not rule out any result. The answer to the SELECT clause is the binding of variable ?senior to value "R. Posner".  
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