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Abstract

To model recurrent interaction events in continuous time, an extension of the stochastic
block model is proposed where every individual belongs to a latent group and interactions
between two individuals follow a conditional inhomogeneous Poisson process with intensity
driven by the individuals’ latent groups. The model is shown to be identifiable and its estimation
is based on a semiparametric variational expectation-maximization algorithm. Two versions of
the method are developed, using either a nonparametric histogram approach (with an adaptive
choice of the partition size) or kernel intensity estimators. The number of latent groups can
be selected by an integrated classification likelihood criterion. Finally, we demonstrate the
performance of our procedure on synthetic experiments, analyse two datasets to illustrate the
utility of our approach and comment on competing methods.

Keywords: dynamic interactions; expectation-maximization algorithm; integrated classifica-
tion likelihood; link streams; longitudinal network; semiparametric model; variational approxima-
tion; temporal network.

1 Introduction

The past few years have seen a large increase in the interest for modelling dynamic interactions
between individuals. Continuous-time information on interactions is often available, as e.g. email
exchanges between employees in a company (Klimt & Yang, 2004) or face-to-face contacts be-
tween individuals measured by sensors (Stehlé et al., 2011), but most models use discrete time.
Commonly, data are aggregated on predefined time intervals to obtain a sequence of snapshots
of random graphs. Besides the loss of information induced by aggregation, the specific choice
of the time intervals has a direct impact on the results, most often overlooked. Thus, developing
continuous-time models – either called longitudinal networks, interaction event data, link streams
or temporal networks – is an important research issue.

Statistical methods for longitudinal networks form a huge corpus, especially in social sciences
and we are not exhaustive here, see Holme (2015) for a more complete review. It is natural to
model temporal event data by stochastic point processes. An important line of research involves
continuous-time Markov processes with seminal works on dyad-independent models (Wasserman,
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1980b,a) or the so-called stochastic actor oriented models (e.g. Snijders & van Duijn, 1997; Snijders
et al., 2010). In these works interactions last during some time. In contrast, here we focus on in-
stantaneous interactions identified with time points. Furthermore, we are concerned with modelling
dependencies between interactions of pairs of individuals.

The analysis of event data is an old area in statistics (see e.g. Andersen et al., 1993). Generally,
the number of interactions of all pairs (i, j) of individuals up to time t are modelled by a multivariate
counting process N(t) = (Ni,j(t))(i,j). Butts (2008) considers time-stamped interactions marked
by a label representing a behavioural event. His model is an instance of Cox’s multiplicative hazard
model with time-dependent covariates and constant baseline function. In the same vein, Vu et al.
(2011) propose a regression-based modelling of the intensity of non recurrent interaction events.
They consider two different frameworks: Cox’s multiplicative and Aalen’s additive hazard rates.
Perry & Wolfe (2013) propose another variant of Cox’s multiplicative intensity model for recurrent
interaction events where the baseline function is specific to each individual. In the above mentioned
works a set of statistics is chosen by the user that potentially modulate the interactions. As in any
regression framework, the choice of these statistics raises some issues: increasing their number
may lead to a high-dimensional problem, and interpretation of the results might be blurred by their
possible correlations.

The approaches by Butts, Vu et al., Perry & Wolfe and others are based on conditional Poisson
processes characterized by random intensities, also known as doubly stochastic Poisson processes
or Cox processes. An instance of the conditional Poisson process is the Hawkes process, which is
a collection of point processes with some background rate, where each event adds a nonnegative
impulse to the intensity of all other processes. Introducing reciprocating Hawkes to parameterize
edges Blundell et al. (2012) extend the Infinite Relational Model making all events co-dependent
over time. Cho et al. (2014) develop a model for spatial-temporal networks with missing infor-
mation, based on Hawkes processes for temporal dynamics combined with a Gaussian mixture for
the spatial dynamics. Similarly, Linderman & Adams (2014) combine temporal Hawkes processes
with latent distance models for implicit networks that are not directly observed. We also mention
the existence of models associating point processes with single nodes rather than pairs, see e.g. Fox
et al. (2016) and the references therein.

Clustering individuals based on interaction data is a well-established technique to take into
account the intrinsic heterogeneity and summarize information. For discrete-time sequences of
graphs, recent approaches propose generalizations of the stochastic block model to a dynamic con-
text (Yang et al., 2011; Xu & Hero, 2014; Corneli et al., 2016; Matias & Miele, to appear). Stochas-
tic block models posit that all individuals belong to one out of finitely many groups and given these
groups all pairs of interactions are independent. We stress that stochastic block models induce
more general clusterings than community detection algorithms. Indeed, clusters are not necessar-
ily characterized by intense within-group interaction and low interaction frequency towards other
groups. Another attempt to use stochastic block models for interaction events appears in DuBois
et al. (2013) generalizing the approach of Butts (2008) by adding discrete latent variables on the
individuals.

We introduce a semiparametric stochastic block model for recurrent interaction events in con-
tinuous time, to which we refer as the Poisson process stochastic block model. Interactions are
modelled by conditional inhomogeneous Poisson processes, whose intensities only depend on the
latent groups of the interacting individuals. In contrast to many other works, we do not rely on
a parametric model where intensities are modulated by predefined network statistics, but inten-
sities are modelled and estimated in a nonparametric way. The model parameters are shown to
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be identifiable. Our estimation and clustering approach is a semiparametric version of the varia-
tional expectation-maximization algorithm, where the maximization step is replaced by nonpara-
metric estimators of the intensities. Semiparametric generalizations of the classical expectation-
maximization algorithm have been proposed in many different contexts; see e.g. Böhning (1995);
Bordes et al. (2007); Robin et al. (2007) for semiparametric mixtures or Dannemann (2012) for a
semiparametric hidden Markov model. However, we are not aware of other attempts to incorpo-
rate nonparametric estimates in a variational approximation algorithm. We propose two different
estimations of the nonparametric part of the model: a histogram approach using Reynaud-Bouret
(2006) where the partition size is adaptively chosen and a kernel estimator based on Ramlau-Hansen
(1983). With the histogram approach, an integrated classification likelihood criterion is proposed to
select the number of latent groups. Synthetic experiments and the analysis of two datasets illustrate
the strengths and weaknesses of our approach. The R code is available in the R package ppsbm.

2 A semiparametric Poisson process stochastic block model

2.1 Model

We consider the pairwise interactions of n individuals during some time interval [0, T ]. For nota-
tional convenience we restrict our attention to directed interactions without self-interactions. The
undirected case and self-interactions are handled similarly. The set of all pairs of individuals (i.e.
the set of all possible dyads in the graph) is denoted

R = {(i, j) : i, j = 1, . . . , n; i 6= j},

whose cardinality is r = n(n− 1). We observe the interactions during the time interval [0, T ], that
is

O = {(tm, im, jm),m = 1, . . . ,M} ,

where (tm, im, jm) ∈ [0, T ]×R corresponds to the event that a (directed) interaction from the imth
individual to the jmth individual occurs at time tm. The total (random) number of events is M . We
assume that 0 < t1 < · · · < tM < T , i.e. there is at most one event at a time.

Every individual is assumed to belong to one out of Q groups and the relation between two
individuals, that is the way they interact with another, is driven by their group membership. Let
Z1, . . . , Zn be independent and identically distributed (latent) random variables taking values in
{1, . . . , Q} with non zero probabilities pr(Z1 = q) = πq (q = 1, . . . , Q). For the moment, Q
is considered to be fixed and known. When no confusion occurs, we also use the notation Zi =
(Zi,1, . . . , Zi,Q) with Zi,q ∈ {0, 1} such that Zi has multinomial distributionM(1, π) with π =
(π1, . . . , πQ).

For every pair (i, j) ∈ R the interactions of individual i to j conditional on the latent groups
Z1, . . . , Zn are modelled by a conditional inhomogeneous Poisson process Ni,j(·) on [0, T ] with
intensity depending only on Zi and Zj . For q, l = 1, . . . , Q and (i, j) ∈ R the conditional intensity
of Ni,j(·) given that Zi = q and Zj = l is α(q,l)(·) with corresponding cumulative intensity

A(q,l)(t) =

∫ t

0
α(q,l)(u)du, (0 ≤ t ≤ T ).

The set of observations O is a realization of the multivariate counting process {Ni,j(·)}(i,j)∈R
with conditional intensity process {α(Zi,Zj)(·)}(i,j)∈R. The process Ni,j is not a Poisson process,
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but a counting process with intensity
∑Q

q=1

∑Q
l=1 πqπlα

(q,l). We denote θ = (π, α) the infinite-
dimensional parameter of our model and prθ the Poisson process stochastic block model distribution
of the multivariate counting process {Ni,j(·)}(i,j)∈R. An extension of this model that specifically
accounts for sparse interactions processes is given in the Supplementary Material.

2.2 Identifiability

Identifiability of the parameter θ corresponds to injectivity of the mapping θ 7→ prθ and may be
obtained at best up to label switching, as defined below. We denote SQ the set of permutations of
{1, . . . , Q}.

Definition 1 (Identifiability up to label switching). The parameter θ = (π, α) of a Poisson process
stochastic block model is identifiable on [0, T ] up to label switching if for all θ and θ̃ such that
prθ = prθ̃ there exists a permutation σ ∈ SQ such that

πq = π̃σ(q), α(q,l) = α̃(σ(q),σ(l)) almost everywhere on [0, T ], (q, l = 1, . . . , Q).

Identifiability (up to label switching) is ensured in the very general setting where the intensities
α(q,l) are not equal almost everywhere, that is, they may be identical on at most subsets of [0, T ].

Assumption 1. In the directed setup (resp. undirected), the set of intensities {α(q,l)}q,l=1,...,Q

contains exactly Q2 (resp. Q(Q+ 1)/2) distinct functions.

Proposition 1. Under Assumption 1, the parameter θ = (π, α) is identifiable on [0, T ] up to label
switching from the Poisson process stochastic block model distribution prθ, as soon as n ≥ 3.

Assumption 1 is similar to the hypothesis from Theorem 12 in Allman et al. (2011) that to
our knowledge is the only identifiability result for weighted stochastic block models. The question
whether the necessary condition that any two rows (or any two columns) of the parameter matrix α
are distinct is a sufficient condition for identifiability is not yet answered even in the simpler binary
case. In the binary stochastic block model, the results in Allman et al. (2009, 2011) establish generic
identifiability, which means identifiability except on a subset of parameters with Lebesgue measure
zero, without specifying this subset. For the directed and binary stochastic block model, Celisse
et al. (2012) establish identifiability under the assumption that the product vector απ (or πᵀα) has
distinct coordinates. This condition is slightly stronger than requiring any two rows of the parameter
matrix to be distinct. Another identifiability result appears in Bickel et al. (2011) for some specific
block models. These last two approaches are dedicated to the binary setup and cannot be generalized
to the continuous case.

Proposition 1 does not cover the undirected affiliation case, where only two intensities αin and
αout are considered such that α(q,q) = αin and α(q,l) = αout (q, l = 1, . . . , Q; q 6= l).

Proposition 2. If the intensities αin and αout are distinct functions on [0, T ], then both αin and
αout are identifiable on [0, T ] from the undirected affiliation Poisson process stochastic block model
distribution prθ when n ≥ 3. Moreover, for n ≥ max{Q, 3}, the proportions π1, . . . , πQ are also
identifiable up to a permutation.
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2.3 Additional notation

We introduce some quantities that are relevant in the following. Denote

Y
(q,l)
Z =

∑
(i,j)∈R

Zi,qZj,l, (q, l = 1, . . . , Q), (1)

N
(q,l)
Z =

∑
(i,j)∈R

Zi,qZj,lNi,j , (q, l = 1, . . . , Q), (2)

Z(q,l)
m = Zim,qZjm,l, (q, l = 1, . . . , Q; m = 1, . . . ,M). (3)

These are the (latent) number of dyads (i, j) ∈ R with latent groups (q, l), the (latent) counting
process of interactions between individuals in groups (q, l) and the (latent) binary indicator of ob-
servation (tm, im, jm) belonging to groups (q, l), respectively. As these quantities are unobserved,
our work relies on proxies based on approximations of the latent group variables Zi,q. Denote

T =

τ = (τ i,q)i=1,...,n,q=1,...,Q : τ i,q ≥ 0,

Q∑
q=1

τ i,q = 1, (i = 1, . . . , n; q = 1, . . . , Q)

 . (4)

While the variables Zi,q are indicators, their counterparts τ i,q are weights representing the proba-
bility that node i belongs to group q. Now, for every τ ∈ T , replacing all latent variables Zi,q in
(1)–(3) by τ i,q, we define Y (q,l), N (q,l) and τ (q,l)m which are estimators of Y (q,l)

Z , N (q,l)
Z and Z(q,l)

m ,
respectively.

3 Semiparametric estimation procedure

3.1 A variational semiparametric expectation-maximization algorithm

The complete-data likelihood of observations O and latent variables Z = (Z1, . . . , Zn) is

L(O,Z | θ) = exp

− ∑
(i,j)∈R

A(Zi,Zj)(T )


M∏
m=1

α(Zim ,Zjm )(tm)
n∏
i=1

Q∏
q=1

πZ
i,q

q .

The likelihood of the observed data L(O | θ) is obtained by summing the above over the set of all
possible configurations of the latent variables Z . This set is huge and thus the likelihood L(O | θ)
is intractable for direct maximization. Hence, an expectation-maximization algorithm (Dempster
et al., 1977) is used, which is an iterative procedure especially adapted to cope with latent variables.
It consists of an E-step and an M-step that are iterated until convergence. In our model two issues
arise. First, as already observed for the standard stochastic block model (Daudin et al., 2008), the E-
step requires the computation of the conditional distribution of Z given the observations O, which
is not tractable. Therefore, we use a variational approximation (Jordan et al., 1999) of the latent
variables’ conditional distribution to perform the E-step. We refer to Matias & Robin (2014) for a
presentation and a discussion on the variational approximation in stochastic block models. Second,
part of our parameter is infinite dimensional so that the M-step is partly replaced by a nonparametric
estimation procedure, giving rise to a semiparametric algorithm.
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3.2 Variational E-step

The standard E-step consists in computing the expectation of the complete-data log-likelihood given
the observations at some current parameter value θ. This requires the knowledge of the conditional
latent variables distribution prθ(Z | O), which is not tractable because the Zi’s are not conditionally
independent. We thus perform a variational approximation of prθ(Z | O) by a simpler distribution.
Using the class of parameters T defined by (4) we consider the family of factorized distributions on
Z given O defined as

prτ{Z = (q1, . . . , qn) | O} =
n∏
i=1

prτ (Zi = qi | O) =
n∏
i=1

τ i,qi , (q1, . . . , qn) ∈ {1, . . . , Q}n,

with corresponding expectation Eτ (· | O). Denoting KL{·‖·} the Kullback-Leibler divergence, we
search for the parameter τ̂ ∈ T that yields the best approximation prτ (· | O) of prθ(· | O) through

τ̂ = Argmin
τ∈T

KL{prτ (· | O)‖prθ(· | O)}. (5)

Let H(·) be the entropy of a distribution. It can be seen that τ̂ maximizes with respect to τ the
quantity

J(θ, τ) = Eτ {logL(O,Z | θ) | O}+H{prτ (· | O)}

= −
Q∑
q=1

Q∑
l=1

Y (q,l)A(q,l)(T ) +

Q∑
q=1

Q∑
l=1

M∑
m=1

τ (q,l)m log
{
α(q,l)(tm)

}
+

n∑
i=1

Q∑
q=1

τ i,q log
( πq
τ i,q

)
.

The solution τ̂ satisfies a fixed point equation, which in practice is found by successively updating
the variational parameters τ i,q via the following Equation (6) until convergence.

Proposition 3. The solution τ̂ to the minimization problem (5) satisfies the fixed point equation

τ̂ i,q ∝ πq exp{Diq(τ̂ , α)}, (i = 1, . . . , n; q = 1, . . . , Q), (6)

where ∝ means ‘proportional to’, 1A denotes the indicator function of set A and

Diq(τ, α) = −
Q∑
l=1

n∑
j=1
j 6=i

τ j,l
{
A(q,l)(T ) +A(l,q)(T )

}

+

Q∑
l=1

M∑
m=1

[
1{im=i}τ

jm,l log
{
α(q,l)(tm)

}
+ 1{jm=i}τ

im,l log
{
α(l,q)(tm)

}]
.

3.3 Nonparametric M-step: general description

In a parametric context the M-step consists in the maximization of J(θ, τ) with respect to θ = (π, α).
Considering only the finite-dimensional part π of the parameter, the maximizer π̂ is

π̂q =

∑n
i=1 τ

i,q∑Q
q=1

∑n
i=1 τ

i,q
=

1

n

n∑
i=1

τ i,q, (q = 1, . . . , Q). (7)
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Concerning the infinite-dimensional parameter α, we replace the maximization of J(π, α, τ) with
respect to α by a nonparametric estimation step. If the process N (q,l)

Z defined by (2) was observed,
the estimation of α(q,l) would be straightforward. Now the criterion J depends on α through the
quantity Eτ (logL(O,Z | θ) | O), that corresponds to the log-likelihood in a setup where we ob-
serve the weighted cumulative process N (q,l) (see Section 2.3). Intensities may be easily estimated
in this direct observation setup. We develop two different approaches for updating α: a histogram
and a kernel method.

3.4 Histogram-based M-step

In this part the intensities α(q,l) are estimated by piecewise constant functions and we propose a
data-driven choice of the partition of the time interval [0, T ]. The procedure is based on a least-
squares penalized criterion following the work of Reynaud-Bouret (2006). Here (q, l) is fixed and
for reasons of computational efficiency we focus on regular dyadic partitions that form embedded
sets of partitions.

For some given dmax, consider all regular dyadic partitions of [0, T ] into 2d intervals

Ed =

{
Ek =

[
(k − 1)

T

2d
; k
T

2d

)
: k = 1, . . . , 2d

}
, (d = 0, . . . , dmax).

For any intervalE included in [0, T ], the estimated mean number of observed interactions (tm, im, jm)
between individuals with latent groups (q, l) and occurring in E is

N (q,l)(E) =

∫
E
dN (q,l)(s) =

M∑
m=1

τ im,qτ jm,l1E(tm).

The total number of dyads r is an upper bound for Y (q,l), so we define a least-squares contrast
(relatively to the counting process N (q,l)) for all f ∈ L2([0, T ], dt) by

γ(q,l)(f) = −2

r

∫ T

0
f(t)dN (q,l)(t) +

Y (q,l)

r

∫ T

0
f2(t)dt.

The projection estimator of α(q,l) on the set Sd of piecewise constant functions on Ed is

α̂
(q,l)
d = Argmin

f∈Sd

γ(q,l)(f) =
1

Y (q,l)

∑
E∈Ed

N (q,l)(E)

|E|
1E(·),

where |E| is the length of interval E, here equal to T2−d. Now, adaptive estimation consists in
choosing the best estimator among the collection {α̂(q,l)

d : d = 0, . . . , dmax}. So we introduce an
estimator of the partition through d̂(q,l) minimizing a penalized least-squares criterion of the form

crit(q,l)(d) = γ(q,l)(α̂
(q,l)
d ) + pen(q,l)(d),

for some penalty function pen(q,l) : {0, . . . , dmax} → R+ that penalizes large partitions. We choose
the penalty function as

pen(q,l)(d) =
2d+1

r
C with C =

2dmax

TY (q,l)
sup

E∈Edmax

N (q,l)(E).
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Finally, the penalized least-squares criterion simplifies to

d̂(q,l) = Argmin
d=0,...,dmax

2d
{
−
∑
E∈Ed

N (q,l)(E)2 + 2dmax+1 sup
E′∈Edmax

N (q,l)
(
E′
)}
.

The selected partition size d̂ = d̂(q,l) may be specific to the groups (q, l). Finally, the adaptive
estimator of intensity α(q,l) is

α̂
(q,l)
hist (t) = α̂

(q,l)

d̂
(t) =

2d̂

TY (q,l)

∑
E∈Ed̂

N (q,l)(E)1E(t), (8)

where 0 ≤ t ≤ T ; q, l = 1, . . . , Q. Reynaud-Bouret (2006) develops her approach in the Aalen
multiplicative intensity model, which is slightly different from our context. Moreover, our setup
does not satisfy the assumptions of Theorem 1 in that reference as the number of jumps of the
processes Ni,j is not bounded by a known value (we have recurrent events). Nevertheless, in our
simulations this procedure correctly estimates the intensities α(q,l) (see Section 4). We refer to Ba-
raud & Birgé (2009) for a theoretical study of an adaptive nonparametric estimation of the intensity
of a Poisson process. Reynaud-Bouret (2006) also studies other penalized least-squares estimators
(for e.g. using Fourier bases), which might be used here similarly.

3.5 Kernel-based M-step

Kernel methods are suited to estimate smooth functions. If the variational parameters τ i,q are good
approximations of the latent variables Zi,q, then the intensity of process N (q,l) (Section 2.3) is
approximately Y (q,l)α(q,l), where Y (q,l) is the variational mean number of dyads with latent groups
(q, l). Following Ramlau-Hansen (1983) and considering a nonnegative kernel function K with
support within [−1, 1] together with some bandwidth b > 0, the intensity α(q,l) is estimated by

α̂
(q,l)
ker (t) =

1

bY (q,l)

∫ T

0
K
( t− u

b

)
dN (q,l)(u) =

1

bY (q,l)

M∑
m=1

τ (q,l)m K
( t− tm

b

)
, (9)

if Y (q,l) > 0 and α̂(q,l)
ker (t) = 0 otherwise, where τ (q,l)m is defined in Section 2.3.

The bandwidth b could be chosen adaptively from the data following the procedure proposed
by Grégoire (1993). Kernel methods are not always suited to infer a function on a bounded interval
as boundary effects may deteriorate their quality. However, it is out of the scope of this work to
investigate refinements of this kind.

3.6 Algorithm’s full description

The implementation of the algorithm raises two issues: convergence and initialization. As our
algorithm is an iterative procedure, one has to test for convergence. A stopping criterion can be
defined based on criterion J(θ, τ). Concerning initialization the algorithm is run several times with
different starting values, which are chosen by some k-means method combined with perturbation
techniques (see the Supplementary Material for details). Algorithm 1 provides a full description of
the procedure.
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s← 0

Initialize τ [0]

while convergence is not attained do
Update π[s+1] via Equation (7) with τ = τ [s]

Update α[s+1] via either Equation (8) (histogram method) or (9) (kernel method) with τ = τ [s]

Update τ [s+1] via the fixed point Equation (6) using (π, α) = (π[s+1], α[s+1])
Evaluate the stopping criterion
s← s+ 1 ;

Output (τ [s], π[s], α[s])

Algorithm 1: Semiparametric variational expectation-maximization algorithm

3.7 Model selection with respect to Q

We propose an integrated classification likelihood criterion that performs data-driven model selec-
tion for the number of groups Q. Roughly, this criterion is based on the complete-data variational
log-likelihood penalized by the number of parameters. It has been introduced in the mixture con-
text in Biernacki et al. (2000) and adapted to the stochastic block model in Daudin et al. (2008).
The issue here is that our model contains a nonparametric part, so that the parameter is infinite
dimensional. However in the case of histogram estimators, once the partition is selected, there is
only a finite number of parameters to estimate. This number can be used to build our integrated
classification likelihood criterion.

For any Q let θ̂(Q) be the estimated parameter and τ̂(Q) the corresponding group probabilities
obtained by our algorithm run with Q groups. The parameter θ̂(Q) has two components: the first
one π̂(Q) is a vector of dimensionQ−1, while the second has dimension

∑
q,l=1,...,Q exp(d̂(q,l) log 2).

In the adaptation of the integrated classification likelihood criterion to the stochastic block model
these components are treated differently: the first one, that concerns the n individuals is penalized
by a log(n)/2 term, while the second one concerning the dyads is penalized by a log(r)/2 term.
We refer to Daudin et al. (2008) for more details. In our case the integrated classification likelihood
criterion is

ICL(Q) = logPθ̂(Q){O, τ̂(Q)} − 1

2
(Q− 1) log n− 1

2
log r

Q∑
q=1

Q∑
l=1

2d̂
(q,l)

.

After fixing an upper bound Qmax we select the number of groups

Q̂ = Argmax
Q=1,...,Qmax

ICL(Q). (10)

4 Synthetic experiments

We generate data using the undirected Poisson process stochastic block model in the following two
scenarios.

1. To evaluate the classification performance, we consider the affiliation model with Q = 2
groups, equal probabilities πq = 1/2 and a number of individuals n in {10, 30}. The inten-
sities are sinusoids with varying shifting parameter ϕ set to αin(·) = 10{1 + sin(2π·)} and
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Figure 1: Boxplots of the adjusted rand index in synthetic experiments from Sce-
nario 1 for histogram (gray) and kernel (white) estimators. The x-axis shows dif-
ferent values of ϕ in {0.01, 0.05, 0.1, 0.2, 0.5}. Left panel: n = 10, right panel:
n = 30.

αout(·) = 10[1 + sin{2π(· + ϕ)] with ϕ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. Clustering is more
difficult for small values of ϕ.

2. To evaluate the intensity estimators, we choose Q = 3 groups with equal probabilities πq =
1/3 and six intensity functions that have different shapes and amplitudes (see continuous
curves in Figure 2). The number of individuals n varies in {20, 50}.

For every parameter setting, our algorithm is applied to 1000 simulated datasets. The histogram
estimator is used with regular dyadic partitions and dmax = 3, while the kernel estimator uses the
Epanechnikov kernel.

To assess the clustering performance, we use the adjusted rand index (Hubert & Arabie, 1985)
that evaluates the agreement between the estimated and the true latent structure. For two classifica-
tions that are identical (up to label switching), this index equals 1, otherwise the adjusted rand index
is smaller than 1 and negative values are possible. Figure 1 shows the boxplots of the adjusted rand
index obtained with the histogram and the kernel versions of our method in Scenario 1. For small
values of the shifting parameter (ϕ ∈ {0.01, 0.05}), the intensities are so close that classification is
very difficult, especially when n = 10 is small. The classification improves when the shift between
the intensities and/or the number of observations increase, achieving (almost) perfect classification
for larger values of ϕ and/or n.

Concerning the recovery of the intensities in Scenario 2, we define the risk measuring the dis-
tance between the true intensity α(q,l) and its estimate α̂(q,l) as

RISK(q, l) = ‖α̂(q,l) − α(q,l)‖2 =
[ ∫ T

0
{α̂(q,l)(t)− α(q,l)(t)}2dt

]1/2
.

Table 1 reports mean values and standard deviations of the risk when n = 50 (The results for n = 20
are given in the Supplementary Material). Our histogram and kernel estimators are compared to
their ‘oracle’ equivalents obtained using the knowledge of the true groups. The table also reports the
mean number of events with latent groups (q, l). As expected, when the true intensity is piecewise-
constant, the histogram version of our method outperforms the kernel estimator. Conversely, when
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Table 1: Mean number of events and risks with standard deviations (sd) in Scenario
2 with n = 50. Histogram (Hist) and kernel (Ker) estimators are compared with
their oracle counterparts (Or.Hist, Or.Ker). All values associated with the risks are
multiplied by 100.

Groups (q, l) Nb.events Hist (sd) Or.Hist (sd) Ker (sd) Or.Ker (sd)

(1, 1) 543 31 (32) 20 (18) 81 (51) 63 (12)
(1, 2) 949 44 (17) 81 (4) 172 (57) 156 (7)
(1, 3) 545 46 (16) 38 (6) 53 (88) 21 (6)
(2, 2) 212 69 (10) 70 (9) 50 (56) 35 (11)
(2, 3) 844 187 (6) 185 (2) 125 (56) 106 (11)
(3, 3) 298 83 (13) 81 (13) 64 (53) 43 (12)

the true intensity is smooth, the kernel estimator is more appropriate to recover the shape of the
intensity. Both estimators exhibit good performances with respect to the oracles versions.

Finally, we use Scenario 2 to illustrate the performance of the integrated classification likelihood
criterion to select the number Q of latent groups from the data. For each of the 1000 simulated
datasets, the maximizer Q̂ of the integrated classification likelihood criterion defined in (10) with
Qmax = 10 is computed. For n = 20 the correct number of groups is recovered in 74% of the
cases (remaining cases select values in {2, 4}). Moreover, for datasets where the criterion does not
select the correct number Q, the adjusted rand index of the classification obtained with 3 groups
is rather low indicating that the algorithm has failed in the classification task and probably only a
local maximum of the criterion J has been found.

For n = 50 our procedure selects the correct number of groups in 99.9% of the cases.

5 Datasets

5.1 London cycles dataset

We use the cycle hire usage data from the bike sharing system of the city of London from 2012 to
2015 (Transport for London, 2016). We focus on two randomly chosen weekdays, 1st (day1) and
2nd (day2) February 2012. Data consist in pairs of stations associated with a single hiring/journey
(departure station, ending station) and corresponding time stamp (hire time with second precision).
The datasets have been pre-processed to remove journeys that either correspond to loops, last less
than 1 minute or more than 3 hours or do not have an ending station (lost or stolen bikes). The
datasets contain n1 = 415 and n2 = 417 stations on day 1 and day 2 with M1 = 17, 631 and
M2 = 16, 333 hire events respectively. With more than 17× 104 oriented pairs of stations the
number of processes Ni,j is huge, but only a very small fraction – around 7% – of these processes
are non null (i.e. contain at least one hiring event between these stations). Indeed bike sharing
systems are mostly used for short trips and stations far from another are unlikely to be connected.
Data correspond to origin/destination flows and are analysed in a directed setup with the histogram
version of our algorithm on a regular dyadic partitions with maximum size 32 (dmax = 5).

The integrated classification likelihood criterion achieves its maximum with Q̂ = 6 latent
groups for both datasets. Geographic locations of the bike stations and the clusters are represented
on a city map (thanks to the OpenStreetMap project), see Figure 3 for day 1. Clusters for day 2
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Figure 2: Intensities in synthetic experiments from Scenario 2 with n = 50.
Each panel displays for a pair of groups (q, l) (given in the x-label) with q, l =
1, . . . , 3; q ≤ l the true intensity (continuous), histogram (dashed) and kernel (dot-
ted) estimates for one simulated dataset picked at random.

are similar thus we focus on day 1. Our procedure globally recovers geographic clusters, as inter-
acting stations are expected to be geographically close. A closer look at the clusters then reveals
more information. While all but one clusters contain between 17 and 202 stations, cluster number
4 (dark blue crosses in Figure 3) consists of only two bike stations. They are located at Kings
Cross railway and Waterloo railway stations and are among the stations with the highest activities
(for both departures and arrivals) in comparison to all other stations. These stations appear to be
‘outgoing’ stations in the morning with much more departures than arrivals around 8a.m. and ‘in-
coming’ stations at the end of the day, with more arrivals than departures between 5p.m and 7p.m.
The bike stations close to the two other main railway stations in London (Victoria and Liverpool
Street stations) do not exhibit the same pattern and are clustered differently despite having a large
number of hiring events. This cluster is thus created from the similarity of the temporal profiles of
these two stations rather than their total amount of interactions. Moreover it mostly interacts with
cluster number 5 shown in light blue diamond in Figure 3 which roughly corresponds to the City
of London neighbourhood. It is thus characterized by stations used by people living in the suburbs
and working in the city center.

We compare our method with the discrete-time approach developed in Matias & Miele (to
appear) where individuals are allowed to change groups during time. We applied the corresponding
dynsbm R package on the London bikes dataset aggregated into T = 24 snapshots of one hour
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Figure 3: London bike sharing system: Geographic positions of the stations and
clustering into six clusters (represented by different colors and symbols) for day 1.

long, but no similar result came out of this: their model selection criterion chooses 4 groups. The
clusters with Q = 4 groups in fact drop to only 1 nonempty group between midnight to 3am, 2
groups between 3am and 7am and 3 groups between 10pm and midnight. Globally there is one very
large group (containing from 168 to all stations, with mean number 285), one medium size group
(from 0 to 148 stations, mean value 93) and 2 small groups (from 0 to 62 and 64 stations, mean
values 14 and 22). Our small peculiar cluster is not detected by the dynsbm method.

To conclude this section we mention that the same dataset is analysed in Guigourès et al. (2015)
with a different perspective. Randriamanamihaga et al. (2014) use a completely different approach,
relying on Poisson mixture models on a similar dataset of origin/destination flows (bike sharing
system in Paris). Their approach does not take into account the network structure of the data (where
e.g. two flows from the same station are related). As a consequence, clusters are obtained on pairs
of stations from which interpretation is completely different and in a way less natural.

5.2 Enron dataset

The Enron corpus contains emails exchanges among people working at Enron, mostly in the senior
management, covering the period of the affair that led to the bankruptcy of the company (Klimt
& Yang, 2004). From the data provided by the CALO Project (2015) we extracted 21, 267 emails
exchanged among 147 persons between 27 April, 2000 and 14 June, 2002, for which the sender, the
recipient and the time when the email was sent are known. For most persons their position in the
company is known: one out of four are employees, all other positions involve responsibility and we
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Figure 4: Enron: intensity estimates for pair of groups (q, 1) for q ∈ {1, . . . , 4}
and bootstrap confidence interval with confidence level 90% (lightgrey) and 80%
(drakgrey).

summarize them as managers.
We applied our algorithm using the directed model and the histogram approach with regu-

lar dyadic partitions of maximal size 256 (dmax = 8). For every fixed number of groups Q ∈
{2, . . . , 20} the algorithm identifies one large group always containing the same individuals. One
may consider this group to have the standard behaviour at the company. For varying values ofQ the
differences in the clustering only concern the remaining individuals with non standard behaviour.
The integrated classification likelihood criterion does not provide a reasonably small enough num-
ber of groups that could be used for interpretation. We thus choose to analyse the data with Q = 4
clusters. The group with the standard behaviour (group 1) contains 127 people both employees and
managers. The second largest group (group 4) contains almost exclusively managers, and group
2 is composed of employees. The standard behaviour (group 1) consists in little sending activity,
but receiving mails from all other groups. The members of group 3 have the most intense email
exchange. The specific manager and employee groups (groups 2 and 4) are quite similar and indeed
at Q = 3 both groups are merged together. For a number of pairs of groups communication is
relatively constant over time, but for others the activity evolves a lot over time, as for instance for
emails sent to members of group 1 (Figure 4). The intra-group intensity of group 1 is increasing
with a peak in October 2001, which coincides with the beginning of the investigations related to
the scandal. In contrast, the managers of group 4 communicate more intensely with group 1 during
the first half of the observation time than during the last half. More details are provided in the
Supplementary Material.

The bootstrap confidence intervals in Figure 4 are obtained via parametric bootstrap. In general,
confidence intervals for large groups are very satisfactory, but this does not hold for small groups.
Indeed, here some of the estimated probabilities π̂k of group membership are very small (two are
lower than 3%), so bootstrap samples tend to have empty groups. Evidently, this has a devastating
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effect on the associated bootstrap intervals.
Rastelli et al. (2017) analyse the same dataset with a discrete-time model where individuals

are allowed to change groups over time. They also obtain that most individuals are gathered in
one group, which are rather inactive but receive some emails, and observe a specific behaviour of
some groups of employees and managers. However, there is a difference in interpretation of results
in the two models. In Rastelli’s model groups may be identified with specific tasks like sending
newsletters for example and individuals may execute this task during a while and then change
activity. In contrast, our model identifies groups of individuals with a similar behaviour over the
entire observation period. Our approach thus is natural for the analysis of the temporal evolution of
the activity of a fixed group of persons.

Finally, we carried out a comparison with a classical stochastic block model. Indeed, taking
dmax = 0 in our approach amounts to forget the timestamps of the emails, as the algorithm then only
considers email counts over the whole observation period and our method boils down to a classical
stochastic block model with Poisson emission distribution and mean parameter A(q,l)(T ) (see for
instance Mariadassou et al., 2010). Comparing the classification at Q = 4 to the one obtained with
our continuous-time approach, the adjusted rand index equals 0.798 indicating that the clusterings
are different. Indeed, both models identify roughly the same large group with standard behaviour,
but huge differences appear in the classification of the non standard individuals. This illustrates that
our approach does effectively take into account the temporal distribution of the events to cluster the
individuals. And the higher value of the complete log-likelihood in the Poisson process stochastic
block model indicates that the solution is indeed an improvement to the classical model.
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Supplementary Material

Supplementary material available online at Biometrika includes a complementary version of the
model that specifically accounts for sparse datasets, the proofs of all theoretical results, technical
details on the methods and algorithm, some supporting results for the analysis of the two datasets
explored here, as well as the study of a third dataset. A zip file containing the computer code in
R and the analysis of the datasets is available at http://cmatias.perso.math.cnrs.fr/
Docs/ppsbm_files.tgz
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Supplementary material for: A semiparametric extension of the stochastic
block model for longitudinal networks

All the references are from the main manuscript, except for those appearing as S-xx that are
within this document.

S.1 Identifiability proofs

Proof of Proposition 1. The proof follows ideas similar to those of Theorem 12 in Allman et al.
(2011). For notational convenience this proof is presented in the undirected setup where the set of
intensities is α = {α(q,l) : q, l = 1, . . . , Q; q ≤ l}. The directed case is treated in the same way.

To explain the general idea of the proof we start by considering the distribution of one marginal
process Ni,j . This is a Cox process directed by the random measure

Ai,j ∼
Q∑
q=1

Q∑
l=1

πqπlδA(q,l) .

Here for any q ≤ l, we use the notation A(q,l) for the measure on [0, T ] defined by A(q,l)(I) =∫
I α

(q,l)(u)du for all measurable I ⊂ [0, T ]. We also recall that δu is the Dirac mass at point u. It is
known that the mapping of probability laws of random measures into laws of Cox processes directed
by them is a bijection (see for example Proposition 6.2.II in Daley and Vere-Jones, 2003). In other
words the distribution of Ni,j uniquely determines the finite measure (on the set of measures on
[0, T ])

Q∑
q=1

Q∑
l=1

πqπlδA(q,l) .

According to Assumption 1 the intensities α(q,l) are distinct. Hence, the corresponding measures
A(q,l) are all different and we may recover from the distribution of our counting process Ni,j the set
of values {(π2q , A(q,q)) : q = 1, . . . , Q} ∪ {(2πqπl, A(q,l)) : q, l = 1, . . . , Q; q < l} or equivalently
the set {(π2q , α(q,q)) : q = 1, . . . , Q} ∪ {(2πqπl, α(q,l)); q, l = 1, . . . , Q; q < l}. In particular we
recover the functions α(q,l) almost everywhere on [0, T ] up to a permutation on the pairs of groups
(q, l). However for the recovery up to a permutation in SQ it is necessary to consider higher-order
marginals.

We now fix three distinct integers i, j, k in {1, . . . , n} and consider the trivariate counting pro-
cess (Ni,j , Ni,k, Nj,k). In the same way, these are Cox processes directed by the triplet of random
measures (Ai,j , Ai,k, Aj,k) such that

(Ai,j , Ai,k, Aj,k) ∼
Q∑
q=1

Q∑
l=1

Q∑
m=1

πqπlπmδ(A(q,l),A(q,m),A(l,m)).
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We write this distribution in such a way that distinct components appear only once

Q∑
q=1

π3qδ(A(q,q),A(q,q),A(q,q))

+

Q∑
q=1

Q∑
l=1
l 6=q

π2qπl

{
δ(A(q,q),A(q,l),A(q,l)) + δ(A(q,l),A(q,q),A(q,l)) + δ(A(q,l),A(q,l),A(q,q))

}

+

Q∑
q=1

Q∑
l=1
l 6=q

Q∑
m=1
m6=q,l

πqπlπmδ(A(q,l),A(q,m),A(l,m)). (S.1)

Using the same reasoning we identify the triplets of values {(A(q,l), A(q,m), A(l,m)) : q, l,m =
1, . . . , Q} up to a permutation on the triplets (q, l,m). Among these, the only values with three
identical components are {(A(q,q);A(q,q);A(q,q)) : q = 1, . . . , Q} and thus the measures {A(q,q) :
q = 1, . . . , Q} are identifiable up to a permutation in SQ. Going back to (S.1) and looking for
the Dirac terms at points that have two identical components (of the form (A(q,q), A(q,l), A(q,l)) and
two other similar terms with permuted components), we can now identify the set of measures

{(A(q,q), {A(q,l) : l = 1, . . . , Q; l 6= q}) : q = 1, . . . , Q}.

This is equivalent to saying that we identify the measures {A(q,l) : q, l = 1, . . . , Q; q ≤ l} up to
a permutation in SQ. Obviously this also identifies the corresponding intensities {α(q,l) : q, l =
1, . . . , Q; q ≤ l} almost everywhere on [0, T ] up to a permutation in SQ. To finish the proof
we need to identify the proportions πq. Note that as we identified the components {A(q,q) : q =
1, . . . , Q}, we recover from (S.1) the set of values {π3q : q = 1, . . . , Q} up to the same permutation
as on the A(q,q)’s. This concludes the proof.

Proof of Proposition 2. Note that the setup considered here is undirected. We follow some of the
arguments already appearing in the proof of Proposition 1. Let Ain (resp. Aout) denote the measure
whose intensity is αin (resp. αout). The univariate process Ni,j is a Cox process directed by the
random measure Ai,j that is now distributed as

Ai,j ∼ (

Q∑
q=1

π2q )δAin + (

Q∑
q=1

Q∑
l=1
l 6=q

πqπl)δAout .

Thus the measures Ain and Aout are identifiable from the distribution of Ni,j , but only up to
a permutation. Similarly to the previous proof we rather consider the trivariate Cox processes
(Ni,j , Ni,k, Nj,k) directed by the random measures (Ai,j , Ai,k, Aj,k) whose distribution in the affil-
iation case has now five atoms( Q∑

q=1

π3q

)
δ(Ain,Ain,Ain) +

( Q∑
q=1

Q∑
l=1
l 6=q

π2qπl

)
δ(Ain,Aout,Aout) +

( Q∑
q=1

Q∑
l=1
l 6=q

π2qπl

)
δ(Aout,Ain,Aout)

+
( Q∑
q=1

Q∑
l=1
l 6=q

π2qπl

)
δ(Aout,Aout,Ain) +

( Q∑
q=1

Q∑
l=1
l 6=q

Q∑
m=1
m 6=q,l

πqπlπm

)
δ(Aout,Aout,Aout).

20



As previously, these five components are identifiable up to a permutation on S5. Now it is easy to
identify the three components for which two marginals have same parameters and the third one has
a different parameter. Thus we recover exactly the measures Ain and Aout. This also identifies the
corresponding intensities αin and αout almost everywhere on [0, T ].

Now identification of the proportions {πq : q = 1, . . . , Q} follows an argument already used
in the proof of Theorem 13 in Allman et al. (2011) that we recall here for completeness. From the
trivariate distribution of (Ni,j , Ni,k, Nj,k) and the already recovered valuesAin andAout, we identify
the proportion

∑Q
q=1 π

3
q . Similarly for any n ≥ 1, by considering the multivariate distribution of

(Ni,j)(i,j)∈R, we can identify the Dirac mass at point (Ain, . . . , Ain) and thus its weight which is
equal to

∑Q
q=1 π

n
q . By the Newton identities the values {

∑Q
q=1 π

n
q : n = 1, . . . , Q} determine the

values of elementary symmetric polynomials {σn(π1, . . . , πQ) : n = 1, . . . , Q}. These, in turn, are
(up to sign) the coefficients of the monic polynomial whose roots (with multiplicities) are precisely
{πq : q = 1, . . . , Q}. Thus the proportion parameters are recovered up to a permutation.

S.2 Variational E-step: Proof of Proposition 3

For the Kullback-Leibler divergence we compute

KL{prτ (· | O)‖prθ(· | O)} = Eτ

{
log

prτ (Z | O)

prθ(Z | O)
| O
}

= Eτ

{
log

prτ (Z | O)prθ(O)

L(O,Z | θ)
| O
}

=

n∑
i=1

Eτ
(
log τ i,Zi | O

)
+ log prθ(O)− Eτ {logL(O,Z | θ) | O} .

The complete-data log-likelihood logL(O,Z | θ) is

−
Q∑
q=1

Q∑
l=1

Y
(q,l)
Z A(q,l)(T ) +

Q∑
q=1

Q∑
l=1

M∑
m=1

Z(q,l)
m log

{
α(q,l)(tm)

}
+

n∑
i=1

Q∑
q=1

Zi,q log πq,

where Y (q,l)
Z and Z(q,l)

m have been introduced in Equations (1) and (3), respectively. Now note that
Eτ (Zi,q | O) = prτ (Zi,q = 1 | O) = prτ (Zi = q | O) = τ i,q. Moreover by the factorised form of
prτ , for every i 6= j we have

Eτ (Zi,qZj,l | O) = Eτ (Zi,q | O)Eτ (Zj,l | O) = τ i,qτ j,l.

The quantity Y (q,l) is thus equal to Eτ (Y
(q,l)
Z | O), namely the variational approximation of the

mean number of dyads with latent groups (q, l). Similarly τ (q,l)m equals Eτ (Z
(q,l)
m | O), the vari-

ational approximation of the probability that observation (tm, im, jm) corresponds to a dyad with
latent groups (q, l). It follows that

τ̂ = Argmin
τ∈T

KL{prτ (· | O)‖prθ(· | O)} = Argmax
τ∈T

J(θ, τ),

where J(θ, τ) is

−
Q∑
q=1

Q∑
l=1

Y (q,l)A(q,l)(T ) +

Q∑
q=1

Q∑
l=1

M∑
m=1

τ (q,l)m log
{
α(q,l)(tm)

}
+

n∑
i=1

Q∑
q=1

τ i,q log
( πq
τ i,q

)
. (S.2)
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The variational E-step consists in maximizing J with respect to the τ i,q’s which are constrained to
satisfy

∑Q
q=1 τ

i,q = 1 for all i. In other words we maximize

M(τ, γ) = J(θ, τ) +
n∑
i=1

γi

 Q∑
q=1

τ i,q − 1

 ,

with Lagrange multipliers γi. The partial derivatives are

∂

∂τ i,q
M(τ, γ) = −

Q∑
l=1

∑
j 6=i

τ j,l
{
A(q,l)(T ) +A(l,q)(T )

}
+

Q∑
l=1

M∑
m=1

1{im=i}τ
jm,l log

{
α(q,l)(tm)

}

+

Q∑
l=1

M∑
m=1

1{jm=i}τ
im,l log

{
α(l,q)(tm)

}
+ log

( πq
τ i,q

)
− 1 + γi,

∂

∂γi
M(τ, γ) =

Q∑
q=1

τ i,q − 1.

The partial derivatives are null if and only if
∑Q

q=1 τ
i,q = 1 and the τ i,q’s satisfy the fixed point

equations (6), with exp(γi − 1) being the normalizing constant.

S.3 Details on the Algorithm

Initialisation is a crucial point for any clustering method. Our variational expectation-maximization
algorithm starts with a classification of the nodes and iterates an M-step followed by a variational
E-step. We apply the algorithm on multiple initial classifications of the nodes based on various
aggregations of the data: on the whole time interval and on sub-intervals. Sub-intervals are ob-
tained through regular dyadic partitions of [0, T ] (parameter l.part in the R code) and a k-means
algorithm applied on the rows of the adjacency matrices of each of the aggregated datasets provides
starting points for our algorithm. To obtain further starting values we use perturbations of the dif-
ferent k-means classifications: a given percentage of the total number of individuals is picked at
random (parameter perc.perturb) and their group memberships are shuffled. The perturbation
procedure can be applied several times (parameter n.perturb). The algorithm returns as final
result the run that achieves the largest value of criterion J .

There is no theoretical result on the existence of a solution to the fixed point equation (6).
The iterations for the fixed point equation are initialized with the value of τ obtained at the previous
variational E-step. In practice, convergence is fast and we stop the fixed-point iterations either when
convergence is achieved (|τ [s] − τ [s−1]| < ε = 10−6) or when the maximal number of iterations is
attained (fix.iter=10).

As the variational expectation-maximization algorithm aims at maximizing J defined in (S.2),
the algorithm is stopped when the increase of J is less than a given threshold (ε = 10−6), that is
when ∣∣∣∣∣J(θ[s+1], τ [s+1])− J(θ[s], τ [s])

J(θ[s], τ [s])

∣∣∣∣∣ < ε,

or when the maximal number of iterations has been attained (nb.iter=50).

22



S.4 Additional tables and figures

Figure S.1 shows the intensities used in Scenario 1 from the synthetic experiments to assess the
clustering performances of our method.

Table 2 gives the risks RISK(q, l) and standard deviations of the histogram and the kernel ver-
sions of our method as well as oracle quantities (obtained with known group labels) in Scenario 2
when n = 20 (this is the analogue of Table 1 in the main manuscript where n = 50).

Figure S.2 shows boxplots of the adjusted rand index obtained from the synthetic experiments
from Scenario 2. They are computed over 1000 datasets with different numbers n of individuals
and for the two estimation methods (histogram and kernel).

Figure S.3 shows the model selection results on the number of groups based on the integrated
classification likelihood in Scenario 2 with n = 20: the left panel shows the frequency of the se-
lected values Q̂ over the 1000 datasets; the right panel shows boxplots of the adjusted rand index
between the estimated classification with 3 groups and the true latent structure as a function of the
number of groups selected by the integrated classification likelihood criterion. On this right panel,
one can see that when the criterion does not select the correct number Q the adjusted rand index
of the classification with three groups is rather low indicating that the algorithm has failed in the
classification task and probably only a local maximum of the criterion J has been found.

Turning to the London bike sharing system dataset, Figure S.4 shows the temporal profiles of
the 2 stations in the smallest cluster for day 1. One can see that these are ‘outgoing’ stations around
8am and ‘incoming’ stations between 5 and 7pm. Figure S.5 shows the highest intensities estimated
by our model between these 6 clusters, all other intensities are almost null. The most important in-
teractions occur from cluster 4 (the smallest cluster) to cluster 5 (‘City of London’ cluster) in the
morning and conversely from cluster 5 to cluster 4 at the end of the day.

Concerning the analysis of the Enron dataset we provide here additional tables and figures for
Q = 4 groups. Table 3 gives the size and composition of the four groups. For a part of the persons
in the dataset the position at Enron is not available. This is the reason why the total size of the group
sometimes exceeds the sum of the number of managers and employees in the group.

Figure S.6 gives the logarithm of the mean values of the estimated intensities α(q,l). The lack
of symmetry of the matrix indicates that communication is far from being symmetric and that the
use of the directed model is appropriate.

Finally, Figure S.7 shows the estimated intensities and associated bootstrap confidence inter-
vals. The bootstrap intervals are obtained by parametric bootstrap. More precisely, every bootstrap
sample contains the same number of individuals (here n = 147) and for every individual i the group
membership Z∗i is drawn from the multinomial distributionM(1, π̂) where π̂ is the vector of group
probabilities estimated from the data. Then for every pair of individuals (i, j) realizations from a
Poisson process with intensity α̂(Z∗i ,Z

∗
j ) are simulated, where {α̂(q,l)}q,l=1,...,Q denote the estimated

intensities. Finally, bootstrap confidence intervals are obtained by the percentile method.
Here the bootstrap intervals suffer from the fact that some of the group probabilities π̂k are very

low, implying that the probability that a bootstrap sample contains empty groups is relatively high
(0.15). That is, about 15% of the bootstrap samples do not provide any information on some of the
intensities α(q,l), implying that the associated estimators are completely erroneous. The groups that
are the most concerned by the problem are group 2 and 3.
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S.5 Additional example: Primary school temporal network dataset

To understand contacts between children at school and to quantify the transmission opportunities of
respiratory infections, data on face-to-face interactions in a French primary school were collected.
The dataset is presented in detail in Stehlé et al. (2011) and available online (SocioPatterns, 2015).
Children are aged from 6 to 12 years and the school is composed of five grades, each of them
comprising two classes, for a total of 10 classes (denoted by 1A, 1B, . . . , 5A, 5B). Each class has
an assigned teacher and an assigned room. The school day runs from 8.30am to 4.30pm, with a
lunch break from 12pm to 2pm and two breaks of 20-25 min in the morning and in the afternoon.
Lunch is served in a common canteen and a shared playground is located outside the main building.
As the playground and the canteen do not have enough capacity to host all pupils at a time, only
two or three classes have breaks together, and lunch is served in two turns. The dataset contains
125, 773 face to face contacts among n = 242 individuals (232 children and 10 teachers) observed
during two days. We applied our procedure in the undirected setup with histograms based on a
regular dyadic partitions with maximum size 256 (dmax = 8).

The integrated classification likelihood criterion achieves its maximum with Q̂ = 17 latent
groups. Figure S.8 shows the clustering of the n individuals into the 17 groups, where children
from different classes are represented with different colors. Some groups correspond exactly or
almost exactly to classes (for example, group 9 consists almost perfectly of class 1A), whereas
other classes are split into several groups (for example class 1B is splited into groups 1 and 16).
Moreover, one group (group 6) corresponds to the entire class 4B with, in addition, pupils coming
from almost all other classes. Teachers never form a particular group apart, but they are generally
in the cluster of their assigned class.

The highest intensities are the intra-group intensities. As groups mainly correspond to classes,
this highlights that most contacts involve individuals of the same class and that the dataset is struc-
tured into communities (i.e. groups of highly connected individuals and with few inter-groups
interactions). Figure S.9 shows the estimated intra-group intensities for each group with at least
3 individuals. Peaks of interactions are observed during the two breaks in the morning and in the
afternoon. At lunch time interactions between children vary from the first to the second day and
are less important than during the breaks when they play together. We also observe periods with no
interaction at all. For example, the estimated intensity of group 9 (class 1A) is null between 3:30am
and 4am suggesting that some particular school activity like sports takes place during which con-
tacts were not observable for technical reasons. The group number 6 composed with the entire class
4B and others pupils clearly appears as the group with the lowest intra-group intensity. This means
that this cluster gathers the individuals having less interactions with others. Class 4B also appears
as the class having the least intra-class interactions in Stehlé et al. (2011).

Concerning inter-group connections most of the estimated intensities for groups (q, l) with q 6= l
can be considered as null, except for some that we discuss now. First, as our procedure splits some
children of the same class into separate groups, the inter-group interactions associated with these
clusters correspond in fact to intra-class interactions. For example, class 1B is split into group 1
(with 18 pupils) and group 16 (with 7 pupils). The estimated inter-group intensity shows that those
two groups interact. Our clustering has formed two separate groups because group 1 has more
intra-group interactions than the other (see Figure S.9).

Second, intensities between groups made of children of the same grade are significant, suggest-
ing that children mostly interact with children of the same age (see e.g. Figure S.10 that shows the
case (q, l) = (5, 13)). Those interactions are observed during the two breaks in the morning and in
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the afternoon as well as at lunch time.
Third, the estimated intensities suggest particular behaviour of some pupils. For example, con-

cerning class 2B (except the two pupils assigned to group 6), which is separated into group 12 (with
21 pupils), group 11 (with 2 pupils) and group 17 (with only one pupil), the estimated intensities
(see Figure S.11) suggest first that the two children in group 11 have very strong interaction with the
pupil in group 17 (notice the different y-scale used in the Figure), and second that those interactions
do not occur during the lunch time.

Similar results are obtained for classes 2A and 5B. This means that our procedure detects sub-
groups of pupils with a specific behaviour.

S.6 The sparse setup: theory

We consider an extended setup where some of the processes Ni,j may have a null intensity. We
thus introduce additional latent variables Ui,j ∈ {0, 1}, ((i, j) ∈ R) that conditional on the Zi’s
are independent Bernoulli with βq,l being the parameter of the distribution of Ui,j conditional on
Zi,qZj,l = 1. We keep the global conditional independence assumption by imposing that condi-
tional on (Zi, Ui,j)(i,j)∈R the counting processes (Ni,j)(i,j)∈R are independent. Then conditional
on Ui,j , Zi, Zj , the counting process Ni,j is an inhomogeneous Poisson process with intensity

Ui,jα
Zi,Zj =

Q∑
q,l=1

UijZ
i,qZj,lα(q,l), ((i, j) ∈ R).

In this way the additional latent variable Ui,j accounts for sparsity in the interaction processes; in
each pair of groups (q, l), there is now a proportion 1− βq,l of dyads (i, j) ∈ R that do not interact
(so that the corresponding processNi,j is almost surely 0). As such these non interacting dyads will
not tend to decrease the estimate of the common intensity α(q,l). Moreover clustering in this model
should give different groups, less driven by the absence of interactions.

We let U = (Ui,j)(i,j)∈R and the parameter value is θ = (π, β, α).

Identifiability may be proved under the same assumptions, requiring moreover that none of the
intensities α(q,l) is itself equal to zero. We discuss this in the undirected case (similarly to the
identifiability proof of the main model). Indeed Ni,j is now a counting process directed by the
random measure Ai,j whose distribution is

Ai,j ∼
Q∑
q=1

Q∑
l=1

πqπl{βq,lδA(q,l) + (1− βq,l)δ0}.

Fixing three distinct integers i, j, k in {1, . . . , n} and considering the trivariate counting process
(Ni,j , Ni,k, Nj,k) we end up with the distribution of the triplet of random measures (Ai,j , Ai,k, Aj,k).
There the expressions become more cumbersome but the very same reasoning may be applied to
identify the measures {A(q,l) : q, l = 1, . . . , Q; q ≤ l} up to a permutation in SQ. Concerning
identification of π and β, we obtain the set of weights {π3qβ3q,q : q = 1, . . . , Q} that is attached
to the Q components corresponding to Dirac masses at points of the form (A(q,q), A(q,q), A(q,q)).
Moreover we also obtain the set of weights {π3qβ2q,q(1 − βq,q) : q = 1, . . . , Q} attached to Dirac
masses at points (A(q,q), A(q,q), 0). As the A(q,q)’s are unique we can match the value π3qβ

3
q,q with
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π3qβ
2
q,q(1 − βq,q) and thus obtain (through a simple ratio) βq,q and also πq. In other words the sets

{βq,q : q = 1, . . . , Q}q and {πq : q = 1, . . . , Q}q are identifiable. Finally we may look at the
weights π2qπlβq,qβ

2
q,l associated with Dirac masses at points of the form (A(q,q), A(q,l), A(q,l)) with

q 6= l. As the cumulative intensities {A(q,l) : q, l = 1, . . . , Q; q ≤ l} have been identified up to a
permutation in SQ, together with the pair of (πq, βq,q)’s (for the same permutation), we obtain the
values {βq,l : q 6= l}.

Let us turn to inference of this model. To fix the notation we use the directed setup but similar
equations may be derived in the undirected case. The complete-data likelihood is

Lsparse(O,Z,U | θ) =L(O | Z,U , θ)× L(U | Z, θ)× L(Z | θ)

= exp

− ∑
(i,j)∈R

Ui,jA
(Zi,Zj)(T )

×
[
M∏
m=1

α(Zim ,Zjm )(tm)

]

×

 ∏
(i,j)∈R

Q∏
q=1

Q∏
l=1

{
β
Ui,j

q,l (1− βq,l)1−Ui,j

}Zi,qZj,l

×
 n∏
i=1

Q∏
q=1

πZ
i,q

q

 .
The true conditional distribution of the latent variables (Z,U) given the observations writes

prθ(Z,U | O) = prθ(Z | O)prθ(U | Z,O) = prθ(Z | O)
∏

(i,j)∈R

prθ(Ui,j | Zi, Zj , Ni,j).

A main difference with the previous setting is that now this conditional distribution has two parts:
the one concerning U has a factorised form and can thus be computed exactly, while the part con-
cerning Z still has an intricate dependence structure and we rely on a variational approximation to
deal with it. We thus introduce a new conditional factorised distribution p̃rτ,θ(· | Ø) on the variables
Z,U that depends on the observations Ø and is defined as

p̃rτ,θ
(
Z = (q1, . . . , qn),U = (ui,j)(i,j)∈R | O

)
=

n∏
i=1

prτ (Zi = qi | O)
∏

(i,j)∈R

prθ(Ui,j = ui,j | Zi = qi, Zj = qj , Ni,j)

=
n∏
i=1

τ i,qi
∏

(i,j)∈R

prθ(Ui,j = ui,j | Zi = qi, Zj = qj , Ni,j),

for any (q1, . . . , qn) ∈ {1, . . . , Q}n and (ui,j)(i,j)∈R ∈ {0, 1}r. As it does not depend on θ, we let
p̃rτ (Z | Ø) denote the marginal distribution on Z of the distribution p̃rτ,θ(· | Ø) and Ẽτ (· | Ø) the
corresponding expectation. Moreover, the true conditional distribution of Ui,j is given by

prθ(Ui,j = 1 | Zi = q, Zj = l, Ni,j) = 1{Ni,j(T ) > 0}+ ρθ(q, l)1{Ni,j(T ) = 0} := ρθ(i, j, q, l),

where ρθ(q, l) =
βq,l exp{−A(q,l)(T )}

1− βq,l + βq,l exp{−A(q,l)(T )}
. (S.3)

Indeed, whenever we observe an interaction event between (i, j) (namely Ni,j(T ) > 0) we know
that Uij = 1 almost surely. Otherwise (Ni,j(T ) = 0), we either have a null intensity process or a
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non-null intensity process with zero observations. Note that the parameters ρθ(q, l) (or equivalently
the ρθ(i, j, q, l)) are not additional variational parameters; these are just functions of the original
parameter θ. Finally we have

p̃rτ,θ (Z,U | O) =
{ n∏
i=1

p̃rτ (Zi | Ø)
}
×

∏
(i,j)∈R

ρθ(i, j, Zi, Zj)
Ui,j (1− ρθ(i, j, Zi, Zj))1−Ui,j .

Let us now derive our variational approximation. Denoting by Ẽτ,θ(· | Ø) the expectation under
the distribution p̃rτ,θ(· | Ø) on (Z,U) and by θ[s] the current parameter value, we write as usual

log prθ[s](Ø)

= Ẽτ,θ{log prθ[s](Ø,Z,U) | Ø} − Ẽτ,θ{log prθ[s](Z,U | Ø) | Ø}
= Ẽτ,θ{log prθ[s](Ø,Z,U) | Ø}+H{p̃rτ,θ(Z,U | Ø)}+ KL{p̃rτ,θ(Z,U | Ø)‖prθ[s](Z,U | Ø)}.

As a consequence, we introduce a new criterion J̃(τ, θ; θ[s]) that is a lower bound on the log-
likelihood log prθ[s](Ø) and defined as

J̃(τ, θ; θ[s]) =Ẽτ,θ{log prθ[s](Ø,Z,U) | Ø}+H{p̃rτ,θ(Z,U | O)}

=−
∑

(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,lρθ(i, j, q, l){A[s]}(q,l)(T )

+

Q∑
q=1

Q∑
l=1

M∑
m=1

τ im,qτ jm,l log
[
{α[s]}(q,l)(tm)

]

+
∑

(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,l
[
ρθ(i, j, q, l) log β

[s]
q,l + {1− ρθ(i, j, q, l)} log(1− β[s]q,l)

]

+
n∑
i=1

Q∑
q=1

τ i,q log

{
π
[s]
q

τ i,q

}
−

∑
(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,lψ(ρθ(i, j, q, l)),

where ψ(ρ) = ρ log ρ+(1−ρ) log(1−ρ) is the entropy of the Bernoulli distribution with parameter
ρ. Using the definition of ρθ(i, j, q, l) and ψ(1) = 0, the last term in the right-hand side simplifies
to

∑
(i,j)∈R

Q∑
q=1

Q∑
l=1

τ i,qτ j,lψ(ρθ(i, j, q, l)) =

Q∑
q=1

Q∑
l=1

ψ(ρθ(q, l))
∑

(i,j)∈R

τ i,qτ j,l1{Ni,j(T ) = 0}.

The variational E-step consists in maximizing J̃(τ, θ; θ[s]) with respect to (τ, θ). This is equiva-
lent to choosing the variational distribution p̃rτ,θ that minimises the Kullback-Leibler divergence
KL{p̃rτ,θ(Z,U | Ø)‖prθ[s](Z,U | Ø)}. The solution in θ is naturally obtained for θ = θ[s].

We need to choose the variational parameter τ that maximizes J̃(τ, θ[s]; θ[s]). Similarly to the
non sparse setup we obtain that τ [s] satisfies a fixed point equation in τ ,

τ i,q ∝ π[s]q exp{D̃iq(τ, θ
[s])}, (i = 1, . . . , n; q = 1, . . . , Q), (S.4)
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where

D̃iq(τ, θ) =−
Q∑
l=1

n∑
j=1
j 6=i

τ j,l
{
ρθ(i, j, q, l)A

(q,l)(T ) + ρθ(j, i, l, q)A
(l,q)(T )

}

−
Q∑
l=1

ψ(ρθ(q, l))
n∑
j=1
j 6=i

τ j,l1{Ni,j(T ) = 0} −
Q∑
l=1

ψ(ρθ(l, q))
n∑
j=1
j 6=i

τ j,l1{Nj,i(T ) = 0}

+

Q∑
l=1

M∑
m=1

[
1{im=i}τ

jm,l log
{
α(q,l)(tm)

}
+ 1{jm=i}τ

im,l log
{
α(l,q)(tm)

}]

+

Q∑
l=1

n∑
j=1
j 6=i

τ j,l[ρθ(i, j, q, l) log βq,l + {1− ρθ(i, j, q, l)} log(1− βq,l)

+ ρθ(j, i, l, q) log βl,q + {1− ρθ(j, i, l, q)} log(1− βl,q)].

The M-step consists in maximizing J̃(τ [s], θ[s]; θ) with respect to θ. It is again divided into two
parts, treating the finite-dimensional parameter (π, β) differently than the infinite dimensional one
α. We thus first maximize J̃(τ [s], θ[s];π, β, α) with respect to (π, β) using the current parameter
value α = α[s]. The solution with respect to π is the same as in the non sparse case and given in (7).
Now optimization with respect to β leads to (denoting ρ[s] = ρθ[s]),

β
[s+1]
q,l =

∑
(i,j)∈R{τ [s]}i,q{τ [s]}j,lρ[s](i, j, q, l)∑

(i,j)∈R{τ [s]}i,q{τ [s]}j,l
, q, l = 1, . . . , Q. (S.5)

Then estimation of the intensities α(q,l) is done exactly as previously, except that we replace the
variational process N (q,l) by Ñ (q,l) =

∑
(i,j)∈R ρ

[s](i, j, q, l){τ [s]}i,q{τ [s]}j,lNi,j .

Finally we start from an initial value of the clustersZ (see Section S.3) that we treat as probabil-
ities {(τ i,q)1≤q≤Q; 1 ≤ i ≤ n}. Then we initialise the sparsity parameters βq,l and mean intensities
A(q,l)(T ) with

βq,l =

∑
(i,j)∈R Z

i,qZj,l1{Ni,j(T ) > 0}∑
(i,j)∈R Z

i,qZj,l
, A(q,l)(T ) =

∑
(i,j)∈R Z

i,qZj,lNi,j(T )∑
(i,j)∈R Z

i,qZj,l1{Ni,j(T ) > 0}
.

This enables to initialise ρ(i, j, q, l) with (S.3). After these initialisations, we are ready to iterate
the following steps. At iteration s ≥ 1 we do

• M-step: Update π[s+1] via (7) with τ [s]; Update β[s+1] via (S.5) with τ [s], ρ[s]; Update α[s+1]

either via Equation (8) (histogram method) or (9) (kernel method) using the process Ñ (q,l)

and variational parameters ρ[s] and τ [s].

• VE-step: Update the values ρ[s+1] via (S.3) with β[s+1] and A[s+1](T ) derived from α[s+1];
Update τ [s+1] as the solution to the fixed point equation (S.4) relying on the current values
π[s+1], ρ[s+1], α[s+1], β[s+1].
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The integrated classification likelihood criterion becomes

ICLsparse(Q) = logPθ̂(Q){O, τ̂(Q), ρ̂(Q)} − 1

2
(Q− 1) log n− 1

2
log r

[
Q2 +

Q∑
q=1

Q∑
l=1

2d̂
(q,l)
]
.

S.7 The sparse setup: examples

We first discuss the results of the sparse analysis on the London bike sharing system dataset. First
let us recall that in this dataset only 7% of pairs of bike stations have at least one interaction.
The main model ignores that fact and this impacts the results in the sense that groups are mainly
driven by these absences of interactions. For instance the clusters obtained are mostly geographic,
revealing absences of connections between distant bikes stations (nonetheless we also discovered
an interesting small cluster with this model). We thus decide to explore whether one can decipher
different structure with our sparse setup. In the following we focus on day 1 as similar results were
obtained for day 2.

First our sparse integrated classification likelihood criterion selects only Q̂ = 2 groups (com-
pared to Q̂ = 6 in the non sparse case). Geographic locations of the bike stations and the resulting
clusters are represented on a city map (thanks to the OpenStreetMap project), see Figure S.12.
There is one group containing a central part of the city while the remaining stations form a large
peripheral cluster. Looking at the estimated intensities (Figure S.13) we see that the second group
(i.e. the central geographical group) has large intra-group intensity with three modes: one in the
morning (around 8:30 am), one at lunch (around 1pm) and the last at the end of the day (at 5:50pm).
Group 1 (the peripheral one) mostly consists in ‘leaving’ stations in the morning (see mode in the
estimated intensity for (q, l) = (1, 2) around 8:20am) and in ‘arriving’ stations at the end of the day
(mode in the estimated intensity for (q, l) = (2, 1) at 5:50pm). Intra-group interactions in group 1
have a much lower intensity. On this dataset the sparse setup appears as a complementary model
that may shed some different light on the data.

We also analysed the Enron corpus with the sparse model as 91% of the pairs of individuals do
not exchange any email during the observation time. The sparse integrated classification likelihood
criterion chooses Q̂ = 10 as the optimal number of groups, which is smaller than in the non sparse
model where no optimum has been found in the range ofQ from 1 to 20. As in the non sparse model
the algorithm identifies one large group with 125 members, while the other nine groups contain at
most five individuals. The adjusted rand index of the clustering in the sparse case with Q = 10 (or
Q = 4) and the clustering in the non sparse model withQ = 4 equals 0.51 (0.52), which means that
there are substantial differences between the clusterings in the two models. Figure S.14 shows the
estimated values of the connectivity probabilities βq,l. Most of these probabilities are significantly
lower than 1 justifying the application of the sparse model to these data. A consequence of low
connectivity probabilities βq,l is that the estimated intensities are more elevated than in the non
sparse case which can be observed in Figure S.15 in comparison to the intensity values obtained
in the non sparse model (Figure S.6). We can also compare the estimated intensities in the sparse
model with Q = 4 (Figure S.16) with those in the non sparse case. Again we see that the intensities
in the sparse setup are much more elevated. Moreover, the form of the intensities involving two
small groups (i.e. (q, l) ∈ {2, 3, 4}2) are all quite different in the two models.

We conclude that as in the London bikes example the results in the sparse model differ much
from those in the non sparse case. The sparse model tends to select a smaller number of groups
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which makes interpretation of results easier. As many real datasets are sparse in the sense that only
a small percentage of individuals effectively interact with another the sparse model seems to be
particularly adapted to real data and provides the possibility of further insights on the data.

We also analysed the primary school dataset with the sparse model. In this dataset 28% of pairs
of individuals have at least one interaction. Our sparse integrated classification likelihood criterion
selects Q̂ = 13 groups, which is smaller than in the non sparse model. The clustering in the non
sparse model and in the sparse model are quite close, with some groups being the same. The main
difference between the two clusterings concerns the group composed in the non sparse model of
class 4B with additional pupils coming from almost all other classes. This group was characterized
by the lowest intra-group intensity. In the sparse model, class 4B is separated into two groups: 6
pupils are gathered with class 4A to form one group (group 1), whereas the 17 remaining pupils are
gathered with class 1A and some pupils coming from almost all other classes (group 3). Looking
at the estimated intensities, we see that group 3 has a low intra-group intensity during the lunch
time contrary to group 1 (see Figure S.17). Moreover the estimated intra-connectivity probability
for groups 1 and 3 are given by β̂1,1 = 0.84 and β̂3,3 = 0.29. Therefore group 3 is composed of
individuals which only a few proportion interacts, and characterized by very few interactions during
the lunch time. On this dataset with the non sparse and sparse models we mainly recover the same
clustering based on communities, but the sparse model also exhibits particular temporal profile of
some individuals.
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Figure S.1: Intensities in synthetic experiments from Scenario 1. Each picture
represents the intra-group intensity αin (bold line) and the inter-group intensity αout

(dotted line) with different shift parameter values ϕ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.

Table 2: Mean number of events and risks with standard deviations (sd) in scenario
2 with n = 20. Histogram (Hist) and kernel (Ker) estimators are compared with
their oracle counterparts (Or.Hist, Or.Ker). All values associated with the risks are
multiplied by 100.

Groups (q, l) Nb.events Hist (sd) Or.Hist (sd) Ker (sd) Or.Ker (sd)

(1, 1) 84 136 (92) 50 (49) 215 (83) 113 (55)
(1, 2) 146 177 (146) 98 (27) 270 (107) 194 (23)
(1, 3) 86 211 (160) 78 (20) 178 (143) 43 (18)
(2, 2) 32 136 (72) 108 (29) 139 (109) 71 (41)
(2, 3) 130 265 (72) 217 (28) 238 (78) 182 (22)
(3, 3) 48 173 (61) 158 (47) 171 (111) 85 (43)
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Figure S.2: Boxplots of the adjusted rand index in synthetic experiments from
Scenario 2, for the histogram (left) and the kernel (right) estimators. Left panel:
n = 20, right panel: n = 50.
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Figure S.4: London bike sharing system: Barplots of outgoing (Ni·(·) on the left)
and incoming (N·i(·) on the right) processes from the 2 stations i (top row and
bottom row, respectively) in the small cluster: representation of volumes of con-
nections to all other stations during day 1 (time on the x-axis).

Table 3: Enron: Total size and group composition with Q = 4 groups (some
people’s positions are unknown).

total managers employees

group 1 127 62 36
group 2 4 0 3
group 3 2 1 1
group 4 14 12 1
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Figure S.5: London bike sharing system: estimated non almost null intensities for
day 1 (time on the x-axis is in seconds).

34



−7.53

−4.96

−5.12

−5.28

−7.34

−5.1

−7.64

−4.08

−7.35

−5.44

−0.68

−6.77

−7.69

−4.55

−5.05

−6

1

2

3

4

1 2 3 4
l

q

−6
−4
−2

log.alpha

Figure S.6: Enron: Logarithm of the mean values of the estimated intensities α(q,l)

with Q = 4 groups.

35



0.
00

00
0.

00
20

(1,1)

 

01/10/00 01/10/01 0e
+

00

(1,2)

 

01/10/00 01/10/01 0.
00

00
0.

00
20

(1,3)

 

01/10/00 01/10/01 0.
00

0
0.

01
0

(1,4)

 

01/10/00 01/10/01

0.
00

0
0.

03
0

(2,1)

 

01/10/00 01/10/01

0.
0

0.
6

(2,2)

 

01/10/00 01/10/01

0.
0

0.
8

(2,3)

 

01/10/00 01/10/01 0.
00

0
0.

02
5

(2,4)

 

01/10/00 01/10/01

0.
00

0
0.

02
0

(3,1)

 

01/10/00 01/10/01
0.

0
0.

8
(3,2)

 
01/10/00 01/10/01

0.
0

0.
8

(3,3)

 

01/10/00 01/10/01 0.
00

0
0.

01
5

(3,4)

 

01/10/00 01/10/01

0.
00

0
0.

02
0

(4,1)

 

01/10/00 01/10/01

0.
00

0.
03

(4,2)

 

01/10/00 01/10/01 0.
00

0
0.

01
5

(4,3)

 

01/10/00 01/10/01 0.
00

0
0.

01
0

(4,4)

 

01/10/00 01/10/01

Figure S.7: Enron: Estimated intensities α̂(q,l) with Q = 4 groups with bootstrap
confidence intervals with confidence level 90% (lightgrey) and 80% (drakgrey) and
the median bootstrap values (dotted lines).
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Figure S.8: Primary school: clustering of the 242 individuals into Q = 17 groups.
Vertical bars represent theQ clusters. Colours indicate the grades and the teachers,
plain and hatching distinguish the two classes in the same grade.
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Figure S.9: Primary school: Estimated intra-group intensities (plotted on the same
y-scale).
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Figure S.10: Primary school: Estimated inter-group intensity between two classes
of the same grade: classes 3A (group 13) and 3B (group 5).
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Figure S.11: Primary school: Estimated intensities. Example of class 2B splited
into group 12 (with 21 pupils), group 11 (with 2 pupils), and group 17 (with only
one pupil).
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Figure S.12: London bike sharing system: Geographic positions of the stations and
clustering into two clusters (represented by different colors and symbols) obtained
from the sparse model for day 1.
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Figure S.13: London bike sharing system: estimated intensities from the sparse
model for day 1 (time on the x-axis is in seconds).
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Figure S.14: Enron: Estimated connectivity probabilities βq,l in the sparse model
with Q = 10 groups.
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Figure S.15: Enron: Logarithm of the mean values of the estimated intensities
α(q,l) in the sparse model with Q = 10 groups.
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Figure S.16: Enron: Estimated intensities α̂(q,l) in the sparse model with Q = 4
groups.
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Figure S.17: Primary school: Estimated intensities in the sparse model. Example
of group 1 (composed of class 4A and 6 pupils of class 4B) and group 3 (composed
of the entire class 1A, with 17 pupils of class 4B and pupils from almost all other
classes).
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