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Abstract

To model recurrent interaction events in continuous time, we propose an extension
of the stochastic block model where each individual belongs to a latent group and in-
teractions between two individuals follow a conditional inhomogeneous Poisson process
whose intensity is driven by the individuals’ latent groups. The model is shown to
be identifiable and an estimation procedure is proposed based on a semiparametric
variational expectation-maximization algorithm. Two versions of the method are de-
veloped, using either a nonparametric histogram approach (with an adaptive choice of
the partition size) or kernel intensity estimators. The number of latent groups can be
selected by an integrated classification likelihood criterion. Finally, we demonstrate the
performance of our procedure on synthetic experiments and the analysis of several real
datasets illustrates the utility of our approach.

Keywords: dynamic interactions; expectation-maximization algorithm; integrated clas-
sification likelihood; link streams; longitudinal network; semiparametric model; stochastic
block model; variational approximation.

1 Introduction

The past few years have seen a large increase in the interest for modeling dynamic interac-
tions between individuals. While many real world data contain continuous-time informa-
tion on the interactions, as e.g. email exchanges between employees in a company (Klimt &
Yang, 2004) or face-to-face contact between individuals measured through sensors (Stehlé
et al., 2011), most models are discrete in time. Commonly, data are aggregated on prede-
fined time intervals to obtain a sequence of snapshots of interaction random graphs. Besides
the loss of information induced by data aggregation, the specific choice of the time intervals
has a direct impact on the results, which is most often overlooked. Thus, developing models
of interaction that exploit the continuous-time aspect of the data – either called longitudi-
nal networks, interaction event data, link streams or temporal networks – is an important
research issue.

Statistical methods for the analysis of longitudinal networks form a huge corpus, es-
pecially in social sciences and we do not pretend to provide an exhaustive bibliography
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on this topic. We refer to the very nice and recent review by Holme (2015) for a more
complete view on temporal networks. A natural way of modeling temporal event data is
based on stochastic point processes. An important line of research involves continuous-time
Markov processes with seminal works on dyad-independent models (Wasserman, 1980b,a)
up to the development of so-called stochastic actor oriented models (e.g. Snijders & van
Duijn, 1997; Snijders et al., 2010). In these works observations consist in a series of time
intervals of interaction and interactions are assumed to last during the whole corresponding
time interval. Here, we focus on a rather different setup where each interaction is identified
with a time point. Furthermore, we consider a model that allows for dependencies of the
processes modeling the interactions of pairs of individuals.

The analysis of event data is an old and important area in statistics (see e.g. Andersen
et al., 1993). Generally a multivariate counting process N(t) = (Ni,j(t))(i,j) is considered,
that counts the number of interactions of each pair (i, j) of individuals up to time t. In Butts
(2008) counting processes have been introduced in the context of action data, which are a
set of time-stamped directed interactions between individuals that, in addition, are marked
by a label (representing a behavioral event). The model may be viewed as an instance of
Cox’s multiplicative hazard model with time-dependent covariates and constant baseline
function. In the same vein, Vu et al. (2011) propose a general regression-based modeling of
the intensity of non recurrent interaction events. They consider two different frameworks:
Cox’s multiplicative and Aalen’s additive hazard rates (see e. g. Martinussen & Scheike,
2006). Perry & Wolfe (2013) propose another variant of Cox’s multiplicative intensity model
for recurrent interaction events where the baseline function is specific to each individual. In
the above mentioned works a set of statistics is chosen by the user as potential candidates
that modulate the interactions. As in any regression framework, the choice of these statistics
might raise some issues: increasing their number potentially leads to a high-dimensional
problem, and interpretation of the results might be blurred by the correlation between these
statistics.

The approaches by Butts, Vu et al., Perry & Wolfe and others are based on conditional
Poisson processes characterized by random intensities, also known as doubly stochastic
Poisson processes or Cox processes. A particular instance of the conditional Poisson process
is the Hawkes process, which is a collection of point processes with some background rate,
where each event adds a nonnegative impulse to the intensity of all other processes. Cho
et al. (2014) develop a model for spatial-temporal networks with missing information, based
on such self-exciting point processes for temporal dynamics combined with a Gaussian
mixture for the spatial dynamics. Similarly, Linderman & Adams (2014) combine temporal
Hawkes processes with latent distance models for implicit networks that cannot be observed
directly.

Clustering individuals based on interaction data represents a well-established technique
for taking into account the intrinsic heterogeneity and summarizing information. In the
context of dynamic random graphs, where a discrete-time sequence of graphs is observed,
recent approaches propose to generalize the so-called stochastic block model to a dynamic
context (Yang et al., 2011; Xu & Hero, 2014; Matias & Miele, to appear; Corneli et al.,
2016). Stochastic block models posit that each individual belongs to a latent group and
interactions between two individuals are conditionally independent of the interactions of
any other pair, given the latent groups of the interacting individuals. Another attempt to
use stochastic block models in the context of interaction events appears in DuBois et al.
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(2013) generalizing the approach of Butts (2008) by adding discrete latent variables on the
individuals.

In this work a semiparametric stochastic block model for recurrent interaction events
in continuous time is introduced, to which we refer as the Poisson process stochastic block
model. This is a stochastic block model where interactions are modeled by conditional
inhomogeneous Poisson processes, whose intensities only depend on the latent groups of
the interacting individuals. In contrast to many other works, we do not rely on a paramet-
ric model where intensities are modulated by predefined network statistics, but intensities
are modeled and estimated in a nonparametric way. The model is shown to be identi-
fiable. Our estimation and clustering approach is a semiparametric version of the vari-
ational expectation-maximization algorithm, where the maximization step is replaced by
nonparametric estimators of the intensities. Semiparametric generalizations of the classical
expectation-maximization (EM) algorithm have been proposed in many different contexts
(see e.g. Böhning (1995); Bordes et al. (2007); Robin et al. (2007) for semiparametric
mixtures or Dannemann (2012) for a semiparametric hidden Markov model). However, we
are not aware of other attempts to incorporate nonparametric estimates in a variational
approximation of EM. Two versions are developed for the nonparametric part of the model:
a histogram approach based on the work of Reynaud-Bouret (2006) and a kernel estimator
based on Ramlau-Hansen (1983). For the histogram approach, an integrated classification
likelihood criterion is proposed to select the number of latent groups adaptively. Synthetic
experiments enlighten both the clustering capacities of our method as well as the perfor-
mance of the nonparametric estimation of the different intensities. Moreover, the analysis
of several real datasets illustrates the strengths and weaknesses of our approach. The Sup-
plementary Material, whose references appear as S.xx, provides the proofs of all theoretical
results, technical details on the algorithm and more detailed results of the analysis of the
real data examples.

2 A semiparametric Poisson process stochastic block model

2.1 Model

We are interested in the pairwise interactions of n individuals during some time interval
[0, T ]. For notational convenience, we choose to restrict our attention to directed interac-
tions without self-interactions. The undirected case as well as self-interactions are treated
similarly and simulations as well as a real data example from Section 5 use the undirected
setup. The set of all possible pairs of individuals, which is also the set of all possible dyads
in the graph, is denoted by

R = {(i, j), i, j = 1, . . . , n, i 6= j}.

The cardinality of R is r = n(n− 1). The observations O are the interactions occurring in
time interval [0, T ], that is

O = {(tm, (im, jm)),m = 1, . . . ,M} ,

where (tm, (im, jm)) ∈ [0, T ]×R corresponds to the event that the individuals with indices
im and jm interact at time tm. The number of events in time interval [0, T ] is M . We
assume that 0 < t1 < · · · < tM < T , i.e. there is at most one event at a time.
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To model the distribution of these observations, every individual is assumed to belong to
one out of Q groups, and the relation between two individuals, that is the way they interact
with another, is driven by their group membership. More precisely, let Z1, . . . , Zn be inde-
pendent and identically distributed (latent) random variables taking values in {1, . . . , Q}
with non zero probabilities

πq = Pr(Z1 = q) (q = 1, . . . , Q).

For the moment, Q is considered to be fixed and known. When no confusion occurs, we
also use the notation Zi = (Zi,1, . . . , Zi,Q) with Zi,q ∈ {0, 1} such that Zi has multinomial
distribution M(1, π) with π = (π1, . . . , πQ).

Now, our Poisson process stochastic block model (PPSBM) is defined as follows. For
every (i, j) ∈ R, the interactions of individuals i and j, conditional on the latent groups
Zi and Zj , are modeled by a conditional inhomogeneous Poisson process Ni,j(·) on [0, T ]
with intensity depending only on the latent groups Zi and Zj . We consider nonnegative
intensity functions α(q,l) with q, l = 1, . . . , Q such that the conditional intensity of process
Ni,j(·), given that Zi = q and Zj = l, is α(q,l)(·) for any (i, j) ∈ R. The corresponding
cumulative intensities are denoted by

A(q,l)(t) =

∫ t

0
α(q,l)(u)du, t ∈ [0, T ].

The set of observations O is a realization of the multivariate counting process (Ni,j(·))(i,j)∈R
with conditional intensity process (α(Zi,Zj)(·))(i,j)∈R. The process Ni,j is not a Poisson pro-

cess, but a counting process with intensity
∑Q

q=1

∑Q
l=1 πqπlα

(q,l). We denote θ = (π, α) the
infinite-dimensional parameter of a Poisson process stochastic block model. The distribu-
tion of the multivariate counting process (Ni,j(·))(i,j)∈R under parameter value θ is denoted
Prθ.

2.2 Identifiability

Concerning the identifiability of parameter θ from the distribution of the multivariate count-
ing process (Ni,j(·))(i,j)∈R, it is clear that at best the Poisson process stochastic block model

is identifiable up to label switching, as defined below. Furthermore, as the functions α(q,l)

are intensities, they are only identifiable almost everywhere on [0, T ]. We denote SQ the
set of permutations of {1, . . . , Q}.

Definition 1 (Identifiability up to label switching). The parameter θ = (π, α) of a Poisson
process stochastic block model is identifiable on [0, T ] up to label switching if for all θ and
θ̃ such that Pθ = Pθ̃, there exists a permutation σ ∈ SQ such that

πq = π̃σ(q), α(q,l) = α̃(σ(q),σ(l)) almost everywhere on [0, T ], (q, l = 1, . . . , Q).

The following assumption ensures identifiability up to label switching in a very general
setting.

Assumption 1. The set of intensities {α(q,l)}q,l=1,...,Q contains exactly Q2 distinct func-
tions.
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The intensities α(q,l) may take identical values at some points or on subsets of [0, T ],
but should not be equal almost everywhere.

Proposition 1. Under Assumption 1, the parameter θ = (π, α) is identifiable on [0, T ],
up to label switching, from the Poisson process stochastic block model distribution of the
multivariate counting process (Ni,j(·))(i,j)∈R on the same interval, as soon as n ≥ 3.

This result strongly relies on the only available identifiability result for weighted stochas-
tic block models, namely Theorem 12 in Allman et al. (2011), which can be applied under
Assumption 1. One may wonder whether the necessary condition that any two rows (or
any two columns) of the parameter matrix α are distinct is, in fact, a sufficient condition
for identifiability. However, to our knowledge such a result has never been established even
in the simple binary case. In the binary stochastic block model, the results in Allman et al.
(2009, 2011) establish generic identifiability, which means identifiability except on a subset
of parameters with Lebesgue measure zero, without specifying the exceptional subset. For
the directed and binary stochastic block model, Celisse et al. (2012) establish identifiabil-
ity under the assumption that the product vector απ (or πᵀα) has distinct coordinates.
This condition is slightly stronger than the one previously mentioned. Another partial
identifiability result appears in Bickel et al. (2011) for some block models. These last two
approaches are specifically adapted to the discrete setup (maybe even to the binary one)
and cannot be generalized to the continuous case.

Proposition 1 does not cover the affiliation case, where only two intensities αin and αout

are considered such that for all (q, l)

α(q,l) =

{
αin if q = l,
αout if q 6= l.

Proposition 2. If the intensities αin and αout are distinct functions on [0, T ], then both
αin and αout are identifiable on [0, T ] from the affiliation Poisson process stochastic block
model distribution of the multivariate counting process (Ni,j(·))(i,j)∈R on the same interval,
as soon as n ≥ 3. Moreover, for any n ≥ max{Q, 3}, the proportions π1, . . . , πQ are also
identifiable, up to a permutation, from the same distribution.

2.3 Description of relevant processes

In this section we introduce processes and notation that will be used throughout the
manuscript. First, for any q, l, we consider the (unobserved) number of dyads (i, j) ∈ R
with latent groups (q, l)

Y (q,l) =
∑

(i,j)∈R

Zi,qZj,l. (1)

The (unobserved) counting process

N
(q,l)
Z =

∑
(i,j)∈R

Zi,qZj,l (2)

has conditional intensity Y (q,l)α(q,l) and falls in the class of Aalen’s multiplicative intensity

models. This is a central property on which our work often relies. We also define Z
(q,l)
m ∈
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{0, 1} as the (unobserved) binary indicator of observation (im, jm) belonging to groups (q, l)
by

Z(q,l)
m = Zim,qZjm,l. (3)

As these quantities are unobserved, our work relies on proxies. We consider the set T of
candidate proxies for the unobserved latent groups Zi,q given by

T =

τ = (τ i,q)i=1,...,n,q=1,...,Q : τ i,q ∈ [0, 1],

Q∑
q=1

τ i,q = 1 for i = 1, . . . , n, q = 1, . . . , Q

 .

(4)
While the latent variables Zi,q are indicators, their counterparts τ i,q are weights representing
the probability that node i belongs to group q. Now, for every τ ∈ T , replacing all latent

variables Zi,q in (1)–(3) by τ i,q, we define Ȳ (q,l), N (q,l) and τ
(q,l)
m which are estimators of

Y (q,l), N
(q,l)
Z and Z

(q,l)
m , respectively.

3 Semiparametric estimation procedure

3.1 A variational semiparametric expectation-maximization algorithm

The complete-data likelihood of observation O and latent variables Z = (Z1, . . . , Zn) is

L(O,Z|θ) = L(O|Z, θ)× L(Z|θ)

= exp

− ∑
(i,j)∈R

A(Zi,Zj)(T )


M∏
m=1

α(Zim ,Zjm )(tm)
n∏
i=1

Q∏
q=1

πZ
i,q

q . (5)

The likelihood of the observed data L(O|θ) is obtained by summing the complete-data like-
lihood over the set of all possible configurations of the latent variables Z. This set is so huge
that the likelihood of the observed data is intractable for direct maximization. Hence, an
expectation-maximization (EM) algorithm (Dempster et al., 1977) is used, which is an itera-
tive procedure especially adapted to cope with latent variables. The EM algorithm consists
of an E-step and an M-step that are iterated until convergence. In our model two different
issues arise. First, as already observed for the standard stochastic block model (Daudin
et al., 2008), the E-step requires the computation of the conditional distribution of Z given
the observations O, which is not tractable. Therefore, we use a variational approxima-
tion (Jordan et al., 1999) of the latent variables conditional distribution to perform the
E-step. We refer, for instance, to Matias & Robin (2014) for a general description of the
variational EM algorithm and its links to EM in stochastic block models. Second, part of
our parameter is infinite dimensional so that the M-step is partly replaced by a nonpara-
metric estimation procedure, giving rise to a semiparametric EM algorithm. Our complete
algorithm is summarized in Section 3.6, Algorithm 1.

3.2 Variational E-step

The standard E-step consists in computing the expectation of the complete log-likelihood
given the observations at some current parameter value θ. This requires the knowledge
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of the conditional latent variables distribution Prθ(Z|O), which is not tractable, mainly
because the latent variables Zi are not conditionally independent. The idea is to perform
a variational approximation of the conditional latent variables distribution Prθ(·|O) by a
simpler distribution. More precisely, using the class of parameters T defined in (4), we
consider for every τ ∈ T the conditional factorized distribution Prτ (·|O) of Z given O
defined by

Prτ (Z = (q1, . . . , qn)|O) =
n∏
i=1

Prτ (Zi = qi|O) =
n∏
i=1

τ i,qi , (q1, . . . , qn) ∈ {1, . . . , Q}n,

(6)

with corresponding expectation Eτ (·|O). Then, we search for the parameter τ̂ ∈ T that
yields the best approximation Prτ (·|O) of Prθ(·|O). More precisely,

τ̂ = Argmin
τ∈T

KL (Prτ (·|O)||Prθ(·|O)) , (7)

where KL(·||·) denotes the Kullback-Leibler divergence. The variational E-step is completed
by the computation of the current expected complete data log-likelihood

Qτ (θ) = Eτ (logL(O,Z|θ)|O) .

From a practical point of view, it can be shown that the solution τ̂ of (7) is also the
solution of a fixed point equation, which in practice is found by successively updating the
variational parameters τ i,q via the following Equation (8) until convergence.

Proposition 3. The solution τ̂ to the minimization problem given in (7) satisfies the
following fixed-point equation

τ̂ i,q ∝ πq exp[Diq(τ̂ , α)], (i = 1, . . . , n, q = 1, . . . , Q), (8)

where ∝ means ’proportional to’ and

Diq(τ, α) = −
Q∑
l=1

∑
j 6=i

τ j,l
(
A(q,l)(T ) +A(l,q)(T )

)

+

Q∑
l=1

M∑
m=1

(
1{im=i}τ

jm,l log
(
α(q,l)(tm)

)
+ 1{jm=i}τ

im,l log
(
α(l,q)(tm)

))
,

with 1A the indicator function of set A.

3.3 Nonparametric M-step: general description

In a parametric context, the M-step consists in the maximization of Qτ (θ) with respect
to θ = (π, α). Considering only the finite-dimensional part π of the parameter, we easily
obtain that the maximizer π̂ of Qτ (π, α) with respect to π is

π̂q =

∑n
i=1 τ

i,q∑Q
q=1

∑n
i=1 τ

i,q
=

1

n

n∑
i=1

τ i,q. (9)
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Concerning the infinite-dimensional parameter α, we replace the maximization of Qτ (π, α)
with respect to α by a nonparametric estimation step. In the following, we develop two
different approaches for updating α: a histogram and a kernel method. In both cases

estimation would be straightforward using the process (N
(q,l)
Z )q,l defined by (2), which un-

fortunately is not observed. It is thus natural to use its (current) variational approximation,
namely the weighted cumulative process (N (q,l))q,l defined in Section 2.3.

3.4 Histogram-based M-step

In this part the intensities α(q,l) are estimated by piecewise constant functions and we
propose a data-driven choice of the partition of the time interval [0, T ]. The procedure is
based on a least-squares penalized criterion following the work of Reynaud-Bouret (2006).
The detailed construction is provided in the Supplementary Material.

For D = 1, . . . , Dmax, where Dmax is to be chosen, we denote by ED the regular partition
of [0, T ] into D intervals with length T/D, namely

ED =

{
Ek,D =

[
(k − 1)

T

D
; k
T

D

)
; k = 1, . . . , D

}
.

One may also use regular dyadic partitions, where D = 2d, defining nested models that have
some practical advantages concerning the implementation of the algorithm. In the following
let (q, l) be fixed. For k = 1, . . . , D the estimated mean number of observed interactions
between individuals (im, jm) with latent groups (q, l) occurring in time interval Ek,D is

N (q,l)(k,D) =

∫
Ek,D

dN (q,l)(s) =
M∑
m=1

τ im,qτ jm,l1Ek,D
(tm). (10)

For any fixed value of D, a projection estimator α̂
(q,l)
D on the space of piecewise constant

functions on ED is given by

α̂
(q,l)
D (·) =

1

Ȳ (q,l)

D∑
k=1

N (q,l)(k,D)

|Ek,D|
1Ek,D

(·),

where |Ek,D| = T/D is the length of interval Ek,D. Now, adaptive estimation consists in

choosing the best estimator among the collection of estimators {α̂(q,l)
D , D = 1, . . . , Dmax}.

So we introduce an estimator of the partition through D̂ that minimizes a penalized least-
squares criterion, that simplifies to

D̂ = D̂(q,l) = Argmin
D=1,...,Dmax

{
−D

D∑
k=1

N (q,l)(k,D)2 + 2DDmax sup
k=1,...,Dmax

N (q,l)(k,Dmax)
}
.

The selected partition size D̂ depends on the groups (q, l) and may be different for different
values of (q, l). Finally, the adaptive estimator of intensity α(q,l) is

α̂
(q,l)
hist (t) = α̂

(q,l)

D̂
(t) =

D̂

T Ȳ (q,l)

D̂∑
k=1

N (q,l)(k, D̂)1Ek,D̂
(t). (11)
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Reynaud-Bouret (2006) develops her approach in the Aalen multiplicative intensity
model, which is slightly different from our context. Moreover, our setup does not satisfy
the assumptions of Theorem 1 in Reynaud-Bouret (2006), since the number of jumps of
the processes Ni,j is not bounded by a known positive number, because here the Ni,j are
counting processes. Nevertheless, in our simulations this procedure successfully estimates
the intensities α(q,l) (see Section 4). We refer to Baraud & Birgé (2009) for a theoreti-
cal study of an adaptive nonparametric estimation of the intensity of a Poisson process.
Reynaud-Bouret (2006) also studies other penalized least squares estimators (for e.g. using
Fourier bases), which might be used here similarly. An alternative way for nonparametric
intensity estimation is based on kernel estimators, that are explored in the following section.

3.5 Kernel-based M-step

Kernel methods are suited to estimate smooth functions. In this part kernel estimators
of the intensities α(q,l) are provided. A similar procedure has been proposed for a non
variational version of the EM algorithm in Robin et al. (2007). If the variational parameters
τ i,q are good approximations of the latent variables Zi,q, then the intensity of process N (q,l)

defined in Section 2.3 is approximately Ȳ (q,l)α(q,l), where Ȳ (q,l) is the variational mean
number of dyads with latent groups (q, l). Following Ramlau-Hansen (1983) and considering
a nonnegative kernel function K with support within [−1, 1] together with some bandwidth
b > 0, the intensity α(q,l) is estimated by

α̂
(q,l)
ker (t) =

1

bȲ (q,l)

∫ T

0
K
( t− u

b

)
dN (q,l)(u) =

1

bȲ (q,l)

M∑
m=1

τ (q,l)m K
( t− tm

b

)
, (12)

if Ȳ (q,l) > 0 and α̂
(q,l)
ker (t) = 0 otherwise, where τ

(q,l)
m is defined in Section 2.3. The bandwidth

b can be chosen adaptively from the data following the procedure proposed by Grégoire
(1993). Kernel methods are not always suited to infer a function on a bounded interval as
boundary effects may deteriorate their quality. However, it is out of the scope of this work
to investigate refinements of this kind.

3.6 Algorithm’s full description

During the implementation of the algorithm, two issues arise: convergence and initialization.
As our algorithm is an iterative procedure, one has to test for convergence. A stopping cri-
terion can be defined based on the current expected complete data log-likelihood Qτ [s](θ

[s]).
Concerning initialization the algorithm be may run several times with different starting val-
ues. One can choose them randomly or by some k-means method. See the Supplementary
Material for details. Algorithm 1 provides a full description of the procedure.

3.7 Model selection with respect to Q

To choose the best number of groups Q, we propose an integrated classification likelihood
criterion that performs data-driven model selection. Roughly, this criterion is based on the
complete data log-likelihood penalized by the number of parameters. It has been introduced
in the mixture context in (Biernacki et al., 2000) and adapted to the stochastic block model
in Daudin et al. (2008). The issue here is that our model contains a nonparametric part, so
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Algorithm 1: Semiparametric variational expectation-maximization algorithm

s← 0

Initialize τ [0]

while convergence is not attained do

Update π[s+1] via Equation (9) with τ = τ [s]

Update α[s+1] via either Equation (11) (histogram method) or (12) (kernel
method) with τ = τ [s]

Update τ [s+1] via the fixed-point equation (8) using (π, α) = (π[s+1], α[s+1])
Evaluate the stopping criterion
s← s+ 1

Output (π[s], α[s])

that the parameter is infinite dimensional. However, in the case of histogram estimators,
once the partition is selected, there is only a finite number of parameters to estimate, which
can be used to build our integrated classification likelihood criterion.

More precisely, for any Q let θ̂Q be the estimated parameter with Q groups and ẐQ

the corresponding maximum a posteriori classification at θ̂Q obtained by our variational

EM algorithm. The parameter θ̂(Q) = (π̂(Q), α̂hist(Q)) has two components: the first one
π̂(Q) is a vector of dimension Q− 1, while the second has dimension

∑
q,l D̂

(q,l)(Q), where

D̂(q,l)(Q) denotes the size of the partition used in the histogram estimator α̂
(q,l)
hist (Q). In the

adaptation of the integrated classification likelihood criterion to the stochastic block model
these components are treated differently: the first one, that concerns the n individuals, is
penalized by a log(n)/2 term, while the second one concerning the dyads is penalized by a
log(r)/2 term. We refer to Daudin et al. (2008) for more details. In our case, the integrated
classification likelihood criterion is

Icl(Q) = logPθ̂Q(O, ẐQ)− 1

2
(Q− 1) log(n)− 1

2
log(r)

Q∑
q=1

Q∑
l=1

D̂(q,l)(Q). (13)

After fixing an upper bound Qmax we select the number of groups

Q̂ = Argmax
Q=1,...,Qmax

Icl(Q). (14)

4 Synthetic experiments

In this section we investigate the numerical performance of our method for clustering in-
dividuals and estimating the intensities of the inhomogeneous Poisson processes. We also
study the performance of the integrated classification likelihood criterion for recovering the
true number of latent groups. The following two scenarios are used in our simulations in
the undirected setup where α(q,l) = α(l,q) for any q, l.

1. We consider the affiliation model with Q = 2 latent groups and equal group probabili-
ties πq = 1/2. To evaluate the classification performance, the intensities are sinusoids
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Figure 1: Boxplots of the adjusted rand index in Scenario 1 for histogram (gray) and kernel
(white) estimators with ϕ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. Left: n = 10, right: n = 30.

with varying shifting parameter ϕ. Clustering is supposed to be more difficult for
small values of ϕ. The intensities are shown in Figure S.1 in the Supplementary
Material. The number of individuals n varies in {10, 30} .

2. To evaluate the intensity estimators, we consider a Poisson process stochastic block
model with Q = 3 groups with equal probabilities πq = 1/3. The six intensity
functions have rather different shapes and amplitudes (see Figure 2). The number of
individuals n varies in {20, 50}.

For every setting, 1000 datasets are simulated under the corresponding Poisson process
stochastic block model and the variational EM algorithm is applied. The histogram estimator
is applied with a regular partition and Dmax = 20, while the kernel estimator uses the
Epanechnikov kernel.

To assess the clustering performance, we use the adjusted rand index (Hubert & Arabie,
1985) that evaluates the agreement between the estimated and the true latent structure. For
two classifications that are identical (up to label switching), this index equals 1, otherwise
the adjusted rand index is smaller than 1 and negative values are possible. Figure 1 shows
the boxplots of the adjusted rand index obtained with the histogram and the kernel versions
of our method in Scenario 1. For small values of the shifting parameter (ϕ ∈ {0.01, 0.05}),
the intensities are so close that the classification is very difficult, especially when n = 10
is small. The classification improves when the shift between the intensities and/or the
number of observations increase, achieving (almost) perfect classification for large values of
ϕ and/or n. We also observe that the kernel version of our method gives better classification
results than the histogram method, which might be due to the choice of actually continuous
intensities.

Concerning the recovery of the intensities in Scenario 2, the quadratic risk is used to
measure the distance between the true intensity α(q,l) and its estimate α̂(q,l) defined by

Risk(q, l) = ||α̂(q,l) − α(q,l)||2 =
(∫ T

0
(α̂(q,l)(t)− α(q,l)(t))2dt

)1/2
.

Table 1 gives the mean value of the risk Risk(q, l) and its standard deviation estimated
over 1000 repetitions for both the histogram and the kernel version of our method. Table 1
also reports the mean number of observations (im, jm) with latent groups (q, l), namely
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Table 1: Mean number of events with latent groups (q, l) and mean quadratic risk (with
standard deviation) for the histogram and the kernel estimators of the intensities in Scenario
2 averaged over 1000 repetitions. All values associated with the risk are multiplied by 100.

Nb of events with group (q, l) Histogram Risk(q, l) Kernel Risk(q, l)
Index (q, l) n = 20 n = 50 n = 20 n = 50 n = 20 n = 50

(1, 1) 83 546 56 (62) 20 (19) 120 (64) 65 (12)
(1, 2) 147 949 123 (52) 103 (5) 200 (28) 161 (7)
(1, 3) 84 545 89 (53) 41 (7) 46 (36) 20 (6)
(2, 2) 33 210 115 (43) 73 (8) 75 (48) 36 (9)
(2, 3) 132 846 207 (52) 105 (14) 184 (28) 106 (11)
(3, 3) 47 295 150 (54) 76 (17) 87 (46) 44 (12)
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Figure 2: Scenario 2 with n = 20. True intensities (black continuous), histogram estimator
(red dashed) and kernel estimator (blue dotted) for each pair of groups (q, l).

∑M
m=1 Z

(q,l)
m . Moreover, Figure 2 shows for each pair of groups (q, l) the true and the

estimated intensities for one dataset with n = 20.
As expected, when the true intensity is piecewise-constant, the histogram version of our

method outperforms the kernel estimator. Conversely, when the true intensity is smooth,
the kernel estimator is more appropriate to recover the shape of the intensity. In some
cases, as e.g. for the intensity with latent groups (2, 3), the estimators achieve comparable
results. A well-known drawback of the kernel estimator is that it suffers from boundary
effects. This is observed here for the intensities with groups (1, 1) and (1, 2), but is less
crucial for the other intensities that appear to be null at the interval boundaries.

Finally, we use Scenario 2 to illustrate the performance of the integrated classification
likelihood criterion to select the number Q of latent groups from the data. For each of
the 1000 simulated datasets, the maximizer Q̂ of the integrated classification likelihood
criterion defined in (14) with Qmax = 10 is computed. Results are reported in Figure S.4
in the Supplementary Material. For n = 20 the correct number of groups is recovered in
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95% of the cases. Moreover, when the criterion does not select the correct number Q, the
adjusted rand index of the classification with three groups is rather low. This indicates
that in those cases the classification obtained with three groups is not the correct one, so
that rather the variational EM algorithm is to blame for bad results than the integrated
classification likelihood criterion. For n = 50 our procedure selects the correct number of
groups for each simulated datasets.

5 Real datasets

5.1 London cycles dataset

Here, we use the cycle hire usage data from the bike sharing system of the city of London
from 2012 to 2015 (Transport for London, 2016). These data are also analyzed in Guigourès
et al. (2015) with a different perspective. We focus on two randomly chosen weekdays, which
are February 1st, 2012 (day 1) and February 2nd, 2012 (day 2). Data consist in pairs of
stations associated with a single hiring/journey (departure station, ending station) and
corresponding time stamp (hire time with second precision). The datasets have been pre-
processed to remove journeys that either correspond to loops, last less than 1 minute or
more than 3 hours or do not have an ending station (lost or stolen bikes). The datasets
contain n1 = 415 and n2 = 417 stations on day 1 and day 2 with M1 = 17, 631 and
M2 = 16, 333 hire events respectively. With more than 170,000 oriented pairs of stations
the number of processes Ni,j is huge, but only a very small fraction – around 7% – of these
point processes are non null (i.e. contain at least one hiring event between these stations).
This is to be expected as bike sharing systems are mostly used for short trips and stations
far one from another are unlikely to be connected. As data correspond to origin/destination
flows, it is natural to work with a directed setup and we applied the histograms version of
our algorithm on a dyadic partition with maximum size Dmax = 32.

The integrated classification likelihood criterion achieves its maximum with Q̂ = 6 latent
groups for day 2 and Q̂ = 8 on day 1. In order to compare results across the two datasets
and keep interpretation simple, we focus on the classification obtained with Q = 6 clusters.
Geographic locations of the bike stations and the clusters are represented on a city map
(thanks to the OpenStreetMap project), see Figure S.5 in the Supplementary Material for
day 2. Clusters for day 1 are very similar, so that in the following we only concentrate on
day 2. We observe that our procedure globally recovers geographic clusters, as stations are
expected to be mainly linked through geographic proximity in the datasets. A closer look
at the clusters then reveals more information.

There is one cluster containing only four bike stations (cluster number 5, appearing
as light blue diamonds � in Figure S.5), while all other clusters contain between 38 and
125 stations. This small cluster contains one bike station at Kings Cross railway station
and three stations next to Waterloo railway station. Indeed, two of these bike stations are
among those with the highest activities (for both departures and arrivals) in comparison to
all other stations, while this is not the case of the other two stations in the cluster. Thus it is
very unlikely that a snapshot approach, where events are aggregated over a predetermined
time window, would have yield the same cluster. Consequently, the explanation for this
clustering is the similarity of the temporal profiles of these four stations. Indeed, Figure 3
shows that these four stations are ’outgoing’ stations in the morning with much more
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Figure 3: London bike sharing system: Barplots of outgoing (Ni·(·)) and incoming (N·i(·))
processes from the 4 stations i in the smallest cluster: representation of volumes of connec-
tions to all other stations during day 2.

departures than arrivals around 8 a.m. and ’incoming’ stations at the end of the day, with
more arrivals than departures between 5p.m and 7p.m. Looking at the temporal profiles
of stations close to the two other main railway stations in London (Victoria and Liverpool
Street stations), this pattern is not observed and the stations are clustered differently.
Thus, this small cluster is characterized by stations used by people living in the suburbs
and working in the city center. This result highlights the specificity of our model that is
able to find clusters from similar temporal profiles in sharp contrast with aggregated data
approaches.

We then used a kernel estimator of the intensities per (directed) groups pairs 1 ≤ q, l ≤ Q
(see Figure S.6 in the Supplementary Material). Cluster number 5 (which is the small
cluster mentioned above) has high (directed) intensities of connections with cluster number
3 (shown in green plus sign + in Figure S.5). This last cluster groups the stations belonging
to the business city center of London. We observe a large intensity of connections from
cluster 5 (King’s Cross and Waterloo railway stations) to cluster 3 (City business center) in
the morning and in the other direction (from cluster 3 to cluster 5) at the end of the day.
Moreover, cluster 5 also appears to have (a smaller amount of) connections with clusters
1,4 and itself. Connections with cluster 1 (black circles ◦ in Figure S.5) and cluster 4 (blue
cross × in Figure S.5) are similar (from cluster 5 in the morning and back to cluster 5 in the
evening) to those with cluster 3 but at a smaller scale. Those results support and extend
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the previous description of the role of cluster 5.
To conclude this section we mention that Randriamanamihaga et al. (2014) use a com-

pletely different approach, relying on Poisson mixture models on the same Origin/Destination
flows. This approach does not take into account the network structure of the data (where
e.g. two flows from the same station are related). As a consequence, clusters are obtained
on pairs of stations from which interpretation is completely different and in a way less
natural.

5.2 Primary school temporal network dataset

To understand contacts between children at school and to quantify the transmission op-
portunities of respiratory infections, data on face-to-face interactions in a French primary
school were collected. The dataset is presented in detail in Stehlé et al. (2011) and available
online (SocioPatterns, 2015). Children are aged from 6 to 12 years and the school is com-
posed of five grades, each of them comprising two classes, for a total of 10 classes (denoted
by 1A, 1B, . . . , 5A, 5B). Each class has an assigned teacher and an assigned room. The
school day runs from 8.30am to 4.30pm, with a lunch break from 12pm to 2pm and two
breaks of 20-25 min around 10.30am and 3.30pm. Lunch is served in a common canteen
and a shared playground is located outside the main building. As the playground and the
canteen do not have enough capacity to host all pupils at a time, only two or three classes
have breaks together, and lunch is served in two turns. The dataset contains 125, 773 face
to face contacts among n = 242 individuals (232 children and 10 teachers) observed during
two days.

We applied our procedure in the undirected setup with histograms based on a dyadic
partition with maximum size Dmax = 1024. For Q = 2, . . . , 11, Figure 4 shows the clustering
of the n individuals into Q groups, where children from different classes are represented in
different colors. When Q is small (Q ≤ 6), our procedure gathers all pupils from one class
and their corresponding teacher in the same cluster. For larger values of Q, our procedure
makes a sharper clustering according to the behavior of the children. For example for
Q = 11, the procedure separates children from the same class: either to isolate a few
of them in a group (3 children of class 1B are put together in one group), or to put
together children of different classes (one group is made of children of classes 1A, 3A and
4B). Teachers never form a particular group apart, but they are in the cluster of their
assigned class, suggesting that contacts among teachers are sparse and that in this dataset
clustering is mainly driven by communities (i.e. groups of highly connected individuals,
with few inter-groups interactions).

The model selection criterion for choosing the best number of groups Q does not provide
a reasonably small number of clusters that could be used for interpretation of the data. It
has already been observed by other authors that this may happen for large datasets (see
Guigourès et al., 2015, and the references therein). Thus, we choose to further analyse the
data for Q = 11 groups.

We observe that the intensities representing the most activity are the intra-group inten-
sities. As clusters mainly correspond to classes, this highlights that most contacts involve
children of the same class and that the dataset is structured into communities. Moreover,
peaks of interactions are observed during the two breaks around 10.30am and 3.30pm. At
lunch time interactions between children vary from the first to the second day and are less
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Figure 4: Primary school: clustering of the 232 individuals (represented by different colours)
into Q = 2, . . . , 11 groups. For each picture the vertical bars represent the Q clusters.
Colours indicate the grades and the teachers, plain and hatching distinguish the two classes
in the same grade.

important than during the breaks where they play together.
Concerning inter-group connections, most of the estimated intensities for groups (q, l)

with q 6= l can be considered as null, except for some that we discuss now. First, as
our procedure splits some children of the same class into separate groups, the inter-group
interactions associated with these clusters correspond in fact to intra-class interactions.
Second, intensities between groups made of children of the same grade are significant,
suggesting that children mostly interact with children of the same age. Third, the children
of class 2B are partitioned into two clusters, and the intensity of one of these clusters drops
to zero during lunch time, whereas children of the other group interact a lot during lunch. It
seems that our procedure has recognized two subgroups in class 2B: children having lunch
at school and those going home for lunch. Fourth, class 1B is split into three groups with
20, 3 and 2 pupils, respectively. The estimated intensities suggest a particular behaviour of
some of the children: there is no contact between the two children in the smallest cluster,
but they have very strong interaction with the three pupils in the other cluster.

As a conclusion, we recover many results of Stehlé et al. (2011). In particular, we detect
subgroups of pupils with a specific behavior at some period of the day (leaving school for
lunch). We think that this is mainly due to the fact that the Poisson process stochastic
block model takes into account the information provided by the timestamps of the events.
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Figure 5: Enron: Asymmetric intra-group intensities.

Without this temporal information, it is hard to imagine to obtain similar results. In
particular, aggregating data on a day scale to construct discrete time networks would not
provide such a refined analysis.

5.3 Enron dataset

We analyse the email exchanges between 147 persons working at Enron, mostly in the
senior management, covering the period of the affair that led to the bankruptcy of the
company (Klimt & Yang, 2004). The dataset (CALO Project, 2015) contains 22, 531 emails
exchanged among these 147 persons between June 14, 2000 and June 13, 2002, for which
the sender, the recipient and the time when the email was sent are known. As data are
obviously directed, we use the directed version of our method to analyse them.

Here again, the integrated classification likelihood criterion does not provide a reason-
ably small enough number of clusters that could be used for interpretation. We choose
to analyse the data with Q = 4 clusters. There is one group which is rather silent with
very little activity and intensities close to zero. The other groups are characterized by
substantial intra-group communication. It is instructive to compare the temporal profiles
of the estimated intensities. First, we observe that communication is not symmetric. For
example, people in cluster 3 regularly send emails to cluster 2 over the whole observation
period, but the latter only respond rather late during the second half of 2001, see Figure 5.
Second, the intra-group communication differs a lot from one group to the other, see Figure
6. Cluster 3 has a rather constant communication intensity over the whole period, while
the intra-group intensity of cluster 1 is increasing with a peak at the end of 2002, which
seems to be the consequence of the beginning of the investigations. In contrast, cluster 4
has an important intra-group activity until June 2001, then the intensity drops down and
achieves another peak just before the inquiry, when it is known that number of individuals
acted to hide sensitive information on the scandal. Thus, one may suspect people from
cluster 4 to hold relevant information for the investigators.

Finally, we compare these results with those obtained using a classical stochastic block
model. Indeed, taking Dmax = 1 in our approach amounts to forget the timestamps of the
emails, as the algorithm then only considers email counts over the whole observation pe-
riod. In other words, using Dmax = 1 boils down to a classical stochastic block model with
Poisson emission distribution and mean parameter A(q,l)(T ) (see for instance Mariadassou
et al., 2010). We compare the classifications obtained by the two procedures for Q = 4
clusters. The associated adjusted rand index is 0.74 indicating that part of the individuals
are clustered in the same way and some are treated very differently in the two models.
Indeed, both methods find a large common cluster with people that do not communicate
a lot, while most hesitation is about persons in cluster 3 in the Poisson process stochastic
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Figure 6: Enron: Inter-group intensities.

block model, which are mainly split into two groups in the classical stochastic block model
and partly mixed with people from cluster 1. In fact, cluster 1 and 3 in the Poisson pro-
cess stochastic block model have significant intra-group communication but very different
temporal profiles as mentioned above. Intuitively, it may be difficult to distinguish these
groups when we only look at the total count data as in classical stochastic block model.
This means that taking into account the time information of the events may be very useful
to improve the classification of the individuals compared to classical stochastic block model.
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Supplementary material for: A semiparametric extension of the
stochastic block model for longitudinal networks

All the references are from the main manuscript, except for those appearing as S-xx that
are within this file.

S.1 Identifiability proofs

Proof of Proposition 1. For notational convenience, the proofs are presented in the undi-
rected setup, where the set of intensities is α = {α(q,l)}1≤q≤l≤Q. The directed case can be
treated in the same way. We start by considering the distribution of one marginal process
Ni,j , which is a Cox process directed by the random measure Ai,j such that

Ai,j ∼
Q∑
q=1

Q∑
l=1

πqπlδA(q,l) .

(Here, for any q ≤ l, we use the notationA(q,l) for the measure on [0, T ] defined byA(q,l)(I) =∫
I α

(q,l)(u)du for all measurable I ⊂ [0, T ]. We also recall that δu is the Dirac mass at point
u). It is known that the mapping of probability laws of random measures into laws of
Cox processes directed by them is a bijection (see for example Proposition 6.2.II in Daley
and Vere-Jones, 2003). In other words, here the distribution of Ni,j uniquely determines

the finite measure (on the set of measures on [0, T ])
∑Q

q=1

∑Q
l=1 πqπlδA(q,l) . Then, under

Assumption 1 that the intensities α(q,l) are distinct, the corresponding measures A(q,l) are
all different and we may recover from the distribution of our counting process Ni,j the set
of values {(π2q , A(q,q)); 1 ≤ q ≤ Q} ∪ {(2πqπl, A(q,l)); 1 ≤ q < l ≤ Q} or equivalently the

set {(π2q , α(q,q)); 1 ≤ q ≤ Q} ∪ {(2πqπl, α(q,l)); 1 ≤ q < l ≤ Q}. In particular, we recover

the functions α(q,l) almost everywhere on [0, T ], up to a permutation of these Q(Q + 1)/2
values. However, to recover those values up to a permutation in SQ, it is necessary to
consider higher-order marginals.

We now fix three distinct indices 1 ≤ i, j, k ≤ n and consider the trivariate counting
process (Ni,j , Ni,k, Nj,k). In the same way, these are Cox processes directed by the triplet
of random measures (Ai,j , Ai,k, Aj,k) such that

(Ai,j , Ai,k, Aj,k) ∼
∑

1≤q,l,m≤Q
πqπlπmδ(A(q,l),A(q,m),A(l,m)).

We write this distribution in such a way that distinct components appear only once

Q∑
q=1

π3qδ(A(q,q),A(q,q),A(q,q))

+
∑

1≤q 6=l≤Q
π2qπl

[
δ(A(q,q),A(q,l),A(q,l)) + δ(A(q,l),A(q,q),A(q,l)) + δ(A(q,l),A(q,l),A(q,q))

]
+

∑
q,l,m

|{q,l,m}|=3

πqπlπmδ(A(q,l),A(q,m),A(l,m)). (S.1)
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Using the same reasoning, we identify the triplets of values {(A(q,l), A(q,m), A(l,m)); 1 ≤
q, l,m ≤ Q} up to a permutation on the triplets (q, l,m). Among these, the only values with
three identical components are {(A(q,q);A(q,q);A(q,q)); q = 1, . . . , Q} and thus the measures
{A(q,q)}q are identifiable, up to a permutation in SQ. Going back to (S.1) and looking for the
Dirac terms at points that have two identical components (of the form (A(q,q), A(q,l), A(q,l))
and two other with permuted components), we can now identify the set of measures

{(A(q,q), {A(q,l)}l 6=q); q = 1, . . . , Q}.

This is equivalent to saying that we identify the measures {A(q,l); q ≤ l} up to a permutation
in SQ. Obviously, this also identifies the corresponding intensities {α(q,l); q ≤ l} almost
everywhere on [0, T ], up to a permutation in SQ. To finish the proof, we need to identify
the proportions πq. Note that as we identified the components {A(q,q); q = 1, . . . , Q}, we
recover from (S.1) the set of values {π3q ; q = 1, . . . , Q} up to the same permutation as on

the A(q,q)’s. This concludes the proof.

Proof of Proposition 2. We follow some of the arguments already appearing in the proof of
Proposition 1. Let Ain (resp. Aout) denote the measure whose intensity is αin (resp. αout)
The univariate process Ni,j is a Cox process directed by the random measure Ai,j that is
now distributed as

Ai,j ∼ (

Q∑
q=1

π2q )δAin + (
∑

1≤q 6=l≤Q
πqπl)δAout .

Thus the measures Ain and Aout are identifiable from the distribution of Ni,j , but only up to
a permutation. Once again, we rather consider the trivariate Cox processes (Ni,j , Ni,k, Nj,k)
directed by the random measures (Ai,j , Ai,k, Aj,k) whose distribution in the affiliation case
has now five atoms

( Q∑
q=1

π3q

)
δ(Ain,Ain,Ain) +

(∑
q 6=l

π2qπl

)
δ(Ain,Aout,Aout) +

(∑
q 6=l

π2qπl

)
δ(Aout,Ain,Aout)

+
(∑
q 6=l

π2qπl

)
δ(Aout,Aout,Ain) +

( ∑
q,l,m

|{q,l,m}|=3

πqπlπm

)
δ(Aout,Aout,Aout).

As previously, these five components are identifiable, up to a permutation on S5. Now it is
easy to identify the three components for which two marginals have same parameters and
the third one has a different parameter. Thus, we recover exactly the measures Ain and
Aout. This also identifies the corresponding intensities αin and αout almost everywhere on
[0, T ].

Now, the identification of the proportions {πq}q follows an argument already used in the
proof of Theorem 13 in Allman et al. (2011) that we recall here for completeness. From the
trivariate distribution of (Ni,j , Ni,k, Nj,k) and the already recovered values Ain and Aout,
we identify the proportion

∑
q π

3
q . Similarly, for any n ≥ 1, by considering the multivariate

distribution of (Ni,j)(i,j)∈R, we can identify the Dirac mass at point (Ain, . . . , Ain) and thus
its weight, which is equal to

∑
q π

n
q . By the Newton identities, the values {

∑
q π

n
q ;n =

1, . . . , Q} determine the values of elementary symmetric polynomials {σn(π1, . . . , πQ);n =
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1, . . . , Q}. These, in turn, are (up to sign) the coefficients of the monic polynomial whose
roots (with multiplicities) are precisely {πq; q = 1, . . . , Q}. Thus, the proportion parameters
are recovered up to a permutation.

S.2 Technical details on the estimation procedure

S.2.1 Variational E-step

Proof of Proposition 3. For the Kullback-Leibler divergence we compute

KL (Prτ (·|O)||Prθ(·|O)) = Eτ

(
log

Prτ (Z|O)

Prθ(Z|O)

∣∣∣∣Z) = Eτ

(
log

Prτ (Z|O)Prθ(O)

L(O,Z|θ)

∣∣∣∣Z)
=

n∑
i=1

Eτ
(
log τ i,Zi

∣∣O)+ log Prθ(O)− Eτ (logL(O,Z|θ)|Z) .

According to (5), the complete-data log-likelihood logL(O,Z|θ) is

−
Q∑
q=1

Q∑
l=1

Y (q,l)A(q,l)(T ) +

Q∑
q=1

Q∑
l=1

M∑
m=1

Z(q,l)
m log

(
α(q,l)(tm)

)
+

n∑
i=1

Q∑
q=1

Zi,q log πq,

where Y (q,l) and Z
(q,l)
m have been introduced in Equations (1) and (3), respectively. Now,

note that Eτ [Zi,q|O] = Prτ (Zi,q = 1|O) = Prτ (Zi = q|O) = τ i,q. Moreover, by the
factorization property (6), for every i 6= j we have

Eτ [Zi,qZj,l|O] = Eτ [Zi,q|O]Eτ [Zj,l|O] = τ i,qτ j,l.

The quantity Ȳ (q,l) is thus equal to Eτ [Y (q,l)|O], namely the variational approximation of

the mean number of dyads with latent groups (q, l). Similarly, τ
(q,l)
m equals Eτ [Z

(q,l)
m |O], the

variational approximation of the probability that observation (tm, (im, jm)) corresponds to
a dyad with latent groups (q, l). It follows that

τ̂ = Argmin
τ∈T

KL (Prτ (·|O)||Prθ(·|O)) = Argmax
τ∈T

J(θ, τ),

where J(θ, τ) is

−
Q∑
q=1

Q∑
l=1

Ȳ (q,l)A(q,l)(T ) +

Q∑
q=1

Q∑
l=1

M∑
m=1

τ (q,l)m log
(
α(q,l)(tm)

)
+

n∑
i=1

Q∑
q=1

τ i,q log
πq
τ i,q

. (S.2)

The variational E-step consists in maximizing J with respect to the τ i,q’s which are con-
strained to satisfy

∑Q
q=1 τ

i,q = 1 for all i. In other words, we maximize

M(τ, γ) = J(θ, τ) +

n∑
i=1

γi

 Q∑
q=1

τ i,q − 1

 ,
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with Lagrange multipliers γi. The partial derivatives are

∂

∂τ i,q
M(τ, γ) = −

Q∑
l=1

∑
j 6=i

τ j,l
(
A(q,l)(T ) +A(l,q)(T )

)
+

Q∑
l=1

M∑
m=1

1{im=i}τ
jm,l log

(
α(q,l)(tm)

)

+

Q∑
l=1

M∑
m=1

1{jm=i}τ
im,l log

(
α(l,q)(tm)

)
+ log

πq
τ i,q
− 1 + γi,

∂

∂γi
M(τ, γ) =

Q∑
q=1

τ i,q − 1.

The partial derivatives are null iff
∑Q

q=1 τ
i,q = 1 and the τ i,q’s satisfy the fixed point

equations (8), with exp(γi − 1) being the normalizing constant.

S.2.2 Histogram-based M-step

In this part, each intensity α(q,l) is estimated by a piecewise constant function and we
propose a data-driven choice of the partition of the time interval [0, T ]. In the following
(q, l) is fixed and we start by considering a fixed partition E = (Ek)1≤k≤DE of [0, T ] with
partition size DE . Denote SE the space of piecewise constant functions on E . Note that the
total number of dyads r is an upper bound for Ȳ (q,l) (the variational mean number of dyads
in group (q, l)). Following Reynaud-Bouret (2006), we consider the projection estimator of
α(q,l) on SE defined as

α̂
(q,l)
E = Argmin

f∈SE

γ(q,l)n (f),

where the least-squares contrast is defined (relatively to the counting process N (q,l)) for all
f ∈ L2([0, T ], dt) by

γ(q,l)n (f) = − 2

R

∫ T

0
f(t)dN (q,l)(t) +

Ȳ (q,l)

R

∫ T

0
f2(t)dt.

The (variational) mean number of observations (im, jm) with group membership (q, l) oc-
curring in time interval Ek for k = 1, . . . , DE is

N (q,l)(Ek) =

∫
Ek

dN (q,l)(s) =
M∑
m=1

τ im,qτ jm,l1Ek
(tm). (S.3)

Denote |Ek| the length of interval Ek. Then the estimator α̂
(q,l)
E is given by

α̂
(q,l)
E (·) =

1

Ȳ (q,l)

DE∑
k=1

N (q,l)(Ek)

|Ek|
1Ek

(·). (S.4)

We remark that with a fixed partition E , the setup is purely parametric with a finite number

of parameters α
(q,l)
k ≥ 0 that determine the piecewise constant function

α
(q,l)
E (·) =

DE∑
k=1

α
(q,l)
k 1Ek

(·) ∈ SE .
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This means that with this point of view, a classical M-step can be performed with some objec-

tive function Qτ (π, {α(q,l)
k }(q,l),1≤k≤DE ) to be maximized with respect to π and {α(q,l)

k }(q,l),k.
Interestingly, it turns out that the solution of this M-step is exactly the same as the pro-

jection estimators given by (S.4), that minimize the contrasts {γ(q,l)n }q,l on SE . Note that
as the estimators of α(q,l) are computed separately, the approach allows to choose different
partitions for different groups (q, l).

Now we turn to the choice of the partition and provide an adaptive model selection
method, that is applied to every function α(q,l) separately. LetMn be a finite collection of
partitions of [0, T ] considered for the estimation of α(q,l) with fixed (q, l).

Adaptive estimation consists in choosing the best estimator among the collection of

estimators {α̂(q,l)
E , E ∈ Mn} with α̂

(q,l)
E defined by (S.4). The choice is based on a penalized

least-squares criterion of the form

crit(q,l)n (E) = γ(q,l)n (α̂
(q,l)
E ) + pen(q,l)n (E),

for some penalty function pen
(q,l)
n : Mn → R+ that penalizes large partitions. Follow-

ing Reynaud-Bouret (2006) we take forMn either the collection of regular partitions Edreg of
[0, T ] with DEdreg = d intervals each of length T/d for d ∈ {1, . . . , Dmax}, or the collection of

dyadic partitions Eddy of [0, T ] with DEddy
= 2d intervals of length T/2d for d ∈ {0, . . . , dmax}

(where Dmax and dmax are to be chosen). Furthermore, the penalty function is given by

pen(q,l)n (E) =
2DE
R

C with C =
DEmax

T Ȳ (q,l)
sup

1≤k≤DEmax

N (q,l)(EE
max

k ),

where Emax denotes the finest partition in the collection Mn, that is DEmax = Dmax in the
regular case and DEmax = 2dmax in the dyadic case, and EE

max

k denotes the k-th interval of
partition Emax.

Denote by Ê = Ê(q,l) the partition that minimizes crit
(q,l)
n (E) over Mn. Let D̂(q,l) =

DÊ(q,l) be the size of partition Ê(q,l). Then the adaptive estimator of intensity α(q,l) is given

by α̂
(q,l)

Ê
that writes

∀t ∈ [0, T ], α̂
(q,l)
hist (t) = α̂

(q,l)

Ê(q,l)
(t) =

1

T Ȳ (q,l)

D̂(q,l)∑
k=1

D̂(q,l)N (q,l)(EÊk )1
EÊ

k

(t). (S.5)

S.2.3 Details on the Algorithm

A natural stopping criterion of the variational EM algorithm is based on function J defined
in (S.2). Indeed, J(θ, τ) = Qτ (θ) +H(τ), where H(τ) denotes the entropy of the distribu-
tion τ defined as H(τ) = −

∑n
i=1

∑Q
q=1 τ

i,q log τ i,q. As our estimation procedure aims at
maximizing J , the algorithm may be stopped at iteration s + 1 if the increase of J is less
than a given threshold ε > 0, that is when∣∣∣∣∣J(θ[s+1], τ [s+1])− J(θ[s], τ [s])

J(θ[s], τ [s])

∣∣∣∣∣ < ε.

We use several initializations of the algorithm, relying on different aggregated datasets
(on the whole time interval or on sub-intervals) and applying a k-means algorithm on the
rows of the adjacency matrix of these aggregated datasets.
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S.3 Additional figures
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Figure S.1: Intensities in Scenario 1. Each picture represents the intra-group intensity α(q,q)

(bold line) and the inter-group intensity α(q,l) for q 6= l (dotted line) with different shifting
parameter ϕ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.
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Figure S.2: Boxplots of the adjusted rand index in Scenario 2 for the histogram (left) and
the kernel (right) estimators. Left panel n = 20, right panel n = 50.
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Figure S.3: Intensities in Scenario 2 with n = 50: True intensities (black continuous),
histogram (red dashed) and kernel estimates (blue dotted) for each pair of groups (q, l)
with 1 ≤ q ≤ l ≤ 3.

28



2 3 4 5

Selected number of groups

Fre
que

ncy

0.0
0.2

0.4
0.6

0.8
1.0

●

●●●
●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●
●●
●
●
●
●

●

●●
●●
●
●

●

●
●●

●

●
●

●

●

●
●●

●

2 3 4 5

0.2
0.4

0.6
0.8

1.0

Selected number of groups
 Ad

jus
ted

 Ra
nd 

Ind
ex 

for 
3 g

rou
ps

Figure S.4: Selection of the number of latent groups via the integrated classification like-
lihood criterion in Scenario 2 with n = 20. Left panel: frequencies of selected number
of groups. Right panel: adjusted rand index of the classification into three groups as a
function of the number of selected groups.
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Figure S.5: London bike sharing system: Geographic positions of the stations and clustering
into six clusters (represented by different colors and symbols) for day 2.
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Figure S.6: London bike sharing system: Kernel intensity estimates for the six clusters (day
2), plotted on the same y-scale.

30



0
.0

0
0

0
0

.0
0

2
5

(1,1)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(2,2)
in

te
n

s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(3,3)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(4,4)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(5,5)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(6,6)
in

te
n

s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(7,7)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(8,8)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(9,9)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(10,10)

in
te

n
s
it
y

10am 6pm 8am 4pm

0
.0

0
0

0
0

.0
0

2
5

(11,11)

in
te

n
s
it
y

10am 6pm 8am 4pm

Figure S.7: Primary school: Estimated intra-group intensities for Q = 11 groups (plotted
on the same y-scale).
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Figure S.8: Primary school: Inter-group interactions that correspond to intra-class interac-
tions with Q = 11 groups.
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Figure S.9: Primary school: Estimated inter-group intensities between classes 5A (group 7)
and 5B (group 10) and between classes 2A (group 3) and 2B (group 11) for Q = 11 groups.
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