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Abstract

In this work, we introduce a Poisson process stochastic block model for recurrent
interaction events, where each individual belongs to a latent group and interactions
between two individuals follow a conditional inhomogeneous Poisson process whose in-
tensity is driven by the individuals’ latent groups. The model is semiparametric as
the intensities per group pair are modeled in a nonparametric way. First an identifi-
ability result on the weights of the latent groups and the nonparametric intensities is
established. Then we propose an estimation procedure, relying on a semiparametric
version of a variational expectation-maximization algorithm. Two different versions of
the method are proposed, using either histogram-type (with an adaptive choice of the
partition size) or kernel intensity estimators. We also propose an integrated classifica-
tion likelihood criterion to select the number of latent groups. Asymptotic consistency
results are then explored, both for the estimators of the cumulative intensities per group
pair and for the kernel procedures that estimate the intensities per group pair. Finally,
we carry out synthetic experiments and analyse several real datasets to illustrate the
strengths and weaknesses of our approach.

Keywords: Cox process, doubly stochastic Poisson process, dynamic interactions,
expectation-maximization algorithm, integrated classification likelihood, longitudinal net-
work, semiparametric model, stochastic block model, temporal networks, variational ap-
proximation.

1 Introduction

The past few years have seen a large increase in the interest for modeling dynamic inter-
actions between individuals. While most of the recent approaches rely on discrete-time
models, many real world interaction data contain continuous-time information on the in-
teractions, e.g. email exchanges between employees in a company (Klimt and Yang, 2004)
or between students and university staff (Kossinets and Watts, 2006), encounters between
high school students (Fournet and Barrat, 2014) or animals (Jeanson, 2012) equipped with
sensors. A frequently used discrete-time approach consists in aggregating the data on pre-
defined time intervals to obtain a sequence of snapshots of interaction random graphs.
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Besides the fact that this induces a loss of information, the choice of the time intervals has
a direct impact on the results which is most often overlooked. Thus, developing models of
interaction that exploit the continuous-time aspect of the data – either called longitudinal
networks, interaction event data or temporal networks – is an important research issue.

Statistical methods for the analysis of longitudinal networks form a huge corpus, es-
pecially in social sciences and we do not pretend to provide an exhaustive bibliography
on this topic. We refer to the very nice and recent review by Holme (2015) for a more
complete view on temporal networks. A natural way of modeling temporal event data
consists in the use of stochastic point processes defined on the positive real line. An impor-
tant line of research has been the use of continuous-time Markov processes, with seminal
works on dyad-independent models (Wasserman, 1980a,b) up to the development of so-
called stochastic actor oriented models (e.g. Snijders and van Duijn, 1997; Snijders et al.,
2010). In these works, observations consist in a series of time intervals of interactions and
the models assume that each interaction lasts during the whole corresponding time interval,
which is quite different from assuming that it occurred exactly at some time point. Here,
we focus on this latter observation setup. Furthermore, we consider a model that allows
for dependencies of the processes modeling the interactions of pairs of individuals.

The analysis of event data (also called time-to-event analysis, survival analysis, or life-
time analysis) is an old and important area in statistics (see for e.g. Andersen et al., 1993).
Many authors have used multivariate point processes to model interaction events. More
precisely, they consider a multivariate counting process N(t) = (Ni,j(t))(i,j) that counts the
number of interactions of each pair (i, j) up to time t. In Butts (2008), counting processes
have been introduced in the context of action data, which are a set of time-stamped di-
rected interactions between individuals that moreover are marked by a label (representing
a behavioral event). The author describes a very general setup where the realization of an
event can be treated as independent given the events that occurred previously; each action
may have its own hazard rate depending on the past of the process through the use of statis-
tics that are based on the previous observations. The special case of piecewise constant
hazard rates (possibly depending on covariates) is considered. The model may be viewed
as a special instance of Cox’s multiplicative hazard model with time-dependent covariates
and constant baseline function. Maximum likelihood estimation based on numerical opti-
mization is proposed. In the same vein, Vu et al. (2011) propose a general regression-based
modeling of the intensity of (simple type) non recurrent interaction events. They consider
two different frameworks: Cox’s multiplicative and Aalen’s additive hazard rates (see for
instance Martinussen and Scheike, 2006). In the Cox setup, the main difference with the
approach proposed by Butts is that the model includes a non constant baseline hazard and
estimation relies on partial likelihood. Perry and Wolfe (2013) propose another variant
of Cox’s multiplicative intensity model for recurrent interaction events where the baseline
function is specific to each individual. They establish consistency and asymptotic normal-
ity of a maximum partial likelihood estimator (under suitable regularity conditions). Note
that in the above mentioned works, a set of statistics is chosen by the user as potential
candidates that modulate the individuals’ interactions. As in any regression framework,
choosing these statistics might raise some issues, increasing their number potentially leads
to a high-dimensional problem and interpretation of the results might be blurred by the
correlation between these statistics.
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In a slightly different setup, Malmgren et al. (2008, 2009) propose a cascading inhomo-
geneous Poisson process, where each individual is either in an active or in a passive phase.
Phases are not observed and phase changes occur according to an inhomogeneous Poisson
process. Here, data have the form N(t) = (Ni(t))i recording the activity of each individual
with no distinction of whom he interacts to. The model can be formulated as a double-
chain hidden Markov model, allowing the authors to use an efficient inference algorithm to
estimate the model parameters from the observed data.

Clustering individuals based on interaction data represents a well-established technique
for taking into account the intrinsic heterogeneity and summarizing information. In Navaroli
et al. (2012), a model with latent groups of recipients, each of which is associated with a
piecewise-constant Poisson rate over time is considered. Here again, observations consist
in a number of interactions per individual and not per pair of individuals. In the context
of dynamic random graphs (where a discrete-time sequence of graphs is observed), recent
approaches propose to generalize the so-called stochastic block model (SBM) to a dynamic
context (Yang et al., 2011; Xu and Hero, 2014; Matias and Miele, 2015). Stochastic block
models posit that interaction between two individuals is conditionally independent of the
interaction of any other pair, given latent discrete values on the interacting individuals
(their latent group). Another attempt to use SBM in the context of interaction events
appears in DuBois et al. (2013). The authors generalize the approach by Butts (2008)
by adding discrete latent variables on the individuals. The conditional distribution of
directed interactions, given the latent groups, depends on the past history of the process
in a multiplicative form. Inference is carried out by a Markov chain Monte Carlo (MCMC)
scheme in a Bayesian setup.

The approaches by Butts; Vu et al.; Perry and Wolfe and others rely on conditional
Poisson processes (also known as doubly stochastic Poisson processes or Cox processes, the
latter terminology should not be mistaken with Cox’s multiplicative model of intensities).
A particular instance of the conditional Poisson process is the Hawkes process, which con-
sists in a collection of point processes with some background rate, and each event adds a
nonnegative impulse to the intensity of all other processes. Cho et al. (2014) develop a
model for spatial-temporal networks with missing information, relying on such self-exciting
point processes for temporal dynamics, combined with a spatial Gaussian mixture for the
spatial dynamics. They develop a variational expectation-maximization (VEM) algorithm to
infer the unknown participants in an event given the location and the time of the event.
Similarly, Linderman and Adams (2014) combine temporal Hawkes processes with latent
distance models for implicit networks that cannot be observed directly.

In this work, a semiparametric stochastic block model for recurrent interaction events
is considered. Each individual belongs to a latent group and conditional on these groups,
two individuals interact according to an inhomogeneous Poisson process, whose intensity
depends on the individuals’ latent groups. We call our model a Poisson process stochas-
tic block model (PPSBM). Contrarily to the works by Butts (2008); DuBois et al. (2013)
and others, we do not rely on a parametric model that uses a set of predefined network
statistics modulating the intensities. Instead, we propose nonparametric estimators of the
intensities as well as a clustering of the individuals, using a semiparametric version of the
VEM algorithm where the maximization step is replaced either by a histogram-type or by a
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kernel estimation procedure. Semiparametric generalizations of the classical expectation-
maximization (EM) algorithm (Dempster et al., 1977) have been proposed in many different
contexts (see for e.g. Böhning (1995); Bordes et al. (2007); Robin et al. (2007) for semi-
parametric mixtures or Dannemann (2012) for a semiparametric hidden Markov model).
However we are not aware of other attempts to incorporate a nonparametric estimate into
a variational approximation of EM. Our nonparametric estimation of the intensities relies
on the work of Reynaud-Bouret (2006) for the histogram-type approach and on Ramlau-
Hansen (1983) for the kernel one.

The paper is organized as follows. In Section 2.1, the model and notations are presented,
while the identifiability of the parameters is established (under natural conditions) in Sec-
tion 2.2. Note that we provide results for the general case as well as for the affiliation model,
where interaction intensities only depend on whether the two individuals are in the same
group or not. Our estimation procedures are presented in Section 3. As already mentioned,
they are based on a semiparametric variational expectation-maximization algorithm. Two
different methods are given, relying either on a histogram-type or on a kernel estimator for
the nonparametric part of the model. We also provide a model selection procedure for the
partition used in the histogram-type approach. Furthermore, relying on the histogram-type
approach, we propose an integrated classification likelihood (ICL) criterion that selects the
number of groups adaptively (Section 3.6). Section 4 contains consistency results. Under
a natural assumption on the convergence of the variational parameters (that estimate each
individual’s group), we first establish that Nelson-Aalen-type estimators that are based on
our estimation procedure are consistent (as the total number of individuals increases) for
estimating the cumulatives intensities per group pair. We also prove consistency of the
corresponding kernel procedures that estimate the intensities per group pair. Synthetic
experiments are carried out in Section 5, enlightening both the clustering capacities of our
method as well as the performance of the nonparametric estimation of the different intensi-
ties. Finally in Section 6, the analysis of several real datasets illustrates the strengths and
weaknesses of our approach.

2 A semiparametric Poisson process stochastic block model
(PPSBM)

2.1 Model

We are interested in the pairwise interactions of n individuals during some time interval
[0, T ]. We suppose that every individual belongs to one out of Q groups, and the relation
between two individuals, that is the way two individuals interact with another, is driven
by their group membership. We choose to restrict our attention to undirected interactions
with no self-interactions, but generalizations to the directed case, with or without self-
interactions are straightforward. Denote by

R = {(i, j), 1 ≤ i < j ≤ n},
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the set of all possible pairs of individuals, which is also the set of all possible dyads in the
graph. Its cardinality is R = Rn = n(n− 1)/2. Observations consist in

O = {(tm, (im, jm)),m = 1, . . . ,M} ,

where (tm, (im, jm)) ∈ [0, T ]×R corresponds to the event that the individuals with indices
im and jm interact at time tm and M is the total number of events in time interval [0, T ].
We assume that 0 < t1 < · · · < tM < T , i.e. there is at most one event at a time. Now the
distribution of these observations is modeled as follows. Let Z1, . . . , Zn be i.i.d. (latent)
random variables taking values in {1, . . . , Q} with probabilities

πq = P(Z1 = q), q = 1, . . . , Q.

For the moment, we assume that Q is fixed and known and that πq ∈ (0, 1) for all q ∈
{1, . . . , Q}. When no confusion occurs, we also use the notation Zi = (Zi,1, . . . , Zi,q) with
Zi,q ∈ {0, 1} and then Zi has multinomial distribution M(1, π) with π = (π1, . . . , πQ).

Now, our Poisson process stochastic block model (PPSBM) is defined as follows. For
every (i, j) ∈ R, the interactions of individuals i and j, conditional on the latent groups
Zi, Zj , are modeled by a conditional inhomogeneous Poisson process Ni,j(·) on [0, T ] with
intensity depending only on the group values Zi, Zj . Thus, we suppose that the conditional
intensities of processes Ni,j(·) are the same for any two dyads with same latent classes
Zi, Zj . We consider nonnegative intensity functions α(q,l) with 1 ≤ q, l ≤ Q such that the
conditional intensity of process Ni,j(·) given that Zi,qZj,l = 1 is α(q,l)(·) for any (i, j) ∈ R.
Note that α(q,l) = α(l,q) and in the following we restrict our attention to the set of functions
α = {α(q,l)}(q,l)∈Q where Q = {(q, l); 1 ≤ q ≤ l ≤ Q}. The corresponding cumulative
intensities are denoted by

A(q,l)(t) =

∫ t

0
α(q,l)(u)du, ∀t ∈ [0, T ].

The set of observationsO forms a realization of the multivariate counting process (Ni,j(·))(i,j)∈R
with conditional intensity process (α(Zi,Zj)(·))(i,j)∈R. Note that Ni,j is not a Poisson pro-

cess, but a counting process with intensity
∑Q

q=1

∑Q
l=1 πqπlα

(q,l). In the literature, con-
ditional Poisson processes are also known as Cox processes or doubly stochastic Poisson
processes. We denote θ = (π, α) = (π, {α(q,l)}(q,l)∈Q) the (infinite-dimensional) parameter
of a PPSBM. The distribution of the multivariate counting process (Ni,j(·))(i,j)∈R under
parameter value θ is denoted Pθ.

2.2 Identifiability

This section is concerned with the identifiability of parameter θ, up to label switching, from
the distribution of the multivariate counting process (Ni,j(·))(i,j)∈R as defined below. Note

that the functions α(q,l) are intensities and thus are only identifiable almost everywhere
(a.e.) on [0, T ]. We denote SQ the set of permutations of {1, . . . , Q}.

Definition 1 (Identifiability up to label switching). The parameter θ = (π, α) of a PPSBM
is identifiable on [0, T ] up to label switching if

∀θ, θ̃, Pθ = Pθ̃ =⇒ ∃σ ∈ SQ,∀(q, l) ∈ Q,
{
πq = π̃σ(q),

α(q,l) = α̃(σ(q),σ(l)) a.e. on [0, T ].
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We now state an assumption that ensures identifiability up to label switching of the
parameter in the general model. The particular case of the affiliation PPSBM is considered
afterwards.

Assumption 1. The set of intensities {α(q,l)}(q,l)∈Q contains exactly Q(Q+ 1)/2 distinct
functions.

The intensities α(q,l) may take identical values at some points or even on some subsets
of [0, T ], but should not be equal almost everywhere.

Proposition 1. Under Assumption 1, the parameter θ = (π, α) is identifiable on [0, T ],
up to label switching, from the PPSBM distribution of the multivariate counting process
(Ni,j(·))(i,j)∈R on the same interval, as soon as n ≥ 3.

The proof is postponed to Appendix A. Note that the previous result does not cover
the affiliation case, where only two intensities αin 6= αout are considered and

∀(q, l) ∈ Q, α(q,l) =

{
αin if q = l,
αout if q 6= l.

Proposition 2. Assume that the intensities αin and αout are distinct functions on [0, T ].
Then, both αin and αout are identifiable on [0, T ] from the affiliation PPSBM distribution
of the multivariate counting process (Ni,j(·))(i,j)∈R on the same interval, as soon as n ≥ 3.
Moreover, as soon as n ≥ max{Q, 3}, the proportions {πq; 1 ≤ q ≤ Q} are also identifiable,
up to a permutation, from the same distribution.

Again, the proof of this result is postponed to Appendix A.

2.3 Processes at stake

In this section, we introduce additional notations and especially some processes that will
be used throughout the manuscript.

First, for any group (q, l) ∈ Q, let us consider

Y (q,l) =

{ ∑
(i,j)∈R(Zi,qZj,l + Zi,lZj,q) if q < l,∑
(i,j)∈R Z

i,qZj,q if q = l
(1)

the (unobserved) number of dyads (i, j) ∈ R with group membership (q, l). Note that the
(unobserved) counting process

N
(q,l)
Z =

{ ∑
(i,j)∈R(Zi,qZj,l + Zi,lZj,q)Ni,j if q < l,∑
(i,j)∈R Z

i,qZj,qNi,j if q = l
(2)

has conditional intensity Y (q,l)α(q,l), which falls into the class of Aalen’s multiplicative
intensity models. This is a central property of this process, on which our work often relies.

We also define Z
(q,l)
m ∈ {0, 1} as the (unobserved) binary indicator of observation (im, jm)

belonging to group (q, l)

Z(q,l)
m =

{
Zim,qZjm,l + Zim,lZjm,q if q < l,
Zim,qZjm,q if q = l.

(3)
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As those quantities are unobserved, our work is based on some proxies. We consider

T =
{
τ = (τ i,q)1≤i≤n,1≤q≤Q : ∀i, q, τ i,q ∈ [0, 1],

Q∑
q=1

τ i,q = 1
}
, (4)

as a set of candidate proxies for the unobserved latent groups Zi,q. Note that while the
Zi,q’s are indicators, their counterparts τ i,q are weights, representing the probability that
node i belongs to group q. For every τ ∈ T , we set

Ȳ (q,l) =

{ ∑
(i,j)∈R(τ i,qτ j,l + τ i,lτ j,q) if q < l,∑
(i,j)∈R τ

i,qτ j,q if q = l
(5)

and construct the weighted cumulative process (N (q,l))(q,l)∈Q defined by

N (q,l) =

{ ∑
(i,j)∈R(τ i,qτ j,l + τ i,lτ j,q)Ni,j if q < l,∑
(i,j)∈R τ

i,qτ j,qNi,j if q = l.
(6)

If the τ i,q’s approximate the Zi,q’s then the intensity of this process N (q,l) is approximately

Ȳ (q,l)α(q,l). Finally we introduce a proxy for the indicator Z
(q,l)
m that is defined as

τ (q,l)m =

{
τ im,qτ jm,l + τ im,lτ jm,q if q < l,
τ im,qτ jm,q if q = l.

(7)

3 Semiparametric estimation procedure

The complete-data likelihood (comprising observationsO and latent variables Z = (Z1, . . . , Zn))
writes

L(O,Z|θ) = L(O|Z, θ)× L(Z|θ)

= exp

− ∑
(i,j)∈R

A(Zi,Zj)(T )


M∏
m=1

α(Zim ,Zjm )(tm)
n∏
i=1

Q∏
q=1

πZ
i,q

q . (8)

The likelihood of the observed data L(O|θ) is obtained by summing the complete-data
likelihood over the set of all possible configurations of the latent variables Z, which is so
huge that the likelihood of the observed data is intractable for direct maximization. Hence,
we use an EM algorithm (Dempster et al., 1977), which is an iterative procedure that copes
with latent variables. However, two different issues arise here. First, as already appears
for SBM (Daudin et al., 2008), the E-step of the EM algorithm may not be performed in
our context because it requires the computation of the conditional distribution of Z given
the observations O, which is not tractable. Therefore we rely on a variational approxima-
tion (Jordan et al., 1999) at the E-step of the algorithm. Second, part of our parameter
is infinite dimensional so that the M-step is partly replaced by a nonparametric estimation
procedure, giving rise to a semiparametric EM algorithm. As a consequence, we propose
a variational approximation of a semiparametric EM algorithm, which is an iterative pro-
cedure that recursively applies the steps described below in detail. We refer for instance
to Matias and Robin (2014) for a general description of the VEM algorithm and its links
to EM in stochastic block models. Our complete algorithm is summarized in Section 3.5,
Algorithm 1.
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3.1 Variational E-step

We start by describing the variational approximation part of the algorithm. A classical
E-step consists in computing the expectation of the complete log-likelihood, given the ob-
servations, at some current parameter value θ. Here, instead of computing the exact solution
of a classical E-step, we search for an approximation within a restricted class of factorized
distributions. Relying on the class of parameters T defined in (4), for every τ ∈ T , let the
conditional distribution Pτ (·|O) of Z given O be defined by

∀(q1, . . . , qn) ∈ {1, . . . , Q}n, Pτ (Z = (q1, . . . , qn)|O) =
n∏
i=1

Pτ (Zi = qi|O) =
n∏
i=1

τ i,qi . (9)

We consider the quantity
Qτ (θ) := Eτ [logL(O,Z|θ)|O] ,

as well as the entropy of distribution Pτ (·|O) given by

H(τ) := −
n∑
i=1

Q∑
q=1

τ i,q log τ i,q,

with the convention that 0∗ (−∞) = 0. The variational E-step consists in the maximization
of

J(θ, τ) = Qτ (θ) +H(τ),

with respect to (w.r.t) τ ∈ T .

Proposition 3. The solution τ̂ to the maximization problem Argmaxτ∈T J(θ, τ) satisfies
the following fixed-point equation

∀1 ≤ i ≤ n,∀1 ≤ q ≤ Q, τ̂ i,q ∝ πq exp[Diq(τ̂ , π, α)] (10)

where ∝ means ’proportional to’ and

Diq(τ, π, α) = −
Q∑
l=1

∑
j 6=i

τ j,lA(q,l)(T ) +

Q∑
l=1

M∑
m=1

(τ jm,l)1{im=i}(τ im,l)1{jm=i} log
(
α(q,l)(tm)

)
,

with 1{A} (or 1A) the indicator function of set A.

From a practical point of view, the fixed point τ̂ is found by successively updating the
variational parameters τ i,q via Equation (10) until convergence.

Proof. According to (8), the complete-data log-likelihood writes

logL(O,Z|θ) = −
∑

(q,l)∈Q

Y (q,l)A(q,l)(T )+
∑

(q,l)∈Q

M∑
m=1

Z(q,l)
m log

(
α(q,l)(tm)

)
+

n∑
i=1

Q∑
q=1

Zi,q log πq,
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where Y (q,l) and Z
(q,l)
m have been introduced in Equations (1) and (3), respectively. Now,

note that Eτ [Zi,q|O] = Pτ (Zi,q = 1|O) = Pτ (Zi = q|O) = τ i,q. Moreover, by the factoriza-
tion property (9), for every i 6= j we have

Eτ [Zi,qZj,l|O] = Eτ [Zi,q|O]Eτ [Zj,l|O] = τ i,qτ j,l.

The quantity Ȳ (q,l) introduced in (5) is thus equal to Eτ [Y (q,l)|O], namely the variational

approximation of the mean number of dyads in group (q, l). Similarly, τ
(q,l)
m introduced

in (7) equals Eτ [Z
(q,l)
m |O], the variational approximation of the probability that observation

(tm, (im, jm)) corresponds to a dyad in group (q, l). It follows that

J(θ, τ) = −
∑

(q,l)∈Q

Ȳ (q,l)A(q,l)(T ) +
∑

(q,l)∈Q

M∑
m=1

τ (q,l)m log
(
α(q,l)(tm)

)
+

n∑
i=1

Q∑
q=1

τ i,q log
πq
τ i,q

.

(11)
The variational E-step consists in maximizing J with respect to the τ i,q’s which are con-
strained to satisfy

∑Q
q=1 τ

i,q = 1 for all i. In other words, we maximize

M(τ, γ) = J(θ, τ) +

n∑
i=1

γi

 Q∑
q=1

τ i,q − 1

 ,

with Lagrange multipliers γi. The partial derivatives write

∂

∂τ i,q
M(τ, γ) = −

Q∑
l=1

∑
j 6=i

τ j,lA(q,l)(T ) +

Q∑
l=1

M∑
m=1

(τ jm,l)1{im=i}(τ im,l)1{jm=i} log
(
α(q,l)(tm)

)
+ log πq + γi − log τ i,q − 1,

∂

∂γi
M(τ, γ) =

Q∑
q=1

τ i,q − 1.

The partial derivatives are null iff
∑Q

q=1 τ
i,q = 1 and the τ i,q’s satisfy the fixed point

equations (10), with exp(γi − 1) being the normalizing constant.

3.2 Nonparametric M-step: general description

We now turn to the M-step of the algorithm. In a parametric context, the M-step consists
in the maximization of

Qτ (θ) = Eτ [logL(O,Z|θ)|O]

with respect to θ = (π, α), which is equivalent to minimizing J(θ, τ) w.r.t. θ. Considering
only the finite-dimensional part of the parameter, we easily obtain that the maximizer π̂ of
Qτ (π, α) w.r.t. π is given by

π̂q =

∑n
i=1 τ

i,q∑Q
q=1

∑n
i=1 τ

i,q
=

1

n

n∑
i=1

τ i,q, ∀q ∈ {1, . . . , Q}. (12)

9



Now, as the parameter α is infinite-dimensional, we replace the maximization of Qτ (π, α)
w.r.t. α by a nonparametric estimation step. Note that semiparametric versions of the EM

algorithm have already been proposed in many different contexts (see for e.g. Böhning, 1995;
Bordes et al., 2007; Robin et al., 2007; Dannemann, 2012). In the following, we consider
two different approaches for updating α: a histogram-type and a kernel approach. In both

cases, estimation would be straightforward using the process (N
(q,l)
Z )(q,l)∈Q defined by (2),

which unfortunately is not observed. It is thus natural to consider its (current) variational
approximation, namely the weighted cumulative process (N (q,l))(q,l)∈Q defined by (6).

3.3 Histogram-type M-step

In this part, each intensity α(q,l) is estimated by a piecewise constant function and we
propose a data-driven choice of the partition of the time interval [0, T ]. In the following
(q, l) ∈ Q is fixed and we start by considering a fixed partition E = (Ek)1≤k≤DE of [0, T ]
with partition size DE . Denote SE the space of piecewise constant functions on E . Note
that the total number of dyads R = n(n−1)/2 is an upper bound for Ȳ (q,l) (the variational
mean number of dyads in group (q, l)). Following Reynaud-Bouret (2006), we consider the
projection estimator of α(q,l) on SE defined as

α̂
(q,l)
E = Argmin

f∈SE
γ(q,l)n (f),

where the least-squares contrast is defined (relatively to the counting process N (q,l) intro-
duced in (6)) for all f ∈ L2([0, T ], dt) by

γ(q,l)n (f) = − 2

R

∫ T

0
f(t)dN (q,l)(t) +

Ȳ (q,l)

R

∫ T

0
f2(t)dt.

The (variational) mean number of observations (im, jm) with group membership (q, l) oc-
curring in time interval Ek for k ∈ {1, . . . , DE} is given by

N (q,l)(Ek) =

∫
Ek

dN (q,l)(s) =

{ ∑M
m=1 1Ek(tm)(τ im,qτ jm,l + τ im,lτ jm,q) if q < l,∑M
m=1 1Ek(tm)τ im,qτ jm,q if q = l.

(13)

Denote |Ek| the length of interval Ek. Then the estimator α̂
(q,l)
E is given by

α̂
(q,l)
E (·) =

1

Ȳ (q,l)

DE∑
k=1

N (q,l)(Ek)

|Ek|
1Ek(·). (14)

We remark that with a fixed partition E , the setup is purely parametric with a finite number

of parameters α
(q,l)
k ≥ 0 that determine the piecewise constant function

α
(q,l)
E (·) =

DE∑
k=1

α
(q,l)
k 1Ek(·) ∈ SE .

This means that with this point of view, a classical M-step can be performed with some

objective function Qτ (π, {α(q,l)
k }(q,l)∈Q,1≤k≤DE ) to be maximized w.r.t. π and {α(q,l)

k }(q,l),k.
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Interestingly, it turns out that the solution of this M-step is exactly the same as the projection

estimators given by (14), that minimize the contrasts {γ(q,l)n }(q,l)∈Q on SE . Note that as

the estimators of α(q,l) are computed separately, the approach allows to choose different
partitions for different groups (q, l).

Now we turn to the choice of the partition and provide an adaptive model selection
method, that is applied to every function α(q,l) separately. LetMn be a finite collection of
partitions of [0, T ] considered for the estimation of α(q,l) with fixed (q, l).

Adaptive estimation consists in choosing the best estimator among the collection of

estimators {α̂(q,l)
E , E ∈ Mn} with α̂

(q,l)
E defined by (14). The choice is based on a penalized

least-squares criterion of the form

crit(q,l)n (E) = γ(q,l)n (α̂
(q,l)
E ) + pen(q,l)n (E),

for some penalty function pen
(q,l)
n : Mn → R+ that penalizes large partitions. Follow-

ing Reynaud-Bouret (2006) we take forMn either the collection of regular partitions Er of
[0, T ] with DEr = r intervals each of length T/r for r ∈ {1, . . . , rmax}, or the collection of
dyadic partitions Ed of [0, T ] with DEd = 2d intervals of length T/2d for d ∈ {0, . . . , dmax}
(where rmax and dmax are to be chosen). Furthermore, the penalty function is given by

pen(q,l)n (E) =
2DE
R

C with C =
DEmax

T Ȳ (q,l)
sup

1≤k≤DEmax

N (q,l)(EE
max

k ),

where Emax denotes the finest partition in the collection Mn, that is DEmax = rmax in the
regular case and DEmax = 2dmax in the dyadic case, and EE

max

k denotes the k-th interval of
partition Emax.

Denote by Ê = Ê(q,l) the partition that minimizes crit
(q,l)
n (E) over Mn. Let D̂(q,l) =

DÊ(q,l) be the size of partition Ê(q,l). Then the adaptive estimator of intensity α(q,l) is given

by α̂
(q,l)

Ê
that writes

∀t ∈ [0, T ], α̂
(q,l)
hist (t) = α̂

(q,l)

Ê(q,l)
(t) =

1

T Ȳ (q,l)

D̂(q,l)∑
k=1

D̂(q,l)N (q,l)(EÊk )1
EÊk

(t). (15)

Note that Reynaud-Bouret (2006) develops her approach in the Aalen multiplicative
intensity model, which does not exactly correspond to our context. Moreover, our setup
neither satisfies the assumptions of Theorem 1 in Reynaud-Bouret (2006), since the number
of jumps of each process Ni,j is not bounded by a known positive number, because here
the Ni,j are Poisson processes. Nevertheless, in our simulations, this procedure successfully
estimates the intensities α(q,l) (see Section 5). We refer to Baraud and Birgé (2009) for a
theoretical study of an adaptive nonparametric estimation of the intensity of a Poisson pro-
cess. Note also that Reynaud-Bouret (2006) studies other penalized least squares estimators
(for e.g. relying on Fourier bases), which might be used here similarly. An alternative way
for nonparametric intensity estimation relies on kernel estimators, that are explored in the
following section.

3.4 Kernel estimation M-step

In this part kernel estimators of the intensities α(q,l) are provided. A similar procedure has
been proposed for a non variational version of the EM algorithm in Robin et al. (2007). Note
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that in this approach, we do not maximize any criteria anymore. As already mentioned,
if the τ i,q’s are good approximations of the latent Zi,q’s, then the intensity of process
N (q,l) defined by (6) is approximately Ȳ (q,l)α(q,l), where Ȳ (q,l) is defined in (5) as the
variational mean number of dyads in group (q, l). Thus, a Nelson-Aalen-type estimator of
the cumulative intensity A(q,l)(t) is given by

Ī(q,l)

Ȳ (q,l)

∫ t

0
dN (q,l)(u), (16)

with indicator function Ī(q,l) = 1{Ȳ (q,l) > 0}. Kernel methods are suited to estimate
smooth functions. Following Ramlau-Hansen (1983) and considering a nonnegative kernel
function K with support within [−1, 1] together with some bandwidth b > 0, the intensity
α(q,l) is estimated by

α̂
(q,l)
ker (t) =

Ī(q,l)

bȲ (q,l)

∫ T

0
K
( t− u

b

)
dN (q,l)(u)

=
Ī(q,l)

bȲ (q,l)

M∑
m=1

τ (q,l)m K
( t− tm

b

)
, (17)

where τ
(q,l)
m is defined in Equation (7). Note that the bandwidth b can be chosen adaptively

from the data following the procedure proposed by Grégoire (1993). We choose not pursue
this path here and in our simulations (Section 5) we rely on automatic choices provided by
the software. Note also that kernel methods are not always suited to infer a function on a
bounded interval as boundary effects may deteriorate their quality. It is out of the scope
of this work to investigate refinements to correct for this issue.

3.5 Algorithm’s full description

To recapitulate all steps, Algorithm 1 provides a full description of the procedure.

3.6 Model selection w.r.t. Q

In this section, a model selection criterion for choosing the best number of groups Q is
proposed. We rely on the histogram-type M-step to construct this criterion. Indeed in
this case, notwithstanding that the model is semiparametric and thus a nonparametric
component is to be estimated, our estimator is finite dimensional. As such, the dimension
of the selected adaptive estimator may be used in the penalization term. Anyway, we
stress that once the number of groups is chosen, any of the two methods (histogram-type
or kernel) may be used to estimate the intensities. We rely on an integrated classification
likelihood (ICL) criterion introduced in the mixture context in (Biernacki et al., 2000) and
adapted to the SBM in Daudin et al. (2008).

For any value Q ≥ 1, let θ̂Q be the estimated parameter value with Q groups and ẐQ

the corresponding maximum a posteriori (MAP) classification at θ̂Q obtained by the VEM

algorithm with the histogram-type M-step. For each value of Q, the parameter θ̂(Q) =
(π̂(Q), α̂hist(Q)) has two components: the first one π̂(Q) is a vector of dimension Q − 1,
while the second has dimension

∑
(q,l)∈Q D̂

(q,l), where D̂(q,l) denotes the size of the partition

12



Algorithm 1: Semiparametric VEM–type algorithm

//Initialization

s← 0

Initialize τ [0]

Initialize J [0] = −∞
while convergence is not attained do

//M-step: Update group proportions

Compute π[s+1] relying on Equation (12) with τ = τ [s]

//M-step: Update intensities

Compute α[s+1] relying either on Equation (15) (histogram method) or (17)
(kernel method), with τ = τ [s]

//E-step: Update latent structure

Compute τ [s+1] relying on the fixed-point equation (10) using
(π, α) = (π[s+1], α[s+1])

//Compute value of criteria J and test for convergence

Compute J [s+1] through (11) with τ = τ [s+1] and (π, α) = (π[s+1], α[s+1])

Test for convergence via |J [s+1] − J [s]| ≤ ε
s← s+ 1

used in the histogram estimator α̂
(q,l)
hist (Q). In the adaptation of ICL to SBM these two

components are penalized differently: the first one, that concerns the n individuals, is
penalized by a log(n)/2 term, while the second one concerning the dyads is penalized by
a log(Rn)/2 term. We refer to Daudin et al. (2008) for more details. In our case, the ICL
criterion writes

ICL(Q) = logPθ̂Q(O, ẐQ)− 1

2
(Q− 1) log(n)− 1

2
log(Rn)

∑
(q,l)∈Q

D̂(q,l). (18)

Hence, after fixing an upper bound Qmax we select the number of groups

Q̂ = Argmax
1≤Q≤Qmax

ICL(Q).

The performance of the procedure is illustrated in Section 5.

4 Consistency results

In this section, we study the consistency (as n increases) of the Nelson-Aalen estimator of
the integrated intensity A(q,l)(t) =

∫ t
0 α

(q,l)(s)ds constructed with the values τ̂ i,q obtained
at the last step of the VEM algorithm. Provided that the variational parameters τ i,q are
close to the true membership indicators Zi,q, we show that relying on the weighted pro-
cesses (N (q,l))(q,l)∈Q defined in (6) is a good strategy. Moreover, we obtain that the kernel
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estimators based on these variational parameters τ i,q consistently estimate the intensities
αq,l .

To ease the understanding of the study of the asymptotic behavior of the estimators,
in this section we add subscripts n to all quantities previously defined that depend on the

sample size Rn. Thus we let Zn := (Z1, . . . , Zn) and Y
(q,l)
n := Y (q,l) for any (q, l) ∈ Q. For

i ∈ {1, . . . , n} and q ∈ {1, . . . , Q} denote by τ̂ i,qn ∈ [0, 1] the variational parameters obtained
at the last iteration of the VEM algorithm. Moreover, all previously defined quantities that
are now considered at the specific values τ i,q = τ̂ i,qn are denoted with a hat. Thus, we

consider the collection of weighted cumulative processes (N̂
(q,l)
n )(q,l)∈Q defined by

N̂ (q,l)
n =

{ ∑
(i,j)∈Rn

(
τ̂ i,qn τ̂ j,ln + τ̂ i,ln τ̂

j,q
n

)
Ni,j if q < l,∑

(i,j)∈Rn τ̂
i,q
n τ̂ j,qn Ni,j if q = l

and the value obtained at the last iteration of the VEM algorithm of the variational mean
number of dyads (i, j) with group membership (q, l) given by

Ŷ (q,l)
n =

{ ∑
(i,j)∈Rn(τ̂ i,qn τ̂ j,ln + τ̂ i,ln τ̂

j,q
n ) if q < l,∑

(i,j)∈Rn τ̂
i,q
n τ̂ j,qn if q = l.

Furthermore, we define the Nelson-Aalen-type estimator for A(q,l)(t) by

Â(q,l)
n (t) =

∫ t

0

Î
(q,l)
n

Ŷ
(q,l)
n

dN̂ (q,l)
n (s) =

Î
(q,l)
n

Ŷ
(q,l)
n

N̂ (q,l)
n (t), (19)

where Î
(q,l)
n = 1{Ŷ (q,l)

n > 0}.

Assumption 2. The variational estimators τ̂n = (τ̂ i,qn )iq satisfy

||τ̂n −Zn||∞ := max
i=1,...,n;q=1,...,Q

|τ̂ i,qn − Zi,q| = oPθ(1).

Note that establishing such a result on the behaviour of the variational parameters is
beyond the scope of this paper. However, while the variational approximation comes with
no theoretical guarantee of convergence in general (Gunawardana and Byrne, 2005), it is
reasonable to think that it is consistent in our context. Indeed, convergence of the posterior
distribution of group memberships given the observations to a factorized distribution for
(classical) SBM has been established in Mariadassou and Matias (2015). We also refer
to Celisse et al. (2012); Bickel et al. (2013) for related results on variational estimators in
SBM.

4.1 Consistency of Nelson-Aalen-type estimators of the cumulated inten-
sities

Theorem 1. Under Assumption 2, the Nelson-Aalen-type estimator (19) is uniformly con-
sistent, namely

∀(q, l) ∈ Q, sup
s∈[0,T ]

|Â(q,l)
n (s)−A(q,l)(s)| Pθ−→ 0 as n→∞.
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We note that N
(q,l)
Zn defined by (2) is an oracle version of our estimator N̂

(q,l)
n that

would be obtained if the latent variables Zn were known. Its conditional intensity has the

multiplicative form α(q,l)(·)Y (q,l)
n . We introduce the corresponding Nelson-Aalen oracle for

the cumulative intensity

A
(q,l)
Zn (t) =

I
(q,l)
n

Y
(q,l)
n

N
(q,l)
Zn (t), (20)

where I
(q,l)
n = 1{Y (q,l)

n > 0}. Some preliminary results are needed to prove the theorem.

Lemma 1. As n tends to infinity, the quantities Y
(q,l)
n defined by (1) satisfy

Y (q,l)
n =

{
n2πqπl(1 + oPθ(1)) if q < l,
n2

2 π
2
q (1 + oPθ(1)) if q = l.

Proof of Lemma 1. Denote Y
(q)
n =

∑n
i=1 Z

i,q the number of individuals in group q. The

number Y
(q,l)
n of dyads (i, j) with group membership (q, l) satisfies

Y (q,l)
n =

{
Y

(q)
n Y

(l)
n if q < l,

1
2Y

(q)
n (Y

(q)
n − 1) if q = l.

As Zi = (Zi,1, . . . , Zi,q) are i.i.d. with multinomial distribution M(1, π), the weak law of

large numbers gives that n−1Y
(q)
n

Pθ−→ πq when n→∞, which implies Lemma 1.

Lemma 2. Under Assumption 2, as n→∞,

Ŷ (q,l)
n =

{
n2πqπl(1 + oPθ(1)) if q < l,
n2

2 π
2
q (1 + oPθ(1)) if q = l.

Proof of Lemma 2. We prove the result for 1 ≤ q < l ≤ Q. One proceeds similarly for

q = l. In order to control Ŷ
(q,l)
n we introduce Y

(q,l)
n so that

Ŷ (q,l)
n = (Ŷ (q,l)

n − Y (q,l)
n ) + Y (q,l)

n .

Then Lemma 2 follows from Lemma 1, Assumption 2 and the following inequality

|Ŷ (q,l)
n − Y (q,l)

n |

≤
∑

(i,j)∈Rn

|τ̂ i,qn τ̂ j,ln + τ̂ i,ln τ̂
j,q
n − Zi,qZj,l − Zi,lZj,q|

≤
∑

(i,j)∈Rn

|(τ̂ i,qn − Zi,q)τ̂ j,ln + (τ̂ i,ln − Zi,l)τ̂ j,qn + (τ̂ j,ln − Zj,l)Zi,q + (τ̂ j,qn − Zj,q)Zi,l|

≤ 4
n(n− 1)

2
||τ̂n −Zn||∞. (21)

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Using the following decomposition

sup
s∈[0,T ]

|Â(q,l)
n (s)−A(q,l)(s)| ≤ sup

s∈[0,T ]
|Â(q,l)

n (s)−A(q,l)
Zn (s)|+ sup

s∈[0,T ]
|A(q,l)
Zn (s)−A(q,l)(s)|, (22)

the proof of the result splits into two parts.
First we work conditionally on the values of Zn. As already mentioned the multivariate

oracle process (N
(q,l)
Zn )(q,l)∈Q with intensity Y

(q,l)
n α(q,l) belongs to the multiplicative intensity

model by Aalen. By Theorem IV.1.1 from Andersen et al. (1993) we obtain for any (q, l) ∈ Q
that

sup
s∈[0,T ]

|A(q,l)
Zn (s)−A(q,l)(s)| = oPθ(1), as n→∞, (23)

if the assumptions of this theorem are satisfied. Indeed, as by assumption πq > 0 for all q,
we have ∫ T

0

I
(q,l)
n

Y
(q,l)
n

α(q,l)(s)ds =
I
(q,l)
n

Y
(q,l)
n

A(q,l)(T )
P−→ 0

and

∫ T

0
(1− I(q,l)n )α(q,l)(s)ds = (1− I(q,l)n )A(q,l)(T )

P−→ 0,

by Lemma 1 and the convergence of I
(q,l)
n = 1{Y (q,l)

n > 0} P−→ 1. Now, by the dominated
convergence theorem, convergence (23) is also valid unconditional on Zn.

We now establish the second part of the proof, namely,

sup
s∈[0,T ]

|Â(q,l)
n (s)−A(q,l)

Zn (s)| = oPθ(1). (24)

We prove it for 1 ≤ q < l ≤ Q and one proceeds similarly for q = l. For (i, j) ∈ Rn we
introduce the term

ri,j,q,ln :=
Î
(q,l)
n

Ŷ
(q,l)
n

(τ̂ i,qn τ̂ j,ln + τ̂ i,ln τ̂
j,q
n )− I

(q,l)
n

Y
(q,l)
n

(Zi,qZj,l + Zi,lZj,q). (25)

Then for any s ∈ [0, T ], we have

Â(q,l)
n (s)−A(q,l)

Zn (s) =
∑

(i,j)∈Rn

ri,j,q,ln Ni,j(s),

which leads to

sup
s∈[0,T ]

|Â(q,l)
n (s)−A(q,l)

Zn (s)| ≤ max
(i,j)∈Rn

|ri,j,q,ln | sup
s∈[0,T ]

∑
(i,j)∈Rn

Ni,j(s). (26)
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The term |ri,j,q,ln | may be bounded as follows

|ri,j,q,ln | ≤
∣∣∣(τ̂ i,qn − Zi,q)τ̂ j,ln Î

(q,l)
n

Ŷ
(q,l)
n

∣∣∣+
∣∣∣(τ̂ j,qn − Zj,q)τ̂ i,ln Î

(q,l)
n

Ŷ
(q,l)
n

∣∣∣+
∣∣∣Zi,q(τ̂ j,ln − Zj,l) Î(q,l)n

Ŷ
(q,l)
n

∣∣∣
+
∣∣∣Zj,q(τ̂ i,ln − Zi,l) Î(q,l)n

Ŷ
(q,l)
n

∣∣∣+
∣∣∣Zi,qZj,l( Î(q,l)n

Ŷ
(q,l)
n

− I
(q,l)
n

Y
(q,l)
n

)∣∣∣+
∣∣∣Zi,lZj,q( Î(q,l)n

Ŷ
(q,l)
n

− I
(q,l)
n

Y
(q,l)
n

)∣∣∣
≤ 4
||τ̂n −Zn||∞

Ŷ
(q,l)
n

+ 2
|Ŷ (q,l)
n − Y (q,l)

n |
Ŷ

(q,l)
n Y

(q,l)
n

≤ 4
||τ̂n −Zn||∞

Ŷ
(q,l)
n

+ 4n(n− 1)
||τ̂n −Zn||∞
Ŷ

(q,l)
n Y

(q,l)
n

,

where the last inequality comes from Inequality (21). Using Lemma 1 and Lemma 2, it
follows that under Assumption 2, we have

max
(i,j)∈Rn

|ri,j,q,ln | ≤ 1

n2
oPθ(1). (27)

To deal with the term sups∈[0,T ]
∑

(i,j)∈Rn Ni,j(s) in (26), we rely on (2) and (20) and obtain

sup
s∈[0,T ]

∑
(i,j)∈Rn

Ni,j(s) =
∑

(i,j)∈Rn

Ni,j(T ) =
∑

(q,l)∈Q

N
(q,l)
Zn (T ) =

∑
(q,l)∈Q

Y (q,l)
n A

(q,l)
Zn (T ),

for n sufficiently large such that I
(q,l)
n = 1. Using (23) and Lemma 1, it follows that there

exists some constant K > 0 (independent of n) such that

sup
s∈[0,T ]

∑
(i,j)∈Rn

Ni,j(s) = Kn2(1 + oPθ(1)). (28)

Combining (26) with (27) and (28) yields (24), which concludes the proof of Theorem 1.

Let us briefly explain why second-order asymptotics cannot be obtained with this
method. Indeed, it can be shown that the second term in the right-hand side of decomposi-
tion (22) converges at the rate

√
Rn = O(n). However, it is not reasonable to assume that

the variational parameters τ̂n satisfy ‖τ̂n−Zn‖∞ = oPθ(n
−1) (which would induce that the

first term in the right-hand side of (22) is oPθ(n
−1)). Moreover, assuming that this term is

OPθ(n) would only yield that Â
(q,l)
n converges at the parametric rate

√
Rn and would not

induce any characterization of this limiting distribution.

4.2 Consistency of kernel intensity estimators

In the same way, we can study the consistency of the kernel estimators built on the weighted

cumulative process (N̂
(q,l)
n )(q,l)∈Q. We still consider the variational parameters τ̂ i,qn ∈ [0, 1]

obtained at the last iteration of the VEM algorithm and for each (q, l) ∈ Q, the kernel
estimator (defined in (17)) that relies on these values τ̂ i,qn s, namely

α̂
(q,l)
ker (t) =

Î
(q,l)
n

bnŶ
(q,l)
n

∫ T

0
K
( t− u

bn

)
dN̂ (q,l)

n (u).
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Theorem 2. Under Assumption 2, assuming that all intensities α(q,l) are continuous at
t ∈ (0, T ) and as soon as the bandwidth bn satisfies bn → 0 and bnn

2 → +∞, for any

(q, l) ∈ Q the kernel estimator α̂
(q,l)
ker (t) converges pointwisely in probability to α(q,l)(t).

Namely,

∀(q, l) ∈ Q, |α̂(q,l)
ker (t)− α(q,l)(t)| Pθ−→ 0 as n→∞.

Proof. Let t ∈ (0, T ) be such that all the intensities α(q,l) are continuous at t and fix some
particular (q, l) ∈ Q. We introduce the oracle version of the kernel estimator, based on the
(latent) process NZn , namely

α
(q,l)
Zn (t) =

I
(q,l)
n

bnY
(q,l)
n

∫ T

0
K
( t− u

bn

)
dN

(q,l)
Zn (u).

Relying on Theorem IV.2.1 in Andersen et al. (1993), conditional on Zn and under the

above assumptions, the pointwise convergence of α
(q,l)
Zn (t) to the true intensity α(q,l)(t) in

probability is obtained. Namely,

∀ε > 0, Pθ(|α
(q,l)
Zn (t)− α(q,l)(t)| > ε|Zn)→ 0 as n→∞.

By dominated convergence, this is also valid without conditioning on Zn. Now, it is sufficient

to prove that α̂
(q,l)
ker (t)− α(q,l)

Zn (t) converges in probability to zero. We easily obtain that

α̂
(q,l)
ker (t)− α(q,l)

Zn (t) =
1

bn

M∑
m=1

K
( t− tm

bn

)
rim,jm,q,ln ,

where the terms ri,j,q,ln are defined by (25) for q 6= l and similarly when q = l. Using a
nonnegative kernel K, combined with Inequality (27), we get

|α̂(q,l)
ker (t)− α(q,l)

Zn (t)| ≤ max
(i,j)∈Rn

|ri,j,q,ln | × 1

bn

M∑
m=1

K
( t− tm

bn

)
≤ Rn
n2
oPθ(1)× 1

bn

∫ T

0
K
( t− u

bn

)dNn(u)

Rn
,

where Nn is the cumulative process Nn =
∑

(i,j)∈Rn Ni,j , whose intensity is given by

Q∑
q1=1

· · ·
Q∑

qn=1

πq1 . . . πqn
∑

(i,j)∈R

α(qi,qj),

which is also continuous at t. Applying Theorem IV.2.1 in Andersen et al. (1993) to the
kernel estimator

1

bn

∫ T

0
K
( t− u

bn

)dNn(u)

Rn
,

we obtain its convergence in probability and then the fact that this term is bounded in
probability. As Rn = O(n2), we thus obtain the result.
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5 Synthetic experiments

In this section, we investigate the numerical performance of our method first for clustering
the n individuals and then for estimating the intensities of the Q(Q+ 1)/2 inhomogeneous
Poisson processes. We also study the performance of the ICL criterion for recovering the
true number of groups. Note that R programs are available on request to the second author.

To assess the clustering performance, we rely on the adjusted Rand index (ARI, Hubert
and Arabie, 1985) that evaluates the agreement between the estimated and the true latent
structure. For two classifications that are identical (up to label switching), this index
equals 1, otherwise the ARI is smaller than 1 and negative values are possible. As for the
estimation of the intensities, we use the L2-norm to measure the distance between the true
and the estimated intensity. For each pair of groups (q, l) ∈ Q, the quadratic risk is defined
by

Risk(q, l) = ||α̂(q,l) − α(q,l)||2 =
(∫ T

0
(α̂(q,l)(t)− α(q,l)(t))2dt

)1/2
.

We consider various settings, grouped into two scenarios. The first scenario is intended
to evaluate the classification performance and explores different levels of difficulty, by focus-
ing on two shifted intensities with varying shifting parameter. The second scenario focuses
on the recovery of the different intensities and it is also used to assess the performance
of the ICL criterion, that selects the number of groups. There, intensities with different
shapes and amplitudes are considered. More precisely, the two scenarios are set as follows.

1. We consider the affiliation model with Q = 2 latent groups, equal group proportions
πq = 1/2 for q ∈ {1, 2} and n ∈ {10, 30} for the number of individuals. The intensities
are sinusoids with different shifts (see Figure 1). More precisely, we take T = 1,
α(q,q)(t) = 10 sin(2πt) + 10 and, for q 6= l, α(q,l)(t) = 10 sin(2π(t + φ)) + 10 with
shifting parameter φ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.

2. We choose Q = 3 latent groups with equal proportions πq = 1/3 for q ∈ {1, 2, 3}
and Q(Q+ 1)/2 = 6 different intensity functions plotted in Figure 4. The number of
individuals n varies in {20, 50}.

For every setting, 1000 simulations are carried out. For each simulation, a dataset
from the corresponding PPSBM is generated, that is, latent groups are generated and then
observations from Rn = n(n−1)/2 inhomogeneous Poisson processes on [0, 1] with intensity
depending on the individuals’ latent groups are simulated. Then, to estimate the latent
structure and the intensities, the VEM algorithm is applied on the data. We rely on the true
value of Q in the studies of clustering and estimation performances, and on several different
values of Q in the case of model selection.

As the VEM algorithm requires initialization, we always run it several times with different
initial values, and finally keep the result that optimizes the criterion J among the different
runs. Note that the VE-step takes as arguments the current values of both τ and (π, α),
while the M-step only relies on the current values of τ . It is hence natural to start the
VEM algorithm with an M-step, to limit the number of parameters to initialize. We use two
different methods to initialize τ , either by randomly chosen values or in a deterministic
way by applying a k-means algorithm. For the latter, k-means is applied with Q groups
on the rows of the n × n weighted adjacency matrix that contains the cumulated number
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Figure 1: Intensities in scenario 1. Each picture represents the intra-group intensity α(q,q)

(bold line) and the inter-group intensity α(q,l) for q 6= l (dotted line) with different shifting
parameter φ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.

of interactions between any two individuals (i.e. we forget about the times of interactions
and consider an aggregated random graph).

Finally, the histogram-type estimator uses the penalty function described in Section 3.3
with a regular partition and Dmax = 20. As for the kernel estimator, we rely on the
Epanechnikov kernel and the default bandwidth provided by the function density in the
R software (R Development Core Team, 2008).

We report boxplots of the ARI obtained with the histogram and the kernel versions of
our method in Figures 2 and 3 for the two scenarios, respectively.
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Figure 2: Boxplots of ARI in scenario 1 for the histogram (gray) and the kernel (white)
estimators with φ ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. Left panel n = 10, right panel n = 30.

For the first scenario, when considering small values of the shifting parameter (φ ∈
{0.01, 0.05}), the intensities are so close that the classification is very difficult, especially
when n = 10 is small. The classification improves when both the shift between the two
intensities and the number of observations increase, with (almost) perfect classification
when φ ≥ 0.1 (n = 30) or φ ≥ 0.2 (n = 10). We also observe that the kernel version of
our method gives better classification results than the histogram method, which might be
due to the choice of actually continuous intensities. For the second scenario, we can see
that the classification is already very good with only n = 20 individuals and perfect with
n = 50 scenarios. From the classification point of view, this scenario is somehow easy as
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Figure 3: Boxplots of ARI in scenario 2 for the histogram (left) and the kernel (right)
estimators. Left panel n = 20, right panel n = 50.

the intensities greatly differ from each other.
We now focus on the recovery of the different intensities and rely on the quadratic

risk computed in scenario 2 where different shapes and amplitudes are explored. Table 1
gives for scenario 2 and for each pair of groups (q, l), the mean value of the risk Risk(q, l)
and its standard deviation estimated over the 1000 simulations, for the histogram and the
kernel versions of our method. We also report in Table 1 the mean value (over those 1000
simulations) of the number of observations (im, jm) with group membership (q, l), namely∑M

m=1 Z
(q,l)
m . Moreover, Figure 4 and Figure 5 show for each pair of groups (q, l) the true

and the estimated intensities for one simulation in scenario 2.

Table 1: Mean values for the number of points; mean values (with standard deviation)
of the quadratic risks (averaged over 1000 simulations) for the histogram and the kernel
estimators, for each group (q, l) ∈ Q and n ∈ {20, 50} (scenario 2).

Index (q, l) mean(
∑

m Z
(q,l)
m ) Histogram Risk(q, l) Kernel Risk(q, l)

n = 20 n = 50 n = 20 n = 50 n = 20 n = 50

(1, 1) 83.400 545.740 0.56 (0.62) 0.2 (0.19) 1.2 (0.64) 0.65 (0.12)
(1, 2) 146.810 949.480 1.23 (0.52) 1.03 (0.05) 2 (0.28) 1.61 (0.07)
(1, 3) 83.990 545.210 0.89 (0.53) 0.41 (0.07) 0.46 (0.36) 0.2 (0.06)
(2, 2) 32.830 210.480 1.15 (0.43) 0.73 (0.08) 0.75 (0.48) 0.36 (0.09)
(2, 3) 131.840 846.420 2.07 (0.52) 1.05 (0.14) 1.84 (0.28) 1.06 (0.11)
(3, 3) 47.100 295.310 1.5 (0.54) 0.76 (0.17) 0.87 (0.46) 0.44 (0.12)

When the true intensity is piecewise-constant, the histogram version of our method re-
covers the intensity and, as expected, outperforms the kernel estimator. Conversely, when
the true intensity is smooth, the kernel estimator is better to recover the shape of the inten-
sity. Note that for the intensity of groups (2, 3) and when n = 50 is large, both histogram
and kernel estimators perform well. Note also that a well-known drawback of the kernel
estimator is that it suffers from boundary effects. This may be seen here for the intensities
with groups (1, 1), (1, 2) and is less crucial for the other intensities that appear to be null
at the interval boundaries.

Finally, we use scenario 2 to illustrate the performance of the ICL criterion. For each
of the 1000 simulated datasets, the histogram-type method is run for every q ∈ {1, . . . , 10}
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Figure 4: Scenario 2 with n = 20. True intensities (black continuous), histogram estimator
(red dashed) and kernel estimator (blue dotted) for each pair of groups (q, l) with 1 ≤ q ≤
l ≤ 3.
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Figure 5: Scenario 2 with n = 50. True intensities (black continuous), histogram estimator
(red dashed) and kernel estimator (blue dotted) for each pair of groups (q, l) with 1 ≤ q ≤
l ≤ 3.

to compute the values ICL(q) given by (18) and finally evaluate the minimizer Q̂ for this
dataset. Results for n = 20 are reported in Figure 6. We observe that the correct number
of groups is recovered in 95% of the cases (left panel). Moreover, the right panel shows
that when ICL selects 2 or 4 groups, ARI of the classification with 3 groups is rather low.
This shows that in those cases, classification with 3 groups is not the correct one, so that
the VEM algorithm seems responsible for bad results more than the penalization term. For
n = 50 our procedure selects the correct number of groupe for each simulated datasets.

6 Real datasets

6.1 London cycles dataset

The web site https://api-portal.tfl.gov.uk/docs provides the cycle hire usage data
from the Santander stations (previously known as Barclays) of the city of London from
2012 to 2015. This dataset is also used in Guigourès et al. (To appear) with a different
perspective. We choose to focus here on two consecutive days (randomly chosen), which are
Wednesday, February 1, 2012 (dataset 1) and Thursday, February 2, 2012 (dataset 2). The
data consist in pairs of stations associated to a single hiring/journey (departure station,
ending station) and corresponding time stamp (hire time, with minute precision). Each
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Figure 6: Scenario 3 with n = 20. Estimation of the number of groups via ICL criterion.
Left panel shows the frequency of the selected number of groups. Right panel shows ARI
of the classification with 3 groups depending on the selected number of groups.

dataset i contains ni stations (the number of stations involved per day varies) and mi hire
events, with n1 = 415, n2 = 417, m1 = 17, 631 and m2 = 16, 333. Here we have a total
time length T = 86, 400 minutes and we first applied our procedure with histograms based
on a dyadic partition with maximum size Dmax = 25 = 32.

An ICL criterion applied on these data shows a maximum value at Q = 7 clusters
both for datasets 1 and 2 (data not shown). We plotted the geographic locations of the
stations on a map of the city as well as the clusters obtained with our PPSBM (thanks to
the OpenStreetMap project). Figure 7 shows the results for dataset 1. Similar results are
obtained for dataset 2. We observe that our procedure mainly recovers geographic clusters,
as stations are mainly linked through geographic proximity in the two datasets.
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Figure 7: Geographic positions and PPSBM clusters of stations obtained for the London
cycle hires on February 1, 2012 (dataset 1). There are 7 different clusters (represented by
7 different symbols).
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By looking more closely at the results, it appears that the model selection steps acting
on the partitions used in each histogram estimate always select D̂(q,l) = 1, resulting in
constant intensity estimates. We interpret this result as the fact that in these datasets
clusters are mainly driven by present or absent connections between the stations rather
than the specific shape of intensities during the day. To confirm this assumption, we used
a kernel estimator of the intensities per group pair relying on the clustering previously
obtained.

When plotted each on their own scale, the intensities mainly exhibit 2 types of profiles:
those with 2 modes around 8am and 7pm and those with an extra mode around noon.
This is illustrated on Figure 8 that shows the estimated intensities for groups (1, l) with
l ∈ {1, . . . , 5}. Intra-group intensities tend to exhibit the 3-modes shape: as the stations
within a cluster tend to be geographically close, we observe activities during the lunch
break. On the contrary, clusters that are geographically far from each other tend to exhibit
a bimodal inter-group intensity (data not shown).
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Figure 8: Kernel intensities estimates for the 7 clusters on dataset 1. The plots show
estimated intensities for groups (1, l) with l ∈ {1, . . . , 5}.

Now, looking at the y-scales of the different intensities, we note that they are quite
different. When plotting the intensities on the same y-scale it appears that out of the 28
plots, 15 of them are almost null intensities. One group pair (namely (6, 6)) shows very high
intensity values, that are 3 times larger than the values of the intensity that exhibits the
second largest values (group pair (3, 6)). These are plotted on Figure 9, together with two
other group pairs: one exhibiting an almost null intensity ((1, 3) already plotted on Figure 8
in its own scale) and one with small but non null intensity (namely group pair (5, 6)). This
confirms that here the clusters are mainly driven by present or absent connections between
the stations rather than specific intensity shapes. We mention that group 6 is plotted
as a pink down-pointing triangle (O) in Figure 7 and corresponds to a cluster with small
geographic expansion.

6.2 Primary school temporal network dataset

We analysed the dataset presented in Stehlé et al. (2011) and available at the website
www.sociopatterns.org/datasets/primary-school-temporal-network-data/. To un-
derstand contacts between children at school and quantify the transmission opportunities of
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Figure 9: Kernel intensity estimates for the 7 clusters on dataset 1, plotted on the same y-
scale. The plots show the group pairs (6, 6) (largest intensity values), (3, 6) (second largest),
(1, 3) (among the 15 plots with intensity almost null) and (5, 6) (small intensity values, but
non null).

respiratory infections, data on face-to-face interactions were collected in a French primary
school (children from 6 to 12 years old) during two days in October 2009. The school is
composed by 5 grades, each of them comprising two classes, for a total of 10 classes (de-
noted by 1A, 1B, . . . , 5A, 5B). Each class has an assigned teacher and an assigned room.
The school day runs from approximately 8.30am to 4.30pm, with a lunch break from 12pm
to 2pm and two breaks of 20-25 min around 10.30am and 3.30pm. Lunches are served in
a common canteen, and a shared playground is located outside the main building. As the
playground and the canteen do not have enough capacity to host all pupils at the same
time, only two or three classes have breaks at the same time, and lunches are taken in two
consecutive turns. The dataset contains 125, 773 face to face contacts between n = 242
individuals (232 children and 10 teachers) observed during a total time length T = 116, 900
seconds (from 8.45am on the first day to around 5.05pm on the second day). We refer
to (Stehlé et al., 2011) for more details on the dataset.

We applied our procedure with histograms based on a dyadic partition with maximum
size Dmax = 210 = 1024, and with the number of groups Q varying in {1, . . . , 30}. For Q
varying between 2 and 11, Figure 10 shows the repartition of the n individuals (232 children
coming from 10 classes and the 10 teachers appear with different colors) into those Q groups.
When Q is small (Q ≤ 6), our procedure gathers different classes and their corresponding
teachers. When Q is larger, our procedure makes a sharper clustering according to the
behavior of the children. For example for Q = 11, the procedure separates children from
the same class: either to isolate a few of them in a group (3 children of class 1B are
put together in one group), or to put together children of different classes (one group is
made of children of classes 1A, 3A and 4B). But overall, the classes of children are mainly
conserved inside a same group. Note that teachers never form a particular group apart,
but are gathered with their assigned class, suggesting (Stehlé et al. (2011) made the same
observation) that contacts between teachers are sparse and that in this dataset clustering
is mainly driven by communities (i.e. groups of highly connected individuals, with few
inter-groups interactions).

Our model selection criterion for choosing the best number of groups Q does not provide
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a reasonably small number of clusters that could be used for interpretation on this dataset.
Indeed, the ICL criterion increases on the whole range of values Q ∈ {1, . . . , 30}. It has been
observed by other authors that this may happen for large datasets (see Guigourès et al., To
appear, and the references therein). Thus, building on the previous remarks concerning the
repartition of the children classes across the groups, we choose to analyse below the data
with both Q = 6 and Q = 11 groups.
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Figure 10: Partition of the n = 232 individuals into Q groups for Q ∈ {2, . . . , 11}. Each of
the five colors (red, purple, blue, green, yellow) represents a grade while black is for teachers.
Plain and hatching distinguish the two classes in the same grade. For each picture, there
are Q vertical bars corresponding to the Q different groups.

We thus consider the intensities estimated by our algorithm. Note that the contacts are
measured during two days, with no encounters between the end of afternoon on the first day
and the early morning on the second day. However, we did not input this information in our
algorithm and the procedure automatically selects the time partition adapted to the data.
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For Q = 6, the estimated intensities for groups (q, l) with q 6= l can be considered as null.
As groups mainly correspond to classes, this highlights that most contacts involve children
of the same class and that the dataset is structured into communities. Figures 11 and 12
show the estimated intra-group intensities with Q = 6 and Q = 11 groups, respectively. In
the case Q = 11, note that groups 3, 5, 7 and 10 correspond exactly to classes 2A, 3B, 5A
and 5B, respectively (with their corresponding teacher). In those intra-group intensities,
we recover peaks of interactions during the two breaks of 20-25 minutes around 10.30am
and 3.30pm. During the lunch breaks, it appears that interactions between children may
vary from the first to the second day, and are less important than during the breaks where
they play together.
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Figure 11: Estimated intra-group intensities for Q = 6 groups (plotted on the same y-scale).

We now consider the inter-group connections obtained with Q = 11 groups. Here again,
most of the estimated intensities for groups (q, l) with q 6= l can be considered as null, except
for some that we discuss now. First, we recall that our procedure splits some children of
the same class into separate groups. Indeed, groups 1, 4, 8 turn out to form one class,
while groups 6, 11 form another class (each one with its teacher). That is, the inter-group
interactions (1, 4), (1, 8), (4, 8) and (6, 11) (from our clustering point of view) correspond
in fact to intra-class interactions. The corresponding estimated intensities are shown in
Figure 13. Groups 6 and 11 are respectively constituted of 10 and 16 children of class 2B
(26 children in this class). During lunch time, children of group 6 do not interact with other
children (especially on the second day), whereas children of group 11 interact a lot during
lunch. It seems that our procedure has recognized two subgroups in class 2B: children
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Figure 12: Estimated intra-group intensities for Q = 11 groups (plotted on the same y-
scale).

having lunch at school and those going home for lunch. Groups 1, 4 and 8 are respectively
constituted of 3, 20 and 2 children of class 1B (25 children in this class). The estimated
intensities suggest a particular behaviour of some children of class 1B: group 8 consists
of two children without any contact between them, but with strong interaction with the
children of group 1. Indeed, the intensity between groups (1, 8) is four times higher than
the other intensities.

Second, from Figure 14 we observe that intensities between groups made of children of
the same grade are significant, suggesting that children mostly interact with children of the
same age. Figure 14 shows the estimated interactions between classes 5A (group 7) and 5B
(group 10) and between the classes 2A (group 3) and 2B (group 11). Those interactions
especially occur during the lunch break. As lunch is served in a common canteen with two
or three classes at a time, it is likely that classes are grouped by grade to get their lunch.
Note however that the estimated intensities between classes of the same grade are lower
than the intra-classes intensities.

As a conclusion, let us note we recover many results of Stehlé et al. (2011). In par-
ticular, we observe that contacts occur mostly within each class, and that more contacts
are observed between children of the same grade than with other grades. We also recover
periods of breaks during which interactions are more important. We also see that when
Q is relatively large, PPSBM allows for detecting subgroups in the classes with specific
behavior of some individuals (leaving school for lunch) and interesting behavior between
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Figure 13: Inter-group interactions that correspond to intra-class interactions with Q = 11
groups.

classes (interaction with classes of the same grade). We think that this is mainly due to
the fact that PPSBM takes into account the information provided by the timestamps of the
events. Without this temporal information, it is hard to imagine to obtain similar results.
In particular, aggregating data on a day scale (to construct for discrete time networks)
would not provide such a refined analysis.
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Figure 14: Estimated inter-group intensities between classes 5A (group 7) and 5B (group
10) and between classes 2A (group 3) and 2B (group 11) for Q = 11 groups.

6.3 Enron dataset

The Enron dataset is composed of email exchanges between n = 147 persons working at
Enron, mostly in the senior management, covering the period of the affair that led to
the bankruptcy of the company in 2001 (Klimt and Yang, 2004). Our dataset (retrieved
from http://www.cs.cmu.edu/~enron/) contains 23, 456 emails exchanged among these
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147 persons between November 14, 1998 and July 17, 2002, for which the sender, the
recipient and the time when the email was sent are known. Note that we analyse these
data with our undirected model.

Here again, our ICL criterion did not provide a reasonably small enough number of
clusters that could be used for interpretation. We thus choose to apply our procedure on
the data with Q = 3 groups and dyadic partitions for the histogram-type estimators of the
intensities using Dmax = 210 = 1024. Figure 15 shows the estimated intensities. The second
group is a rather silent group with very little activity. The first group is more active with
substantial intra-group communication. The third group is characterized by a very high
level of intra-group communication and some interaction with the first group. Figure 16
illustrates how communication evolves in the three groups over time. In this picture, we
choose to partition the whole time interval into 4 regular subintervals (with approximate
length of 10 months each) and represent the mean intensities (intra- and inter-groups) over
these subintervals. We see that intra- and inter-group communications are not stationary
through time.
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Figure 15: Estimated intensities for the Enron dataset using Q = 3 groups and a dyadic
partition with Dmax = 1024.

Now we would like to compare these results with those obtained using a classical SBM.
Note that taking Dmax = 1 in our approach amounts to forget the timestamps of the emails,
as the algorithm then only considers email counts over the whole observation period. In
other words, using Dmax = 1 boils down to rely on a classical SBM with Poisson emission
distribution and mean parameter A(q,l)(T ) (see for instance Mariadassou et al., 2010). Thus,
we compared the classifications obtained by the two procedures (PPSBM and classical SBM)
for different values of Q. Figure 17 shows the ARI values between those two classifications.
For Q = 2 the classification of the n individuals is very similar with both models. However,
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when increasing Q, the two classifications tend to differ more and more, without ever
becoming completely discordant (the smallest ARI value, around 0.3 is still not negative).
When Q = 3, a closer look on the classifications obtained by PPSBM and classical SBM
shows that differences mainly concern group 1 and 3. That is, it depends much on the model,
whether an individual is associated with group 1 or 3. Indeed, both groups are characterized
by a high level of intra-communication and a smaller amount of communication with the
other group. Intuitively, it may be difficult to distinguish group 1 from group 3 when
looking only at the total count data as in classical SBM. However, the temporal distribution
of the intra-group communication is different for both groups: in particular, the intra-group
communication of group 3 achieves its maximum during the second half of year 2000, while
the intensity of the intra-group communication of group 1 declines during this same period
(Figure 15). This means that taking into account the time information of the events may
be very useful to improve the classification of the individuals compared to classical SBM.
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Figure 17: ARI for Enron dataset between our classification and a classification obtained
by a simple SBM as a function of the number of groups Q.
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A Identifiability proofs

Proof of Proposition 1. We start by considering the distribution of one marginal process
Ni,j , which is a Cox process directed by the random measure Ai,j such that

Ai,j ∼
Q∑
q=1

Q∑
l=1

πqπlδA(q,l) .

(Here, for any (q, l) ∈ Q, we use the notation A(q,l) for the measure on [0, T ] defined by
A(q,l)(I) =

∫
I α

(q,l)(u)du for all measurable I ⊂ [0, T ]. We also recall that δu is the Dirac
mass at point u). It is known that the mapping of probability laws of random measures
into laws of Cox processes directed by them is a bijection (see for example Proposition
6.2.II in Daley and Vere-Jones, 2003). In other words, here the distribution of Ni,j uniquely

determines the finite measure (on the set of measures on [0, T ])
∑Q

q=1

∑Q
l=1 πqπlδA(q,l) . Then,

under Assumption 1 that the intensities α(q,l) are distinct, the corresponding measures A(q,l)

are all different and we may recover from the distribution of our counting process Ni,j the
set of values {(π2q , A(q,q)); 1 ≤ q ≤ Q} ∪ {(2πqπl, A(q,l)); 1 ≤ q < l ≤ Q} or equivalently the

set {(π2q , α(q,q)); 1 ≤ q ≤ Q} ∪ {(2πqπl, α(q,l)); 1 ≤ q < l ≤ Q}. In particular, we recover

the functions α(q,l) almost everywhere on [0, T ], up to a permutation of these Q(Q + 1)/2
values. However, to recover those values up to a permutation in SQ, it is necessary to
consider higher-order marginals.

We now fix three distinct indices 1 ≤ i, j, k ≤ n and consider the trivariate counting
process (Ni,j , Ni,k, Nj,k). In the same way, these are Cox processes directed by the triplet
of random measures (Ai,j , Ai,k, Aj,k) such that

(Ai,j , Ai,k, Aj,k) ∼
∑

1≤q,l,m≤Q
πqπlπmδ(A(q,l),A(q,m),A(l,m)).

We write this distribution in such a way that distinct components appear only once

Q∑
q=1

π3qδ(A(q,q),A(q,q),A(q,q))

+
∑

1≤q 6=l≤Q
π2qπl

[
δ(A(q,q),A(q,l),A(q,l)) + δ(A(q,l),A(q,q),A(q,l)) + δ(A(q,l),A(q,l),A(q,q))

]
+

∑
q,l,m

|{q,l,m}|=3

πqπlπmδ(A(q,l),A(q,m),A(l,m)). (29)
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Using the same reasoning, we identify the triplets of values {(A(q,l), A(q,m), A(l,m)); 1 ≤
q, l,m ≤ Q} up to a permutation on the triplets (q, l,m). Among these, the only values with
three identical components are {(A(q,q);A(q,q);A(q,q)); 1 ≤ q ≤ Q} and thus the measures
{A(q,q)}q are identifiable, up to a permutation in SQ. Going back to (29) and looking for the
Dirac terms at points that have two identical components (of the form (A(q,q), A(q,l), A(q,l))
and two other with permuted components), we can now identify the set of measures

{(A(q,q), {A(q,l)}l 6=q); 1 ≤ q ≤ Q}.

This is equivalent to saying that we identify the measures {A(q,l); (q, l) ∈ Q} up to a permu-
tation in SQ. Obviously, this also identifies the corresponding intensities {α(q,l); (q, l) ∈ Q}
almost everywhere on [0, T ], up to a permutation in SQ. To finish the proof, we need to
identify the proportions πq. Note that as we identified the components {A(q,q); 1 ≤ q ≤ Q},
we recover from (29) the set of values {π3q ; 1 ≤ q ≤ Q} up to the same permutation as on

the A(q,q)’s. This concludes the proof.

Proof of Proposition 2. We follow some of the arguments already appearing in the proof of
Proposition 1. Let Ain (resp. Aout) denote the measure whose intensity is αin (resp. αout)
The univariate process Ni,j is a Cox process directed by the random measure Ai,j that is
now distributed as

Ai,j ∼ (

Q∑
q=1

π2q )δAin + (
∑

1≤q 6=l≤Q
πqπl)δAout .

Thus the measures Ain and Aout are identifiable from the distribution of Ni,j , but only up to
a permutation. Once again, we rather consider the trivariate Cox processes (Ni,j , Ni,k, Nj,k)
directed by the random measures (Ai,j , Ai,k, Aj,k) whose distribution in the affiliation case
has now five atoms

( Q∑
q=1

π3q

)
δ(Ain,Ain,Ain) +

(∑
q 6=l

π2qπl

)
δ(Ain,Aout,Aout) +

(∑
q 6=l

π2qπl

)
δ(Aout,Ain,Aout)

+
(∑
q 6=l

π2qπl

)
δ(Aout,Aout,Ain) +

( ∑
q,l,m

|{q,l,m}|=3

πqπlπm

)
δ(Aout,Aout,Aout).

As previously, these five components are identifiable, up to a permutation on S5. Now it is
easy to identify the three components for which two marginals have same parameters and
the third one has a different parameter. Thus, we recover exactly the measures Ain and
Aout. This also identifies the corresponding intensities αin and αout almost everywhere on
[0, T ].

Now, the identification of the proportions {πq}q follows an argument already used in the
proof of Theorem 13 in Allman et al. (2011) that we recall here for completeness. From the
trivariate distribution of (Ni,j , Ni,k, Nj,k) and the already recovered values Ain and Aout,
we identify the proportion

∑
q π

3
q . Similarly, for any n ≥ 1, by considering the multivariate

distribution of (Ni,j)(i,j)∈R, we can identify the Dirac mass at point (Ain, . . . , Ain) and thus
its weight, which is equal to

∑
q π

n
q . By the Newton identities, the values {

∑
q π

n
q ; 1 ≤ n ≤

Q} determine the values of elementary symmetric polynomials {σn(π1, . . . , πQ); 1 ≤ n ≤ Q}.
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These, in turn, are (up to sign) the coefficients of the monic polynomial whose roots (with
multiplicities) are precisely {πq; 1 ≤ q ≤ Q}. Thus, the proportion parameters are recovered
up to a permutation.
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