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Abstract

A physical model of brass instrument is considered in this paper : a one degree-of-freedom
outward-striking valve for the lips, non-linearly coupled to a modal representation of the air
column. It is studied through Linear Stability Analysis (LSA) of the equilibrium solution.
This approach provides the threshold blowing pressure value, at which instability occurs, and
the instability frequency value. The relevance of the results of this method is theoretically
limited to the neighbourhood of the equilibrium solution. This paper checks the efficiency of
LSA to understand the behaviour of the model computed through time-domain simulations.
As expected, a good agreement is observed between LSA and numerical simulations of the
complete nonlinear model around the oscillation threshold. For blowing pressures far above the
oscillation threshold, the picture is more contrasted. In most of the cases tested, a periodic
regime coherent with the LSA results is observed, but over-blowing, quasi-periodicity and
period-doubling also occur. Interestingly, LSA predicts the production of the pedal note by
a trombone, for which only nonlinear hypotheses have been previously proposed. LSA also
predicts the production of a saxhorn note which, although known to musicians, has barely

been documented.

Introduction

Linear Stability Analysis (LSA) can be used to analyse the behaviour of dynamical systems around

equilibrium points (i.e. non-oscillating solutions). LSA consists in writing a linearised version of a



29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

dynamical system. The stability of the linearised system is then assessed by studying its response
to harmonic perturbations.

LSA has already been applied to physical models of musical instruments, such as woodwind
instruments |[Wilson and Beavers, 1974, Chang, 1994, Silva et al., 2008, Karkar et al., 2012],
flute-like instruments |Terrien et al., 2014] and brass instruments [Cullen et al., 2000,
Lopez et al., 2006, Silva et al., 2007]. By definition, the domain of relevance of the LSA re-
sults is theoretically limited to the neighbourhood of the equilibrium solution. However, recent
results on flutes have highlighted that LSA can predict important features of periodic regimes,
such as their frequencies [Terrien et al., 2014|. This paper examines to what extent LSA can be
used to understand some aspects of the behaviour of a physical model of brass instrument.

Physical models of brass instuments have been proposed in multiple stud-
ies  [Eliott and Bowsher, 1982, Fletcher, 1993, Adachi and Sato, 1996, Cullen et al., 2000,
Campbell, 2004, Silva et al., 2007]. Since our focus in this study is a simple model, a one
degree-of-freedom system is retained to model the player’s lips: the outward-striking valve,
also referred to as "(+,—)" in some publications. The same goal of simplicity makes us
ignore nonlinear propagation in the bore of the instrument, which is responsible for "brassy
sounds" at high sound levels [Myers et al., 2012|. The coupling by the airflow blown be-
tween the lips and the air column inside the bore is modelled through a usual nonlinear
algebraic equation [Hirschberg et al., 1995].  This model is detailed in Section 2.1. Even
such a simple brasswind model has more parameters needing to be tuned than the sim-
plest models of woodwind instruments, which is based on two dimensionless parameters
only [Hirschberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013].
However, brasswind players make their instrument oscillate on several modes, which implies a
significant modification of the mechanical characteristics of their lips. In musical terms, this
corresponds to playing multiple notes without pulling a slide nor depressing a valve, which is
part of the playing technique of all brass instruments. Therefore, the lip dynamics cannot be
ignored, which implies an increase in the number of parameters to tune. A bibliographical review
is given in Section 2.2 to give grounds to the values chosen for each parameter of the model. In
Section 2.3, details are given on how LSA is applied to the model. There are several possible
approaches to highlighting nonlinear model behaviours to compare them with LSA results. For
instance, the Harmonic Balance Method gives a Fourier series approximation of the steady state of
periodic regimes, including unstable ones [Gilbert et al., 1989, Cochelin and Vergez, 2009]. Since
the pioneering work described in [Schumacher, 1981, McIntyre et al., 1983], it is also possible to
carry out time-domain simulations at moderate computational cost, providing access to transients
and possibly non-periodic solutions. The second approach is retained here (see Section 2.4).
Section 3 compares LSA results and numerical simulations for different sets of parameter values.
Periodic regimes, corresponding to the usual sound of the instrument, are explored, along with
less common regimes such as quasi-periodicity and period-doubling. In Section 4, we focus on the

lowest acoustic resonance of brass instruments, called the pedal note, a particularly interesting
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case where LSA and numerical simulation results are surprisingly different from other regimes.

2 Tools

2.1 Brass instrument model

In most wind instruments [Fletcher, 1993, Chaigne and Kergomard, 2016|, including brass instru-
ments |Eliott and Bowsher, 1982, Yoshikawa, 1995, Cullen et al., 2000], the oscillation results from
the coupling between an exciter and a resonator. More generally, the closed-loop system repre-
sentation shown in Figure 1 has been widely used by the musical acoustics community since the
seminal work of Helmholtz [Helmholtz, 1877, McIntyre et al., 1983].

Resonator
(air column)

Exciter

(lips)

Nonlinear
Coupling

Figure 1: (Color online) Closed-loop model in free oscillation, suitable for the description of
most self-sustained musical instruments. Self-sustained oscillations are generated by the localised
nonlinear coupling between a linear exciter and a linear resonator. For brass instruments, the
exciter is the lip reed while the resonator is the air column inside the bore, and the coupling is due
to the air flow between the lips.

For brass instruments, the exciter is the lips of the musician. It is represented by a linear,
oscillator-like valve linking the height of the channel between the lips h(t) and the pressure differ-
ence across the lips dp(t) = py — p(t), where pj is the blowing pressure, and p(t) is the oscillating
pressure signal inside the mouthpiece (the input of the bore).

A one degree of freedom valve (referred to hereafter as "1-DOF valve") [Fletcher, 1993] is
enough to model the lips for common playing situations |Yoshikawa, 1995| with a manageable
number of parameters. Two kinds of 1-DOF valves can be considered : the "outward-striking"
valve tends to open when dp grows, while the "inward-striking" valve tends to close.

While it is now admitted that woodwind reeds can be satisfactorily modelled by inward
striking valves |[Wilson and Beavers, 1974, Dalmont et al., 1995], there is no consensus about
the modelling of the lip reed, as neither the outward-striking nor the inward-striking valve
model reproduces all the behaviours observed with real musicians. Particularly, brass players
are able to reach a playing frequency f,. above and below the n'* bore resonance frequency
facn [Campbell, 2004], while a 1-DOF inward-striking or outward-striking valve model is limited
to playing frequencies respectively below or above f,., to meet the regeneration condition ex-
plained in [Eliott and Bowsher, 1982]. Moreover, measurements of the mechanical response of
artificial [Cullen et al., 2000, Neal et al., 2001| and natural lips [Newton et al., 2008| revealed the
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coexistence of both inward-striking and outward-striking resonances - this coexistence allowing f,.
to be below or above f,. .

However, situations where f,. is below f,., (inward-striking behaviour) are mostly specific to
some musical effects. For normal playing situations, the playing frequency is above f,.,, and an
outward-striking valve model is preferred. Moreover, the geometry of human lips makes them open
when the pressure in the mouth increases, which is consistent with the behaviour of the outward-
striking valve model. The relevance of this choice will be reinforced throughout this article, by
comparing the results of the model analysis with experimental behaviours of brasswinds.

The outward-striking valve model gives the relation below, linking the height of the channel
between the lips and the pressure difference across the lips :

d*h  w; dh 9

T oS R = To) = (0= p(0) ()

where w; = 27 f; (rad - s71) is the lip resonance angular frequency; @Q; the (dimensionless) quality
factor of the lips; ho the value of h(t) at rest; u a lip surface mass equivalent (kg-m™2). The

variables are reported on the sketch of the lip region in Figure 2:

mouthpiece

Figure 2: (Colour online) Sketch of the mouth and lips of the musician and the instrument
mouthpiece. The mouth (left) is considered as a cavity under a static pressure p,. The lips
(ellipses) separate the mouth from the mouthpiece. The height between the lips is h(t), the airflow
between the lips is u(¢) and the pressure in the mouthpiece is p(t).

This model assumes the mouth pressure to be constant, even though the existence of an oscil-
lating component in the mouth has been demonstrated experimentally [Fréour and Scavone, 2013].
A more precise model would consider this oscillating component, which is due to the tunable pipe
formed by the vocal tract [Eliott and Bowsher, 1982]. A significant role of the vocal tract has been
shown for saxophone and clarinet playing [Clinch et al., 1982, Fritz, 2005, Scavone et al., 2008,
Guillemain et al., 2010, Chen et al., 2011]. However, for brass instrument playing, the role of the
vocal tract does not seem to be significant when playing periodic regimes in the usual musical
range of the instrument - although its interaction with the lips has been highlighted by experimen-
tal studies [Kaburagi et al., 2011, Chen et al., 2012, Fréour and Scavone, 2013, Fréour et al., 2015,
Boutin et al., 2015].

The resonator is the air column inside the bore of a trombone or a saxhorn (see Section 4.2).

It is modelled by its input impedance, which is the ratio between pressure P(w) and acoustic flow

4
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U(w) in the mouthpiece. Its expression in the frequency domain is:

Z(w) = ——=. (2)

Nonlinear effects in the resonator should be taken into account to accurately describe
the behaviour of brass instruments at medium/high playing levels [Hirschberg et al., 1996,
Myers et al., 2012| particularly the "brassy sound" related to the formation of shock waves. How-
ever, the main objective of this work is the study of oscillation at low levels. Therefore the acoustic
propagation along the bore is assumed to be linear and thus the input impedance fully describes
the resonator in our model. Here, input impedances of a Courtois "T149" tenor trombone (and
when mentioned, a Couesnon "Excelsior" baritone-saxhorn in Bb) are used. Impedances are mea-
sured with the impedance sensor described in [Macaluso and Dalmont, 2011]. They are fitted by a
sum of complex modes (pole-residue functions) using a Least Mean Squares method, as described
in [Silva, 2009, p.28-40]. The characteristic impedance of the resonator is Z. = pc/S, S being the

input cross section of the bore at the mouthpiece rim. The modal-fitted impedance is written:

N
Ch, Cx
Zw) =2 L_w_Sn | (3)
n=1 n

s, and C, being the complex poles and the complex residues of the n'* complex mode, respectively.

Translation of eq. (3) in the time domain and decomposition of p(t) into its modal components p,,
such as p(t) = 2. 32 Re(p,) results in an ordinary differential equation for each p,:
dpn

o = Ze.Cpu(t) + $p.pn Yn € [1, N]. (4)

arg(Z) (deg)

200 400 600 800
frequency (Hz)

Figure 3: (colour online) Magnitude (top) and phase (bottom) of the input impedance of a Courtois
tenor trombone with the slide in its first position. The dashed (blue) curve depicts the measured
impedance, the solid (red) curve is the fitted curve with 18 complex modes. The difference between
fit and measurement is also plotted (magenta).
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The measured trombone impedance and an 18-mode fit are compared, cf. Figure 3. The
maximum relative difference between the measured and the fitted curves, for frequencies above
30Hz, is lower than 2.6 % for the magnitude, and 4.7 % for the phase. Measurement in low
frequency is limited by the impedance sensor precision.

Those two linear elements (exciter and resonator) are non-linearly coupled by the airflow
through the lip channel. The air jet is assumed to be laminar in the lip channel, but tur-
bulent in the mouthpiece, all its kinetic energy being dissipated without any pressure recov-
ery. Applying the Bernoulli law and the mass conservation law gives the following expression
of the flow between lips, depending on the pressure difference and the height of the lip chan-
nel [Wilson and Beavers, 1974, Eliott and Bowsher, 1982, Hirschberg et al., 1995|:

=¢?mmﬁfw@, 5)

where u(t) is the airflow (m®-s™'), h(t) the height of the channel between the lips (m), p = 1.19
kg - m™? the density of the air at 20 °C and W the width of the lip channel (m).

The dynamics of the system described by (5), (1) and (4) can be put into a state-space repre-
sentation X = F(X), where F is a nonlinear vector function, and X the state vector, containing
the observables of the system. Since p(t) = ZnN:1 2Re(pn(t)), this results in the following system:

d?h wy dh
B )~ G2 =82 sty + 3 0

B — 5pa(t) + zccn\/EWh (t)y/ps —p(0) for n € |

This leads to the following state vector, similar to the one proposed in [Silva et al., 2014]:

dh '
X = b0 G o) € LAY )
and the function F' can be written as:
dh X(2)
1
) —RX(1) = X (2) = % 5 2RelX ()] + o + 2
t2
%: ap | = p(X) = s$1X(3)+C1.7Z \/7WX \/pb N2 9Re[X (k)] . (8)
dt
' 2
% sy X (N +2) + CN.ZC.\/;WX(l)\/pb — STV29Re[X (k)]

2.2 Choice of lip parameters

Setting the values for the parameters of the lip model is not obvious, because measuring the
mechanical admittance (velocity over force ratio) under playing conditions (oscillating lips) seems

out of reach, even if some experiments tend to it [Newton et al., 2008|. Adjusting parameters to
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get results comparable with measured signals does not seem a good approach: Indeed, even though
a one-DOF model depends on a small number of parameters, different sets of parameter values
may lead to similar results [Hélie et al., 1999]. Moreover, lip valve parameters are expected to vary
far more than reed valve parameters, particularly the lip resonance frequencies.

A bibliographical review on lip parameter values has been done. Results from the literature

are gathered in Table 1 along with a brief summary of the method used in the reviewed articles.

Reference ho (m) W (m) | f; (Hz) | g~ (m?-kg™!) Qi Summary
|[Eliott and Bowsher, 1982] N/A N/A 200 0.2 0.5 (); measured on cheek
[Cullen et al., 2000] 1" (Outward) mode
Embouchure: Soft 6.3-107* | 18-1073 | 189 0.07 10.5 Artificial lips
Medium 5.3-107* [ 12-1073 | 203.5 0.11 3 embouchures
Tight 4.4.-107* | 11-1073 | 222 0.09
[Lopez et al., 2006] 2-107* [30-107° 162 0.03 Artificial lips
[Gazengel et al., 2007] Human lips;
Embouchure: Soft N/A N/A 115.7 N/A 0.79 saxophone-like
ez Medium N/A N/A 479.9 N/A 0.46 position;
Tight N/A N/A 1073 N/A 0.46 3 embouchures
[Newton et al., 2008] N/A N/A 32 N/A 1.2-1.8 Human lips
High-speed camera
[Richards, 2003 5-1004 | 7-107% | 162 0.19 3.7 Artificial lips
fit for good results
|[Rodet and Vergez, 1996] N/A N/A 428.4 0.67 2.88 Trumpet; adjusted
for simulation
[Adachi and Sato, 1996] 1-107% | 7-107% | 60-700 variable 0.5-3 Trumpet; adjusted
for simulation
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Table 1: Review of different values of lip parameters from literature, along with a brief explanation
of the method. In some articles, certain values are not available (N/A). For papers presenting 2-
DOF lip models, only the first, outward-striking DOF is reported. All but the last two references
deal with trombone parameter values.

This work complements the review published in [Newton, 2009, p.119]. Many authors do not
provide the parameter values they use, nor do they give explanations about their method to get
these values, except the fact that these parameters allow periodic self-sustained oscillation of the
model. Measurements on human or artificial lips were made in conditions as similar as possible
to the playing conditions. The list of publications is not exhaustive: we left aside most of the
publications since they do not justify their values or do not fit their measurements with a modal
lip-reed model.

Geometric parameters (lip channel width, and lip channel height when the player is not blowing)

given in all studies are consistent, around W = 12.1073 m and hy = 5.10~% m. Parametric studies
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have shown that variations in these values do not drastically change the qualitative behaviour of
the model : numerical values change but the overall behaviour is the same. Similar observations
have been made about p, even though the range of the values gathered is a little wider (u € [5, 33]
for the trombone).

Measurements from |[Gazengel et al., 2007, Newton et al., 2008] tend to give low quality-factor
values between 0.5 and 2 for human lips. However, preliminary analysis carried out with ¢); ~ 1
showed very unrealistic pressure thresholds (order of magnitude : 10? to 10° Pa). Thus, a value
for (), = 7 was chosen, closer to the values measured on artificial lips (@, € [3.7,10.5]). The set of

parameters used for simulation and LSA throughout this paper is given in Table 2:

ho (m) | W (m) | 1/p (m?kg™") | @
51074 | 12.10°3 0.1 7

Table 2: Lip parameters retained in this study.

The value of f; is constantly adapted by the musician while playing. For this reason, we performed
LSA with f; values ranging from 20 Hz to 500 Hz. This allows oscillation on the first eight regimes
of the instrument, which correspond to the usual notes of the trombone, from Bbl to Bb4 with

the slide in first position.

2.3 Stability of the equilibrium solution

Linearising a closed-loop system to assess potential instabilities is a widely used method, in the dy-
namical systems community [Bergé et al., 1995| as well as in musical acoustics for brasswind, wood-
wind and flute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,
Auvray et al., 2012, Terrien et al., 2014|. Basically, the equations modelling the system are lin-
earised around a known equilibrium solution. Then, the stability of this solution is determined.

When the system described in Section 2.1 is in static equilibrium, the lip opening position has
a static value h(t) = h.. This equilibrium position is slightly larger than the lip opening at
rest hg, due to the constraint of the blowing pressure on the inner sides of the lips. Similarly,
there is a small static overpressure p, at the input of the bore of the instrument, as Z(w = 0) is
nonzero. This is related to the pressure loss in the instrument. Mathematically, this equilibrium

is obtained by cancelling all time derivatives in the system, as described in appendix A. The value
of A =/py, — pe is obtained by solving:

A? Py
AP+ =+ hoguwiA — = =0, 9
3 0HWy 3 (9)
with 8 = %w;o)\/% The value of Z(w = 0) is extrapolated from the fitted version of the
l

impedance. Equation (9) has 1 or 3 real roots. In the latter case, the smallest real positive root
should be considered to compute p. = p, — A? [Silva, 2009], as Z(w = 0) is small. The lip channel
height at equilibrium . is then given by (1) with A = h = 0.
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In the vicinity of the equilibrium solution X,, the linearised function F' can be written as:

F(X) = F(X.) + Jr(Xe)(X — X.), (10)

where Jp(X) is the Jacobian matrix of the function F' and X, the state vector at the equilibrium
solution. The solutions of X = F(X) are under the form :

N
X(t) = Xe=> Ut (11)
=1

where ); are the eigenvalues of Jr(X,) and U; the corresponding eigenvectors.

Thus, the eigenvalues of the Jacobian matrix give information about the stability of the equilibrium
solution for a given set of parameters. If at least one of these eigenvalues A has a positive real
part, the amplitude of the linearised solution tends to infinity while time increases, which means
the equilibrium is unstable and the solution starts oscillating. Referring to (11), this means that
one of the terms of the sum dominates the solution, all other terms being decreasing exponentials.

As a first approximation, the solution of the linearised system can be written:

X(t)=Xe= > Ueh' (12)
Re(A;)>0

The developed tool finds the lowest value of p, at which the equilibrium solution becomes unstable,
i.e. the value at which one eigenvalue A with positive real part appears. This value of p, is further
referred to as pypresn the oscillation threshold (or threshold pressure). During the transient phase of
the oscillation, the exponential growth of the amplitude is determined by the positive real part of
A, and the angular frequency is given by its imaginary part w = Im(\). However, the nonlinearities
of the system limit the final amplitude and also affect the oscillation frequency of the steady state.
This method only detects instabilities emerging from the equilibrium solution. If a stable oscil-
lating regime coexists along with the stable equilibrium solution, it will not be detected. This
situation occurs for example in certain woodwind instruments, where the Hopf bifurcation (con-
necting the equilibrium solution to the oscillating one) is inverse in some cases [Grand et al., 1997,
Dalmont et al., 2000, Farner et al., 2006, Ricaud et al., 2009).

2.4 Time-domain simulation

Another approach for studying musical instruments relies on time-domain ab initio simulations of
the chosen model, for a given set of parameters.

Multiple numerical methods have been developed to simulate wind instruments with models
similar to the one presented in Section 2.1. Various approaches have been proposed to imple-
ment the resonator acoustic behaviour. The reflection function of the bore has been widely
used [Schumacher, 1981, McIntyre et al., 1983, Adachi and Sato, 1995, Vergez and Rodet, 1997,
Gilbert and Aumond, 2008]. The modal decomposition of the bore has been chosen for this arti-
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cle, and computations are carried out with the open-source MoReeSC software tool, freely avail-
able [MoReeSC, 2013|. Its principles and results have been described in [Silva et al., 2014]|. This
simulation tool uses the state-space paradigm, similar to the one presented in Section 2.1. It al-
lowed us to simulate the behaviour of the model with a high number of acoustic modes for the
resonator (18 in this study), and offers the necessary flexibility to modify the model parameters,

including the resonator parameters, as it is done in Section 4.

3 Results

3.1 Linear Stability Analysis

The LSA method detailed in Section 2.3 is applied to the model defined in Section 2.1, with the
set of lip parameters defined in Table 2. The resonator is modelled with a modal fit (N=18 in
Equation (3)) of a measured impedance (Bb trombone, first position).

For each value of f; considered, the eigenvalues of the Jacobian matrix Jp(X.) presented in Equa-
tion (10) are computed for increasing values of py, until a first instability, characterized by at least
one eigenvalue with positive real part, occurs. For each value of f;, Figure 4a represents piuesn, the
lowest value of p;, giving rise to an unstable equilibrium solution (see section 2.3). Figure 4b rep-
resents the imaginary part of the corresponding eigenvalue divided by 27, which is the oscillation
frequency at threshold, further called fi,esn. Each horizontal dotted line in Figure 4b represents
the n'" acoustic resonance frequency of the instrument f,.,, given by the local maximum of the
input impedance amplitude.

It should be noted that, for p, values higher than p,.sn, other pairs of conjugate eigenvalues
may have a positive real part, which implies a system with multiple instabilities. If different
oscillating solutions are stable with these parameters, the system is able to start oscillating on
different acoustic resonances. In Figure 4, and later fig. 11 and fig. 14, the first instability (the
one corresponding to py, = Pypresn) is shown for each f; value (solid curve). The second instability
is reported only for a narrow range of f; (dashed curve).

Between 20 and 500 Hz, the two curves of Figure 4 can be divided into 8 parts. Each part
corresponds to a range of f; associated to one regime of oscillation, related to one acoustic resonance
of the instrument: [30,63 Hz| (first regime), [72, 123 Hz| (second regime), [124,179 Hz|, [180, 234
Hz], [235, 288 Hz|, [289, 352 Hz|, [353, 404 Hz], [405, 460 Hz]. In Figure 4b, an oscillating frequency
plateau is maintained just above each value of f,.,. This is the usual behaviour of an outward-
striking valve coupled to an air column: when playing on the n'* acoustic mode of the bore, the
oscillation frequency at threshold fip,esp is just above f,.,, which is the resonance frequency of the
n'" acoustic mode [Campbell, 2004]. For each regime, fiy s, monotonously follows the variation
of f;. This matches the experience of the brass player, who can slightly "bend" the pitch up and
down, i.e. increase or decrease the pitch, by adjusting f; through the muscular tension of the lips,

and by adapting the blowing pressure to the change in py,esn. The range of each plateau, i.e. the

10
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attainable frequency range on each acoustic resonance, has analytical limits depending on the lip
quality factor @, as detailed in [Silva et al., 2007]. These frequency limits are plotted as plain
(blue) lines on Fig. 4b). Between 64 Hz and 71 Hz, the equilibrium solution is unconditionally
stable whatever the value of p,: this frequency range covers the impedance minimum between 1%
and 2" peaks, which are farther apart from one another than the other peaks due to the first peak
inharmonicity.

It can be observed in Figure 4a that the oscillation threshold globally increases with the rank of
the acoustic resonance. A larger p, value is required to reach the higher notes of the instrument,
in accordance with the musical experience. For each regime, the p;..sn curve is U-shaped, as
already observed in [Silva et al., 2007]. Its minimum value p,p ,,, marked with a circle in Figure 4,
is known to depend significantly on the quality factor of the lips @);. In the following, we assume
as in [Lopez et al., 2006] that p,,:, and the associated lip resonance frequency fl‘fff and oscillation

frequency at threshold fi7' .,

represent the optimal playing configuration for a human performer.
This hypothesis is in line with what musicians report, i.e. they develop a strategy to minimize the
effort to produce a sound on a given regime. The values of pp ,,, between 500 Pa and 15.3 kPa have
the same order of magnitude as blowing pressure measured by [Bouhuys, 1968| and [Fréour, 2013].
The pressure threshold increases faster when f; grows above ffﬁt rather than when it decreases
below fﬁff, as illustrated by the inset in Figure 4a. These results are compatible with the experience
of brass players, who report that "bending down" a note requires less effort than bending it up.

The rest of this section focuses on some examples of [py, fi] points to illustrate the different be-
haviours observed with the model. For each case, the agreement between LSA results and the

sound produced by the time-domain simulation described in Section 2.4 is discussed.
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Figure 4: (colour online) Results of LSA applied to the model detailed in Section 2.1 with param-
eters from Table 2. For a range of lip resonance frequencies f;, (a) shows the threshold pressure
Pinresh, While (b) shows the corresponding oscillation frequency finesn. Dotted lines are the val-

ues of fy.n. Circles indicate the "optimal" values pp, and ff,f’:eshn as defined in the text. The

magnified subplot (zoom on Ath regime) highlights the asymmetrical py,,.sn, behaviour above and
below poptn. For illustration, the second destabilisation threshold (a) and the corresponding fre-
quency (b) are also plotted between f; = 109 Hz and 123 Hz. Diagonal solid (blue) lines in (b) are
analytical limits to fip,esn for a lossless model.

3.2 Exact match between simulation and LSA

The simulated pressure at the input of the instrument is compared with the LSA results. In par-
ticular, the oscillation threshold is assessed by performing simulations with p, in the vicinity of
Pinresh- Lhe corresponding frequencies, called f,., are also compared to fisesn given by LSA. This
latter quantity is measured by applying a zero-crossing algorithm [Wall, 2003|, with a sliding Han-
ning window (width 0.3s, overlapping 99%). This method results in small computation artefacts,
which should not be taken into account.

A simulation with the exact value of pip,esn Wwould theoretically lead to an infinite transient time,
defined as the time it takes to reach steady state. Therefore, values of p, slightly below and above

Pinresh are tested. To illustrate a periodic oscillation of the model, the lip resonance frequency is
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set to f; = 90 Hz, everything else being given in Table 2. The corresponding mouthpiece pressure
waveforms are represented in the first two plots in Figure 5. The third plot shows a situation
where p, is much higher than p,csh.

When the mouth pressure is below the threshold (p, = 1210 Pa whereas pipresn = 1222 Pa)
(Fig. 5 a), the oscillation decreases exponentially towards the static, non-oscillating solution. The
mouthpiece pressure converges towards 115.5 Pa, which is the value of p, computed with LSA. The

Re(Vt (amplitude of solutions

thick line represents the exponential decrease in the amplitude X,.e
taken from Eq. (12)), where X, is an arbitrary constant. In this case, all eigenvalues of Jp
have negative real parts: A is the eigenvalue of Jr which real part is the closest to zero. The
calculated oscillation frequency (dash-dotted line) is almost constant and equal to fipresn = 116
Hz = Im(\)/27.

When the mouth pressure is slightly above the threshold (p, = 1234 Pa) (Fig. 5b), the simulated
pressure waveform envelope increases exponentially during the transient phase, in agreement with
Equation (12). However, when the amplitude increases, the signal envelope is no longer exponential
and finally stabilizes in a steady-state regime. The calculated oscillation frequency f,s. (dash-dots)
begins at finresn = 116 Hz; it becomes quite higher in the permanent regime (126 Hz, that is, 8.6

% or 143 musical cents above fipresh)-
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Figure 5: (colour online) Time-domain simulations with parameters from Table 2 and f; = 90 Hz,
with mouth pressure p;, (horizontal solid line) lower (a) and higher (b) than the linearised model
threshold (pipresn = 1222 Pa). Mouth pressure (steady) and mouthpiece pressure (oscillating) are
plotted (left vertical axis) along with the exponential growth/diminution of amplitude calculated
using LSA (thick curves: envelope of Equation (12)). The dash-dotted curve depicts the instan-
taneous playing frequency (right vertical axis). The expected oscillation frequency at threshold
i finresh = 116 Hz. The third plot (c) corresponds to a blowing pressure much higher than the
threshold (p, = 3 kPa; zoom on first second of signal).

As expected, the behaviour of time-domain simulations is accurately predicted by LSA as long as
pp remains in the vicinity of pyresn (Figure 5a and 5b). The value of pyresn given by LSA is in
agreement with simulations. The eigenvalue with the largest real part predicts the frequency and
the amplitude of the oscillation at the beginning of the simulation. However, above the pressure

threshold in Fig. 5b, after ¢t = 8 s, the simulated amplitude gets affected by nonlinear phenomena
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and is no longer exponential. Thus, this linearised tool provides relevant information about the
signal, but is obviously unable to fully predict the amplitude of the sustained regime waveform.

The third plot shows the results with p, = 3 kPa much higher than p;,esn. LSA and time-domain
simulation give roughly coherent information. As in Figure 5b, the oscillating frequency of the
established regime f,;. = 130.5 Hz is 8 % higher than Im(\)/(27) = 120.8 Hz. The difference
is 134 musical cents, larger than a semitone. This difference is lower when p, is closer to Piresh.
Despite this difference, fin.csn predicts which acoustical resonance supports the oscillation. An in
vivo experiment has also shown that the pitch rises when the player increases the blowing pres-
sure [Campbell and Greated, 1994|. However, this remark should be considered carefully because

during practice a brass player always apply correlated control over mouth pressure and lip muscular

activity.
po (Pa) | Re(A) | Im(X\)/27 || fose (Hz) | measured transient duration (s)
1234 0.2864 116.74 126.5 9.71
1500 5.5591 117.66 127.6 0.74
2000 | 12.0262 118.99 128.9 0.31
2500 | 16.0891 120.01 129.7 0.215
3000 | 18.8507 | 120.82 130.5 0.1675

Table 3: Values of the real part of the destabilising eigenvalue J, its imaginary part divided by 2,
the oscillation frequency of the established regime, and the duration of the transient (both measured
on simulations) for different values of the blowing pressure (all other parameters unchanged). The
real part of X increases with p,, which implies a faster-growing envelope as p, increases. This
is consistent with the transient duration measured with MIRonsets'function estimating the time
needed to reach 95% of the maximum amplitude of p(t).

Transient time, i.e. the time needed for the amplitude to reach 95% of its final value, have been
measured with different values of p,. The values are reported in Table 3.

The transient time decreases while Re(\) increases, which can be modelled: according to Eq. (12)
the amplitude grows exponentially with Re(A). Thus, under the assumption that p. is negligible

compared to 95% of the final amplitude (hereinafter noted pgs9), one can write:

Posoy = B.eRe(A).transient, (13)

where B is a real constant and transient the transient time (s).

Furthermore, according to [Bergé et al., 1995, p.40] in the vicinity of a direct Hopf bifurcation, the
maximum amplitude of the oscillation is proportional to the square root of the difference between
the parameter value and the threshold value, which means \/p, — pinresn, here. Therefore, the value

of the pressure at t = transient is:

Part of MIRtoolbox: https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
mirtoolbox/. Accessed 2016-09-13
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Pos% = 0.95.C. V Pb — Dthresh (14)

where C is a real constant.

Introducing this expression of pgsy in the natural logarithm of Eq. (13) results in the following

0.95.C.

analytical expression of the transient time where A = ==

1
transient = R—()\) . ln(A vV Py — pthresh)' (]‘5)
€

With A = 4.75 fitted on values measured on time-domain simulations, this model matches very
well with the evolution of transient durations measured on simulations with different values of py,

as shown in Figure 6.

10w

transient duration (s)
*

Re(>\)10

Figure 6: (colour online) Transient durations measured on time-domain simulations, plotted along
the Re(\) value (x symbols). The solid line is the transient duration model described by Eq.(15).

The oscillation frequency also increases with p,. An estimate of the frequency is also given (imag-
inary part of A divided by 27) which matches well the pseudo-frequency of the transient phase of

each signal.

This example is representative of most cases tested: LSA correctly predicts whether the solution
is oscillating, with an acceptable estimation of the oscillation frequency. The transient duration
can be accurately predicted with the real part of A, as described in Eq. (15) even for p, far above
the threshold. However, the accuracy of the oscillation frequency prediction is limited, and LSA
can predict neither the steady-state waveform nor the nature of the oscillation regime. This latter

observation will be further highlighted in the following sub-section.

3.3 Unforeseen behaviours

LSA provides a lot of relevant information about the oscillation threshold and the transient phase.

This is particularly true when p, is near pu,csn. However, some simulations (detailed below)
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show nonlinear phenomena, which obviously this method cannot predict. These phenomena
include quasi-periodic oscillations. By definition, these are deterministic oscillations whose energy
is located at frequencies which are integer combinations of base frequencies, whose ratio is an

irrational number.

Quasi-periodic oscillations

Firstly, the previous comparison between LSA and time-domain simulation is reproduced with a
different lip resonance frequency. Three simulations are performed with the parameters given in
Table 2 and f; = 110 Hz. For these parameters, pi,.sn 1S equal to 711 Pa. Again, three different
pp values are tested: p, = 701 Pa, p, = 720 Pa to illustrate the behaviour just below and above the
threshold, and p, = 2 kPa for an example far above the threshold. Results are plotted in Figure 7.
When p;, is under the threshold, results are very similar to the previous case with f; = 90 Hz
(Fig. 7a and 7d). However, when p, becomes large enough to induce an oscillating solution, the
oscillation of the mouthpiece pressure becomes quasi-periodic instead of periodic (Figure 7b, 7e,
7c and 7f). The quasi-periodic nature of the signal is clearly visible on the spectra (Figure 7e and

7f) with secondary peaks around the principal frequency peaks.
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pb=701Pa pb=720Pa pb=2000Pa
120 \L Z 2000
. 500/ mo/
< 80 = —_
1 [ 9
5 60 5 > -1000
a 2 2
o © -500 <}
S 40 =3 o -2000
201 ~1000 -3000
0 . . —4000
0 5 10 15 0 5 10 15 0 0.5 1 15 2
time (s) time (s) time(s)
d) e) f)

100 100

.
S
S

80 80

IS @ ®
S 3 S

20.log[FFT(p(t)]

20.log[FFT(p(t)]
20.1og[FFT(p(t)]

=)

!
N
=]

-40

200 400 600 800 1000 ) 200 400 600 800 1000 0 200 400 600 800 1000
Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 7: (colour online) Simulation results for f; = 110 Hz, the pressure threshold being pypresn =
711 Pa. Like in Figure 5 three simulations are shown with p, = 701 Pa (a), p, = 720 Pa (b)
and p, = 2 kPa, much higher than py.csn (¢). pp is plotted as an horizontal solid (red) line. The
envelope of Eq. (11) is plotted in plain (black) line. Other parameters (lip characteristics) are given
in Table 2. Figures (d), (e) and (f) are the spectra corresponding to (a), (b) and (c), respectively
((e) and (f) calculated using steady regimes of (b) and (c).
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This illustrates the aforementioned limitation of LSA. The existence of an oscillating solution
is attested in the vicinity of the bifurcation, and the pressure threshold pi.esn is accurately

predicted, but the occurrence of a quasi-periodic regime cannot be predicted.

Period doubling

When f; is equal to 55 Hz, p, to 400 Pa (piresn, being 161 Pa), and the other parameters are the
values given in Table 2, the simulation result oscillates at f,s. = 32.5 Hz, far below fip,esn = 59.78
Hz. This is a peculiar behaviour, as this oscillation frequency is significantly under the trombone
first acoustic resonance (f,.1 = 38 Hz). Indeed, the chosen model induces playing frequencies
above the acoustic resonance frequency (fosc > facn), at least near the pressure threshold, to
comply with the regeneration condition [Eliott and Bowsher, 1982].

Figure 8 compares the spectrum of the mouthpiece pressure simulated with the aforementioned
parameters and f; = 55 Hz (dotted line) and then with f; = 50 Hz (solid line). For f; = 50 Hz,
fose = 65 Hz is higher than fi,.esn, = 56.3 Hz, like in previous simulations in Section 3.2. For
fi = 55 Hz, a reasonable expectation would be an oscillation frequency slightly higher than 65 Hz,
as f,s tends to increase with f;. However, the simulation oscillation frequency at f; = 55 Hz is
fose = 32.47 Hz, close to half of its value at f; = 50 Hz.

140

120}

100

Magnitude (dB)

80 i,

60

40
0

50 100 150 200
frequency (Hz)

Figure 8: (colour online) Spectra of the simulated trombone mouthpiece pressures, with p, = 400
Pa for both lip resonance frequencies, f; = 50 Hz (solid) and f; = 55 Hz (dotted) (other parameters
from Table 2). Cross markers give the values of fi esn = 56.3 Hz for f; = 50 Hz and fipesn = 59.8
Hz for f; = 55 Hz. The solid vertical line indicates the first acoustic resonance frequency of the
trombone bore, f,.1 = 38 Hz.

Further simulations were carried out, with f; going from 50 to 61 Hz in steps of 1 Hz, p, = 400 Pa
and the others parameters set as in Table 2. Table 4 reports the oscillation frequency measured
on the simulated signals, along with the fi,.sn value predicted by LSA. Between 54 and 55 Hz,
the oscillation frequency is almost halved. Then, between 56 and 57 Hz, the frequency is again

halved, becoming a quarter of its value for f; < 55 Hz. For f; = 59 Hz and above, the fundamental
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o frequency rises sharply to a value close to its original value, but the energy is far more distributed

421

in the spectrum.

fi (Hz) 20 51 52 53 54 95 26 57 o8 29 60 61
k22 fose (Hz) 65.45 | 65.48 | 65.49 | 65.49 | 65.46 | 32.53 | 32.54 | 16.32 | 16.32 | 65.1 | 65.1 | 65.1
finresn (Hz) || 56.3 | 56.97 | 57.71 | 58.36 | 59.08 | 59.78 | 60.51 | 61.27 | 62 | 62.77 | 63.58 | 64.44
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Table 4: Oscillation frequencies measured on the simulated mouthpiece pressure, for lip frequencies
from 50 to 61 Hz, p, = 400 Pa and other parameters from Table 2. Oscillation frequencies at
threshold given by LSA are also reported.

These results are close to those reported in [Gibiat and Castellengo, 2000], with a trombone
player performing two successive period doublings. When increasing f; in this range, the model
undergoes multiple period-doubling bifurcations. Similar scenarios have been observed on nu-
merical models of woodwind instruments [Gibiat, 1988, Kergomard et al., 2004]. This succession
of period doublings is also known as subharmonic cascade or Feigenbaum scenario and leads to
chaotic behaviour, which may explain the noisiness of signals above f; > 58 Hz. Again, explaining

the occurrence of such phenomena is out of reach with LSA.

Overblowing

Besides these two nonlinear phenomena, other differences between eigenvalue-based LSA and time-
domain simulation can be observed. Another example is given with f; = 120 Hz, the parameters
given in Table 2 and a high blowing pressure: p, = 6.5 kPa while the threshold is ps,esp, = 1056 Pa.
While finresn = 128.4 Hz is just above the 2" acoustic resonance frequency of the bore (faco =112
fose = 1875 Hz > f,.3 = 170 Hz.

Figure 9 shows the spectrum of a simulation oscillating on the third acoustic resonance, while the

Hz), the simulation oscillation frequency exceeds the 37

predicted oscillation at threshold corresponds to the second one.
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Figure 9: (colour online) Spectrum of simulated mouthpiece pressure for f; = 120 Hz and p, = 6.5
kPa with other parameters taken from Table 2. The self-sustained oscillation occurs at f,s. = 187.5
Hz, corresponding to the third acoustic resonance, while LSA predicts an oscillation at fi,.csn =
128.4 Hz (thick vertical line) with psresn = 1056 Pa. Each dash-dotted line represents the n'”
acoustic resonance frequency f,., of the trombone bore.
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The method previously used, which consists in retaining the lowest p, value causing a destabil-
isation, does not predict the behaviour of the system with such a high blowing pressure. Yet,
this oscillation on the third regime can be understood, since another pair of eigenvalues of the
Jacobian matrix with a positive real part appears for p, > piresn- The dashed lines in Figure 4a
and 4b shows the pressure threshold corresponding to the second pair of such eigenvalues (called
Ay and A}), and the associated oscillation frequency. For f; = 120 Hz the second threshold is
6116 Pa with an oscillation frequency equal to Im()\y)/2m = 172 Hz, corresponding to the third
regime of oscillation of the system. This is consistent with the behaviour observed in the numerical

simulation.

3.4 Open-loop transfer function

For a better understanding of the origin of the different instabilities, another LSA formalism is
used, which gives visual information about the stability margins of the different oscillation regimes.
It consists in studying a linearised version of the open-loop transfer function (OLTF) of the system
defined by Equation (5), (1) and (3) [Saneyoshi et al., 1987, Ferrand et al., 2010]. This OLTF is
divided into two parts: the exciter admittance Y, which describes the lip reed behaviour, from
Equation (5) and (1), and the resonator input impedance, which is modelled with a modal fit of
its input impedance Z like in the other formalism (see Equation (3)).

The linearisation of the exciter admittance Y, simplifies to a 15! degree Taylor expansion of Equa-
tion (5) near the equilibrium point; Equation (1) is then put into the result. Details can be found

in Appendix B about the calculation which leads to the following expression of Y,:

B |20p. ( D(w) 1
Y, =Wh, P (Khe 2517@) , (16)

where D(w) represents the dynamics of the lip reed.
The stability of the OLTF, called Hpp, is then evaluated with the Barkhausen -crite-
rion [Wangenheim, 2011], which points to possibly unstable solutions when Hp, = Y,.Z = 1.

On a Bode diagram, points with Hpy having a 0 dB magnitude and 0° phase are limits of stability.
This method has already been used for clarinet models with inward-striking valves, and for brass
and flute-like instruments [Saneyoshi et al., 1987, Ferrand et al., 2010, Terrien et al., 2014].

Figure 10 shows the Bode diagram of the OLTF of the system fed with the same parameters as in

Figure 9. The stability limits are indicated with crosses.
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Figure 10: (colour online) Bode diagram of the open-loop transfer function of the trombone model
with the parameters specified in Table 2, f; = 120 Hz and p, = 6.5 kPa. There are two instability
points (crosses), with a 0 dB magnitude and a zero phase.

Here, the Bode diagram shows two points of 0 dB magnitude and 0 degree phase at 132 Hz and
172 Hz. In terms of the eigenvalues-based LSA tool described in Section 2.3, these frequencies
correspond to the imaginary part of the eigenvalues of Jr calculated with p, = 6500 Pa and
having a positive real part. The frequency obtained with OLTF differs from the one obtained with
eigenvalues of the Jacobian matrix, because fi,esn = 128 Hz is obtained at p, = pipresn = 1056
Pa while the OLTF value is obtained with p, = 6.5 kPa. The real part of the second destabilising
pair of eigenvalues becomes positive above 6116 Pa, which is compatible with an oscillation on
this regime at p, = 6.5 kPa. The related frequency at threshold is 172.9 Hz corresponding to an
oscillation on the third acoustic resonance.

Both LSA methods show multiple instabilities of the static solution, that is, multiple possible
regimes of oscillation. The predictions of threshold pressures and possible oscillation frequencies
are satisfactory. But they give no information either about the stability of these oscillation regimes,
or about which regime the instrument will actually oscillate on. This is determined by initial
conditions and by the stability of the different oscillating solutions, which depends on nonlinear

elements out of reach of the method.

4 Lowest regime of oscillation

This chapter focuses on the results of LSA and time-domain simulation on the lowest regime,
related to the first acoustic resonance of the air column inside the bore. This lowest playable note
is called "pedal note" by musicians. For the trombone in first position, and the saxhorn with no

valve depressed (neutral position), the pedal note is a Bb1 at 58 Hz in the musical scale.
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4.1 The Trombone "pedal note"

To compare the behaviour of the different registers of the trombone, the ratio between the thresh-
old frequency finresn and the resonance frequency of the corresponding acoustical mode fq., is
computed. Figure 11a and 11b give piresn and fipresn like in Figure 4 but on a smaller f; range,
and Figure 11c gives the fipresn/ facn ratio.

At the lip frequencies corresponding to the pressure threshold minima, called flfﬁt (see circles in
Figure 11), this ratio appears to be significantly higher for the first acoustic resonance than for
the other ones: ff}f:esh71/fac71 = 55.6/38 = 1.46 while ff;f:esh,n/fac,n € [1.04,1.1] for n > 2 as shown
in Table 5.

It can be noted that, at least for the five lowest resonances, ft(;z“tesh,n is in good agreement with the
note supposed to be played on the instrument for this resonance, according to the tempered scale
(see Table 5). Therefore, LSA gives a reliable estimation of the note corresponding to these acoustic

. . . . +
resonances, including the pedal note, with a relative error between f7 .,

and the tempered scale
note smaller than 5.5%. However, ff,f:esh’n underestimates the playing frequency of the pedal note

while it overestimates the other notes.

Regime l”ff (Hz) t(;ﬁ“tesh,n (Hz) | tempered scale (Hz) | relative error || fuen (Hz) f}f’:eshm/fac,n
1 49 55.6 58.27 —4.6% 38 1.46
2 110 122.9 116.54 5.4% 112 1.1
3 162 180.0 174.81 2.9% 170 1.06
4 215 238.9 233.08 2.5% 228 1.05
5 271 301.6 291.35 3.5% 290 1.04
Table 5: f‘;ﬁfeshm values for the five lowest regimes of the trombone, compared with the frequency
of the expected note. The acoustic resonance frequency of the corresponding mode, the I?Zt value
and the fi7 ./ facn ratio are also given. ff}f’:eshm is a suitable prediction of the played note. The
opt

thresh,n

/ facn ratio is particularly high for the first oscillation regime.

For illustration, a simulation is carried out with the usual parameters from Table 2 with f; =
' — 49 Hz and pj, = 150 Pa (pypresn being 146 Pa). The resulting signal oscillates at f,s. = 61.86

In —

Hz, far higher than f,.;: the frequency results of LSA and of simulation are consistent for these

parameters as well.
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Figure 11: (colour online) Results of LSA (with lip parameters from Table 2) are plotted on (a)
and (b) with a narrower f; range than in Figure 4. Horizontal dotted lines in (b) are the fo.,
values. The firesn = fi curve is also plotted (dotted). (c) is the ffpt /fac,n ratio. Circles

hresh,n
indicate the f°' lip resonance frequencies.
In

The LSA and the numerical simulation reveal a particularity of the trombone first regime: the
oscillation frequency predicted by both methods is far above the acoustic resonance frequency,
which results in a high ff,f:esh’n

matches the experience of trombone players, who are able to play the pedal note in tune with the

/ facn ratio for n = 1, while it is much smaller when n > 2. This

other notes, despite the large inharmonicity of the corresponding acoustic resonance. Therefore,
a linearised model is able to predict a regime previously attributed to unexplained non-linear
contributions of the upper acoustic resonances [Benade, 1976, p.405]. To complete this conclusion,
LSA have been applied to the model with a resonator limited to the trombone’s first mode. This
results in ff,f:esh,l = 61.06 Hz. This confirms that the high fip,esn/ facn ratios are related to the
first mode itself, and not to the contribution of the upper modes.

Bouasse proposed an experiment in which a trombone is played with a saxophone mouth-
piece [Bouasse, 1986, p.370|. Gilbert and Aumond recently ran this experiment and published
it |Gilbert and Aumond, 2008|, together with audio and video recordings. The result is an in-
strument playing a low Ebl, that is, an oscillating frequency just under f,.; = 38Hz, which is
compatible with a playing frequency below the acoustic resonance frequency, characteristic of the
inward-striking valve model used [Wilson and Beavers, 1974].

In order to explore the influence of nature of the exciter - inward-striking or outward striking -

this experiment is simulated here. A trombone is equipped with a saxophone mouthpiece instead

22



534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

of a trombone mouthpiece. The input impedance of this assembly is measured and fitted by a sum
of complex modes, which is used as the resonator in the instrument model. The saxophone reed
is modelled with an inward-striking valve as defined in [Wilson and Beavers, 1974| for example.
[ts equation is the same as Eq. (1) except the sign of the right-hand term: (p, — p(t)) becomes
(p(t) — pp) in this model. The characteristics of the cane reed are taken from [Silva, 2009 : f; =1
kHz, Q = 1.1;1/u = 49 m? -kg™1; W = 1072 m;hg = 5.107* m. The results are presented in
Figure 12.

The oscillating frequency of the simulated mouthpiece pressure is close to the first resonance
frequency fosc/facqi = 0.99 - a ratio contrasting with the high ratio obtained with an outward-
striking valve. The signal is nearly sinusoidal because of the lack of acoustic resonances matching

the harmonics of this frequency in the impedance spectrum.

2000 i i ; i 150 | |
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__ 1000f | | |
© o I I |
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P et | [ |
2 0 2 | | |
3 S 90 | | |
E & | |
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Figure 12: (colour online) Results of simulation of a trombone with a tenor saxophone mouthpiece,
modelled as an inward-striking valve with reed resonance frequency f; = 1 kHz, W = 1 cm,
ho=510""m, Q; = 1.1, 1/u = 4.9 m? - kg~'. The blowing pressure p, = 1800 Pa is slightly above
Dinresh, = 1760 Pa. (a): blowing pressure (dashed line) and mouthpiece pressure (solid line). (b):
spectrum of the mouthpiece pressure, showing an oscillation frequency f,s. = 37.85 Hz slightly
below the first acoustic resonance f,.; = 38 Hz. Dashed lines represent the resonance frequencies
of the bore.

Contrary to previous simulation, the f,s./ fac1 ratio is very close to 1. No pedal note phenomenon
seems to be reproduced here. This simulation supports our choice of an outward-striking valve

model, rather than an inward-striking one, to reproduce the behaviour of the lips for the trombone.

4.2 A Saxhorn "ghost note" ?

A complementary exploration is conducted on a Baritone-saxhorn in Bb. This instrument has a
conical bore on almost its entire length, and it is played on the same range as the tenor trombone.
Its acoustic resonance frequencies are quite similar to those of a trombone, as shown in Figure 13.
The main difference between both instruments is the first resonance peak, which is nearly harmonic
with the other ones on the saxhorn and very inharmonic on the trombone. Thus, unlike with the

trombone, the pedal note Bb1 is close to the lowest resonance frequency.
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Figure 13: (colour online) Comparison between modal fits of the impedances of a trombone (dashed
line) and of a saxhorn (solid line). The main difference in terms of frequency concerns the first
peak.

The pedal note is easily playable by an intermediate musician. However, while practicing, the
authors fortuitously found out another playable note, whose frequency lies between f,.; and fu. .
Trials have been carried out on different saxhorn models and brands. The note played lies between
Dby and Ebsy, which means the frequency ratio fosc/fac1 lies between 1.19 and 1.35. We call it
the "ghost note" in this paper. Experienced saxhorn players further confirmed the existence, and
facility of emission, of this ghost note on many different saxhorns and tubas.

LSA results on the saxhorn model are provided in Figure 14. The model used is similar to the
trombone model, with Z equal to the input impedance of the saxhorn in Eq. (3). The behaviour is
similar to that of the trombone, with a particularly high ffff:esm/fac,l ratio. Once again focusing
on the ff,ffesh’n values (circles in Figure 14), the ratio is ff}f:esh,l/faf%l = 1.23. As in the case of the

trombone, this ratio is smaller and quite constant for other modes ( f,f:esh,n/fac,n < 1.05, n > 2).
Time-domain simulation of the saxhorn model on the first acoustic resonance (with p, = pope1+1%,

fi= ffﬁ’t and other parameters given in Table 2) confirms that f,sc/fac1 = 1.23.
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Figure 14: (colour online) LSA results for the saxhorn (with lip parameters given in Table 2) are
given under the same form as those for the trombone in Figure 11. Circles indicate pop, (a) and

opt (b).

thresh,n

The gap between the lowest note played and the first acoustic resonance is smaller for the ghost
note of the saxhorn (ff,f:esh,l/f%l = 1.23) than for the pedal note of the trombone. However,
both are significantly higher than for the other modes ( f/f:esh,n/fac,n < 1.1 for n > 2). Another
study [Velut et al., 2014] also highlights a high f,../fs.1 ratio for trombone and saxhorn despite
quite different simulation conditions, which indicates the robustness of this phenomenon against
changes in parameters. Thus, this simple linearised model makes it possible to predict the pedal
note of the trombone and the ghost note of the saxhorn. However, a set of parameters simulating

the pedal note Bb1 of the saxhorn with this model still needs to be found, should it exist.

4.3 Shifting of the lowest resonance peak of the input impedances

The trombone and the saxhorn are two examples of instruments having a high ffgesh’l / faca ratio.

The trombone has a higher ratio than the saxhorn, and the first bore resonance frequency is lower.
To assess this negative correlation between f,.; and the ff/f:eshg/fac,l ratio, the first resonance
frequency of the input impedance is shifted for both instruments. This is done by modifying the
{C1, s1} values in Eq. (3) while keeping the other resonances unchanged, as well as the amplitude
and quality factor of the first resonance.

For each value of f,.; tested, the ff,f:esh’l / faca value is calculated. Results for both saxhorn and
trombone are reported in Figure 15. For both instruments, the ratio increases when the first
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resonance frequency tends towards zero. Thus, as far as the studied model is concerned, the lower
the resonance frequency, the larger the gap between the playing frequency and the first resonance

frequency.

foplthresh,llfac.l
-
4]

Figure 15: (colour online) Ratio between the predicted oscillation frequency fff:esh’l and the
acoustic resonance frequency f,.; for different values of the latter. The solid curve plots the results
for the trombone, the dotted one for the saxhorn. Vertical dash-dotted lines are the original first
resonance frequencies of a trombone (38 Hz) and a saxhorn (62 Hz).

5 Conclusions

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to
understand various near-threshold behaviours of a complete nonlinear model of brass instrument
applied to a trombone and a saxhorn.

The transient regimes, where the amplitude increases or decreases while staying close to the equi-
librium solution, are perfectly predicted by LSA. Moreover, in time simulations, frequencies of
periodic regimes measured in steady states are similar to those given by LSA, and close to the
bore resonances. This remains true as long as the periodic regime emanating from the equilib-
rium solution remains stable. Indeed, once this periodic regime loses its stability, overblowing,
quasi-periodicity or period-doubling occurs. Multiple instabilities of the equilibrium solution are
shown by LSA, corresponding to several possible oscillation regimes, but this method will not
determine on which of these regimes the system is going to oscillate. Further studies of the model
with numerical continuation methods [Doedel, 1981, Cochelin and Vergez, 2009], should detect the
bifurcations between oscillation branches and estimate the stability domain of each periodic solu-
tion, thus determining on which regime the system would oscillate. LSA is not adapted to detect
quasi-periodicity and period-doubling.

The most striking results in this paper concern the lowest acoustic resonance of brass instruments.
Indeed, in the case of the trombone, LSA predicts the production of the pedal note. LSA clearly

indicates that for low enough acoustic resonance frequencies in the bore input impedance, the
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frequency of the emerging oscillation is far beyond the resonance frequency of the instrument. This
allows the trombone pedal note to be played in tune, even though the corresponding resonance
frequency is misaligned with the nearly harmonic series of the upper impedance peaks. This result
from LSA is quite unexpected: the pedal note of the trombone seems to result from a coupling
between the lips and the nearest acoustic mode below the playing frequency, just like for the other
oscillation regimes. In contrast with previous studies, LSA show that higher bore resonances are
not necessarily implied in the establishment of the pedal note, as shown by the simulation with a
one-resonance bore. When applied to a saxhorn model, LSA shows that a note between Db2 and
Eb2 can be played, and this result is in agreement with what advanced players report. This note
had, to our knowledge, never been documented before and is named "Ghost note".

However some questions are still unsolved. First of all, the reason why the ratio between the playing
frequency at threshold and the acoustic resonance frequency rises when the latter decreases requires
further attention. Moreover, neither LSA nor numerical simulations could explain the production
of the saxhorn pedal note. This may be due to a limitation of the 1-DOF valve model for the
lips or more simply to unsuitable parameter values. Indeed, in spite of the bibliographical review
carried out for this study, choosing parameter values for a brass model remains challenging. Even
though the results obtained look reasonable, i.e. consistent with musicians’ experience, in vivo

measurements of lip parameters during musical performance would be very valuable.
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A Equilibrium point of the system

Prior to applying the linear stability analysis (LSA) to our model, the equilibrium solution must
be computed before linearising the equations around this solution. This solution consists of a
constant lip channel height h(t) = h., a constant flow between the lips u, and a constant pressure
in the instrument p(¢) = p.. Finding these values consists in solving the equation system (6) with

these constant values. With Eq. (5), the system becomes:

O——wlh ———l—wfho—l—p”
Ue = \/;Whe\/pb — Pe (17)
0= Z.Cpue + Sppne for n € [1, N].

Considering the relation between p(t) and its components p,(t¢), and adding the variable A =

/Db — Pe, it becomes:

he = ho + 2

Wy
Ue = \/%WheA (18)
Pe = Z(w = 0)u.

These three equations can now be combined:

Zlw = 2 2
w\ﬁfﬁ + A WhoZ(w = O)\/jA E— (19)
p p

My
which leads to Eq. (9) given in Section 2.3.

B Linearisation of Open-Loop Transfer Function

This appendix details the calculations leading to the linearised expression of the open-loop transfer
function of the model. The linearisation of the flow between lips u simplifies to a 15 degree Taylor

expansion of Equation (5) near the equilibrium point:

. Ju ou
U(p, h) = u(pe, he) - _(p€7 he) (5p(t) - 5]96) + _(pea he) (h(t) - he)' (20)
dp oh
dp = pp—p(t) is the differential pressure through the lips. dp. and h, are the respective values of dp
and h at the equilibrium solution. Similarly to the previous appendix A, the p. value is obtained
by computing the roots of a 3" order polynomial whose variable is A = \/dp:
A? = 0 W
At heA-P 0 with p= 2@ (21)
B 5 p.w?

he is given by Equation (1) in static conditions (all time derivatives being null):
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dPe
(pwp)

All calculations being done, the linearised expression of the flow between the lips is:

i) = Whe [ 22" (Z@? + 20 ;) . (23)

In the frequency domain, the equation of the lip movement (Equation (1)) gives the relation be-

he = ho +

(22)

tween the oscillating components of the mouthpiece pressure P(w) and H(w), the Fourier transform
of h(t). Since we are only interested in oscillating solutions, the w = 0 case is ignored: hence, each

constant value is omitted. This leads to the following equation:

P(w)
H(w) = D(w)—, (24)
-y
with D(w) being the dynamics of the lips:
D) = (25)
W)= —"97 "m0
1— & 4 e
which leads to this final expression of the linearized valve admittance, defined as Y, = %:
w

20p. ( D(w) 1
Y, = Whe. — . 2
o = Wehe \/ p (,u.wf.he 25]9@) (26)

Where U(w) is the Fourier transform of the oscillating component of @(t). Thus, constant values
of Eq. (23) are also omitted. With this expression, Hor(w) = Y,(w) - Z(w) can be computed for

section 3.4.

C Nomenclature

The symbols and abbreviations used all along this paper are recalled here, along with their meaning

and the unit used:
e h(t): Height of the lip channel (m);

e IV: Width of the lip channel (m);

ho: Height of the lip channel at rest (m);

p: Density of air at 20°C (kg - m™?);

w: Equivalent surfacic mass of the lips (kg - m~2);

Q;: Quality factor of the lips (no unit);
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e p(t) and P(w): Waveform and Fourier transform of the pressure at the input of the bore of

the instrument (Pa);
e p,: Blowing pressure (Pa);
® Dinresn: Threshold value of py,, above which the equilibrium solution is unstable (Pa);

e u(t) and U(w): Waveform and Fourier transform of the air flow at the input of the instrument

(m? - s74);
e Z(w): Input impedance of the resonator (Pa-m™ -s);
e w; = 2.7.f;: resonance frequency of the lips (rad - s71);
e fos: Playing frequency of the instrument (Hz);
® f..n: Acoustic resonance frequency of the n mode (Hz);
® finresn: Oscillation frequency at pypresn (Hz).
® Doptn: Lowest value of pyp s for the nt" acoustic resonance (Pa);

opt

thresh,n: Value of fthresh (HZ) at Pb = Popt,n (HZ),

o [P Value of f; (Hz) at pj, = Popt.n (Hz);

ln
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