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Abstra
t10

A physi
al model of brass instrument is 
onsidered in this paper : a one degree-of-freedom11

outward-striking valve for the lips, non-linearly 
oupled to a modal representation of the air12


olumn. It is studied through Linear Stability Analysis (LSA) of the equilibrium solution.13

This approa
h provides the threshold blowing pressure value, at whi
h instability o

urs, and14

the instability frequen
y value. The relevan
e of the results of this method is theoreti
ally15

limited to the neighbourhood of the equilibrium solution. This paper 
he
ks the e�
ien
y of16

LSA to understand the behaviour of the model 
omputed through time-domain simulations.17

As expe
ted, a good agreement is observed between LSA and numeri
al simulations of the18


omplete nonlinear model around the os
illation threshold. For blowing pressures far above the19

os
illation threshold, the pi
ture is more 
ontrasted. In most of the 
ases tested, a periodi
20

regime 
oherent with the LSA results is observed, but over-blowing, quasi-periodi
ity and21

period-doubling also o

ur. Interestingly, LSA predi
ts the produ
tion of the pedal note by22

a trombone, for whi
h only nonlinear hypotheses have been previously proposed. LSA also23

predi
ts the produ
tion of a saxhorn note whi
h, although known to musi
ians, has barely24

been do
umented.25

1 Introdu
tion26

Linear Stability Analysis (LSA) 
an be used to analyse the behaviour of dynami
al systems around27

equilibrium points (i.e. non-os
illating solutions). LSA 
onsists in writing a linearised version of a28
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dynami
al system. The stability of the linearised system is then assessed by studying its response29

to harmoni
 perturbations.30

LSA has already been applied to physi
al models of musi
al instruments, su
h as woodwind31

instruments [Wilson and Beavers, 1974, Chang, 1994, Silva et al., 2008, Karkar et al., 2012℄,32

�ute-like instruments [Terrien et al., 2014℄ and brass instruments [Cullen et al., 2000,33

Lopez et al., 2006, Silva et al., 2007℄. By de�nition, the domain of relevan
e of the LSA re-34

sults is theoreti
ally limited to the neighbourhood of the equilibrium solution. However, re
ent35

results on �utes have highlighted that LSA 
an predi
t important features of periodi
 regimes,36

su
h as their frequen
ies [Terrien et al., 2014℄. This paper examines to what extent LSA 
an be37

used to understand some aspe
ts of the behaviour of a physi
al model of brass instrument.38

Physi
al models of brass instuments have been proposed in multiple stud-39

ies [Eliott and Bowsher, 1982, Flet
her, 1993, Ada
hi and Sato, 1996, Cullen et al., 2000,40

Campbell, 2004, Silva et al., 2007℄. Sin
e our fo
us in this study is a simple model, a one41

degree-of-freedom system is retained to model the player's lips: the outward-striking valve,42

also referred to as "(+,−)" in some publi
ations. The same goal of simpli
ity makes us43

ignore nonlinear propagation in the bore of the instrument, whi
h is responsible for "brassy44

sounds" at high sound levels [Myers et al., 2012℄. The 
oupling by the air�ow blown be-45

tween the lips and the air 
olumn inside the bore is modelled through a usual nonlinear46

algebrai
 equation [Hirs
hberg et al., 1995℄. This model is detailed in Se
tion 2.1. Even47

su
h a simple brasswind model has more parameters needing to be tuned than the sim-48

plest models of woodwind instruments, whi
h is based on two dimensionless parameters49

only [Hirs
hberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013℄.50

However, brasswind players make their instrument os
illate on several modes, whi
h implies a51

signi�
ant modi�
ation of the me
hani
al 
hara
teristi
s of their lips. In musi
al terms, this52


orresponds to playing multiple notes without pulling a slide nor depressing a valve, whi
h is53

part of the playing te
hnique of all brass instruments. Therefore, the lip dynami
s 
annot be54

ignored, whi
h implies an in
rease in the number of parameters to tune. A bibliographi
al review55

is given in Se
tion 2.2 to give grounds to the values 
hosen for ea
h parameter of the model. In56

Se
tion 2.3, details are given on how LSA is applied to the model. There are several possible57

approa
hes to highlighting nonlinear model behaviours to 
ompare them with LSA results. For58

instan
e, the Harmoni
 Balan
e Method gives a Fourier series approximation of the steady state of59

periodi
 regimes, in
luding unstable ones [Gilbert et al., 1989, Co
helin and Vergez, 2009℄. Sin
e60

the pioneering work des
ribed in [S
huma
her, 1981, M
Intyre et al., 1983℄, it is also possible to61


arry out time-domain simulations at moderate 
omputational 
ost, providing a

ess to transients62

and possibly non-periodi
 solutions. The se
ond approa
h is retained here (see Se
tion 2.4).63

Se
tion 3 
ompares LSA results and numeri
al simulations for di�erent sets of parameter values.64

Periodi
 regimes, 
orresponding to the usual sound of the instrument, are explored, along with65

less 
ommon regimes su
h as quasi-periodi
ity and period-doubling. In Se
tion 4, we fo
us on the66

lowest a
ousti
 resonan
e of brass instruments, 
alled the pedal note, a parti
ularly interesting67
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ase where LSA and numeri
al simulation results are surprisingly di�erent from other regimes.68

2 Tools69

2.1 Brass instrument model70

In most wind instruments [Flet
her, 1993, Chaigne and Kergomard, 2016℄, in
luding brass instru-71

ments [Eliott and Bowsher, 1982, Yoshikawa, 1995, Cullen et al., 2000℄, the os
illation results from72

the 
oupling between an ex
iter and a resonator. More generally, the 
losed-loop system repre-73

sentation shown in Figure 1 has been widely used by the musi
al a
ousti
s 
ommunity sin
e the74

seminal work of Helmholtz [Helmholtz, 1877, M
Intyre et al., 1983℄.75

76

Figure 1: (Color online) Closed-loop model in free os
illation, suitable for the des
ription of

most self-sustained musi
al instruments. Self-sustained os
illations are generated by the lo
alised

nonlinear 
oupling between a linear ex
iter and a linear resonator. For brass instruments, the

ex
iter is the lip reed while the resonator is the air 
olumn inside the bore, and the 
oupling is due

to the air �ow between the lips.77

For brass instruments, the ex
iter is the lips of the musi
ian. It is represented by a linear,78

os
illator-like valve linking the height of the 
hannel between the lips h(t) and the pressure di�er-79

en
e a
ross the lips δp(t) = pb − p(t), where pb is the blowing pressure, and p(t) is the os
illating80

pressure signal inside the mouthpie
e (the input of the bore).81

A one degree of freedom valve (referred to hereafter as "1-DOF valve") [Flet
her, 1993℄ is82

enough to model the lips for 
ommon playing situations [Yoshikawa, 1995℄ with a manageable83

number of parameters. Two kinds of 1-DOF valves 
an be 
onsidered : the "outward-striking"84

valve tends to open when δp grows, while the "inward-striking" valve tends to 
lose.85

While it is now admitted that woodwind reeds 
an be satisfa
torily modelled by inward86

striking valves [Wilson and Beavers, 1974, Dalmont et al., 1995℄, there is no 
onsensus about87

the modelling of the lip reed, as neither the outward-striking nor the inward-striking valve88

model reprodu
es all the behaviours observed with real musi
ians. Parti
ularly, brass players89

are able to rea
h a playing frequen
y fosc above and below the nth
bore resonan
e frequen
y90

fac,n [Campbell, 2004℄, while a 1-DOF inward-striking or outward-striking valve model is limited91

to playing frequen
ies respe
tively below or above fac,n to meet the regeneration 
ondition ex-92

plained in [Eliott and Bowsher, 1982℄. Moreover, measurements of the me
hani
al response of93

arti�
ial [Cullen et al., 2000, Neal et al., 2001℄ and natural lips [Newton et al., 2008℄ revealed the94

3




oexisten
e of both inward-striking and outward-striking resonan
es - this 
oexisten
e allowing fosc95

to be below or above fac,n.96

However, situations where fosc is below fac,n (inward-striking behaviour) are mostly spe
i�
 to97

some musi
al e�e
ts. For normal playing situations, the playing frequen
y is above fac,n, and an98

outward-striking valve model is preferred. Moreover, the geometry of human lips makes them open99

when the pressure in the mouth in
reases, whi
h is 
onsistent with the behaviour of the outward-100

striking valve model. The relevan
e of this 
hoi
e will be reinfor
ed throughout this arti
le, by101


omparing the results of the model analysis with experimental behaviours of brasswinds.102

The outward-striking valve model gives the relation below, linking the height of the 
hannel103

between the lips and the pressure di�eren
e a
ross the lips :104

d2h

dt2
+

ωl

Ql

dh

dt
+ ω2

l (h− h0) =
1

µ
(pb − p(t)), (1)

where ωl = 2πfl (rad · s−1) is the lip resonan
e angular frequen
y; Ql the (dimensionless) quality105

fa
tor of the lips; h0 the value of h(t) at rest; µ a lip surfa
e mass equivalent (kg ·m−2). The106

variables are reported on the sket
h of the lip region in Figure 2:107

108

pb h(t) u(t) p(t)

lip

lip

mouth

mouthpiece

109

Figure 2: (Colour online) Sket
h of the mouth and lips of the musi
ian and the instrument

mouthpie
e. The mouth (left) is 
onsidered as a 
avity under a stati
 pressure pb. The lips

(ellipses) separate the mouth from the mouthpie
e. The height between the lips is h(t), the air�ow
between the lips is u(t) and the pressure in the mouthpie
e is p(t).110

This model assumes the mouth pressure to be 
onstant, even though the existen
e of an os
il-111

lating 
omponent in the mouth has been demonstrated experimentally [Fréour and S
avone, 2013℄.112

A more pre
ise model would 
onsider this os
illating 
omponent, whi
h is due to the tunable pipe113

formed by the vo
al tra
t [Eliott and Bowsher, 1982℄. A signi�
ant role of the vo
al tra
t has been114

shown for saxophone and 
larinet playing [Clin
h et al., 1982, Fritz, 2005, S
avone et al., 2008,115

Guillemain et al., 2010, Chen et al., 2011℄. However, for brass instrument playing, the role of the116

vo
al tra
t does not seem to be signi�
ant when playing periodi
 regimes in the usual musi
al117

range of the instrument - although its intera
tion with the lips has been highlighted by experimen-118

tal studies [Kaburagi et al., 2011, Chen et al., 2012, Fréour and S
avone, 2013, Fréour et al., 2015,119

Boutin et al., 2015℄.120

The resonator is the air 
olumn inside the bore of a trombone or a saxhorn (see Se
tion 4.2).121

It is modelled by its input impedan
e, whi
h is the ratio between pressure P (ω) and a
ousti
 �ow122
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U(ω) in the mouthpie
e. Its expression in the frequen
y domain is:123

Z(ω) =
P (ω)

U(ω)
. (2)

Nonlinear e�e
ts in the resonator should be taken into a

ount to a

urately des
ribe124

the behaviour of brass instruments at medium/high playing levels [Hirs
hberg et al., 1996,125

Myers et al., 2012℄ parti
ularly the "brassy sound" related to the formation of sho
k waves. How-126

ever, the main obje
tive of this work is the study of os
illation at low levels. Therefore the a
ousti
127

propagation along the bore is assumed to be linear and thus the input impedan
e fully des
ribes128

the resonator in our model. Here, input impedan
es of a Courtois "T149" tenor trombone (and129

when mentioned, a Couesnon "Ex
elsior" baritone-saxhorn in B♭) are used. Impedan
es are mea-130

sured with the impedan
e sensor des
ribed in [Ma
aluso and Dalmont, 2011℄. They are �tted by a131

sum of 
omplex modes (pole-residue fun
tions) using a Least Mean Squares method, as des
ribed132

in [Silva, 2009, p.28�40℄. The 
hara
teristi
 impedan
e of the resonator is Zc = ρc/S, S being the133

input 
ross se
tion of the bore at the mouthpie
e rim. The modal-�tted impedan
e is written:134

Z(ω) = Zc

N
∑

n=1

[

Cn

jω − sn
+

C∗

n

jω − s∗n

]

, (3)

sn and Cn being the 
omplex poles and the 
omplex residues of the nth

omplex mode, respe
tively.135

Translation of eq. (3) in the time domain and de
omposition of p(t) into its modal 
omponents pn,136

su
h as p(t) = 2.
∑N

n=1Re(pn) results in an ordinary di�erential equation for ea
h pn:137

dpn
dt

= Zc.Cn.u(t) + sn.pn ∀n ∈ [1, N ]. (4)
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Figure 3: (
olour online) Magnitude (top) and phase (bottom) of the input impedan
e of a Courtois

tenor trombone with the slide in its �rst position. The dashed (blue) 
urve depi
ts the measured

impedan
e, the solid (red) 
urve is the �tted 
urve with 18 
omplex modes. The di�eren
e between

�t and measurement is also plotted (magenta).139
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The measured trombone impedan
e and an 18-mode �t are 
ompared, 
f. Figure 3. The140

maximum relative di�eren
e between the measured and the �tted 
urves, for frequen
ies above141

30Hz, is lower than 2.6 % for the magnitude, and 4.7 % for the phase. Measurement in low142

frequen
y is limited by the impedan
e sensor pre
ision.143

Those two linear elements (ex
iter and resonator) are non-linearly 
oupled by the air�ow144

through the lip 
hannel. The air jet is assumed to be laminar in the lip 
hannel, but tur-145

bulent in the mouthpie
e, all its kineti
 energy being dissipated without any pressure re
ov-146

ery. Applying the Bernoulli law and the mass 
onservation law gives the following expression147

of the �ow between lips, depending on the pressure di�eren
e and the height of the lip 
han-148

nel [Wilson and Beavers, 1974, Eliott and Bowsher, 1982, Hirs
hberg et al., 1995℄:149

u(t) =

√

2

ρ
Wh(t)

√

pb − p(t), (5)

where u(t) is the air�ow (m3 · s−1
), h(t) the height of the 
hannel between the lips (m), ρ = 1.19150

kg ·m−3
the density of the air at 20 ◦C and W the width of the lip 
hannel (m).151

The dynami
s of the system des
ribed by (5), (1) and (4) 
an be put into a state-spa
e repre-152

sentation Ẋ = F (X), where F is a nonlinear ve
tor fun
tion, and X the state ve
tor, 
ontaining153

the observables of the system. Sin
e p(t) =
∑N

n=1 2Re(pn(t)), this results in the following system:154







d2h(t)
dt2

= −ω2
l h(t)− ωl

Ql

dh(t)
dt

− p(t)
µ

+ ω2
l h0 +

pb
µ

dpn
dt

= snpn(t) + ZcCn

√

2
ρ
Wh(t)

√

pb − p(t) for n ∈ [1, N ].
(6)

This leads to the following state ve
tor, similar to the one proposed in [Silva et al., 2014℄:155

X =

[

h(t);
dh

dt
; {pn(t), n ∈ [1, N ]}

]

′

, (7)

and the fun
tion F 
an be written as:156

dX

dt
=



























dh

dt
d2h

dt2
dp1
dt
.

.

.

dpn
dt



























= F (X) =



























X(2)

−ω2
l X(1)− ωl

Ql

X(2)− 1

µ

∑N+2
k=3 2Re[X(k)] + ω2

l h0 +
pb
µ

s1X(3) + C1.Zc.

√

2

ρ
WX(1)

√

pb −
∑N+2

k=3 2Re[X(k)]

.

.

.

sNX(N + 2) + CN .Zc.

√

2

ρ
WX(1)

√

pb −
∑N+2

k=3 2Re[X(k)]



























. (8)

2.2 Choi
e of lip parameters157

Setting the values for the parameters of the lip model is not obvious, be
ause measuring the158

me
hani
al admittan
e (velo
ity over for
e ratio) under playing 
onditions (os
illating lips) seems159

out of rea
h, even if some experiments tend to it [Newton et al., 2008℄. Adjusting parameters to160

6



get results 
omparable with measured signals does not seem a good approa
h: Indeed, even though161

a one-DOF model depends on a small number of parameters, di�erent sets of parameter values162

may lead to similar results [Hélie et al., 1999℄. Moreover, lip valve parameters are expe
ted to vary163

far more than reed valve parameters, parti
ularly the lip resonan
e frequen
ies.164

A bibliographi
al review on lip parameter values has been done. Results from the literature165

are gathered in Table 1 along with a brief summary of the method used in the reviewed arti
les.166

Referen
e h0 (m) W (m) fl (Hz) µ−1 (m2 · kg−1) Ql Summary

[Eliott and Bowsher, 1982℄ N/A N/A 200 0.2 0.5 Ql measured on 
heek

[Cullen et al., 2000℄ 1st (Outward) mode

Embou
hure: Soft 6.3 · 10−4 18 · 10−3
189 0.07 10.5 Arti�
ial lips

Medium 5.3 · 10−4 12 · 10−3
203.5 0.11 6 3 embou
hures

Tight 4.4. · 10−4 11 · 10−3
222 0.09 9

[Lopez et al., 2006℄ 2 · 10−4 30 · 10−3
162 0.03 5 Arti�
ial lips

[Gazengel et al., 2007℄ Human lips;

Embou
hure: Soft N/A N/A 115.7 N/A 0.79 saxophone-like

Medium N/A N/A 479.9 N/A 0.46 position;

Tight N/A N/A 1073 N/A 0.46 3 embou
hures

[Newton et al., 2008℄ N/A N/A 32 N/A 1.2�1.8 Human lips

High-speed 
amera

[Ri
hards, 2003℄ 5 · 10−4 7 · 10−3
162 0.19 3.7 Arti�
ial lips

�t for good results

[Rodet and Vergez, 1996℄ N/A N/A 428.4 0.67 2.88 Trumpet; adjusted

for simulation

[Ada
hi and Sato, 1996℄ 1 · 10−3 7 · 10−3
60�700 variable 0.5�3 Trumpet; adjusted

for simulation

167

Table 1: Review of di�erent values of lip parameters from literature, along with a brief explanation

of the method. In some arti
les, 
ertain values are not available (N/A). For papers presenting 2-

DOF lip models, only the �rst, outward-striking DOF is reported. All but the last two referen
es

deal with trombone parameter values.168

This work 
omplements the review published in [Newton, 2009, p.119℄. Many authors do not169

provide the parameter values they use, nor do they give explanations about their method to get170

these values, ex
ept the fa
t that these parameters allow periodi
 self-sustained os
illation of the171

model. Measurements on human or arti�
ial lips were made in 
onditions as similar as possible172

to the playing 
onditions. The list of publi
ations is not exhaustive: we left aside most of the173

publi
ations sin
e they do not justify their values or do not �t their measurements with a modal174

lip-reed model.175

Geometri
 parameters (lip 
hannel width, and lip 
hannel height when the player is not blowing)176

given in all studies are 
onsistent, around W = 12.10−3 m and h0 = 5.10−4 m. Parametri
 studies177

7



have shown that variations in these values do not drasti
ally 
hange the qualitative behaviour of178

the model : numeri
al values 
hange but the overall behaviour is the same. Similar observations179

have been made about µ, even though the range of the values gathered is a little wider (µ ∈ [5, 33]180

for the trombone).181

Measurements from [Gazengel et al., 2007, Newton et al., 2008℄ tend to give low quality-fa
tor182

values between 0.5 and 2 for human lips. However, preliminary analysis 
arried out with Ql ≈ 1183

showed very unrealisti
 pressure thresholds (order of magnitude : 104 to 105 Pa). Thus, a value184

for Ql = 7 was 
hosen, 
loser to the values measured on arti�
ial lips (Ql ∈ [3.7, 10.5]). The set of185

parameters used for simulation and LSA throughout this paper is given in Table 2:186

h0 (m) W (m) 1/µ (m2kg−1) Ql

5.10−4 12.10−3
0.11 7

187

Table 2: Lip parameters retained in this study.188

The value of fl is 
onstantly adapted by the musi
ian while playing. For this reason, we performed189

LSA with fl values ranging from 20 Hz to 500 Hz. This allows os
illation on the �rst eight regimes190

of the instrument, whi
h 
orrespond to the usual notes of the trombone, from B♭1 to B♭4 with191

the slide in �rst position.192

2.3 Stability of the equilibrium solution193

Linearising a 
losed-loop system to assess potential instabilities is a widely used method, in the dy-194

nami
al systems 
ommunity [Bergé et al., 1995℄ as well as in musi
al a
ousti
s for brasswind, wood-195

wind and �ute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,196

Auvray et al., 2012, Terrien et al., 2014℄. Basi
ally, the equations modelling the system are lin-197

earised around a known equilibrium solution. Then, the stability of this solution is determined.198

When the system des
ribed in Se
tion 2.1 is in stati
 equilibrium, the lip opening position has199

a stati
 value h(t) = he. This equilibrium position is slightly larger than the lip opening at200

rest h0, due to the 
onstraint of the blowing pressure on the inner sides of the lips. Similarly,201

there is a small stati
 overpressure pe at the input of the bore of the instrument, as Z(ω = 0) is202

nonzero. This is related to the pressure loss in the instrument. Mathemati
ally, this equilibrium203

is obtained by 
an
elling all time derivatives in the system, as des
ribed in appendix A. The value204

of A =
√
pb − pe is obtained by solving:205

A3 +
A2

β
+ h0µω

2
l A− pb

β
= 0, (9)

with β = WZ(ω=0)
µω2

l

√

2
ρ
. The value of Z(ω = 0) is extrapolated from the �tted version of the206

impedan
e. Equation (9) has 1 or 3 real roots. In the latter 
ase, the smallest real positive root207

should be 
onsidered to 
ompute pe = pb −A2
[Silva, 2009℄, as Z(ω = 0) is small. The lip 
hannel208

height at equilibrium he is then given by (1) with ḧ = ḣ = 0.209

8



In the vi
inity of the equilibrium solution Xe, the linearised fun
tion F̃ 
an be written as:210

F̃ (X) = F (Xe) + JF (Xe)(X −Xe), (10)

where JF (X) is the Ja
obian matrix of the fun
tion F and Xe the state ve
tor at the equilibrium211

solution. The solutions of Ẋ = F̃ (X) are under the form :212

X(t)−Xe =
N
∑

i=1

Uie
λi·t, (11)

where λi are the eigenvalues of JF (Xe) and Ui the 
orresponding eigenve
tors.213

Thus, the eigenvalues of the Ja
obian matrix give information about the stability of the equilibrium214

solution for a given set of parameters. If at least one of these eigenvalues λ has a positive real215

part, the amplitude of the linearised solution tends to in�nity while time in
reases, whi
h means216

the equilibrium is unstable and the solution starts os
illating. Referring to (11), this means that217

one of the terms of the sum dominates the solution, all other terms being de
reasing exponentials.218

As a �rst approximation, the solution of the linearised system 
an be written:219

X(t)−Xe =
∑

Re(λi)>0

Uie
λi·t

(12)

The developed tool �nds the lowest value of pb at whi
h the equilibrium solution be
omes unstable,220

i.e. the value at whi
h one eigenvalue λ with positive real part appears. This value of pb is further221

referred to as pthresh the os
illation threshold (or threshold pressure). During the transient phase of222

the os
illation, the exponential growth of the amplitude is determined by the positive real part of223

λ, and the angular frequen
y is given by its imaginary part ω = Im(λ). However, the nonlinearities224

of the system limit the �nal amplitude and also a�e
t the os
illation frequen
y of the steady state.225

This method only dete
ts instabilities emerging from the equilibrium solution. If a stable os
il-226

lating regime 
oexists along with the stable equilibrium solution, it will not be dete
ted. This227

situation o

urs for example in 
ertain woodwind instruments, where the Hopf bifur
ation (
on-228

ne
ting the equilibrium solution to the os
illating one) is inverse in some 
ases [Grand et al., 1997,229

Dalmont et al., 2000, Farner et al., 2006, Ri
aud et al., 2009℄.230

2.4 Time-domain simulation231

Another approa
h for studying musi
al instruments relies on time-domain ab initio simulations of232

the 
hosen model, for a given set of parameters.233

Multiple numeri
al methods have been developed to simulate wind instruments with models234

similar to the one presented in Se
tion 2.1. Various approa
hes have been proposed to imple-235

ment the resonator a
ousti
 behaviour. The re�e
tion fun
tion of the bore has been widely236

used [S
huma
her, 1981, M
Intyre et al., 1983, Ada
hi and Sato, 1995, Vergez and Rodet, 1997,237

Gilbert and Aumond, 2008℄. The modal de
omposition of the bore has been 
hosen for this arti-238
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le, and 
omputations are 
arried out with the open-sour
e MoReeSC software tool, freely avail-239

able [MoReeSC, 2013℄. Its prin
iples and results have been des
ribed in [Silva et al., 2014℄. This240

simulation tool uses the state-spa
e paradigm, similar to the one presented in Se
tion 2.1. It al-241

lowed us to simulate the behaviour of the model with a high number of a
ousti
 modes for the242

resonator (18 in this study), and o�ers the ne
essary �exibility to modify the model parameters,243

in
luding the resonator parameters, as it is done in Se
tion 4.244

3 Results245

3.1 Linear Stability Analysis246

The LSA method detailed in Se
tion 2.3 is applied to the model de�ned in Se
tion 2.1, with the247

set of lip parameters de�ned in Table 2. The resonator is modelled with a modal �t (N=18 in248

Equation (3)) of a measured impedan
e (B♭ trombone, �rst position).249

For ea
h value of fl 
onsidered, the eigenvalues of the Ja
obian matrix JF (Xe) presented in Equa-250

tion (10) are 
omputed for in
reasing values of pb, until a �rst instability, 
hara
terized by at least251

one eigenvalue with positive real part, o

urs. For ea
h value of fl, Figure 4a represents pthresh, the252

lowest value of pb giving rise to an unstable equilibrium solution (see se
tion 2.3). Figure 4b rep-253

resents the imaginary part of the 
orresponding eigenvalue divided by 2π, whi
h is the os
illation254

frequen
y at threshold, further 
alled fthresh. Ea
h horizontal dotted line in Figure 4b represents255

the nth
a
ousti
 resonan
e frequen
y of the instrument fac,n, given by the lo
al maximum of the256

input impedan
e amplitude.257

It should be noted that, for pb values higher than pthresh, other pairs of 
onjugate eigenvalues258

may have a positive real part, whi
h implies a system with multiple instabilities. If di�erent259

os
illating solutions are stable with these parameters, the system is able to start os
illating on260

di�erent a
ousti
 resonan
es. In Figure 4, and later �g. 11 and �g. 14, the �rst instability (the261

one 
orresponding to pb = pthresh) is shown for ea
h fl value (solid 
urve). The se
ond instability262

is reported only for a narrow range of fl (dashed 
urve).263

Between 20 and 500 Hz, the two 
urves of Figure 4 
an be divided into 8 parts. Ea
h part264


orresponds to a range of fl asso
iated to one regime of os
illation, related to one a
ousti
 resonan
e265

of the instrument: [30, 63 Hz℄ (�rst regime), [72, 123 Hz℄ (se
ond regime), [124, 179 Hz], [180, 234266

Hz], [235, 288 Hz], [289, 352 Hz], [353, 404 Hz], [405, 460 Hz]. In Figure 4b, an os
illating frequen
y267

plateau is maintained just above ea
h value of fac,n. This is the usual behaviour of an outward-268

striking valve 
oupled to an air 
olumn: when playing on the nth
a
ousti
 mode of the bore, the269

os
illation frequen
y at threshold fthresh is just above fac,n, whi
h is the resonan
e frequen
y of the270

nth
a
ousti
 mode [Campbell, 2004℄. For ea
h regime, fthresh monotonously follows the variation271

of fl. This mat
hes the experien
e of the brass player, who 
an slightly "bend" the pit
h up and272

down, i.e. in
rease or de
rease the pit
h, by adjusting fl through the mus
ular tension of the lips,273

and by adapting the blowing pressure to the 
hange in pthresh. The range of ea
h plateau, i.e. the274

10



attainable frequen
y range on ea
h a
ousti
 resonan
e, has analyti
al limits depending on the lip275

quality fa
tor Ql, as detailed in [Silva et al., 2007℄. These frequen
y limits are plotted as plain276

(blue) lines on Fig. 4b). Between 64 Hz and 71 Hz, the equilibrium solution is un
onditionally277

stable whatever the value of pb: this frequen
y range 
overs the impedan
e minimum between 1st278

and 2nd peaks, whi
h are farther apart from one another than the other peaks due to the �rst peak279

inharmoni
ity.280

It 
an be observed in Figure 4a that the os
illation threshold globally in
reases with the rank of281

the a
ousti
 resonan
e. A larger pb value is required to rea
h the higher notes of the instrument,282

in a

ordan
e with the musi
al experien
e. For ea
h regime, the pthresh 
urve is U-shaped, as283

already observed in [Silva et al., 2007℄. Its minimum value popt,n, marked with a 
ir
le in Figure 4,284

is known to depend signi�
antly on the quality fa
tor of the lips Ql. In the following, we assume285

as in [Lopez et al., 2006℄ that popt,n and the asso
iated lip resonan
e frequen
y f opt
l,n and os
illation286

frequen
y at threshold f opt
thresh,n represent the optimal playing 
on�guration for a human performer.287

This hypothesis is in line with what musi
ians report, i.e. they develop a strategy to minimize the288

e�ort to produ
e a sound on a given regime. The values of popt,n, between 500 Pa and 15.3 kPa have289

the same order of magnitude as blowing pressure measured by [Bouhuys, 1968℄ and [Fréour, 2013℄.290

The pressure threshold in
reases faster when fl grows above f opt
l,n rather than when it de
reases291

below f opt
l,n , as illustrated by the inset in Figure 4a. These results are 
ompatible with the experien
e292

of brass players, who report that "bending down" a note requires less e�ort than bending it up.293

The rest of this se
tion fo
uses on some examples of [pb, fl] points to illustrate the di�erent be-294

haviours observed with the model. For ea
h 
ase, the agreement between LSA results and the295

sound produ
ed by the time-domain simulation des
ribed in Se
tion 2.4 is dis
ussed.296
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Figure 4: (
olour online) Results of LSA applied to the model detailed in Se
tion 2.1 with param-

eters from Table 2. For a range of lip resonan
e frequen
ies fl, (a) shows the threshold pressure

pthresh, while (b) shows the 
orresponding os
illation frequen
y fthresh. Dotted lines are the val-

ues of fac,n. Cir
les indi
ate the "optimal" values popt,n and f opt
thresh,n as de�ned in the text. The

magni�ed subplot (zoom on 4th regime) highlights the asymmetri
al pthresh behaviour above and

below popt,n. For illustration, the se
ond destabilisation threshold (a) and the 
orresponding fre-

quen
y (b) are also plotted between fl = 109 Hz and 123 Hz. Diagonal solid (blue) lines in (b) are

analyti
al limits to fthresh for a lossless model.298

3.2 Exa
t mat
h between simulation and LSA299

The simulated pressure at the input of the instrument is 
ompared with the LSA results. In par-300

ti
ular, the os
illation threshold is assessed by performing simulations with pb in the vi
inity of301

pthresh. The 
orresponding frequen
ies, 
alled fosc, are also 
ompared to fthresh given by LSA. This302

latter quantity is measured by applying a zero-
rossing algorithm [Wall, 2003℄, with a sliding Han-303

ning window (width 0.3s, overlapping 99%). This method results in small 
omputation artefa
ts,304

whi
h should not be taken into a

ount.305

A simulation with the exa
t value of pthresh would theoreti
ally lead to an in�nite transient time,306

de�ned as the time it takes to rea
h steady state. Therefore, values of pb slightly below and above307

pthresh are tested. To illustrate a periodi
 os
illation of the model, the lip resonan
e frequen
y is308
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set to fl = 90 Hz, everything else being given in Table 2. The 
orresponding mouthpie
e pressure309

waveforms are represented in the �rst two plots in Figure 5. The third plot shows a situation310

where pb is mu
h higher than pthresh.311

When the mouth pressure is below the threshold (pb = 1210 Pa whereas pthresh = 1222 Pa)312

(Fig. 5 a), the os
illation de
reases exponentially towards the stati
, non-os
illating solution. The313

mouthpie
e pressure 
onverges towards 115.5 Pa, whi
h is the value of pe 
omputed with LSA. The314

thi
k line represents the exponential de
rease in the amplitude Xa.e
Re(λ)t

(amplitude of solutions315

taken from Eq. (12)), where Xa is an arbitrary 
onstant. In this 
ase, all eigenvalues of JF316

have negative real parts: λ is the eigenvalue of JF whi
h real part is the 
losest to zero. The317


al
ulated os
illation frequen
y (dash-dotted line) is almost 
onstant and equal to fthresh = 116318

Hz = Im(λ)/2π.319

When the mouth pressure is slightly above the threshold (pb = 1234 Pa) (Fig. 5b), the simulated320

pressure waveform envelope in
reases exponentially during the transient phase, in agreement with321

Equation (12). However, when the amplitude in
reases, the signal envelope is no longer exponential322

and �nally stabilizes in a steady-state regime. The 
al
ulated os
illation frequen
y fosc (dash-dots)323

begins at fthresh = 116 Hz; it be
omes quite higher in the permanent regime (126 Hz, that is, 8.6324

% or 143 musi
al 
ents above fthresh).325
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Figure 5: (
olour online) Time-domain simulations with parameters from Table 2 and fl = 90 Hz,
with mouth pressure pb (horizontal solid line) lower (a) and higher (b) than the linearised model

threshold (pthresh = 1222 Pa). Mouth pressure (steady) and mouthpie
e pressure (os
illating) are

plotted (left verti
al axis) along with the exponential growth/diminution of amplitude 
al
ulated

using LSA (thi
k 
urves: envelope of Equation (12)). The dash-dotted 
urve depi
ts the instan-

taneous playing frequen
y (right verti
al axis). The expe
ted os
illation frequen
y at threshold

is fthresh = 116 Hz. The third plot (
) 
orresponds to a blowing pressure mu
h higher than the

threshold (pb = 3 kPa; zoom on �rst se
ond of signal).328

As expe
ted, the behaviour of time-domain simulations is a

urately predi
ted by LSA as long as329

pb remains in the vi
inity of pthresh (Figure 5a and 5b). The value of pthresh given by LSA is in330

agreement with simulations. The eigenvalue with the largest real part predi
ts the frequen
y and331

the amplitude of the os
illation at the beginning of the simulation. However, above the pressure332

threshold in Fig. 5b, after t = 8 s, the simulated amplitude gets a�e
ted by nonlinear phenomena333
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and is no longer exponential. Thus, this linearised tool provides relevant information about the334

signal, but is obviously unable to fully predi
t the amplitude of the sustained regime waveform.335

The third plot shows the results with pb = 3 kPa mu
h higher than pthresh. LSA and time-domain336

simulation give roughly 
oherent information. As in Figure 5b, the os
illating frequen
y of the337

established regime fosc = 130.5 Hz is 8 % higher than Im(λ)/(2π) = 120.8 Hz. The di�eren
e338

is 134 musi
al 
ents, larger than a semitone. This di�eren
e is lower when pb is 
loser to pthresh.339

Despite this di�eren
e, fthresh predi
ts whi
h a
ousti
al resonan
e supports the os
illation. An in340

vivo experiment has also shown that the pit
h rises when the player in
reases the blowing pres-341

sure [Campbell and Greated, 1994℄. However, this remark should be 
onsidered 
arefully be
ause342

during pra
ti
e a brass player always apply 
orrelated 
ontrol over mouth pressure and lip mus
ular343

a
tivity.344

pb (Pa) Re(λ) Im(λ)/2π fosc (Hz) measured transient duration (s)

1234 0.2864 116.74 126.5 9.71

1500 5.5591 117.66 127.6 0.74

2000 12.0262 118.99 128.9 0.31

2500 16.0891 120.01 129.7 0.215

3000 18.8507 120.82 130.5 0.1675

345

Table 3: Values of the real part of the destabilising eigenvalue λ, its imaginary part divided by 2π,
the os
illation frequen
y of the established regime, and the duration of the transient (both measured

on simulations) for di�erent values of the blowing pressure (all other parameters un
hanged). The

real part of λ in
reases with pb, whi
h implies a faster-growing envelope as pb in
reases. This

is 
onsistent with the transient duration measured with MIRonsets

1

fun
tion estimating the time

needed to rea
h 95% of the maximum amplitude of p(t).346

Transient time, i.e. the time needed for the amplitude to rea
h 95% of its �nal value, have been347

measured with di�erent values of pb. The values are reported in Table 3.348

The transient time de
reases while Re(λ) in
reases, whi
h 
an be modelled: a

ording to Eq. (12)349

the amplitude grows exponentially with Re(λ). Thus, under the assumption that pe is negligible350


ompared to 95% of the �nal amplitude (hereinafter noted p95%), one 
an write:351

p95% = B.eRe(λ).transient, (13)

where B is a real 
onstant and transient the transient time (s).352

Furthermore, a

ording to [Bergé et al., 1995, p.40℄ in the vi
inity of a dire
t Hopf bifur
ation, the353

maximum amplitude of the os
illation is proportional to the square root of the di�eren
e between354

the parameter value and the threshold value, whi
h means

√
pb − pthresh here. Therefore, the value355

of the pressure at t = transient is:356

1

Part of MIRtoolbox: https://www.jyu.fi/hum/laitokset/musiikki/en/resear
h/
oe/materials/

mirtoolbox/. A

essed 2016-09-13
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p95% = 0.95.C.
√
pb − pthresh, (14)

where C is a real 
onstant.357

Introdu
ing this expression of p95% in the natural logarithm of Eq. (13) results in the following358

analyti
al expression of the transient time where A = 0.95.C
B

:359

transient =
1

Re(λ)
· ln(A√pb − pthresh). (15)

With A = 4.75 �tted on values measured on time-domain simulations, this model mat
hes very360

well with the evolution of transient durations measured on simulations with di�erent values of pb,361

as shown in Figure 6.362
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Figure 6: (
olour online) Transient durations measured on time-domain simulations, plotted along

the Re(λ) value (∗ symbols). The solid line is the transient duration model des
ribed by Eq.(15).364

The os
illation frequen
y also in
reases with pb. An estimate of the frequen
y is also given (imag-365

inary part of λ divided by 2π) whi
h mat
hes well the pseudo-frequen
y of the transient phase of366

ea
h signal.367

This example is representative of most 
ases tested: LSA 
orre
tly predi
ts whether the solution368

is os
illating, with an a

eptable estimation of the os
illation frequen
y. The transient duration369


an be a

urately predi
ted with the real part of λ, as des
ribed in Eq. (15) even for pb far above370

the threshold. However, the a

ura
y of the os
illation frequen
y predi
tion is limited, and LSA371


an predi
t neither the steady-state waveform nor the nature of the os
illation regime. This latter372

observation will be further highlighted in the following sub-se
tion.373

3.3 Unforeseen behaviours374

LSA provides a lot of relevant information about the os
illation threshold and the transient phase.375

This is parti
ularly true when pb is near pthresh. However, some simulations (detailed below)376
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show nonlinear phenomena, whi
h obviously this method 
annot predi
t. These phenomena377

in
lude quasi-periodi
 os
illations. By de�nition, these are deterministi
 os
illations whose energy378

is lo
ated at frequen
ies whi
h are integer 
ombinations of base frequen
ies, whose ratio is an379

irrational number.380

381

Quasi-periodi
 os
illations382

Firstly, the previous 
omparison between LSA and time-domain simulation is reprodu
ed with a383

di�erent lip resonan
e frequen
y. Three simulations are performed with the parameters given in384

Table 2 and fl = 110 Hz. For these parameters, pthresh is equal to 711 Pa. Again, three di�erent385

pb values are tested: pb = 701 Pa, pb = 720 Pa to illustrate the behaviour just below and above the386

threshold, and pb = 2 kPa for an example far above the threshold. Results are plotted in Figure 7.387

When pb is under the threshold, results are very similar to the previous 
ase with fl = 90 Hz388

(Fig. 7a and 7d). However, when pb be
omes large enough to indu
e an os
illating solution, the389

os
illation of the mouthpie
e pressure be
omes quasi-periodi
 instead of periodi
 (Figure 7b, 7e,390

7
 and 7f). The quasi-periodi
 nature of the signal is 
learly visible on the spe
tra (Figure 7e and391

7f) with se
ondary peaks around the prin
ipal frequen
y peaks.392
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Figure 7: (
olour online) Simulation results for fl = 110 Hz, the pressure threshold being pthresh =
711 Pa. Like in Figure 5 three simulations are shown with pb = 701 Pa (a), pb = 720 Pa (b)

and pb = 2 kPa, mu
h higher than pthresh (
). pb is plotted as an horizontal solid (red) line. The

envelope of Eq. (11) is plotted in plain (bla
k) line. Other parameters (lip 
hara
teristi
s) are given

in Table 2. Figures (d), (e) and (f) are the spe
tra 
orresponding to (a), (b) and (
), respe
tively

((e) and (f) 
al
ulated using steady regimes of (b) and (
).395
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This illustrates the aforementioned limitation of LSA. The existen
e of an os
illating solution396

is attested in the vi
inity of the bifur
ation, and the pressure threshold pthresh is a

urately397

predi
ted, but the o

urren
e of a quasi-periodi
 regime 
annot be predi
ted.398

399

Period doubling400

When fl is equal to 55 Hz, pb to 400 Pa (pthresh being 161 Pa), and the other parameters are the401

values given in Table 2, the simulation result os
illates at fosc = 32.5 Hz, far below fthresh = 59.78402

Hz. This is a pe
uliar behaviour, as this os
illation frequen
y is signi�
antly under the trombone403

�rst a
ousti
 resonan
e (fac,1 = 38 Hz). Indeed, the 
hosen model indu
es playing frequen
ies404

above the a
ousti
 resonan
e frequen
y (fosc > fac,n), at least near the pressure threshold, to405


omply with the regeneration 
ondition [Eliott and Bowsher, 1982℄.406

Figure 8 
ompares the spe
trum of the mouthpie
e pressure simulated with the aforementioned407

parameters and fl = 55 Hz (dotted line) and then with fl = 50 Hz (solid line). For fl = 50 Hz,408

fosc = 65 Hz is higher than fthresh = 56.3 Hz, like in previous simulations in Se
tion 3.2. For409

fl = 55 Hz, a reasonable expe
tation would be an os
illation frequen
y slightly higher than 65 Hz,410

as fosc tends to in
rease with fl. However, the simulation os
illation frequen
y at fl = 55 Hz is411

fosc = 32.47 Hz, 
lose to half of its value at fl = 50 Hz.412
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Figure 8: (
olour online) Spe
tra of the simulated trombone mouthpie
e pressures, with pb = 400
Pa for both lip resonan
e frequen
ies, fl = 50 Hz (solid) and fl = 55 Hz (dotted) (other parameters

from Table 2). Cross markers give the values of fthresh = 56.3 Hz for fl = 50 Hz and fthresh = 59.8
Hz for fl = 55 Hz. The solid verti
al line indi
ates the �rst a
ousti
 resonan
e frequen
y of the

trombone bore, fac,1 = 38 Hz.414

Further simulations were 
arried out, with fl going from 50 to 61 Hz in steps of 1 Hz, pb = 400 Pa415

and the others parameters set as in Table 2. Table 4 reports the os
illation frequen
y measured416

on the simulated signals, along with the fthresh value predi
ted by LSA. Between 54 and 55 Hz,417

the os
illation frequen
y is almost halved. Then, between 56 and 57 Hz, the frequen
y is again418

halved, be
oming a quarter of its value for fl < 55 Hz. For fl = 59 Hz and above, the fundamental419
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frequen
y rises sharply to a value 
lose to its original value, but the energy is far more distributed420

in the spe
trum.421

fl (Hz) 50 51 52 53 54 55 56 57 58 59 60 61

fosc (Hz) 65.45 65.48 65.49 65.49 65.46 32.53 32.54 16.32 16.32 65.1 65.1 65.1

fthresh (Hz) 56.3 56.97 57.71 58.36 59.08 59.78 60.51 61.27 62 62.77 63.58 64.44

422

Table 4: Os
illation frequen
ies measured on the simulated mouthpie
e pressure, for lip frequen
ies

from 50 to 61 Hz, pb = 400 Pa and other parameters from Table 2. Os
illation frequen
ies at

threshold given by LSA are also reported.423

These results are 
lose to those reported in [Gibiat and Castellengo, 2000℄, with a trombone424

player performing two su

essive period doublings. When in
reasing fl in this range, the model425

undergoes multiple period-doubling bifur
ations. Similar s
enarios have been observed on nu-426

meri
al models of woodwind instruments [Gibiat, 1988, Kergomard et al., 2004℄. This su

ession427

of period doublings is also known as subharmoni
 
as
ade or Feigenbaum s
enario and leads to428


haoti
 behaviour, whi
h may explain the noisiness of signals above fl > 58 Hz. Again, explaining429

the o

urren
e of su
h phenomena is out of rea
h with LSA.430

431

Overblowing432

Besides these two nonlinear phenomena, other di�eren
es between eigenvalue-based LSA and time-433

domain simulation 
an be observed. Another example is given with fl = 120 Hz, the parameters434

given in Table 2 and a high blowing pressure: pb = 6.5 kPa while the threshold is pthresh = 1056 Pa.435

While fthresh = 128.4 Hz is just above the 2nd a
ousti
 resonan
e frequen
y of the bore (fac,2 = 112436

Hz), the simulation os
illation frequen
y ex
eeds the 3rd: fosc = 187.5 Hz > fac,3 = 170 Hz.437

Figure 9 shows the spe
trum of a simulation os
illating on the third a
ousti
 resonan
e, while the438

predi
ted os
illation at threshold 
orresponds to the se
ond one.439
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Figure 9: (
olour online) Spe
trum of simulated mouthpie
e pressure for fl = 120 Hz and pb = 6.5
kPa with other parameters taken from Table 2. The self-sustained os
illation o

urs at fosc = 187.5
Hz, 
orresponding to the third a
ousti
 resonan
e, while LSA predi
ts an os
illation at fthresh =
128.4 Hz (thi
k verti
al line) with pthresh = 1056 Pa. Ea
h dash-dotted line represents the nth

a
ousti
 resonan
e frequen
y fac,n of the trombone bore.441
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The method previously used, whi
h 
onsists in retaining the lowest pb value 
ausing a destabil-442

isation, does not predi
t the behaviour of the system with su
h a high blowing pressure. Yet,443

this os
illation on the third regime 
an be understood, sin
e another pair of eigenvalues of the444

Ja
obian matrix with a positive real part appears for pb > pthresh. The dashed lines in Figure 4a445

and 4b shows the pressure threshold 
orresponding to the se
ond pair of su
h eigenvalues (
alled446

λ2 and λ∗

2), and the asso
iated os
illation frequen
y. For fl = 120 Hz the se
ond threshold is447

6116 Pa with an os
illation frequen
y equal to Im(λ2)/2π = 172 Hz, 
orresponding to the third448

regime of os
illation of the system. This is 
onsistent with the behaviour observed in the numeri
al449

simulation.450

3.4 Open-loop transfer fun
tion451

For a better understanding of the origin of the di�erent instabilities, another LSA formalism is452

used, whi
h gives visual information about the stability margins of the di�erent os
illation regimes.453

It 
onsists in studying a linearised version of the open-loop transfer fun
tion (OLTF) of the system454

de�ned by Equation (5), (1) and (3) [Saneyoshi et al., 1987, Ferrand et al., 2010℄. This OLTF is455

divided into two parts: the ex
iter admittan
e Ya whi
h des
ribes the lip reed behaviour, from456

Equation (5) and (1), and the resonator input impedan
e, whi
h is modelled with a modal �t of457

its input impedan
e Z like in the other formalism (see Equation (3)).458

The linearisation of the ex
iter admittan
e Ya simpli�es to a 1st degree Taylor expansion of Equa-459

tion (5) near the equilibrium point; Equation (1) is then put into the result. Details 
an be found460

in Appendix B about the 
al
ulation whi
h leads to the following expression of Ya:461

Ya = Whe

√

2δpe
ρ

(

D(ω)

Khe

− 1

2δpe

)

, (16)

where D(ω) represents the dynami
s of the lip reed.462

The stability of the OLTF, 
alled HOL, is then evaluated with the Barkhausen 
rite-463

rion [Wangenheim, 2011℄, whi
h points to possibly unstable solutions when HOL = Ya.Z = 1.464

On a Bode diagram, points with HOL having a 0 dB magnitude and 0

◦
phase are limits of stability.465

This method has already been used for 
larinet models with inward-striking valves, and for brass466

and �ute-like instruments [Saneyoshi et al., 1987, Ferrand et al., 2010, Terrien et al., 2014℄.467

Figure 10 shows the Bode diagram of the OLTF of the system fed with the same parameters as in468

Figure 9. The stability limits are indi
ated with 
rosses.469
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470

Figure 10: (
olour online) Bode diagram of the open-loop transfer fun
tion of the trombone model

with the parameters spe
i�ed in Table 2, fl = 120 Hz and pb = 6.5 kPa. There are two instability

points (
rosses), with a 0 dB magnitude and a zero phase.471

Here, the Bode diagram shows two points of 0 dB magnitude and 0 degree phase at 132 Hz and472

172 Hz. In terms of the eigenvalues-based LSA tool des
ribed in Se
tion 2.3, these frequen
ies473


orrespond to the imaginary part of the eigenvalues of JF 
al
ulated with pb = 6500 Pa and474

having a positive real part. The frequen
y obtained with OLTF di�ers from the one obtained with475

eigenvalues of the Ja
obian matrix, be
ause fthresh = 128 Hz is obtained at pb = pthresh = 1056476

Pa while the OLTF value is obtained with pb = 6.5 kPa. The real part of the se
ond destabilising477

pair of eigenvalues be
omes positive above 6116 Pa, whi
h is 
ompatible with an os
illation on478

this regime at pb = 6.5 kPa. The related frequen
y at threshold is 172.9 Hz 
orresponding to an479

os
illation on the third a
ousti
 resonan
e.480

Both LSA methods show multiple instabilities of the stati
 solution, that is, multiple possible481

regimes of os
illation. The predi
tions of threshold pressures and possible os
illation frequen
ies482

are satisfa
tory. But they give no information either about the stability of these os
illation regimes,483

or about whi
h regime the instrument will a
tually os
illate on. This is determined by initial484


onditions and by the stability of the di�erent os
illating solutions, whi
h depends on nonlinear485

elements out of rea
h of the method.486

4 Lowest regime of os
illation487

This 
hapter fo
uses on the results of LSA and time-domain simulation on the lowest regime,488

related to the �rst a
ousti
 resonan
e of the air 
olumn inside the bore. This lowest playable note489

is 
alled "pedal note" by musi
ians. For the trombone in �rst position, and the saxhorn with no490

valve depressed (neutral position), the pedal note is a B♭1 at 58 Hz in the musi
al s
ale.491
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4.1 The Trombone "pedal note"492

To 
ompare the behaviour of the di�erent registers of the trombone, the ratio between the thresh-493

old frequen
y fthresh and the resonan
e frequen
y of the 
orresponding a
ousti
al mode fac,n is494


omputed. Figure 11a and 11b give pthresh and fthresh like in Figure 4 but on a smaller fl range,495

and Figure 11
 gives the fthresh/fac,n ratio.496

At the lip frequen
ies 
orresponding to the pressure threshold minima, 
alled f opt
l,n (see 
ir
les in497

Figure 11), this ratio appears to be signi�
antly higher for the �rst a
ousti
 resonan
e than for498

the other ones: f opt
thresh,1/fac,1 = 55.6/38 = 1.46 while f opt

thresh,n/fac,n ∈ [1.04, 1.1] for n ≥ 2 as shown499

in Table 5.500

It 
an be noted that, at least for the �ve lowest resonan
es, f opt
thresh,n is in good agreement with the501

note supposed to be played on the instrument for this resonan
e, a

ording to the tempered s
ale502

(see Table 5). Therefore, LSA gives a reliable estimation of the note 
orresponding to these a
ousti
503

resonan
es, in
luding the pedal note, with a relative error between f opt
thresh,n and the tempered s
ale504

note smaller than 5.5%. However, f opt
thresh,n underestimates the playing frequen
y of the pedal note505

while it overestimates the other notes.506

507

Regime f opt
l,n (Hz) f opt

thresh,n (Hz) tempered s
ale (Hz) relative error fac,n (Hz) f opt
thresh,n/fac,n

1 49 55.6 58.27 −4.6% 38 1.46

2 110 122.9 116.54 5.4% 112 1.1

3 162 180.0 174.81 2.9% 170 1.06

4 215 238.9 233.08 2.5% 228 1.05

5 271 301.6 291.35 3.5% 290 1.04

508

Table 5: f opt
thresh,n values for the �ve lowest regimes of the trombone, 
ompared with the frequen
y

of the expe
ted note. The a
ousti
 resonan
e frequen
y of the 
orresponding mode, the f opt
l,n value

and the f opt
thresh,n/fac,n ratio are also given. f opt

thresh,n is a suitable predi
tion of the played note. The

f opt
thresh,n/fac,n ratio is parti
ularly high for the �rst os
illation regime.509

For illustration, a simulation is 
arried out with the usual parameters from Table 2 with fl =510

f opt
l,n = 49 Hz and pb = 150 Pa (pthresh being 146 Pa). The resulting signal os
illates at fosc = 61.86511

Hz, far higher than fac,1: the frequen
y results of LSA and of simulation are 
onsistent for these512

parameters as well.513
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Figure 11: (
olour online) Results of LSA (with lip parameters from Table 2) are plotted on (a)

and (b) with a narrower fl range than in Figure 4. Horizontal dotted lines in (b) are the fac,n
values. The fthresh = fl 
urve is also plotted (dotted). (
) is the f opt

thresh,n/fac, n ratio. Cir
les

indi
ate the f opt
l,n lip resonan
e frequen
ies.515

The LSA and the numeri
al simulation reveal a parti
ularity of the trombone �rst regime: the516

os
illation frequen
y predi
ted by both methods is far above the a
ousti
 resonan
e frequen
y,517

whi
h results in a high f opt
thresh,n/fac,n ratio for n = 1, while it is mu
h smaller when n ≥ 2. This518

mat
hes the experien
e of trombone players, who are able to play the pedal note in tune with the519

other notes, despite the large inharmoni
ity of the 
orresponding a
ousti
 resonan
e. Therefore,520

a linearised model is able to predi
t a regime previously attributed to unexplained non-linear521


ontributions of the upper a
ousti
 resonan
es [Benade, 1976, p.405℄. To 
omplete this 
on
lusion,522

LSA have been applied to the model with a resonator limited to the trombone's �rst mode. This523

results in f opt
thresh,1 = 61.06 Hz. This 
on�rms that the high fthresh/fac,n ratios are related to the524

�rst mode itself, and not to the 
ontribution of the upper modes.525

Bouasse proposed an experiment in whi
h a trombone is played with a saxophone mouth-526

pie
e [Bouasse, 1986, p.370℄. Gilbert and Aumond re
ently ran this experiment and published527

it [Gilbert and Aumond, 2008℄, together with audio and video re
ordings. The result is an in-528

strument playing a low E♭1, that is, an os
illating frequen
y just under fac,1 = 38Hz, whi
h is529


ompatible with a playing frequen
y below the a
ousti
 resonan
e frequen
y, 
hara
teristi
 of the530

inward-striking valve model used [Wilson and Beavers, 1974℄.531

In order to explore the in�uen
e of nature of the ex
iter - inward-striking or outward striking -532

this experiment is simulated here. A trombone is equipped with a saxophone mouthpie
e instead533
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of a trombone mouthpie
e. The input impedan
e of this assembly is measured and �tted by a sum534

of 
omplex modes, whi
h is used as the resonator in the instrument model. The saxophone reed535

is modelled with an inward-striking valve as de�ned in [Wilson and Beavers, 1974℄ for example.536

Its equation is the same as Eq. (1) ex
ept the sign of the right-hand term: (pb − p(t)) be
omes537

(p(t)− pb) in this model. The 
hara
teristi
s of the 
ane reed are taken from [Silva, 2009℄ : fl = 1538

kHz, Q = 1.1; 1/µ = 4.9 m2 · kg−1;W = 10−3 m; h0 = 5.10−4 m. The results are presented in539

Figure 12.540

The os
illating frequen
y of the simulated mouthpie
e pressure is 
lose to the �rst resonan
e541

frequen
y fosc/fac,1 = 0.99 - a ratio 
ontrasting with the high ratio obtained with an outward-542

striking valve. The signal is nearly sinusoidal be
ause of the la
k of a
ousti
 resonan
es mat
hing543

the harmoni
s of this frequen
y in the impedan
e spe
trum.544
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Figure 12: (
olour online) Results of simulation of a trombone with a tenor saxophone mouthpie
e,

modelled as an inward-striking valve with reed resonan
e frequen
y fl = 1 kHz, W = 1 cm,

h0 = 5.10−4 m, Ql = 1.1, 1/µ = 4.9 m2 · kg−1
. The blowing pressure pb = 1800 Pa is slightly above

pthresh = 1760 Pa. (a): blowing pressure (dashed line) and mouthpie
e pressure (solid line). (b):

spe
trum of the mouthpie
e pressure, showing an os
illation frequen
y fosc = 37.85 Hz slightly

below the �rst a
ousti
 resonan
e fac,1 = 38 Hz. Dashed lines represent the resonan
e frequen
ies

of the bore.546

Contrary to previous simulation, the fosc/fac,1 ratio is very 
lose to 1. No pedal note phenomenon547

seems to be reprodu
ed here. This simulation supports our 
hoi
e of an outward-striking valve548

model, rather than an inward-striking one, to reprodu
e the behaviour of the lips for the trombone.549

4.2 A Saxhorn "ghost note" ?550

A 
omplementary exploration is 
ondu
ted on a Baritone-saxhorn in B♭. This instrument has a551


oni
al bore on almost its entire length, and it is played on the same range as the tenor trombone.552

Its a
ousti
 resonan
e frequen
ies are quite similar to those of a trombone, as shown in Figure 13.553

The main di�eren
e between both instruments is the �rst resonan
e peak, whi
h is nearly harmoni
554

with the other ones on the saxhorn and very inharmoni
 on the trombone. Thus, unlike with the555

trombone, the pedal note B♭1 is 
lose to the lowest resonan
e frequen
y.556
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Figure 13: (
olour online) Comparison between modal �ts of the impedan
es of a trombone (dashed

line) and of a saxhorn (solid line). The main di�eren
e in terms of frequen
y 
on
erns the �rst

peak.558

The pedal note is easily playable by an intermediate musi
ian. However, while pra
ti
ing, the559

authors fortuitously found out another playable note, whose frequen
y lies between fac,1 and fac,2.560

Trials have been 
arried out on di�erent saxhorn models and brands. The note played lies between561

D♭2 and E♭2, whi
h means the frequen
y ratio fosc/fac,1 lies between 1.19 and 1.35. We 
all it562

the "ghost note" in this paper. Experien
ed saxhorn players further 
on�rmed the existen
e, and563

fa
ility of emission, of this ghost note on many di�erent saxhorns and tubas.564

LSA results on the saxhorn model are provided in Figure 14. The model used is similar to the565

trombone model, with Z equal to the input impedan
e of the saxhorn in Eq. (3). The behaviour is566

similar to that of the trombone, with a parti
ularly high f opt
thresh,1/fac,1 ratio. On
e again fo
using567

on the f opt
thresh,n values (
ir
les in Figure 14), the ratio is f opt

thresh,1/fac,1 = 1.23. As in the 
ase of the568

trombone, this ratio is smaller and quite 
onstant for other modes (f opt
thresh,n/fac,n < 1.05, n ≥ 2).569

Time-domain simulation of the saxhorn model on the �rst a
ousti
 resonan
e (with pb = popt,1+1%,570

fl = f opt
l,1 and other parameters given in Table 2) 
on�rms that fosc/fac,1 = 1.23.571
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Figure 14: (
olour online) LSA results for the saxhorn (with lip parameters given in Table 2) are

given under the same form as those for the trombone in Figure 11. Cir
les indi
ate popt,n (a) and

f opt
thresh,n (b).573

The gap between the lowest note played and the �rst a
ousti
 resonan
e is smaller for the ghost574

note of the saxhorn (f opt
thresh,1/fac,1 = 1.23) than for the pedal note of the trombone. However,575

both are signi�
antly higher than for the other modes (f opt
thresh,n/fac,n ≤ 1.1 for n ≥ 2). Another576

study [Velut et al., 2014℄ also highlights a high fosc/fac,1 ratio for trombone and saxhorn despite577

quite di�erent simulation 
onditions, whi
h indi
ates the robustness of this phenomenon against578


hanges in parameters. Thus, this simple linearised model makes it possible to predi
t the pedal579

note of the trombone and the ghost note of the saxhorn. However, a set of parameters simulating580

the pedal note B♭1 of the saxhorn with this model still needs to be found, should it exist.581

4.3 Shifting of the lowest resonan
e peak of the input impedan
es582

The trombone and the saxhorn are two examples of instruments having a high f opt
thresh,1/fac,1 ratio.583

The trombone has a higher ratio than the saxhorn, and the �rst bore resonan
e frequen
y is lower.584

To assess this negative 
orrelation between fac,1 and the f opt
thresh,1/fac,1 ratio, the �rst resonan
e585

frequen
y of the input impedan
e is shifted for both instruments. This is done by modifying the586

{C1, s1} values in Eq. (3) while keeping the other resonan
es un
hanged, as well as the amplitude587

and quality fa
tor of the �rst resonan
e.588

For ea
h value of fac,1 tested, the f opt
thresh,1/fac,1 value is 
al
ulated. Results for both saxhorn and589

trombone are reported in Figure 15. For both instruments, the ratio in
reases when the �rst590
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resonan
e frequen
y tends towards zero. Thus, as far as the studied model is 
on
erned, the lower591

the resonan
e frequen
y, the larger the gap between the playing frequen
y and the �rst resonan
e592

frequen
y.593
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Figure 15: (
olour online) Ratio between the predi
ted os
illation frequen
y f opt
thresh,1 and the

a
ousti
 resonan
e frequen
y fac,1 for di�erent values of the latter. The solid 
urve plots the results
for the trombone, the dotted one for the saxhorn. Verti
al dash-dotted lines are the original �rst

resonan
e frequen
ies of a trombone (38 Hz) and a saxhorn (62 Hz).595

5 Con
lusions596

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to597

understand various near-threshold behaviours of a 
omplete nonlinear model of brass instrument598

applied to a trombone and a saxhorn.599

The transient regimes, where the amplitude in
reases or de
reases while staying 
lose to the equi-600

librium solution, are perfe
tly predi
ted by LSA. Moreover, in time simulations, frequen
ies of601

periodi
 regimes measured in steady states are similar to those given by LSA, and 
lose to the602

bore resonan
es. This remains true as long as the periodi
 regime emanating from the equilib-603

rium solution remains stable. Indeed, on
e this periodi
 regime loses its stability, overblowing,604

quasi-periodi
ity or period-doubling o

urs. Multiple instabilities of the equilibrium solution are605

shown by LSA, 
orresponding to several possible os
illation regimes, but this method will not606

determine on whi
h of these regimes the system is going to os
illate. Further studies of the model607

with numeri
al 
ontinuation methods [Doedel, 1981, Co
helin and Vergez, 2009℄, should dete
t the608

bifur
ations between os
illation bran
hes and estimate the stability domain of ea
h periodi
 solu-609

tion, thus determining on whi
h regime the system would os
illate. LSA is not adapted to dete
t610

quasi-periodi
ity and period-doubling.611

The most striking results in this paper 
on
ern the lowest a
ousti
 resonan
e of brass instruments.612

Indeed, in the 
ase of the trombone, LSA predi
ts the produ
tion of the pedal note. LSA 
learly613

indi
ates that for low enough a
ousti
 resonan
e frequen
ies in the bore input impedan
e, the614
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frequen
y of the emerging os
illation is far beyond the resonan
e frequen
y of the instrument. This615

allows the trombone pedal note to be played in tune, even though the 
orresponding resonan
e616

frequen
y is misaligned with the nearly harmoni
 series of the upper impedan
e peaks. This result617

from LSA is quite unexpe
ted: the pedal note of the trombone seems to result from a 
oupling618

between the lips and the nearest a
ousti
 mode below the playing frequen
y, just like for the other619

os
illation regimes. In 
ontrast with previous studies, LSA show that higher bore resonan
es are620

not ne
essarily implied in the establishment of the pedal note, as shown by the simulation with a621

one-resonan
e bore. When applied to a saxhorn model, LSA shows that a note between D♭2 and622

E♭2 
an be played, and this result is in agreement with what advan
ed players report. This note623

had, to our knowledge, never been do
umented before and is named "Ghost note".624

However some questions are still unsolved. First of all, the reason why the ratio between the playing625

frequen
y at threshold and the a
ousti
 resonan
e frequen
y rises when the latter de
reases requires626

further attention. Moreover, neither LSA nor numeri
al simulations 
ould explain the produ
tion627

of the saxhorn pedal note. This may be due to a limitation of the 1-DOF valve model for the628

lips or more simply to unsuitable parameter values. Indeed, in spite of the bibliographi
al review629


arried out for this study, 
hoosing parameter values for a brass model remains 
hallenging. Even630

though the results obtained look reasonable, i.e. 
onsistent with musi
ians' experien
e, in vivo631

measurements of lip parameters during musi
al performan
e would be very valuable.632
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A Equilibrium point of the system641

Prior to applying the linear stability analysis (LSA) to our model, the equilibrium solution must642

be 
omputed before linearising the equations around this solution. This solution 
onsists of a643


onstant lip 
hannel height h(t) = he, a 
onstant �ow between the lips ue and a 
onstant pressure644

in the instrument p(t) = pe. Finding these values 
onsists in solving the equation system (6) with645

these 
onstant values. With Eq. (5), the system be
omes:646















0 = −ω2
l he − pe

µ
+ ω2

l h0 +
pb
µ

ue =
√

2
ρ
Whe

√
pb − pe

0 = ZcCnue + snpne for n ∈ [1, N ].

(17)

Considering the relation between p(t) and its 
omponents pn(t), and adding the variable A =647

√
pb − pe, it be
omes:648















he = h0 +
A2

µω2

l

ue =
√

2
ρ
WheA

pe = Z(ω = 0)ue.

(18)

These three equations 
an now be 
ombined:649

WZ(ω = 0)

µω2
l

√

2

ρ
A3 + A2 +Wh0Z(ω = 0)

√

2

ρ
A− pb = 0, (19)

whi
h leads to Eq. (9) given in Se
tion 2.3.650

B Linearisation of Open-Loop Transfer Fun
tion651

This appendix details the 
al
ulations leading to the linearised expression of the open-loop transfer652

fun
tion of the model. The linearisation of the �ow between lips u simpli�es to a 1st degree Taylor653

expansion of Equation (5) near the equilibrium point:654

ũ(p, h) = u(pe, he)−
[

∂u

∂p
(pe, he)

]

(δp(t)− δpe) +

[

∂u

∂h
(pe, he)

]

(h(t)− he). (20)

δp = pb−p(t) is the di�erential pressure through the lips. δpe and he are the respe
tive values of δp655

and h at the equilibrium solution. Similarly to the previous appendix A, the pe value is obtained656

by 
omputing the roots of a 3rd order polynomial whose variable is A =
√
δp:657

A3 +
A2

β
+ µ.ω2

l .h0.A− pb
β

= 0 with β =
Z(ω = 0).W

µ.ω2
l

.

√

2

ρ
. (21)

he is given by Equation (1) in stati
 
onditions (all time derivatives being null):658
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he = h0 +
δpe

(µ.ω2
l )
. (22)

All 
al
ulations being done, the linearised expression of the �ow between the lips is:659

ũ(p, h) = Whe

√

2δpe
ρ

(

δp(t)

2δpe
+

h(t)

he

− 1

2

)

. (23)

In the frequen
y domain, the equation of the lip movement (Equation (1)) gives the relation be-660

tween the os
illating 
omponents of the mouthpie
e pressure P (ω) andH(ω), the Fourier transform661

of h(t). Sin
e we are only interested in os
illating solutions, the ω = 0 
ase is ignored: hen
e, ea
h662


onstant value is omitted. This leads to the following equation:663

H(ω) = D(ω)
P (ω)

µ.ω2
l

, (24)

with D(ω) being the dynami
s of the lips:664

D(ω) =
−1

1− ω2

ω2

l

+ j ωQl

ωl

, (25)

whi
h leads to this �nal expression of the linearized valve admittan
e, de�ned as Ya =
Ũ(ω)

P (ω)
:665

Ya = W.he.

√

2δpe
ρ

(

D(ω)

µ.ω2
l .he

− 1

2δpe

)

. (26)

Where Ũ(ω) is the Fourier transform of the os
illating 
omponent of ũ(t). Thus, 
onstant values666

of Eq. (23) are also omitted. With this expression, HOL(ω) = Ya(ω) · Z(ω) 
an be 
omputed for667

se
tion 3.4.668

C Nomen
lature669

The symbols and abbreviations used all along this paper are re
alled here, along with their meaning670

and the unit used:671

• h(t): Height of the lip 
hannel (m);672

• W : Width of the lip 
hannel (m);673

• h0: Height of the lip 
hannel at rest (m);674

• ρ: Density of air at 20

◦
C (kg ·m−3);675

• µ: Equivalent surfa
i
 mass of the lips (kg ·m−2);676

• Ql: Quality fa
tor of the lips (no unit);677
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• p(t) and P (ω): Waveform and Fourier transform of the pressure at the input of the bore of678

the instrument (Pa);679

• pb: Blowing pressure (Pa);680

• pthresh: Threshold value of pb, above whi
h the equilibrium solution is unstable (Pa);681

• u(t) and U(ω): Waveform and Fourier transform of the air �ow at the input of the instrument682

(m3 · s−1
);683

• Z(ω): Input impedan
e of the resonator (Pa ·m−3 · s);684

• ωl = 2.π.fl: resonan
e frequen
y of the lips (rad · s−1);685

• fosc: Playing frequen
y of the instrument (Hz);686

• fac,n: A
ousti
 resonan
e frequen
y of the nth
mode (Hz);687

• fthresh: Os
illation frequen
y at pthresh (Hz).688

• popt,n: Lowest value of pthresh for the nth
a
ousti
 resonan
e (Pa);689

• f opt
thresh,n: Value of fthresh (Hz) at pb = popt,n (Hz);690

• f opt
l,n : Value of fl (Hz) at pb = popt,n (Hz);691
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