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Abstrat

A physial model of brass instrument is onsidered in this paper : a one degree-of-freedom

outward-striking valve for the lips, non-linearly oupled to a modal representation of the air

olumn. It is studied through Linear Stability Analysis (LSA) of the equilibrium solution.

This approah provides the threshold blowing pressure value, at whih instability ours, and

the instability frequeny value. The relevane of the results of this method is theoretially

limited to the neighbourhood of the equilibrium solution. This paper heks the e�ieny of

LSA to understand the behaviour of the model omputed through time-domain simulations.

As expeted, a good agreement is observed between LSA and numerial simulations of the

omplete nonlinear model around the osillation threshold. For blowing pressures far above the

osillation threshold, the piture is more ontrasted. In most of the ases tested, a periodi

regime oherent with the LSA results is observed, but over-blowing, quasi-periodiity and

period-doubling also our. Interestingly, LSA predits the prodution of the pedal note by

a trombone, for whih only nonlinear hypotheses have been previously proposed. LSA also

predits the prodution of a saxhorn note whih, although known to musiians, has barely

been doumented.

1 Introdution

Linear Stability Analysis (LSA) an be used to analyse the behaviour of dynamial systems around

equilibrium points (i.e. non-osillating solutions). LSA onsists in writing a linearised version of a
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dynamial system. The stability of the linearised system is then assessed by studying its response

to harmoni perturbations.

LSA has already been applied to physial models of musial instruments, suh as woodwind

instruments [Wilson and Beavers, 1974, Chang, 1994, Silva et al., 2008, Karkar et al., 2012℄,

�ute-like instruments [Terrien et al., 2014℄ and brass instruments [Cullen et al., 2000,

Lopez et al., 2006, Silva et al., 2007℄. By de�nition, the domain of relevane of the LSA re-

sults is theoretially limited to the neighbourhood of the equilibrium solution. However, reent

results on �utes have highlighted that LSA an predit important features of periodi regimes,

suh as their frequenies [Terrien et al., 2014℄. This paper examines to what extent LSA an be

used to understand some aspets of the behaviour of a physial model of brass instrument.

Physial models of brass instuments have been proposed in multiple stud-

ies [Eliott and Bowsher, 1982, Flether, 1993, Adahi and Sato, 1996, Cullen et al., 2000,

Campbell, 2004, Silva et al., 2007℄. Sine our fous in this study is a simple model, a one

degree-of-freedom system is retained to model the player's lips: the outward-striking valve,

also referred to as "(+,−)" in some publiations. The same goal of simpliity makes us

ignore nonlinear propagation in the bore of the instrument, whih is responsible for "brassy

sounds" at high sound levels [Myers et al., 2012℄. The oupling by the air�ow blown be-

tween the lips and the air olumn inside the bore is modelled through a usual nonlinear

algebrai equation [Hirshberg et al., 1995℄. This model is detailed in Setion 2.1. Even

suh a simple brasswind model has more parameters needing to be tuned than the sim-

plest models of woodwind instruments, whih is based on two dimensionless parameters

only [Hirshberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013℄.

However, brasswind players make their instrument osillate on several modes, whih implies a

signi�ant modi�ation of the mehanial harateristis of their lips. In musial terms, this

orresponds to playing multiple notes without pulling a slide nor depressing a valve, whih is

part of the playing tehnique of all brass instruments. Therefore, the lip dynamis annot be

ignored, whih implies an inrease in the number of parameters to tune. A bibliographial review

is given in Setion 2.2 to give grounds to the values hosen for eah parameter of the model. In

Setion 2.3, details are given on how LSA is applied to the model. There are several possible

approahes to highlighting nonlinear model behaviours to ompare them with LSA results. For

instane, the Harmoni Balane Method gives a Fourier series approximation of the steady state of

periodi regimes, inluding unstable ones [Gilbert et al., 1989, Cohelin and Vergez, 2009℄. Sine

the pioneering work desribed in [MIntyre et al., 1983, Shumaher, 1981℄, it is also possible to

arry out time-domain simulations at moderate omputational ost, providing aess to transients

and possibly non-periodi solutions. The seond approah is retained here (see Setion 2.4).

Setion 3 ompares LSA results and numerial simulations for di�erent sets of parameter values.

Periodi regimes, orresponding to the usual sound of the instrument, are explored, along with

less ommon regimes suh as quasi-periodiity and period-doubling. In Setion 4, we fous on the

lowest aousti resonane of brass instruments, alled the pedal note, a partiularly interesting
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ase where LSA and numerial simulation results are surprisingly di�erent from other regimes.

2 Tools

2.1 Brass instrument model

In most wind instruments [Flether, 1993, Chaigne and Kergomard, 2016℄, inluding brass instru-

ments [Eliott and Bowsher, 1982, Yoshikawa, 1995, Cullen et al., 2000℄, the osillation results from

the oupling between an exiter and a resonator. More generally, the losed-loop system repre-

sentation shown in Figure 1 has been widely used by the musial aoustis ommunity sine the

seminal work of Helmholtz [Helmholtz, 1877, MIntyre et al., 1983℄.

Figure 1: (Color online) Closed-loop model in free osillation, suitable for the desription of

most self-sustained musial instruments. Self-sustained osillations are generated by the loalised

nonlinear oupling between a linear exiter and a linear resonator. For brass instruments, the

exiter is the lip reed while the resonator is the air olumn inside the bore, and the oupling is due

to the air �ow between the lips.

For brass instruments, the exiter is the lips of the musiian. It is represented by a linear,

osillator-like valve linking the height of the hannel between the lips h(t) and the pressure di�er-

ene aross the lips δp(t) = pb − p(t), where pb is the blowing pressure, and p(t) is the osillating

pressure signal inside the mouthpiee (the input of the bore).

A one degree of freedom valve (referred to hereafter as "1-DOF valve") [Flether, 1993℄ is

enough to model the lips for ommon playing situations [Yoshikawa, 1995℄ with a manageable

number of parameters. Two kinds of 1-DOF valves an be onsidered : the "outward-striking"

valve tends to open when δp grows, while the "inward-striking" valve tends to lose.

While it is now admitted that woodwind reeds an be satisfatorily modelled by inward

striking valves [Wilson and Beavers, 1974, Dalmont et al., 1995℄, there is no onsensus about

the modelling of the lip reed, as neither the outward-striking nor the inward-striking valve

model reprodues all the behaviours observed with real musiians. Partiularly, brass players

are able to reah a playing frequeny fosc above and below the nth
bore resonane frequeny

fac,n [Campbell, 2004℄, while a 1-DOF inward-striking or outward-striking valve model is limited

to playing frequenies respetively below or above fac,n to meet the regeneration ondition ex-

plained in [Eliott and Bowsher, 1982℄. Moreover, measurements of the mehanial response of

arti�ial [Cullen et al., 2000, Neal et al., 2001℄ and natural lips [Newton et al., 2008℄ revealed the
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oexistene of both inward-striking and outward-striking resonanes - this oexistene allowing fosc

to be below or above fac,n.

However, situations where fosc is below fac,n (inward-striking behaviour) are mostly spei� to

some musial e�ets. For normal playing situations, the playing frequeny is above fac,n, and an

outward-striking valve model is preferred. Moreover, the geometry of human lips makes them open

when the pressure in the mouth inreases, whih is onsistent with the behaviour of the outward-

striking valve model. The relevane of this hoie will be reinfored throughout this artile, by

omparing the results of the model analysis with experimental behaviours of brasswinds.

The outward-striking valve model gives the relation below, linking the height of the hannel

between the lips and the pressure di�erene aross the lips :

d2h

dt2
+

ωl

Ql

dh

dt
+ ω2

l (h− h0) =
1

µ
(pb − p(t)), (1)

where ωl = 2πfl (rad · s−1) is the lip resonane angular frequeny; Ql the (dimensionless) quality

fator of the lips; h0 the value of h(t) at rest; µ a lip surfae mass equivalent; (kg ·m−2). The

variables are reported on the sketh of the lip region in Figure 2:

pb h(t) u(t) p(t)

lip

lip

mouth

mouthpiece

Figure 2: (Color online) Sketh of the mouth and lips of the musiian and the instrument mouth-

piee. The mouth (left) is onsidered as a avity under a stati pressure pb. The lips (ellipses)

separate the mouth from the mouthpiee. The height between the lips is h(t), the air�ow between

the lips is u(t) and the pressure in the mouthpiee is p(t).

This model assumes the mouth pressure to be onstant, even though the existene of an osil-

lating omponent in the mouth has been demonstrated experimentally [Fréour and Savone, 2013℄.

A more preise model would onsider this osillating omponent, whih is due to the tunable pipe

formed by the voal trat [Eliott and Bowsher, 1982℄. A signi�ant role of the voal trat has been

shown for saxophone and larinet playing [Clinh et al., 1982, Fritz, 2005, Savone et al., 2008,

Guillemain et al., 2010, Chen et al., 2011℄. However, for brass instrument playing, the role of the

voal trat does not seem to be signi�ant when playing periodi regimes in the usual musial

range of the instrument - although its interation with the lips has been highlighted by experimen-

tal studies [Kaburagi et al., 2011, Chen et al., 2012, Fréour and Savone, 2013, Fréour et al., 2015,

Boutin et al., 2015℄.

The resonator is the air olumn inside the bore of a trombone or a saxhorn (see Setion 4.2).

It is modelled by its input impedane, whih is the ratio between pressure P (ω) and aousti �ow
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U(ω) in the mouthpiee. Its expression in the frequeny domain is:

Z(ω) =
P (ω)

U(ω)
. (2)

Nonlinear e�ets in the resonator should be taken into aount to aurately desribe

the behaviour of brass instruments at medium/high playing levels [Hirshberg et al., 1996,

Myers et al., 2012℄ partiularly the "brassy sound" related to the formation of shok waves. How-

ever, the main objetive of this work is the study of osillation at low levels. Therefore the aousti

propagation along the bore is assumed to be linear and thus the input impedane fully desribes

the resonator in our model. Here, input impedanes of a Courtois "T149" tenor trombone (and

when mentioned, a Couesnon "Exelsior" baritone-saxhorn in B♭) are used. Impedanes are mea-

sured with the impedane sensor desribed in [Maaluso and Dalmont, 2011℄. They are �tted by a

sum of omplex modes (pole-residue funtions) using a Least Mean Squares method, as desribed

in [Silva, 2009, p.28�40℄. The harateristi impedane of the resonator is Zc = ρc/S, S being the

input ross setion of the bore at the mouthpiee rim. The modal-�tted impedane is written:

Z(ω) = Zc

N
∑

n=1

[

Cn

jω − sn
+

C∗

n

jω − s∗n

]

, (3)

sn and Cn being the omplex poles and the omplex residues of the nth
omplex mode, respetively.

Translation of eq. (3) in the time domain and deomposition of p(t) into its modal omponents n,

suh as p(t) = 2.
∑N

n=1Re(pn) results in an ordinary di�erential equation for eah pn:

dpn
dt

= Zc.Cn.u(t) + sn.pn ∀n ∈ [1, N ]. (4)

The measured trombone impedane and an 18-mode �t are ompared, f. Figure 3. The

maximum relative di�erene between the measured and the �tted urves, for frequenies above

30Hz, is lower than 2.6 % for the magnitude, and 4.7 % for the phase. Measurement in low

frequeny is limited by the impedane sensor preision.
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Figure 3: (olour online) Magnitude (top) and phase (bottom) of the input impedane of a Courtois

tenor trombone with the slide in its �rst position. The solid (blue) urve depits the measured

impedane, the dashed (red) urve is the �tted urve with 18 omplex modes. The di�erene

between �t and measurement is also plotted (magenta).

Those two linear elements (exiter and resonator) are non-linearly oupled by the air�ow

through the lip hannel. The air jet is assumed to be laminar in the lip hannel, but tur-

bulent in the mouthpiee, all its kineti energy being dissipated without any pressure reov-

ery. Applying the Bernoulli law and the mass onservation law gives the following expression

of the �ow between lips, depending on the pressure di�erene and the height of the lip han-

nel [Wilson and Beavers, 1974, Eliott and Bowsher, 1982, Hirshberg et al., 1995℄:

u(t) =

√

2

ρ
Wh(t)

√

pb − p(t), (5)

where u(t) is the air�ow (m3 · s−1
), h(t) the height of the hannel between the lips (m), ρ = 1.19

kg ·m−3
the density of the air at 20 ◦C and W the width of the lip hannel (m).

The dynamis of the system desribed by (5), (1) and (4) an be put into a state-spae repre-

sentation Ẋ = F (X), where F is a nonlinear vetor funtion, and X the state vetor, ontaining

the observables of the system. Sine p(t) =
∑N

n=1 2Re(pn(t)), this results in the following system:







d2h(t)
dt2

= −ω2
l h(t)− ωl

Ql

dh(t)
dt

− p(t)
µ

+ ω2
l h0 +

pb
µ

dpn
dt

= snpn(t) + ZcCn

√

2
ρ
Wh(t)

√

pb − p(t) for n ∈ [1 : N ].
(6)

This leads to the following state vetor, similar to the one proposed in [Silva et al., 2014℄:

X =

[

h(t);
dh

dt
; {pn(t), n ∈ [1 : N ]}

]

′

, (7)

and the funtion F an be written as:

dX

dt
=



























dh

dt
d2h

dt2
dp1
dt
.

.

.

dpn
dt



























= F (X) =



























X(2)

−ω2
l X(1)− ωl

Ql

X(2)− 1

µ

∑N+2
k=3 2Re[X(k)] + ω2

l h0 +
pb
µ

s1X(3) + C1.Zc.

√

2

ρ
WX(1)

√

pb −
∑N+2

k=3 2Re[X(k)]

.

.

.

sNX(N + 2) + CN .Zc.

√

2

ρ
WX(1)

√

pb −
∑N+2

k=3 2Re[X(k)]



























. (8)

2.2 Choie of lip parameters

Setting the values for the parameters of the lip model is not obvious, beause measuring the

mehanial admittane (veloity over fore ratio) under playing onditions (osillating lips) seems

out of reah, even if some experiments tend to it [Newton et al., 2008℄. Adjusting parameters to
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get results omparable with measured signals does not seem a good approah: Indeed, even though

a one-DOF model depends on a small number of parameters, di�erent sets of parameter values

may lead to similar results [Hélie et al., 1999℄. Moreover, lip valve parameters are expeted to vary

far more than reed valve parameters, partiularly the lip resonane frequenies.

A bibliographial review on lip parameter values has been done. Results from the literature

are gathered in Table 1 along with a brief summary of the method used in the reviewed artiles.

Referene h0 (m) W (m) fl (Hz) µ−1 (m2kg−1) Ql Summary

[Eliott and Bowsher, 1982℄ N/A N/A 200 0.2 0.5 Ql measured on heek

[Cullen et al., 2000℄ 1st (Outward) mode

Embouhure: Soft 6.3 · 10−4 18 · 10−3
189 0.07 10.5 arti�ial lips

Medium 5.3 · 10−4 12 · 10−3
203.5 0.11 6 3 embouhures

Tight 4.4. · 10−4 11 · 10−3
222 0.09 9

[Lopez et al., 2006℄ 2 · 10−4 30 · 10−3
162 0.03 5 arti�ial lips

[Gazengel et al., 2007℄ human lips;

Embouhure: Soft N/A N/A 115.7 N/A 0.79 saxophone-like

Medium N/A N/A 479.9 N/A 0.46 position;

Tight N/A N/A 1073 N/A 0.46 3 embouhures

[Newton et al., 2008℄ N/A N/A 32 N/A 1.2�1.8 Human lips

High-speed amera

[Rihards, 2003℄ 5 · 10−4 7 · 10−3
162 0.19 3.7 arti�ial lips

�t for good results

[Rodet and Vergez, 1996℄ N/A N/A 428.4 0.67 2.88 Trumpet; adjusted

for simulation

[Adahi and Sato, 1996℄ 1 · 10−3 7 · 10−3
60�700 variable 0.5�3 Trumpet; adjusted

for simulation

Table 1: Review of di�erent values of lip parameters from literature, along with a brief explanation

of the method. In some artiles, ertain values are not available (N/A). For papers presenting 2-

DOF lip models, only the �rst, outward-striking DOF is reported. All but the last two referenes

deal with trombone parameter values.

This work omplements the review published in [Newton, 2009, p.119℄. Many authors do not

provide the parameter values they use, nor do they give explanations about their method to get

these values, exept the fat that these parameters allow periodi self-sustained osillation of the

model. Measurements on human or arti�ial lips were made in onditions as similar as possible

to the playing onditions. The list of publiations is not exhaustive: we left aside most of the

publiations sine they do not justify their values or do not �t their measurements with a modal

lip-reed model.

Geometri parameters (lip hannel width, and lip hannel height when the player is not blowing)

given in all studies are onsistent, around W = 12.10−3 m and h0 = 5.10−4 m. Parametri studies
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have shown that variations in these values do not drastially hange the qualitative behaviour of

the model: the threshold values hange but the overall shape of the urves is the same. Similar

observations have been made about µ, even though the range of the values gathered is a little

wider (µ ∈ [5, 33] for the trombone).

Measurements from [Gazengel et al., 2007, Newton et al., 2008℄ tend to give low quality-fator

values between 0.5 and 2 for human lips. However, preliminary analysis arried out with Ql ≈ 1

showed very unrealisti pressure thresholds (order of magnitude : 104 to 105 Pa). Thus, a value

for Ql = 7 was hosen, loser to the values measured on arti�ial lips (Ql ∈ [3.7, 10.5]). The set of

parameters used for simulation and LSA throughout this paper is given in Table 2:

h0 (m) W (m) 1/µ (m2kg−1) Ql

5.10−4 12.10−3
0.11 7

Table 2: Lip parameters retained in this study.

The value of fl is onstantly adapted by the musiian while playing. For this reason, we performed

LSA with fl values ranging from 20 Hz to 500 Hz. This allows osillation on the �rst eight regimes

of the instrument, whih orrespond to the usual notes of the trombone, from B♭1 to B♭4 with

the slide in �rst position.

2.3 Stability of the equilibrium solution

Linearising a losed-loop system to assess potential instabilities is a widely used method, in the dy-

namial systems ommunity [Bergé et al., 1995℄ as well as in musial aoustis for brasswind, wood-

wind and �ute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,

Auvray et al., 2012, Terrien et al., 2014℄. Basially, the equations modelling the system are lin-

earised around a known equilibrium solution. Then, the stability of this solution is determined.

When the system desribed in Setion 2.1 is in stati equilibrium, the lip opening position has

a stati value h(t) = he. This equilibrium position is slightly larger than the lip opening at

rest h0, due to the onstraint of the blowing pressure on the inner sides of the lips. Similarly,

there is a small stati overpressure pe at the input of the bore of the instrument, as Z(ω = 0) is

nonzero. This is related to the pressure loss in the instrument. Mathematially, this equilibrium

is obtained by anelling all time derivatives in the system, as desribed in appendix A. The value

of A =
√
pb − pe is obtained by solving:

A3 +
A2

β
+ h0µω

2
l A− pb

β
= 0, (9)

with β = WZ(ω=0)
µω2

l

√

2
ρ
. The value of Z(ω = 0) is extrapolated from the �tted version of the

impedane. Equation (9) has 1 or 3 real roots. In the latter ase, the smallest real positive root

should be onsidered to ompute pe = pb −A2
[Silva, 2009℄, as Z(ω = 0) is small. The lip hannel

height at equilibrium he is then given by (1) with ḧ = ḣ = 0.
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In the viinity of the equilibrium solution Xe, the linearised funtion F̃ an be written as:

F̃ (X) = F (Xe) + JF (Xe)(X −Xe), (10)

where JF (X) is the Jaobian matrix of the funtion F and Xe the state vetor at the equilibrium

solution. The solutions of Ẋ = F̃ (X) are under the form :

X(t)−Xe =
N
∑

i=1

Uie
λi·t, (11)

where λi are the eigenvalues of JF (Xe) and Ui the orresponding eigenvetors.

Thus, the eigenvalues of the Jaobian matrix give information about the stability of the equilibrium

solution for a given set of parameters. If at least one of these eigenvalues λ has a positive real

part, the amplitude of the linearised solution tends to in�nity while time inreases, whih means

the equilibrium is unstable and the solution starts osillating. Referring to (11), this means that

one of the terms of the sum dominates the solution, all other terms being dereasing exponentials.

As a �rst approximation, the solution of the linearised system an be written:

X(t)−Xe =
N
∑

n=1

(

Xne
λn·t

)

for n suh as Re(λn) > 0. (12)

The developed tool stops when the osillation threshold is deteted, i.e. one eigenvalue λ gets a

positive real part. In the transient phase of the osillation, the exponential growth of the amplitude

is determined by the positive real part of λ, and the angular frequeny is given by its imaginary

part ω = Im(λ). However, the nonlinearities of the system limit the �nal amplitude and also a�et

the osillation frequeny of the steady state.

This method only detets instabilities emerging from the equilibrium solution. If a stable osil-

lating regime oexists along with the stable equilibrium solution, it will not be deteted. This

situation ours for example in ertain woodwind instruments, where the Hopf bifuration (on-

neting the equilibrium solution to the osillating one) is inverse in some ases [Grand et al., 1997,

Dalmont et al., 2000, Farner et al., 2006, Riaud et al., 2009℄.

2.4 Time-domain simulation

Another approah for studying musial instruments relies on time-domain ab initio simulations of

the hosen model, for a given set of parameters.

Multiple numerial methods have been developed to simulate wind instruments with models

similar to the one presented in Setion 2.1. Various approahes have been proposed to imple-

ment the resonator aousti behaviour. The re�etion funtion of the bore has been widely

used [MIntyre et al., 1983, Shumaher, 1981, Adahi and Sato, 1995, Vergez and Rodet, 1997,

Gilbert and Aumond, 2008℄. The modal deomposition of the bore has been hosen for this arti-

le, and omputations are arried out with the open-soure MoReeSC software tool, freely avail-
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able [MoReeSC, 2013℄. Its priniples and results have been desribed in [Silva et al., 2014℄. This

simulation tool uses the state-spae paradigm, similar to the one presented in Setion 2.1. It al-

lowed us to simulate the behaviour of the model with a high number of aousti modes for the

resonator (18 in this study), and o�ers the neessary �exibility to modify the model parameters,

inluding the resonator parameters, as it is done in Setion 4.

3 Results

3.1 Linear Stability Analysis

The LSA method detailed in Setion 2.3 is applied to the model de�ned in Setion 2.1, with the

set of lip parameters de�ned in Table 2. The resonator is modelled with a modal �t (N=18 in

Equation (3)) of a measured impedane (B♭ trombone, �rst position).

For eah value of fl onsidered, the eigenvalues of the Jaobian matrix JF (Xe) presented in Equa-

tion (10) are omputed for inreasing values of pb, until a �rst instability, haraterized by at least

one eigenvalue with positive real part, ours. For eah value of fl, Figure 4a) represents the lowest

value of pb giving rise to an unstable equilibrium solution, further referred to as the threshold pres-

sure pthresh. Figure 4b) represents the imaginary part of the orresponding eigenvalue divided by

2π, whih is the osillation frequeny at threshold, further alled fthresh. Eah horizontal dashed

line in Figure 4b) represents the nth
aousti resonane frequeny of the instrument fac,n, given by

the loal maximum of the input impedane amplitude.

It should be noted that, for pb values higher than pthresh, other pairs of onjugate eigenvalues

may have a positive real part, whih implies a system with multiple instabilities. If di�erent

osillating solutions are stable with these parameters, the system is able to start osillating on

di�erent aousti resonanes. In Figure 4, and later �g. 11 and �g. 14, the �rst instability (the

one orresponding to pb = pthresh) is shown for eah fl value (solid urve). The seond instability

is reported only for a narrow range of fl (dashed urve).

Between 20 and 500 Hz, the two urves of Figure 4 an be divided into 9 parts. Eah part

orresponds to a range of fl whih orrespond to one regime of osillation, related to one aousti

resonane of the instrument: [30, 63 Hz℄ (�rst regime), [72, 123 Hz℄ (seond regime), [124, 179

Hz], [180, 234 Hz], [235, 288 Hz], [289, 352 Hz], [353, 404 Hz], [405, 460 Hz], [462, 500 Hz]. In

Figure 4b), an osillating frequeny plateau is maintained just above eah value of fac,n. This is

the usual behaviour of an outward-striking valve oupled to an air olumn: when playing on the nth

aousti mode of the bore, the osillation frequeny at threshold fthresh is just above fac,n, whih

is the resonane frequeny of the nth
aousti mode [Campbell, 2004℄. For eah regime, fthresh

monotonously follows the variation of fl. This mathes the experiene of the brass player, who an

slightly "bend" the pith up and down, i.e. inrease or derease the pith, by adjusting fl through

the musular tension of the lips, and by adapting the blowing pressure to the hange in pthresh. The

width of eah plateau, i.e. the attainable musial range on eah aousti resonane, has analytial
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limits depending on the lip quality fator Ql, as detailed in [Silva et al., 2007℄. Between 64 Hz and

71 Hz, the equilibrium solution is unonditionally stable whatever the value of pb: this frequeny

range overs the impedane minimum between 1st and 2nd peaks, whih are farther apart from one

another than the other peaks due to the �rst peak inharmoniity.

It an be observed in Figure 4a) that the osillation threshold globally inreases with the rank of

the aousti resonane. A larger pb value is required to reah the higher notes of the instrument,

in aordane with the musial experiene. For eah regime, the pthresh urve is U-shaped, as

already observed in [Silva et al., 2007℄. Its minimum value popt,n, marked with a irle in Figure 4,

is known to depend signi�antly on the quality fator of the lips Ql. In the following, we assume

as in [Lopez et al., 2006℄ that popt,n and the assoiated lip resonane frequeny f opt
l,n and osillation

frequeny at threshold f opt
thresh,n represent the optimal playing on�guration for a human performer.

This hypothesis is in line with what musiians report, i.e. they develop a strategy to minimize the

e�ort to produe a sound on a given regime. The values of popt,n, between 500 Pa and 15.3 kPa have

the same order of magnitude as blowing pressure measured by [Bouhuys, 1968℄ and Freourthese.

The pressure threshold inreases faster when fl is above f
opt
l,n than below as illustrated by the inset

in Figure 4a). These results are ompatible with the experiene of brass players, who report that

"bending down" a note requires less e�ort than bending it up.

The rest of this setion fouses on some examples of [pb, fl] points to illustrate the di�erent be-

haviours observed with the model. For eah ase, the agreement between LSA results and the

sound produed by the time-domain simulation desribed in Setion 2.4 is disussed.
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Figure 4: (olour online) Results of LSA applied, to the model detailed in Setion 2.1 with param-

eters from Table 2. For a range of lip resonane frequenies fl, (a) shows the threshold pressure

pthresh, while (b) shows the orresponding osillation frequeny fthresh. Dotted lines are the values

of fac,n. Cirles indiate the "optimal" values popt,n and f opt
thresh,n as de�ned in the text. The magni-

�ed subplot (zoom on 4th regime) highlights the asymmetrial pthresh behaviour above and below

popt,n. For illustration, the seond destabilisation threshold (a) and the orresponding frequeny

(b) are also plotted between fl = 109 Hz and 123 Hz.

3.2 Exat math between simulation and LSA

The simulated pressure at the input of the instrument is ompared with the LSA results. In par-

tiular, the osillation threshold is assessed by performing simulations with pb in the viinity of

pthresh. The orresponding frequenies, alled fosc, are also ompared to fthresh given by LSA. This

latter quantity is measured by applying a zero-rossing algorithm [Wall, 2003℄, with a sliding Han-

ning window (width 0.3s, overlapping 99%). This method results in small omputation artefats,

whih should not be taken into aount.

A simulation with the exat value of pthresh would theoretially lead to an in�nite transient time,

de�ned as the time it takes to reah steady state. Therefore, values of pb slightly below and above

pthresh are tested. To illustrate a periodi osillation of the model, the lip resonane frequeny is

set to fl = 90 Hz, everything else being given in Table 2. The orresponding mouthpiee pressure
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waveforms are represented in the �rst two plots in Figure 5. The third plot shows a situation

where pb is muh higher than pthresh.

When the mouth pressure is below the threshold (pb = 1210 Pa whereas pthresh = 1222 Pa)

(Fig. 5 a), the osillation dereases exponentially towards the stati, non-osillating solution. The

mouthpiee pressure onverges towards 115.5 Pa, whih is the value of pe omputed with LSA. The

thik line represents the exponential derease in the amplitude Xa.e
Im(λ)t

(amplitude of solutions

taken from Eq. (12)). In this ase, all eigenvalues of JF have negative real parts: λ is the eigenvalue

of JF whih real part is the losest to zero. The alulated osillation frequeny (dash-dotted line)

is onstant and equal to fthresh = 116 Hz = Im(λ)/2π.

When the mouth pressure is slightly above the threshold (pb = 1234 Pa) (Fig. 5, entre), the

pressure waveform envelope (thik line) inreases exponentially during the transient phase, in

agreement with Equation (12), before reahing a steady-state regime. The alulated osillation

frequeny fosc (dash-dots) begins at fthresh = 116 Hz; it beomes quite higher in the permanent

regime (126 Hz, that is, 8.6 % or 143 musial ents above fthresh).
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Figure 5: (olour online) Time-domain simulations with parameters from Table 2 and fl = 90 Hz,
with mouth pressure pb lower (a) and higher (b) than the linearised model threshold (pthresh = 1222
Pa). Mouth pressure (steady) and mouthpiee pressure (osillating) are plotted (left vertial axis)

along with the exponential growth/diminution of amplitude alulated using LSA (thik urves:

envelope of Equation (12)). The dash-dotted urve depits the instantaneous playing frequeny.

The expeted osillation frequeny at threshold is fthresh = 116 Hz. The third plot () orresponds

to a blowing pressure muh higher than the threshold (pb = 3 kPa; zoom on �rst seond of signal).

As expeted, the behaviour of time-domain simulations is aurately predited by LSA as long

as pb remains in the viinity of pthresh (Figure 4a and 4b). The value of pthresh in simulation is

in agreement with the value given by LSA. The eigenvalue with the largest real part predits the

frequeny and the amplitude of the osillation at the beginning of the simulation. However, above

the pressure threshold in Fig. 5b), after t = 8 s, the simulated amplitude gets a�eted by nonlinear

phenomena and is no longer exponential. Thus, this linearised tool provides relevant information

about the signal, but is obviously unable to fully predit the amplitude of the sustained regime

waveform.
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The third plot shows the results with pb = 3 kPa muh higher than pthresh. LSA and time-

domain simulation still give oherent information. As in Figure 5b), the osillating frequeny of

the established regime fosc = 130.5 Hz is 8 % higher than Im(λ)/(2π) = 120.8 Hz. The di�er-

ene is 134 musial ents, larger than a semitone. fosc is higher than near the threshold. An in

vivo experiment has also shown that the pith rises when the player inreases the blowing pres-

sure [Campbell and Greated, 1994℄. However, this remark should be onsidered arefully beause

during pratie a brass player always apply orrelated ontrol over mouth pressure and lip musular

ativity.

pb (Pa) Re(λ) Im(λ)/2π fosc (Hz) measured transient duration (s)

1234 0.2864 116.74 126.5 9.71

1500 5.5591 117.66 127.6 0.74

2000 12.0262 118.99 128.9 0.31

2500 16.0891 120.01 129.7 0.215

3000 18.8507 120.82 130.5 0.1675

Table 3: Values of the real part of the destabilising eigenvalue λ, its imaginary part divided by 2π,
the osillation frequeny of the established regime, and the duration of the transient (both measured

on simulations) for di�erent values of the blowing pressure (all other parameters unhanged). The

real part of λ inreases with pb, whih implies a faster-growing envelope as pb inreases. This

is onsistent with the transient duration measured with MIRonsets

1

funtion estimating the time

needed to reah the maximum value of p(t).

Transient time, i.e. the time needed for the amplitude to reah 95% of its �nal value, have been

measured with di�erent values of pb. The values are reported in Table 3.

The transient time dereases while Re(λ) inreases, whih an be modelled: aording to Eq. (12)

the amplitude grows exponentially with Re(λ). Thus, under the assumption that pe is negligible

ompared to 95% of the �nal amplitude (hereinafter noted p95%), one an write:

p95% = B.eRe(λ).transient, (13)

where B is a real onstant and transient the transient time (s).

Furthermore, aording to [Bergé et al., 1995, p.40℄ in the viinity of a diret Hopf bifuration, the

maximum amplitude of the osillation is proportional to the square root of the di�erene between

the parameter value and the threshold value, whih means

√
pb − pthresh here. Therefore, the value

of the pressure at t = transient is:

p95% = 0.95.C.
√
pb − pthresh, (14)

where C is a real onstant.

1

Part of MIRtoolbox: https://www.jyu.fi/hum/laitokset/musiikki/en/researh/oe/materials/

mirtoolbox/. Aessed 2016-09-13
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Introduing this expression of p95% in the natural logarithm of Eq. (13) results in the following

analytial expression of the transient time where A = 0.95.C
B

:

transient =
1

Re(λ)
· ln(A√pb − pthresh). (15)

With A = 4.75 �tted on values measured on time-domain simulations, this model mathes very

well with the evolution of transient durations measured on simulations with di�erent values of pb,

as shown in Figure 6.
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Figure 6: (olour online) Transient durations measured on time-domain simulations, plotted along

the Re(λ) value (blue markers). The green line is the transient duration model desribed by

Eq.(15).

The osillation frequeny also inreases with pb. An estimate of the frequeny is also given (imag-

inary part of λ divided by 2 · π) whih mathes well the pseudo-frequeny of the transient phase

of eah signal.

This example is representative of most ases tested: LSA orretly predits whether the solution

is osillating, with an aeptable estimation of the osillation frequeny. The transient duration

an be aurately predited with the real part of λ, as desribed in (15) even for pb far above

the threshold. However, the auray of the osillation frequeny predition is limited, and LSA

an predit neither the steady-state waveform nor the nature of the osillation regime. This latter

observation will be further highlighted in the following sub-setion.

3.3 Unforeseen behaviours

LSA provides a lot of relevant information about the osillation threshold and the transient phase.

This is partiularly true when pb is near pthresh. However, some simulations (detailed below)

show nonlinear phenomena, whih obviously this method annot predit. These phenomena

inlude quasi-periodi osillations. By de�nition, these are deterministi osillations whose energy
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is loated at frequenies whih are integer ombinations of base frequenies, whose ratio is an

irrational number.

Quasi-periodi osillations

Firstly, the previous omparison between LSA and time-domain simulation is reprodued with

a di�erent lip resonane frequeny. Three simulations are performed with the parameters given

in Table 2 and fl = 110 Hz. For these parameters, pthresh is equal to 711 Pa. Again, three

di�erent pb values are tested: pb = 701 Pa, pb = 720 Pa to illustrate the behaviour just below

and above the threshold, and pb = 2 kPa for an example far above the threshold. Results are

plotted in Figure 7. When pb is under the threshold, results are very similar to the previous ase

with fl = 90 Hz (Fig. 7a) and 7d)). However, when pb beomes large enough to destabilize the

equilibrium solution, the osillation of the mouthpiee pressure beomes quasi-periodi instead of

periodi (Figure 7b),7e),7) and7f)). The quasi-periodi nature of the signal is learly visible on

the spetra (Figure 7e) and 7f)) with seondary peaks around the prinipal frequeny peaks.
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Figure 7: (olour online) Simulation results for fl = 110 Hz, the pressure threshold being pthresh =
711 Pa. Like in Figure 5 three simulations are shown with pb = 701 Pa (a), pb = 720 Pa (b)

and pb = 2 kPa, muh higher than pthresh (). Other parameters (lip harateristis) are given in

Table 2. Figures (d), (e) and (f) are the spetra orresponding to (a), (b) and (), respetively

((e) and (f) alulated using steady regimes of (b) and ().

This illustrates the aforementioned limitation of LSA. The existene of an osillating solution

is attested in the viinity of the bifuration, and the pressure threshold pthresh is aurately

16



predited, but the ourrene of a quasi-periodi regime annot be predited.

Period doubling

When fl is equal to 55 Hz, pb to 400 Pa (pthresh being 161 Pa), and the other parameters are the

values given in Table 2, the simulation result osillates at fosc = 32.5 Hz, far below fthresh = 59.78

Hz. This is a peuliar behaviour, as this osillation frequeny is signi�antly under the trombone

�rst aousti resonane (fac,1 = 38 Hz). Indeed, the hosen model indues playing frequenies

above the aousti resonane frequeny (fosc > fac,n), at least near the pressure threshold, to

omply with the regeneration ondition [Eliott and Bowsher, 1982℄.

Figure 8 ompares the spetrum of the mouthpiee pressure simulated with the aforementioned

parameters and fl = 55 Hz (dotted line) and then with fl = 50 Hz (solid line). For fl = 50 Hz,

fosc = 65 Hz is higher than fthresh = 56.3 Hz, like in previous simulations in Setion 3.2. For

fl = 55 Hz, a reasonable expetation would be an osillation frequeny slightly higher than 65 Hz,

as fosc tends to inrease with fl. However, the simulation osillation frequeny at fl = 55 Hz is

fosc = 32.47 Hz, lose to half of its value at fl = 50 Hz.
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Figure 8: (olour online) Spetra of the simulated trombone mouthpiee pressures, with (pb = 400
Pa for both lip resonane frequenies, fl = 50 Hz (solid) and fl = 55 Hz (dotted) (other parameters

from Table 2). Cross markers give the values of fthresh = 56.3 Hz for fl = 50 Hz and fthresh = 59.8
Hz for fl = 55 Hz. The solid vertial line indiates the �rst aousti resonane frequeny of the

trombone bore, fac,1 = 38 Hz.

Further simulations were arried out, with fl going from 50 to 61 Hz in steps of 1 Hz, pb = 400 Pa

and the others parameters set as in Table 2. Table 4 reports the osillation frequeny measured

on the simulated signals, along with the fthresh value predited by LSA. Between 54 and 55 Hz,

the osillation frequeny is almost halved. Then, between 56 and 57 Hz, the frequeny is again

halved, beoming a quarter of its value for fl < 55 Hz. For fl = 59 Hz and above, the fundamental

frequeny rises sharply to a value lose to its original value, but the energy is far more distributed

in the spetrum.
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fl (Hz) 50 51 52 53 54 55 56 57 58 59 60 61

fosc (Hz) 65.45 65.48 65.49 65.49 65.46 32.53 32.54 16.32 16.32 65.1 65.1 65.1

fthresh (Hz) 56.3 56.97 57.71 58.36 59.08 59.78 60.51 61.27 62 62.77 63.58 64.44

Table 4: Osillation frequenies measured on the simulated mouthpiee pressure, for lip frequenies

from 50 to 61 Hz, pb = 400 Pa and other parameters from Table 2. Osillation frequenies at

threshold given by LSA are also reported.

These results are lose to those reported in [Gibiat and Castellengo, 2000℄, with a trombone

player performing two suessive period doublings. When inreasing fl in this range, the model

undergoes multiple period-doubling bifurations. Similar senarios have been observed on nu-

merial models of woodwind instruments [Gibiat, 1988, Kergomard et al., 2004℄. This suession

of period doublings is also known as subharmoni asade or Feigenbaum senario and leads to

haoti behaviour, whih may explain the noisiness of signals above fl > 58 Hz. Again, explaining

the ourrene of suh phenomena is out of reah with LSA.

Overblowing

Besides these two nonlinear phenomena, other di�erenes between eigenvalue-based LSA and time-

domain simulation an be observed. Another example is given with fl = 120 Hz, the parameters

given in Table 2 and a high blowing pressure: pb = 6.5 kPa while the threshold is pthresh = 1056 Pa.

While fthresh = 128.4 Hz is just above the 2nd aousti resonane frequeny of the bore (fac,2 = 112

Hz), the simulation osillation frequeny exeeds the 3rd: fosc = 187.5 Hz > fac,3 = 170 Hz.

Figure 9 shows the spetrum of a simulation osillating on the third aousti resonane, while the

predited osillation at threshold orresponds to the seond one.
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Figure 9: (olour online) Spetrum of simulated mouthpiee pressure for fl = 120 Hz and pb = 6.5
kPa with other parameters taken from Table 2. The self-sustained osillation ours at fosc = 187.5
Hz, orresponding to the third aousti resonane, while LSA predits an osillation at fthresh =
128.4 Hz (thik vertial line) with pthresh = 1056 Pa. Eah dash-dotted line represents the nth

aousti resonane frequeny fac,n of the trombone bore.
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The method previously used, whih onsists in retaining the lowest pb value ausing a destabilisa-

tion, does not predit the behaviour of the system with suh a high blowing pressure. Yet, this

osillation on the third regime an be understood, sine another pair of eigenvalues of the Jaobian

matrix with a positive real part appears for pb > pthresh. The dashed lines in Figure 4a) and 4b)

shows the pressure threshold orresponding to the seond pair of suh eigenvalues (alled λ2), and

the assoiated osillation frequeny. For fl = 120 Hz the seond threshold is 6116 Pa with an os-

illation frequeny equal to Im(λ2)/2π = 172 Hz, orresponding to the third regime of osillation

of the system. This is onsistent with the behaviour observed in the numerial simulation.

3.4 Open-loop transfer funtion

For a better understanding of the origin of the di�erent instabilities, another LSA formalism is

used, whih gives visual information about the stability margins of the di�erent osillation regimes.

It onsists in studying a linearised version of the open-loop transfer funtion (OLTF) of the system

de�ned by Equation (5), (1) and (3) [Saneyoshi et al., 1987, Ferrand et al., 2010℄. This OLTF is

divided into two parts: the exiter admittane Ya whih desribes the lip reed behaviour, from

Equation (5) and (1), and the resonator input impedane, whih is modelled with a modal �t of

its input impedane Z like in the other formalism (see Equation (3)).

The linearisation of the exiter admittane Ya simpli�es to a 1st degree Taylor expansion of Equa-

tion (5) near the equilibrium point; Equation (1) is then put into the result. Details an be found

in Appendix B about the alulation whih leads to the following expression of Ya:

Ya = Whe

√

2δpe
ρ

(

−D(ω)

Khe

− 1

2δpe

)

, (16)

where D(ω) represents the dynamis of the lip reed.

The stability of the OLTF, alled HOL, is then evaluated with the Barkhausen rite-

rion [Wangenheim, 2011℄, whih points to possibly unstable solutions when HOL = Ya.Z = 1.

On a Bode diagram, points with HOL having a 0 dB magnitude and 0

◦
phase are limits of stability.

This method has already been used for larinet models with inward-striking valves, and for brass

and �ute-like instruments [Saneyoshi et al., 1987, Ferrand et al., 2010, Terrien et al., 2014℄.

Figure 10 shows the Bode diagram of the OLTF of the system fed with the same parameters as in

Figure 9. The stability limits are indiated with rosses.
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Figure 10: (olour online) Bode diagram of the open-loop transfer funtion of the trombone model

with the parameters in Table 2, fl = 120 Hz and pb = 6.5 kPa. There are two instability points

(rosses), with a 0 dB magnitude and a zero phase.

Here, the Bode diagram shows two points of 0 dB magnitude and 0 degree phase at 132 Hz and 172

Hz. In terms of the eigenvalues-based LSA tool desribed in 2.3, these frequenies orrespond to

the imaginary part of the eigenvalues of JF having a positive real part when these eigenvalues are

alulated with pb = 6500 Pa. The frequeny obtained with OLTF di�ers from the one obtained

with eigenvalues of the Jaobian matrix, beause fthresh = 128 Hz is obtained at pb = pthresh = 1056

Pa while the OLTF value is obtained with pb = 6.5 kPa. The real part of the seond destabilising

pair of eigenvalues beomes positive above 6116 Pa, whih is ompatible with an osillation on

this regime at pb = 6.5 kPa. The related frequeny at threshold is 172.9 Hz orresponding to an

osillation on the third aousti resonane.

Both LSA methods show multiple instabilities of the stati solution, that is, multiple possible

regimes of osillation. The preditions of threshold pressures and possible osillation frequenies

are satisfatory. But they give no information either about the stability of these osillation regimes,

or about whih regime the instrument will atually osillate on. This is determined by initial

onditions and by the stability of the di�erent osillating solutions, whih depends on nonlinear

elements out of reah of the method.

4 Lowest regime of osillation

This hapter fouses on the results of LSA and time-domain simulation on the lowest regime,

related to the �rst aousti resonane of the air olumn inside the bore. This lowest playable note

is alled "pedal note" by musiians. For the trombone in �rst position, and the saxhorn with no

valve depressed (neutral position), the pedal note is a B♭1 at 58 Hz in the musial sale.
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4.1 The Trombone "pedal note"

To ompare the behaviour of the di�erent registers of the trombone, the ratio between the thresh-

old frequeny fthresh and the resonane frequeny of the orresponding aoustial mode fac,n is

omputed. Figure 11a) and 11b) gives pthresh and fthresh like in Figure 4 but on a smaller fl range,

and Figure 11) gives the fthresh/fac,n ratio.

At the lip frequenies orresponding to the pressure threshold minima, alled f opt
l,n (see irles in

Figure 9), this ratio appears to be signi�antly higher for the �rst aousti resonane than for the

other ones: f opt
thresh,1/fac,1 = 55.6/38 = 1.46 while f opt

thresh,n/fac,n ∈ [1.04 : 1.1] for n ≥ 2 as shown in

Table 5.

It an be noted that, at least for the �ve lowest resonanes, f opt
thresh,n is in good agreement with the

note supposed to be played on the instrument for this resonane, aording to the tempered sale

(see Table 5). Therefore, LSA gives a reliable estimation of the referene note for these aousti

resonanes, inluding the pedal note, with a relative error between f opt
thresh,n and the tempered sale

note smaller than 5.5%. However, f opt
thresh,n underestimates the playing frequeny of the pedal note

while it overestimates the other notes.

Regime f opt
l,n (Hz) f opt

thresh,n (Hz) tempered sale (Hz) relative error fac,n (Hz) f opt
thresh,n/fac,n

1 49 55.6 58.27 −4.6% 38 1.46

2 110 122.9 116.54 5.4% 112 1.1

3 162 180.0 174.81 2.9% 170 1.06

4 215 238.9 233.08 2.5% 228 1.05

5 271 301.6 291.35 3.5% 290 1.04

Table 5: f opt
thresh,n values for the �ve lowest regimes of the trombone, ompared with the frequeny

of the expeted note. The aousti resonane frequeny of the orresponding mode, the f opt
l,n value

and the f opt
thresh,n/fac,n ratio are also given. f opt

thresh,n is a suitable predition of the played note. The

f opt
thresh,n/fac,n ratio is partiularly high for the �rst osillation regime.

For illustration, a simulation is arried out with the usual parameters from Table 2 with fl =

f opt
l,n = 49 Hz and pb = 150 Pa (pthresh being 146 Pa). The resulting signal osillates at fosc = 61.86

Hz, far higher than fac,1: the frequeny results of LSA and of simulation are onsistent for these

parameters as well.
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Figure 11: (olour online) Results of LSA (with lip parameters from Table 2) are plotted on (a)

and (b) with a narrower fl range than in Figure 4. Horizontal dotted lines in (b) are the fac,n
values. The fthresh = fl urve is also plotted (dotted). () is the f opt

thresh,n/fac, n ratio. Cirles

indiate the f opt
l,n lip resonane frequenies.

The LSA and the numerial simulation reveal a partiularity of the trombone �rst regime: the

osillation frequeny predited by both methods is far above the aousti resonane frequeny,

whih results in a high f opt
thresh,n/fac,n ratio for n = 1, while it is muh smaller when n ≥ 2. This

mathes the experiene of trombone players, who are able to play the pedal note in tune with the

other notes, despite the large inharmoniity of the orresponding aousti resonane. Therefore,

a linearised model is able to predit a regime previously attributed to unexplained non-linear

ontributions of the upper aousti resonanes [Benade, 1976, p.405℄. To omplete this onlusion,

LSA have been applied to the model with a resonator limited to the trombone's �rst mode. This

results in f opt
thresh,1 = 61.06 Hz. This on�rms that the high fthresh/fac,n ratios are related to the

�rst mode itself, without the need of ombinations of the upper modes.

Bouasse proposed an experiment in whih a trombone is played with a saxophone mouth-

piee [Bouasse, 1986, p.370℄. Gilbert and Aumont reently ran this experiment and published

it [Gilbert and Aumond, 2008℄, together with audio and video reordings. The result is an in-

strument playing a low E♭1, that is, an osillating frequeny just under fac,1 = 38Hz, whih is

ompatible with a playing frequeny below the aousti resonane frequeny, harateristi of the

inward-striking valve model used [Wilson and Beavers, 1974℄.

In order to explore the in�uene of nature of the exiter - inward-striking or outward striking -

this experiment is simulated here. The trombone with a saxophone mouthpiee is modelled with
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a �t of the input impedane of a trombone in series with the equivalent volume of a saxophone

mouthpiee, instead of a trombone mouthpiee. The saxophone reed is modelled with an inward-

striking valve as de�ned in [Wilson and Beavers, 1974℄ for example. Its equation is the same as

eq. (1) exept the sign of the right-hand term: (pb − p(t)) beomes (p(t)− pb) in this model. The

harateristis of the ane reed are taken from [Silva, 2009℄, with fl = 1 kHz, Q = 1.1; 1/µ = 4.9

m2kg−1;W = 10−3 m; h0 = 5.10−4 m. The results are presented in Figure 12.

The osillating frequeny of the simulated mouthpiee pressure is lose to the �rst resonane

frequeny fosc/fac,1 = 0.99 - a ratio ontrasting with the high ratio obtained with an outward-

striking valve. The signal is nearly sinusoidal, beause pb = 1800 Pa is lose to ptresh = 1760 Pa,

and beause of the lak of aousti resonanes mathing the harmonis of this frequeny in the

impedane spetrum.
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Figure 12: (olour online) Results of simulation of a trombone with a tenor saxophone mouthpiee,

modelled as an inward-striking valve with reed resonane frequeny fl = 1 kHz, W = 1 cm,

h0 = 5.10−4 m, Ql = 1.1, 1/µ = 4.9 m2kg−1
. The blowing pressure pb = 1800 Pa is slightly above

pthresh = 1760 Pa. (a): blowing pressure (dashed line) and mouthpiee pressure (solid line). (b):

spetrum of the mouthpiee pressure, showing an osillation frequeny fosc = 37.85 Hz slightly

below the �rst aousti resonane fac,1 = 38 Hz. Dashed lines represent the resonane frequenies

of the bore.

Contrary to previous simulation, the fosc/fac,1 ratio is very lose to 1. No pedal note phenomenon

seems to be reprodued here. This simulation supports our hoie of an outward-striking valve

model, rather than an inward-striking one, to reprodue the behaviour of the lips for the trombone.

4.2 A Saxhorn "ghost note" ?

A omplementary exploration is onduted on a Baritone-saxhorn in B♭. This instrument has a

onial bore on almost its entire length, and it is played on the same range as the tenor trombone.

Its aousti resonane frequenies are quite similar to those of a trombone, as shown in Figure 13.

The main di�erene between both instruments is the �rst resonane peak, whih is nearly harmoni

with the other ones on the saxhorn and very inharmoni on the trombone. Thus, unlike with the

trombone, the pedal note B♭1 is lose to the lowest resonane frequeny.
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Figure 13: (olour online) Comparison between modal �ts of the impedanes of a trombone (dashed

line) and of a saxhorn (solid line). The main di�erene in terms of frequeny onerns the �rst

peak.

The pedal note is easily playable by an intermediate musiian. However, while pratiing, the

authors fortuitously found out another playable note, whose frequeny lies between fac,1 and fac,2.

Trials have been arried out on di�erent saxhorn models and brands. The note played lies between

D♭2 and E♭2, that is, a frequeny ratio fosc/fac,1 between 1.19 and 1.35. We all it the "ghost

note" in this paper. Experiened saxhorn players further on�rmed the existene, and faility of

emission, of this ghost note on many di�erent saxhorns and tubas.

LSA results on the saxhorn model are provided in Figure 14. The model used is similar to the

trombone model, with Z equal to the input impedane of the saxhorn in Eq. (3). The behaviour is

similar to that of the trombone, with a partiularly high f opt
thresh,1/fac,1 ratio. One again fousing

on the f opt
thresh,n values (irles in Figure 14), the ratio is f opt

thresh,1/fac,1 = 1.23. As in the ase of the

trombone, this ratio is smaller and quite onstant for other modes (f opt
thresh,n/fac,n < 1.05, n ≥ 2).

Time-domain simulation of the saxhorn model on the �rst aousti resonane (with pb = popt,1+1%,

fl = f opt
l,1 and other parameters given in Table 2) on�rms that fosc/fac,1 = 1.23.
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Figure 14: (olour online) LSA results for the saxhorn (with lip parameters given in Table 2) are

given under the same form as those for the trombone in Figure 11. Cirles indiate popt,n (a) and

f opt
thresh,n (b).

The gap between the lowest note played and the �rst aousti resonane is smaller for the ghost

note of the saxhorn (f opt
thresh,1/fac,1 = 1.23) than for the pedal note of the trombone. However,

both are signi�antly higher than for the other modes (f opt
thresh,n/fac,n ≤ 1.09 otherwise). Other

studies [Velut et al., 2014℄ also highlight a high fosc/fac,1 ratio for trombone and saxhorn despite

quite di�erent simulation onditions, whih indiates the robustness of this phenomenon against

hanges in parameters. Thus, this simple linearised model makes it possible to predit the pedal

note of the trombone and the ghost note of the saxhorn. However, a set of parameters simulating

the pedal note B♭1 of the saxhorn with this model still needs to be found, should it exist.

4.3 Shifting of the lowest resonane peak of the input impedanes

The trombone and the saxhorn are two examples of instruments having a high f opt
thresh,1/fac,1 ratio.

The trombone has a higher ratio than the saxhorn, and the �rst bore resonane frequeny is lower.

To assess this negative orrelation between fac,1 and the f opt
thresh,1/fac,1 ratio, the �rst resonane

frequeny of the input impedane is shifted for both instruments. This is done by modifying the

{C1, s1} values in Eq. (3) while keeping the other resonanes unhanged, as well as the amplitude

and quality fator of the �rst resonane.

For eah value of fac,1 tested, the f opt
thresh,1/fac,1 value is alulated. Results for both saxhorn and

trombone are reported in Figure 15. For both instruments, the ratio inreases when the �rst
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resonane frequeny tends towards zero. Thus, as far as the studied model is onerned, the lower

the resonane frequeny, the larger the gap between the playing frequeny and the �rst resonane

frequeny.
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Figure 15: (olour online) Ratio between the predited osillation frequeny f opt
thresh,1 and the

aousti resonane frequeny fac,1 for di�erent values of the latter. The solid urve plots the results
for the trombone, the dotted one for the saxhorn. Vertial dash-dotted lines are the original �rst

resonane frequenies of a trombone (38 Hz) and a saxhorn (62 Hz).

5 Conlusions

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to

understand various near-threshold behaviours of a omplete nonlinear model of brass instrument

applied to a trombone and a saxhorn.

Cases where simulation results are perfetly explained by LSA inlude exponentially deaying or

inreasing osillation transients around the equilibrium solution. Moreover, in time simulations, fre-

quenies of periodi regimes measured in steady states are similar to those given by LSA, with play-

ing frequenies lose to the bore resonanes. This remains true as long as the periodi regime ema-

nating from the equilibrium solution remains stable. Indeed, one this periodi regime loses its sta-

bility, overblowing, quasi-periodiity or period-doubling ours. Multiple instabilities of the equi-

librium solution are shown by LSA, orresponding to several available osillation regimes, but this

method will not determine on whih of these regimes the system is going to osillate. Further stud-

ies of the model with numerial ontinuation methods [Doedel, 1981, Cohelin and Vergez, 2009℄,

should detet the bifurations between osillation branhes and estimate the stability domain of

eah periodi solution, thus determining on whih regime the system would osillate. Quasi-

periodiity and period-doubling are nonlinear phenomena not taken into aount in this method.

The most striking results in this paper onern the lowest aousti resonane of brass instruments.

Indeed, in the ase of the trombone, LSA predits the prodution of the pedal note. LSA learly

indiates that for low enough aousti resonane frequenies, the frequeny of the emerging osilla-

tion is far beyond the resonane frequeny of the instrument. This allows the trombone pedal note
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to be played in tune, even though the orresponding resonane frequeny is misaligned with the

nearly harmoni series of the upper impedane peaks. This result from LSA is quite unexpeted:

the pedal note of the trombone seems to result from a oupling between the lips and the nearest

aousti mode below the playing frequeny, just like for the other osillation regimes. In ontrast

with previous studies, LSA show that higher bore resonanes are not neessarily implied in the es-

tablishment of the pedal note, as shown by the simulation with a one-resonane bore. Considering

the saxhorn, LSA also suggests the prodution of a note - referred to as the "ghost note" in this

paper - that has never been doumented but the playability of whih is on�rmed by advaned

players.

However some questions are still unsolved. First of all, the reason why the ratio between the playing

frequeny at threshold and the aousti resonane frequeny rises when the latter dereases requires

further attention. Moreover, neither LSA nor numerial simulations ould explain the prodution

of the saxhorn pedal note. This may be due to a limitation of the 1-DOF valve model for the lips or

more simply to unsuitable parameter values. Indeed, in spite of the bibliographial review arried

out for this study, hoosing parameter values for a brass model remains hallenging. Even though

the results obtained look reasonable, onsistent with musiians' experiene, in vivo measurements

of lip parameters during musial performane would be very valuable.
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A Equilibrium point of the system

Prior to applying the linear stability analysis (LSA) to our model, the equilibrium solution must

be omputed before linearising the equations around this solution. This solution onsists of a

onstant lip hannel height h(t) = he, a onstant �ow between the lips ue and a onstant pressure

in the instrument p(t) = pe. Finding these values onsists in solving the equation system (6) with

these onstant values. The system beomes:















0 = −ω2
l he − pe

µ
+ ω2

l h0 +
pb
µ

ue =
√

2
ρ
Whe

√
pb − pe

0 = ZcCnue + snpne for n ∈ [1 : N ].

(17)

Considering the relation between p(t) and its omponents pn(t), and adding the variable A =
√
pb − pe, it beomes:















he = h0 +
A2

µω2

l

ue =
√

2
ρ
WheA

pe = Z(ω = 0)ue.

(18)

These three equations an now be ombined:

WZ(ω = 0)

µω2
l

√

2

ρ
A3 + A2 +Wh0Z(ω = 0)

√

2

ρ
A− pb = 0, (19)

whih leads to eq (9) given in Setion 2.3.

B Linearisation of Open-Loop Transfer Funtion

This appendix details the alulations leading to the linearised expression of the open-loop transfer

funtion of the model. The linearisation of the �ow between lips u simpli�es to a 1st degree Taylor

expansion of Equation (5) near the equilibrium point:

ũ(p, h) = u(pe, he)−
[

∂u

∂p
(pe, he)

]

(δp(t)− δpe) +

[

∂u

∂h
(pe, he)

]

(h(t)− he). (20)

δp = pb−p(t) is the di�erential pressure through the lips. δpe and he are the respetive values of δp

and h at the equilibrium solution. Similarly to the previous appendix A, the pe value is obtained

by omputing the roots of a 3rd order polynomial whose variable is A =
√
δp:

A3 +
A2

β
+ µ.ω2

l .h0.A− pb
β

= 0 with β =
Z(ω = 0).W

µ.ω2
l

.

√

2

ρ
. (21)

he is given by Equation (1) in stati onditions (all time derivatives being null):
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he = h0 +
δpe

(µ.ω2
l )
. (22)

All alulations being done, the linearised expression of the �ow between the lips is:

ũ(p, h) = Whe

√

2δpe
ρ

(

δp(t)

2δpe
+

h(t)

he

− 1

2

)

. (23)

In the frequeny domain, the equation of the lip movement (Equation (1)) gives the relation be-

tween the osillating omponents of the mouthpiee pressure P (ω) and H(ω) the Fourier transform

of h(t)−h0. Sine we are only interested in osillating solutions, the ω = 0 ase is ignored: hene,

eah onstant value is omitted. This leads to the following equation:

H(ω) = D(ω)
P (ω)

µ.ω2
l

, (24)

with D(ω) being the dynamis of the lips:

D(ω) =
1

1− ω2

ω2

l

+ j ωQl

ωl

, (25)

whih leads to this �nal expression of the linearized valve admittane, de�ned as Ya =
Ũ(ω)

P (ω)
:

Ya = W.he.

√

2δpe
ρ

(

− D(ω)

µ.ω2
l .he

− 1

2δpe

)

. (26)

With this expression, HOL(ω) = Ya(ω) · Z(ω) an be omputed for setion 3.4.

C Nomenlature

The symbols and abbreviations used all along this paper are realled here, along with their meaning

and the unit used:

• h(t): Height of the lip hannel (m);

• W : Width of the lip hannel (m);

• h0: Height of the lip hannel at rest (m);

• ρ: Density of air at 20

◦
C (kg.m−3);

• µ: Equivalent surfai mass of the lips (kg.m−2);

• Ql: Quality fator of the lips (no unit);

• p(t) or P (ω): Waveform and Fourier transform of the pressure at the input of the bore of

the instrument (Pa);

29



• pb: Blowing pressure (Pa);

• pthresh: Threshold value of pb, above whih the equilibrium solution is unstable (Pa);

• u(t) or U(ω): Waveform and Fourier transform of the air �ow at the input of the instrument

(m3.s−1
);

• Z(ω): Input impedane of the resonator (Pa.m−3.s);

• ωl = 2.π.fl: resonane frequeny of the lips (rad.s1);

• fosc: Playing frequeny of the instrument (Hz);

• fac,n: Aousti resonane frequeny of the nth
mode (Hz);

• fthresh: Osillation frequeny at pthresh (Hz).

• popt,n: Lowest value of pthresh for the nth
aousti resonane (Pa);

• f opt
thresh,n: Value of fthresh (Hz) at pb = popt,n (Hz);

• f opt
l,n : Value of fl (Hz) at pb = popt,n (Hz);
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